xref: /linux/drivers/acpi/processor_idle.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER	"power"
66 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD			1	/* 1us */
74 #define C3_OVERHEAD			1	/* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77 
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86 
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98 
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100 
101 #endif
102 
103 /*
104  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105  * For now disable this. Probably a bug somewhere else.
106  *
107  * To skip this limit, boot/load with a large max_cstate limit.
108  */
109 static int set_max_cstate(const struct dmi_system_id *id)
110 {
111 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
112 		return 0;
113 
114 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
115 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
116 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
117 
118 	max_cstate = (long)id->driver_data;
119 
120 	return 0;
121 }
122 
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124    callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
126 	{ set_max_cstate, "IBM ThinkPad R40e", {
127 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
129 	{ set_max_cstate, "IBM ThinkPad R40e", {
130 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
132 	{ set_max_cstate, "IBM ThinkPad R40e", {
133 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
135 	{ set_max_cstate, "IBM ThinkPad R40e", {
136 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
138 	{ set_max_cstate, "IBM ThinkPad R40e", {
139 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
141 	{ set_max_cstate, "IBM ThinkPad R40e", {
142 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
144 	{ set_max_cstate, "IBM ThinkPad R40e", {
145 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
147 	{ set_max_cstate, "IBM ThinkPad R40e", {
148 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
150 	{ set_max_cstate, "IBM ThinkPad R40e", {
151 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
153 	{ set_max_cstate, "IBM ThinkPad R40e", {
154 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
156 	{ set_max_cstate, "IBM ThinkPad R40e", {
157 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
159 	{ set_max_cstate, "IBM ThinkPad R40e", {
160 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
162 	{ set_max_cstate, "IBM ThinkPad R40e", {
163 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
165 	{ set_max_cstate, "IBM ThinkPad R40e", {
166 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
168 	{ set_max_cstate, "IBM ThinkPad R40e", {
169 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
171 	{ set_max_cstate, "IBM ThinkPad R40e", {
172 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
174 	{ set_max_cstate, "Medion 41700", {
175 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
176 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
177 	{ set_max_cstate, "Clevo 5600D", {
178 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180 	 (void *)2},
181 	{},
182 };
183 
184 static inline u32 ticks_elapsed(u32 t1, u32 t2)
185 {
186 	if (t2 >= t1)
187 		return (t2 - t1);
188 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
189 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
190 	else
191 		return ((0xFFFFFFFF - t1) + t2);
192 }
193 
194 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
195 {
196 	if (t2 >= t1)
197 		return PM_TIMER_TICKS_TO_US(t2 - t1);
198 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
199 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
200 	else
201 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
202 }
203 
204 static void acpi_safe_halt(void)
205 {
206 	current_thread_info()->status &= ~TS_POLLING;
207 	/*
208 	 * TS_POLLING-cleared state must be visible before we
209 	 * test NEED_RESCHED:
210 	 */
211 	smp_mb();
212 	if (!need_resched())
213 		safe_halt();
214 	current_thread_info()->status |= TS_POLLING;
215 }
216 
217 #ifndef CONFIG_CPU_IDLE
218 
219 static void
220 acpi_processor_power_activate(struct acpi_processor *pr,
221 			      struct acpi_processor_cx *new)
222 {
223 	struct acpi_processor_cx *old;
224 
225 	if (!pr || !new)
226 		return;
227 
228 	old = pr->power.state;
229 
230 	if (old)
231 		old->promotion.count = 0;
232 	new->demotion.count = 0;
233 
234 	/* Cleanup from old state. */
235 	if (old) {
236 		switch (old->type) {
237 		case ACPI_STATE_C3:
238 			/* Disable bus master reload */
239 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
240 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
241 			break;
242 		}
243 	}
244 
245 	/* Prepare to use new state. */
246 	switch (new->type) {
247 	case ACPI_STATE_C3:
248 		/* Enable bus master reload */
249 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
250 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
251 		break;
252 	}
253 
254 	pr->power.state = new;
255 
256 	return;
257 }
258 
259 static atomic_t c3_cpu_count;
260 
261 /* Common C-state entry for C2, C3, .. */
262 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
263 {
264 	if (cstate->space_id == ACPI_CSTATE_FFH) {
265 		/* Call into architectural FFH based C-state */
266 		acpi_processor_ffh_cstate_enter(cstate);
267 	} else {
268 		int unused;
269 		/* IO port based C-state */
270 		inb(cstate->address);
271 		/* Dummy wait op - must do something useless after P_LVL2 read
272 		   because chipsets cannot guarantee that STPCLK# signal
273 		   gets asserted in time to freeze execution properly. */
274 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
275 	}
276 }
277 #endif /* !CONFIG_CPU_IDLE */
278 
279 #ifdef ARCH_APICTIMER_STOPS_ON_C3
280 
281 /*
282  * Some BIOS implementations switch to C3 in the published C2 state.
283  * This seems to be a common problem on AMD boxen, but other vendors
284  * are affected too. We pick the most conservative approach: we assume
285  * that the local APIC stops in both C2 and C3.
286  */
287 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
288 				   struct acpi_processor_cx *cx)
289 {
290 	struct acpi_processor_power *pwr = &pr->power;
291 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
292 
293 	/*
294 	 * Check, if one of the previous states already marked the lapic
295 	 * unstable
296 	 */
297 	if (pwr->timer_broadcast_on_state < state)
298 		return;
299 
300 	if (cx->type >= type)
301 		pr->power.timer_broadcast_on_state = state;
302 }
303 
304 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
305 {
306 	unsigned long reason;
307 
308 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
309 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
310 
311 	clockevents_notify(reason, &pr->id);
312 }
313 
314 /* Power(C) State timer broadcast control */
315 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
316 				       struct acpi_processor_cx *cx,
317 				       int broadcast)
318 {
319 	int state = cx - pr->power.states;
320 
321 	if (state >= pr->power.timer_broadcast_on_state) {
322 		unsigned long reason;
323 
324 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
325 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
326 		clockevents_notify(reason, &pr->id);
327 	}
328 }
329 
330 #else
331 
332 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
333 				   struct acpi_processor_cx *cstate) { }
334 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
335 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
336 				       struct acpi_processor_cx *cx,
337 				       int broadcast)
338 {
339 }
340 
341 #endif
342 
343 /*
344  * Suspend / resume control
345  */
346 static int acpi_idle_suspend;
347 
348 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
349 {
350 	acpi_idle_suspend = 1;
351 	return 0;
352 }
353 
354 int acpi_processor_resume(struct acpi_device * device)
355 {
356 	acpi_idle_suspend = 0;
357 	return 0;
358 }
359 
360 #ifndef CONFIG_CPU_IDLE
361 static void acpi_processor_idle(void)
362 {
363 	struct acpi_processor *pr = NULL;
364 	struct acpi_processor_cx *cx = NULL;
365 	struct acpi_processor_cx *next_state = NULL;
366 	int sleep_ticks = 0;
367 	u32 t1, t2 = 0;
368 
369 	/*
370 	 * Interrupts must be disabled during bus mastering calculations and
371 	 * for C2/C3 transitions.
372 	 */
373 	local_irq_disable();
374 
375 	pr = processors[smp_processor_id()];
376 	if (!pr) {
377 		local_irq_enable();
378 		return;
379 	}
380 
381 	/*
382 	 * Check whether we truly need to go idle, or should
383 	 * reschedule:
384 	 */
385 	if (unlikely(need_resched())) {
386 		local_irq_enable();
387 		return;
388 	}
389 
390 	cx = pr->power.state;
391 	if (!cx || acpi_idle_suspend) {
392 		if (pm_idle_save)
393 			pm_idle_save();
394 		else
395 			acpi_safe_halt();
396 		return;
397 	}
398 
399 	/*
400 	 * Check BM Activity
401 	 * -----------------
402 	 * Check for bus mastering activity (if required), record, and check
403 	 * for demotion.
404 	 */
405 	if (pr->flags.bm_check) {
406 		u32 bm_status = 0;
407 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
408 
409 		if (diff > 31)
410 			diff = 31;
411 
412 		pr->power.bm_activity <<= diff;
413 
414 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
415 		if (bm_status) {
416 			pr->power.bm_activity |= 0x1;
417 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
418 		}
419 		/*
420 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
421 		 * the true state of bus mastering activity; forcing us to
422 		 * manually check the BMIDEA bit of each IDE channel.
423 		 */
424 		else if (errata.piix4.bmisx) {
425 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
426 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
427 				pr->power.bm_activity |= 0x1;
428 		}
429 
430 		pr->power.bm_check_timestamp = jiffies;
431 
432 		/*
433 		 * If bus mastering is or was active this jiffy, demote
434 		 * to avoid a faulty transition.  Note that the processor
435 		 * won't enter a low-power state during this call (to this
436 		 * function) but should upon the next.
437 		 *
438 		 * TBD: A better policy might be to fallback to the demotion
439 		 *      state (use it for this quantum only) istead of
440 		 *      demoting -- and rely on duration as our sole demotion
441 		 *      qualification.  This may, however, introduce DMA
442 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
443 		 */
444 		if ((pr->power.bm_activity & 0x1) &&
445 		    cx->demotion.threshold.bm) {
446 			local_irq_enable();
447 			next_state = cx->demotion.state;
448 			goto end;
449 		}
450 	}
451 
452 #ifdef CONFIG_HOTPLUG_CPU
453 	/*
454 	 * Check for P_LVL2_UP flag before entering C2 and above on
455 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
456 	 * detection phase, to work cleanly with logical CPU hotplug.
457 	 */
458 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
459 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
460 		cx = &pr->power.states[ACPI_STATE_C1];
461 #endif
462 
463 	/*
464 	 * Sleep:
465 	 * ------
466 	 * Invoke the current Cx state to put the processor to sleep.
467 	 */
468 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
469 		current_thread_info()->status &= ~TS_POLLING;
470 		/*
471 		 * TS_POLLING-cleared state must be visible before we
472 		 * test NEED_RESCHED:
473 		 */
474 		smp_mb();
475 		if (need_resched()) {
476 			current_thread_info()->status |= TS_POLLING;
477 			local_irq_enable();
478 			return;
479 		}
480 	}
481 
482 	switch (cx->type) {
483 
484 	case ACPI_STATE_C1:
485 		/*
486 		 * Invoke C1.
487 		 * Use the appropriate idle routine, the one that would
488 		 * be used without acpi C-states.
489 		 */
490 		if (pm_idle_save)
491 			pm_idle_save();
492 		else
493 			acpi_safe_halt();
494 
495 		/*
496 		 * TBD: Can't get time duration while in C1, as resumes
497 		 *      go to an ISR rather than here.  Need to instrument
498 		 *      base interrupt handler.
499 		 *
500 		 * Note: the TSC better not stop in C1, sched_clock() will
501 		 *       skew otherwise.
502 		 */
503 		sleep_ticks = 0xFFFFFFFF;
504 		break;
505 
506 	case ACPI_STATE_C2:
507 		/* Get start time (ticks) */
508 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
509 		/* Tell the scheduler that we are going deep-idle: */
510 		sched_clock_idle_sleep_event();
511 		/* Invoke C2 */
512 		acpi_state_timer_broadcast(pr, cx, 1);
513 		acpi_cstate_enter(cx);
514 		/* Get end time (ticks) */
515 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
516 
517 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
518 		/* TSC halts in C2, so notify users */
519 		mark_tsc_unstable("possible TSC halt in C2");
520 #endif
521 		/* Compute time (ticks) that we were actually asleep */
522 		sleep_ticks = ticks_elapsed(t1, t2);
523 
524 		/* Tell the scheduler how much we idled: */
525 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
526 
527 		/* Re-enable interrupts */
528 		local_irq_enable();
529 		/* Do not account our idle-switching overhead: */
530 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
531 
532 		current_thread_info()->status |= TS_POLLING;
533 		acpi_state_timer_broadcast(pr, cx, 0);
534 		break;
535 
536 	case ACPI_STATE_C3:
537 		/*
538 		 * Must be done before busmaster disable as we might
539 		 * need to access HPET !
540 		 */
541 		acpi_state_timer_broadcast(pr, cx, 1);
542 		/*
543 		 * disable bus master
544 		 * bm_check implies we need ARB_DIS
545 		 * !bm_check implies we need cache flush
546 		 * bm_control implies whether we can do ARB_DIS
547 		 *
548 		 * That leaves a case where bm_check is set and bm_control is
549 		 * not set. In that case we cannot do much, we enter C3
550 		 * without doing anything.
551 		 */
552 		if (pr->flags.bm_check && pr->flags.bm_control) {
553 			if (atomic_inc_return(&c3_cpu_count) ==
554 			    num_online_cpus()) {
555 				/*
556 				 * All CPUs are trying to go to C3
557 				 * Disable bus master arbitration
558 				 */
559 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
560 			}
561 		} else if (!pr->flags.bm_check) {
562 			/* SMP with no shared cache... Invalidate cache  */
563 			ACPI_FLUSH_CPU_CACHE();
564 		}
565 
566 		/* Get start time (ticks) */
567 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
568 		/* Invoke C3 */
569 		/* Tell the scheduler that we are going deep-idle: */
570 		sched_clock_idle_sleep_event();
571 		acpi_cstate_enter(cx);
572 		/* Get end time (ticks) */
573 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
574 		if (pr->flags.bm_check && pr->flags.bm_control) {
575 			/* Enable bus master arbitration */
576 			atomic_dec(&c3_cpu_count);
577 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
578 		}
579 
580 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
581 		/* TSC halts in C3, so notify users */
582 		mark_tsc_unstable("TSC halts in C3");
583 #endif
584 		/* Compute time (ticks) that we were actually asleep */
585 		sleep_ticks = ticks_elapsed(t1, t2);
586 		/* Tell the scheduler how much we idled: */
587 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
588 
589 		/* Re-enable interrupts */
590 		local_irq_enable();
591 		/* Do not account our idle-switching overhead: */
592 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
593 
594 		current_thread_info()->status |= TS_POLLING;
595 		acpi_state_timer_broadcast(pr, cx, 0);
596 		break;
597 
598 	default:
599 		local_irq_enable();
600 		return;
601 	}
602 	cx->usage++;
603 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
604 		cx->time += sleep_ticks;
605 
606 	next_state = pr->power.state;
607 
608 #ifdef CONFIG_HOTPLUG_CPU
609 	/* Don't do promotion/demotion */
610 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
611 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
612 		next_state = cx;
613 		goto end;
614 	}
615 #endif
616 
617 	/*
618 	 * Promotion?
619 	 * ----------
620 	 * Track the number of longs (time asleep is greater than threshold)
621 	 * and promote when the count threshold is reached.  Note that bus
622 	 * mastering activity may prevent promotions.
623 	 * Do not promote above max_cstate.
624 	 */
625 	if (cx->promotion.state &&
626 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
627 		if (sleep_ticks > cx->promotion.threshold.ticks &&
628 		  cx->promotion.state->latency <= system_latency_constraint()) {
629 			cx->promotion.count++;
630 			cx->demotion.count = 0;
631 			if (cx->promotion.count >=
632 			    cx->promotion.threshold.count) {
633 				if (pr->flags.bm_check) {
634 					if (!
635 					    (pr->power.bm_activity & cx->
636 					     promotion.threshold.bm)) {
637 						next_state =
638 						    cx->promotion.state;
639 						goto end;
640 					}
641 				} else {
642 					next_state = cx->promotion.state;
643 					goto end;
644 				}
645 			}
646 		}
647 	}
648 
649 	/*
650 	 * Demotion?
651 	 * ---------
652 	 * Track the number of shorts (time asleep is less than time threshold)
653 	 * and demote when the usage threshold is reached.
654 	 */
655 	if (cx->demotion.state) {
656 		if (sleep_ticks < cx->demotion.threshold.ticks) {
657 			cx->demotion.count++;
658 			cx->promotion.count = 0;
659 			if (cx->demotion.count >= cx->demotion.threshold.count) {
660 				next_state = cx->demotion.state;
661 				goto end;
662 			}
663 		}
664 	}
665 
666       end:
667 	/*
668 	 * Demote if current state exceeds max_cstate
669 	 * or if the latency of the current state is unacceptable
670 	 */
671 	if ((pr->power.state - pr->power.states) > max_cstate ||
672 		pr->power.state->latency > system_latency_constraint()) {
673 		if (cx->demotion.state)
674 			next_state = cx->demotion.state;
675 	}
676 
677 	/*
678 	 * New Cx State?
679 	 * -------------
680 	 * If we're going to start using a new Cx state we must clean up
681 	 * from the previous and prepare to use the new.
682 	 */
683 	if (next_state != pr->power.state)
684 		acpi_processor_power_activate(pr, next_state);
685 }
686 
687 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
688 {
689 	unsigned int i;
690 	unsigned int state_is_set = 0;
691 	struct acpi_processor_cx *lower = NULL;
692 	struct acpi_processor_cx *higher = NULL;
693 	struct acpi_processor_cx *cx;
694 
695 
696 	if (!pr)
697 		return -EINVAL;
698 
699 	/*
700 	 * This function sets the default Cx state policy (OS idle handler).
701 	 * Our scheme is to promote quickly to C2 but more conservatively
702 	 * to C3.  We're favoring C2  for its characteristics of low latency
703 	 * (quick response), good power savings, and ability to allow bus
704 	 * mastering activity.  Note that the Cx state policy is completely
705 	 * customizable and can be altered dynamically.
706 	 */
707 
708 	/* startup state */
709 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
710 		cx = &pr->power.states[i];
711 		if (!cx->valid)
712 			continue;
713 
714 		if (!state_is_set)
715 			pr->power.state = cx;
716 		state_is_set++;
717 		break;
718 	}
719 
720 	if (!state_is_set)
721 		return -ENODEV;
722 
723 	/* demotion */
724 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
725 		cx = &pr->power.states[i];
726 		if (!cx->valid)
727 			continue;
728 
729 		if (lower) {
730 			cx->demotion.state = lower;
731 			cx->demotion.threshold.ticks = cx->latency_ticks;
732 			cx->demotion.threshold.count = 1;
733 			if (cx->type == ACPI_STATE_C3)
734 				cx->demotion.threshold.bm = bm_history;
735 		}
736 
737 		lower = cx;
738 	}
739 
740 	/* promotion */
741 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
742 		cx = &pr->power.states[i];
743 		if (!cx->valid)
744 			continue;
745 
746 		if (higher) {
747 			cx->promotion.state = higher;
748 			cx->promotion.threshold.ticks = cx->latency_ticks;
749 			if (cx->type >= ACPI_STATE_C2)
750 				cx->promotion.threshold.count = 4;
751 			else
752 				cx->promotion.threshold.count = 10;
753 			if (higher->type == ACPI_STATE_C3)
754 				cx->promotion.threshold.bm = bm_history;
755 		}
756 
757 		higher = cx;
758 	}
759 
760 	return 0;
761 }
762 #endif /* !CONFIG_CPU_IDLE */
763 
764 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
765 {
766 
767 	if (!pr)
768 		return -EINVAL;
769 
770 	if (!pr->pblk)
771 		return -ENODEV;
772 
773 	/* if info is obtained from pblk/fadt, type equals state */
774 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
775 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
776 
777 #ifndef CONFIG_HOTPLUG_CPU
778 	/*
779 	 * Check for P_LVL2_UP flag before entering C2 and above on
780 	 * an SMP system.
781 	 */
782 	if ((num_online_cpus() > 1) &&
783 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
784 		return -ENODEV;
785 #endif
786 
787 	/* determine C2 and C3 address from pblk */
788 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
789 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
790 
791 	/* determine latencies from FADT */
792 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
793 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
794 
795 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
796 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
797 			  pr->power.states[ACPI_STATE_C2].address,
798 			  pr->power.states[ACPI_STATE_C3].address));
799 
800 	return 0;
801 }
802 
803 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
804 {
805 	if (!pr->power.states[ACPI_STATE_C1].valid) {
806 		/* set the first C-State to C1 */
807 		/* all processors need to support C1 */
808 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
809 		pr->power.states[ACPI_STATE_C1].valid = 1;
810 	}
811 	/* the C0 state only exists as a filler in our array */
812 	pr->power.states[ACPI_STATE_C0].valid = 1;
813 	return 0;
814 }
815 
816 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
817 {
818 	acpi_status status = 0;
819 	acpi_integer count;
820 	int current_count;
821 	int i;
822 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
823 	union acpi_object *cst;
824 
825 
826 	if (nocst)
827 		return -ENODEV;
828 
829 	current_count = 0;
830 
831 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
832 	if (ACPI_FAILURE(status)) {
833 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
834 		return -ENODEV;
835 	}
836 
837 	cst = buffer.pointer;
838 
839 	/* There must be at least 2 elements */
840 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
841 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
842 		status = -EFAULT;
843 		goto end;
844 	}
845 
846 	count = cst->package.elements[0].integer.value;
847 
848 	/* Validate number of power states. */
849 	if (count < 1 || count != cst->package.count - 1) {
850 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
851 		status = -EFAULT;
852 		goto end;
853 	}
854 
855 	/* Tell driver that at least _CST is supported. */
856 	pr->flags.has_cst = 1;
857 
858 	for (i = 1; i <= count; i++) {
859 		union acpi_object *element;
860 		union acpi_object *obj;
861 		struct acpi_power_register *reg;
862 		struct acpi_processor_cx cx;
863 
864 		memset(&cx, 0, sizeof(cx));
865 
866 		element = &(cst->package.elements[i]);
867 		if (element->type != ACPI_TYPE_PACKAGE)
868 			continue;
869 
870 		if (element->package.count != 4)
871 			continue;
872 
873 		obj = &(element->package.elements[0]);
874 
875 		if (obj->type != ACPI_TYPE_BUFFER)
876 			continue;
877 
878 		reg = (struct acpi_power_register *)obj->buffer.pointer;
879 
880 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
881 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
882 			continue;
883 
884 		/* There should be an easy way to extract an integer... */
885 		obj = &(element->package.elements[1]);
886 		if (obj->type != ACPI_TYPE_INTEGER)
887 			continue;
888 
889 		cx.type = obj->integer.value;
890 		/*
891 		 * Some buggy BIOSes won't list C1 in _CST -
892 		 * Let acpi_processor_get_power_info_default() handle them later
893 		 */
894 		if (i == 1 && cx.type != ACPI_STATE_C1)
895 			current_count++;
896 
897 		cx.address = reg->address;
898 		cx.index = current_count + 1;
899 
900 		cx.space_id = ACPI_CSTATE_SYSTEMIO;
901 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
902 			if (acpi_processor_ffh_cstate_probe
903 					(pr->id, &cx, reg) == 0) {
904 				cx.space_id = ACPI_CSTATE_FFH;
905 			} else if (cx.type != ACPI_STATE_C1) {
906 				/*
907 				 * C1 is a special case where FIXED_HARDWARE
908 				 * can be handled in non-MWAIT way as well.
909 				 * In that case, save this _CST entry info.
910 				 * That is, we retain space_id of SYSTEM_IO for
911 				 * halt based C1.
912 				 * Otherwise, ignore this info and continue.
913 				 */
914 				continue;
915 			}
916 		}
917 
918 		obj = &(element->package.elements[2]);
919 		if (obj->type != ACPI_TYPE_INTEGER)
920 			continue;
921 
922 		cx.latency = obj->integer.value;
923 
924 		obj = &(element->package.elements[3]);
925 		if (obj->type != ACPI_TYPE_INTEGER)
926 			continue;
927 
928 		cx.power = obj->integer.value;
929 
930 		current_count++;
931 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
932 
933 		/*
934 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
935 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
936 		 */
937 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
938 			printk(KERN_WARNING
939 			       "Limiting number of power states to max (%d)\n",
940 			       ACPI_PROCESSOR_MAX_POWER);
941 			printk(KERN_WARNING
942 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
943 			break;
944 		}
945 	}
946 
947 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
948 			  current_count));
949 
950 	/* Validate number of power states discovered */
951 	if (current_count < 2)
952 		status = -EFAULT;
953 
954       end:
955 	kfree(buffer.pointer);
956 
957 	return status;
958 }
959 
960 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
961 {
962 
963 	if (!cx->address)
964 		return;
965 
966 	/*
967 	 * C2 latency must be less than or equal to 100
968 	 * microseconds.
969 	 */
970 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
971 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
972 				  "latency too large [%d]\n", cx->latency));
973 		return;
974 	}
975 
976 	/*
977 	 * Otherwise we've met all of our C2 requirements.
978 	 * Normalize the C2 latency to expidite policy
979 	 */
980 	cx->valid = 1;
981 
982 #ifndef CONFIG_CPU_IDLE
983 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
984 #else
985 	cx->latency_ticks = cx->latency;
986 #endif
987 
988 	return;
989 }
990 
991 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
992 					   struct acpi_processor_cx *cx)
993 {
994 	static int bm_check_flag;
995 
996 
997 	if (!cx->address)
998 		return;
999 
1000 	/*
1001 	 * C3 latency must be less than or equal to 1000
1002 	 * microseconds.
1003 	 */
1004 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1005 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1006 				  "latency too large [%d]\n", cx->latency));
1007 		return;
1008 	}
1009 
1010 	/*
1011 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1012 	 * DMA transfers are used by any ISA device to avoid livelock.
1013 	 * Note that we could disable Type-F DMA (as recommended by
1014 	 * the erratum), but this is known to disrupt certain ISA
1015 	 * devices thus we take the conservative approach.
1016 	 */
1017 	else if (errata.piix4.fdma) {
1018 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1019 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
1020 		return;
1021 	}
1022 
1023 	/* All the logic here assumes flags.bm_check is same across all CPUs */
1024 	if (!bm_check_flag) {
1025 		/* Determine whether bm_check is needed based on CPU  */
1026 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1027 		bm_check_flag = pr->flags.bm_check;
1028 	} else {
1029 		pr->flags.bm_check = bm_check_flag;
1030 	}
1031 
1032 	if (pr->flags.bm_check) {
1033 		if (!pr->flags.bm_control) {
1034 			if (pr->flags.has_cst != 1) {
1035 				/* bus mastering control is necessary */
1036 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1037 					"C3 support requires BM control\n"));
1038 				return;
1039 			} else {
1040 				/* Here we enter C3 without bus mastering */
1041 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1042 					"C3 support without BM control\n"));
1043 			}
1044 		}
1045 	} else {
1046 		/*
1047 		 * WBINVD should be set in fadt, for C3 state to be
1048 		 * supported on when bm_check is not required.
1049 		 */
1050 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1051 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1052 					  "Cache invalidation should work properly"
1053 					  " for C3 to be enabled on SMP systems\n"));
1054 			return;
1055 		}
1056 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1057 	}
1058 
1059 	/*
1060 	 * Otherwise we've met all of our C3 requirements.
1061 	 * Normalize the C3 latency to expidite policy.  Enable
1062 	 * checking of bus mastering status (bm_check) so we can
1063 	 * use this in our C3 policy
1064 	 */
1065 	cx->valid = 1;
1066 
1067 #ifndef CONFIG_CPU_IDLE
1068 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1069 #else
1070 	cx->latency_ticks = cx->latency;
1071 #endif
1072 
1073 	return;
1074 }
1075 
1076 static int acpi_processor_power_verify(struct acpi_processor *pr)
1077 {
1078 	unsigned int i;
1079 	unsigned int working = 0;
1080 
1081 	pr->power.timer_broadcast_on_state = INT_MAX;
1082 
1083 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1084 		struct acpi_processor_cx *cx = &pr->power.states[i];
1085 
1086 		switch (cx->type) {
1087 		case ACPI_STATE_C1:
1088 			cx->valid = 1;
1089 			break;
1090 
1091 		case ACPI_STATE_C2:
1092 			acpi_processor_power_verify_c2(cx);
1093 			if (cx->valid)
1094 				acpi_timer_check_state(i, pr, cx);
1095 			break;
1096 
1097 		case ACPI_STATE_C3:
1098 			acpi_processor_power_verify_c3(pr, cx);
1099 			if (cx->valid)
1100 				acpi_timer_check_state(i, pr, cx);
1101 			break;
1102 		}
1103 
1104 		if (cx->valid)
1105 			working++;
1106 	}
1107 
1108 	acpi_propagate_timer_broadcast(pr);
1109 
1110 	return (working);
1111 }
1112 
1113 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1114 {
1115 	unsigned int i;
1116 	int result;
1117 
1118 
1119 	/* NOTE: the idle thread may not be running while calling
1120 	 * this function */
1121 
1122 	/* Zero initialize all the C-states info. */
1123 	memset(pr->power.states, 0, sizeof(pr->power.states));
1124 
1125 	result = acpi_processor_get_power_info_cst(pr);
1126 	if (result == -ENODEV)
1127 		result = acpi_processor_get_power_info_fadt(pr);
1128 
1129 	if (result)
1130 		return result;
1131 
1132 	acpi_processor_get_power_info_default(pr);
1133 
1134 	pr->power.count = acpi_processor_power_verify(pr);
1135 
1136 #ifndef CONFIG_CPU_IDLE
1137 	/*
1138 	 * Set Default Policy
1139 	 * ------------------
1140 	 * Now that we know which states are supported, set the default
1141 	 * policy.  Note that this policy can be changed dynamically
1142 	 * (e.g. encourage deeper sleeps to conserve battery life when
1143 	 * not on AC).
1144 	 */
1145 	result = acpi_processor_set_power_policy(pr);
1146 	if (result)
1147 		return result;
1148 #endif
1149 
1150 	/*
1151 	 * if one state of type C2 or C3 is available, mark this
1152 	 * CPU as being "idle manageable"
1153 	 */
1154 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1155 		if (pr->power.states[i].valid) {
1156 			pr->power.count = i;
1157 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1158 				pr->flags.power = 1;
1159 		}
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1166 {
1167 	struct acpi_processor *pr = seq->private;
1168 	unsigned int i;
1169 
1170 
1171 	if (!pr)
1172 		goto end;
1173 
1174 	seq_printf(seq, "active state:            C%zd\n"
1175 		   "max_cstate:              C%d\n"
1176 		   "bus master activity:     %08x\n"
1177 		   "maximum allowed latency: %d usec\n",
1178 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1179 		   max_cstate, (unsigned)pr->power.bm_activity,
1180 		   system_latency_constraint());
1181 
1182 	seq_puts(seq, "states:\n");
1183 
1184 	for (i = 1; i <= pr->power.count; i++) {
1185 		seq_printf(seq, "   %cC%d:                  ",
1186 			   (&pr->power.states[i] ==
1187 			    pr->power.state ? '*' : ' '), i);
1188 
1189 		if (!pr->power.states[i].valid) {
1190 			seq_puts(seq, "<not supported>\n");
1191 			continue;
1192 		}
1193 
1194 		switch (pr->power.states[i].type) {
1195 		case ACPI_STATE_C1:
1196 			seq_printf(seq, "type[C1] ");
1197 			break;
1198 		case ACPI_STATE_C2:
1199 			seq_printf(seq, "type[C2] ");
1200 			break;
1201 		case ACPI_STATE_C3:
1202 			seq_printf(seq, "type[C3] ");
1203 			break;
1204 		default:
1205 			seq_printf(seq, "type[--] ");
1206 			break;
1207 		}
1208 
1209 		if (pr->power.states[i].promotion.state)
1210 			seq_printf(seq, "promotion[C%zd] ",
1211 				   (pr->power.states[i].promotion.state -
1212 				    pr->power.states));
1213 		else
1214 			seq_puts(seq, "promotion[--] ");
1215 
1216 		if (pr->power.states[i].demotion.state)
1217 			seq_printf(seq, "demotion[C%zd] ",
1218 				   (pr->power.states[i].demotion.state -
1219 				    pr->power.states));
1220 		else
1221 			seq_puts(seq, "demotion[--] ");
1222 
1223 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1224 			   pr->power.states[i].latency,
1225 			   pr->power.states[i].usage,
1226 			   (unsigned long long)pr->power.states[i].time);
1227 	}
1228 
1229       end:
1230 	return 0;
1231 }
1232 
1233 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1234 {
1235 	return single_open(file, acpi_processor_power_seq_show,
1236 			   PDE(inode)->data);
1237 }
1238 
1239 static const struct file_operations acpi_processor_power_fops = {
1240 	.open = acpi_processor_power_open_fs,
1241 	.read = seq_read,
1242 	.llseek = seq_lseek,
1243 	.release = single_release,
1244 };
1245 
1246 #ifndef CONFIG_CPU_IDLE
1247 
1248 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1249 {
1250 	int result = 0;
1251 
1252 
1253 	if (!pr)
1254 		return -EINVAL;
1255 
1256 	if (nocst) {
1257 		return -ENODEV;
1258 	}
1259 
1260 	if (!pr->flags.power_setup_done)
1261 		return -ENODEV;
1262 
1263 	/* Fall back to the default idle loop */
1264 	pm_idle = pm_idle_save;
1265 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1266 
1267 	pr->flags.power = 0;
1268 	result = acpi_processor_get_power_info(pr);
1269 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1270 		pm_idle = acpi_processor_idle;
1271 
1272 	return result;
1273 }
1274 
1275 #ifdef CONFIG_SMP
1276 static void smp_callback(void *v)
1277 {
1278 	/* we already woke the CPU up, nothing more to do */
1279 }
1280 
1281 /*
1282  * This function gets called when a part of the kernel has a new latency
1283  * requirement.  This means we need to get all processors out of their C-state,
1284  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1285  * wakes them all right up.
1286  */
1287 static int acpi_processor_latency_notify(struct notifier_block *b,
1288 		unsigned long l, void *v)
1289 {
1290 	smp_call_function(smp_callback, NULL, 0, 1);
1291 	return NOTIFY_OK;
1292 }
1293 
1294 static struct notifier_block acpi_processor_latency_notifier = {
1295 	.notifier_call = acpi_processor_latency_notify,
1296 };
1297 
1298 #endif
1299 
1300 #else /* CONFIG_CPU_IDLE */
1301 
1302 /**
1303  * acpi_idle_bm_check - checks if bus master activity was detected
1304  */
1305 static int acpi_idle_bm_check(void)
1306 {
1307 	u32 bm_status = 0;
1308 
1309 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1310 	if (bm_status)
1311 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1312 	/*
1313 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1314 	 * the true state of bus mastering activity; forcing us to
1315 	 * manually check the BMIDEA bit of each IDE channel.
1316 	 */
1317 	else if (errata.piix4.bmisx) {
1318 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1319 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1320 			bm_status = 1;
1321 	}
1322 	return bm_status;
1323 }
1324 
1325 /**
1326  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1327  * @pr: the processor
1328  * @target: the new target state
1329  */
1330 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1331 					   struct acpi_processor_cx *target)
1332 {
1333 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1334 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1335 		pr->flags.bm_rld_set = 0;
1336 	}
1337 
1338 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1339 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1340 		pr->flags.bm_rld_set = 1;
1341 	}
1342 }
1343 
1344 /**
1345  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1346  * @cx: cstate data
1347  */
1348 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1349 {
1350 	if (cx->space_id == ACPI_CSTATE_FFH) {
1351 		/* Call into architectural FFH based C-state */
1352 		acpi_processor_ffh_cstate_enter(cx);
1353 	} else {
1354 		int unused;
1355 		/* IO port based C-state */
1356 		inb(cx->address);
1357 		/* Dummy wait op - must do something useless after P_LVL2 read
1358 		   because chipsets cannot guarantee that STPCLK# signal
1359 		   gets asserted in time to freeze execution properly. */
1360 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1361 	}
1362 }
1363 
1364 /**
1365  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1366  * @dev: the target CPU
1367  * @state: the state data
1368  *
1369  * This is equivalent to the HALT instruction.
1370  */
1371 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1372 			      struct cpuidle_state *state)
1373 {
1374 	struct acpi_processor *pr;
1375 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1376 	pr = processors[smp_processor_id()];
1377 
1378 	if (unlikely(!pr))
1379 		return 0;
1380 
1381 	if (pr->flags.bm_check)
1382 		acpi_idle_update_bm_rld(pr, cx);
1383 
1384 	acpi_safe_halt();
1385 
1386 	cx->usage++;
1387 
1388 	return 0;
1389 }
1390 
1391 /**
1392  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1393  * @dev: the target CPU
1394  * @state: the state data
1395  */
1396 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1397 				  struct cpuidle_state *state)
1398 {
1399 	struct acpi_processor *pr;
1400 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1401 	u32 t1, t2;
1402 	int sleep_ticks = 0;
1403 
1404 	pr = processors[smp_processor_id()];
1405 
1406 	if (unlikely(!pr))
1407 		return 0;
1408 
1409 	if (acpi_idle_suspend)
1410 		return(acpi_idle_enter_c1(dev, state));
1411 
1412 	local_irq_disable();
1413 	current_thread_info()->status &= ~TS_POLLING;
1414 	/*
1415 	 * TS_POLLING-cleared state must be visible before we test
1416 	 * NEED_RESCHED:
1417 	 */
1418 	smp_mb();
1419 
1420 	if (unlikely(need_resched())) {
1421 		current_thread_info()->status |= TS_POLLING;
1422 		local_irq_enable();
1423 		return 0;
1424 	}
1425 
1426 	/*
1427 	 * Must be done before busmaster disable as we might need to
1428 	 * access HPET !
1429 	 */
1430 	acpi_state_timer_broadcast(pr, cx, 1);
1431 
1432 	if (pr->flags.bm_check)
1433 		acpi_idle_update_bm_rld(pr, cx);
1434 
1435 	if (cx->type == ACPI_STATE_C3)
1436 		ACPI_FLUSH_CPU_CACHE();
1437 
1438 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1439 	/* Tell the scheduler that we are going deep-idle: */
1440 	sched_clock_idle_sleep_event();
1441 	acpi_idle_do_entry(cx);
1442 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1443 
1444 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1445 	/* TSC could halt in idle, so notify users */
1446 	mark_tsc_unstable("TSC halts in idle");;
1447 #endif
1448 	sleep_ticks = ticks_elapsed(t1, t2);
1449 
1450 	/* Tell the scheduler how much we idled: */
1451 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1452 
1453 	local_irq_enable();
1454 	current_thread_info()->status |= TS_POLLING;
1455 
1456 	cx->usage++;
1457 
1458 	acpi_state_timer_broadcast(pr, cx, 0);
1459 	cx->time += sleep_ticks;
1460 	return ticks_elapsed_in_us(t1, t2);
1461 }
1462 
1463 static int c3_cpu_count;
1464 static DEFINE_SPINLOCK(c3_lock);
1465 
1466 /**
1467  * acpi_idle_enter_bm - enters C3 with proper BM handling
1468  * @dev: the target CPU
1469  * @state: the state data
1470  *
1471  * If BM is detected, the deepest non-C3 idle state is entered instead.
1472  */
1473 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1474 			      struct cpuidle_state *state)
1475 {
1476 	struct acpi_processor *pr;
1477 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1478 	u32 t1, t2;
1479 	int sleep_ticks = 0;
1480 
1481 	pr = processors[smp_processor_id()];
1482 
1483 	if (unlikely(!pr))
1484 		return 0;
1485 
1486 	if (acpi_idle_suspend)
1487 		return(acpi_idle_enter_c1(dev, state));
1488 
1489 	if (acpi_idle_bm_check()) {
1490 		if (dev->safe_state) {
1491 			return dev->safe_state->enter(dev, dev->safe_state);
1492 		} else {
1493 			acpi_safe_halt();
1494 			return 0;
1495 		}
1496 	}
1497 
1498 	local_irq_disable();
1499 	current_thread_info()->status &= ~TS_POLLING;
1500 	/*
1501 	 * TS_POLLING-cleared state must be visible before we test
1502 	 * NEED_RESCHED:
1503 	 */
1504 	smp_mb();
1505 
1506 	if (unlikely(need_resched())) {
1507 		current_thread_info()->status |= TS_POLLING;
1508 		local_irq_enable();
1509 		return 0;
1510 	}
1511 
1512 	/* Tell the scheduler that we are going deep-idle: */
1513 	sched_clock_idle_sleep_event();
1514 	/*
1515 	 * Must be done before busmaster disable as we might need to
1516 	 * access HPET !
1517 	 */
1518 	acpi_state_timer_broadcast(pr, cx, 1);
1519 
1520 	acpi_idle_update_bm_rld(pr, cx);
1521 
1522 	/*
1523 	 * disable bus master
1524 	 * bm_check implies we need ARB_DIS
1525 	 * !bm_check implies we need cache flush
1526 	 * bm_control implies whether we can do ARB_DIS
1527 	 *
1528 	 * That leaves a case where bm_check is set and bm_control is
1529 	 * not set. In that case we cannot do much, we enter C3
1530 	 * without doing anything.
1531 	 */
1532 	if (pr->flags.bm_check && pr->flags.bm_control) {
1533 		spin_lock(&c3_lock);
1534 		c3_cpu_count++;
1535 		/* Disable bus master arbitration when all CPUs are in C3 */
1536 		if (c3_cpu_count == num_online_cpus())
1537 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1538 		spin_unlock(&c3_lock);
1539 	} else if (!pr->flags.bm_check) {
1540 		ACPI_FLUSH_CPU_CACHE();
1541 	}
1542 
1543 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1544 	acpi_idle_do_entry(cx);
1545 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1546 
1547 	/* Re-enable bus master arbitration */
1548 	if (pr->flags.bm_check && pr->flags.bm_control) {
1549 		spin_lock(&c3_lock);
1550 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1551 		c3_cpu_count--;
1552 		spin_unlock(&c3_lock);
1553 	}
1554 
1555 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1556 	/* TSC could halt in idle, so notify users */
1557 	mark_tsc_unstable("TSC halts in idle");
1558 #endif
1559 	sleep_ticks = ticks_elapsed(t1, t2);
1560 	/* Tell the scheduler how much we idled: */
1561 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1562 
1563 	local_irq_enable();
1564 	current_thread_info()->status |= TS_POLLING;
1565 
1566 	cx->usage++;
1567 
1568 	acpi_state_timer_broadcast(pr, cx, 0);
1569 	cx->time += sleep_ticks;
1570 	return ticks_elapsed_in_us(t1, t2);
1571 }
1572 
1573 struct cpuidle_driver acpi_idle_driver = {
1574 	.name =		"acpi_idle",
1575 	.owner =	THIS_MODULE,
1576 };
1577 
1578 /**
1579  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1580  * @pr: the ACPI processor
1581  */
1582 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1583 {
1584 	int i, count = 0;
1585 	struct acpi_processor_cx *cx;
1586 	struct cpuidle_state *state;
1587 	struct cpuidle_device *dev = &pr->power.dev;
1588 
1589 	if (!pr->flags.power_setup_done)
1590 		return -EINVAL;
1591 
1592 	if (pr->flags.power == 0) {
1593 		return -EINVAL;
1594 	}
1595 
1596 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1597 		cx = &pr->power.states[i];
1598 		state = &dev->states[count];
1599 
1600 		if (!cx->valid)
1601 			continue;
1602 
1603 #ifdef CONFIG_HOTPLUG_CPU
1604 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1605 		    !pr->flags.has_cst &&
1606 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1607 			continue;
1608 #endif
1609 		cpuidle_set_statedata(state, cx);
1610 
1611 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1612 		state->exit_latency = cx->latency;
1613 		state->target_residency = cx->latency * 6;
1614 		state->power_usage = cx->power;
1615 
1616 		state->flags = 0;
1617 		switch (cx->type) {
1618 			case ACPI_STATE_C1:
1619 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1620 			state->enter = acpi_idle_enter_c1;
1621 			dev->safe_state = state;
1622 			break;
1623 
1624 			case ACPI_STATE_C2:
1625 			state->flags |= CPUIDLE_FLAG_BALANCED;
1626 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1627 			state->enter = acpi_idle_enter_simple;
1628 			dev->safe_state = state;
1629 			break;
1630 
1631 			case ACPI_STATE_C3:
1632 			state->flags |= CPUIDLE_FLAG_DEEP;
1633 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1634 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1635 			state->enter = pr->flags.bm_check ?
1636 					acpi_idle_enter_bm :
1637 					acpi_idle_enter_simple;
1638 			break;
1639 		}
1640 
1641 		count++;
1642 	}
1643 
1644 	dev->state_count = count;
1645 
1646 	if (!count)
1647 		return -EINVAL;
1648 
1649 	return 0;
1650 }
1651 
1652 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1653 {
1654 	int ret;
1655 
1656 	if (!pr)
1657 		return -EINVAL;
1658 
1659 	if (nocst) {
1660 		return -ENODEV;
1661 	}
1662 
1663 	if (!pr->flags.power_setup_done)
1664 		return -ENODEV;
1665 
1666 	cpuidle_pause_and_lock();
1667 	cpuidle_disable_device(&pr->power.dev);
1668 	acpi_processor_get_power_info(pr);
1669 	acpi_processor_setup_cpuidle(pr);
1670 	ret = cpuidle_enable_device(&pr->power.dev);
1671 	cpuidle_resume_and_unlock();
1672 
1673 	return ret;
1674 }
1675 
1676 #endif /* CONFIG_CPU_IDLE */
1677 
1678 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1679 			      struct acpi_device *device)
1680 {
1681 	acpi_status status = 0;
1682 	static int first_run;
1683 	struct proc_dir_entry *entry = NULL;
1684 	unsigned int i;
1685 
1686 
1687 	if (!first_run) {
1688 		dmi_check_system(processor_power_dmi_table);
1689 		max_cstate = acpi_processor_cstate_check(max_cstate);
1690 		if (max_cstate < ACPI_C_STATES_MAX)
1691 			printk(KERN_NOTICE
1692 			       "ACPI: processor limited to max C-state %d\n",
1693 			       max_cstate);
1694 		first_run++;
1695 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1696 		register_latency_notifier(&acpi_processor_latency_notifier);
1697 #endif
1698 	}
1699 
1700 	if (!pr)
1701 		return -EINVAL;
1702 
1703 	if (acpi_gbl_FADT.cst_control && !nocst) {
1704 		status =
1705 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1706 		if (ACPI_FAILURE(status)) {
1707 			ACPI_EXCEPTION((AE_INFO, status,
1708 					"Notifying BIOS of _CST ability failed"));
1709 		}
1710 	}
1711 
1712 	acpi_processor_get_power_info(pr);
1713 	pr->flags.power_setup_done = 1;
1714 
1715 	/*
1716 	 * Install the idle handler if processor power management is supported.
1717 	 * Note that we use previously set idle handler will be used on
1718 	 * platforms that only support C1.
1719 	 */
1720 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1721 #ifdef CONFIG_CPU_IDLE
1722 		acpi_processor_setup_cpuidle(pr);
1723 		pr->power.dev.cpu = pr->id;
1724 		if (cpuidle_register_device(&pr->power.dev))
1725 			return -EIO;
1726 #endif
1727 
1728 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1729 		for (i = 1; i <= pr->power.count; i++)
1730 			if (pr->power.states[i].valid)
1731 				printk(" C%d[C%d]", i,
1732 				       pr->power.states[i].type);
1733 		printk(")\n");
1734 
1735 #ifndef CONFIG_CPU_IDLE
1736 		if (pr->id == 0) {
1737 			pm_idle_save = pm_idle;
1738 			pm_idle = acpi_processor_idle;
1739 		}
1740 #endif
1741 	}
1742 
1743 	/* 'power' [R] */
1744 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1745 				  S_IRUGO, acpi_device_dir(device));
1746 	if (!entry)
1747 		return -EIO;
1748 	else {
1749 		entry->proc_fops = &acpi_processor_power_fops;
1750 		entry->data = acpi_driver_data(device);
1751 		entry->owner = THIS_MODULE;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 int acpi_processor_power_exit(struct acpi_processor *pr,
1758 			      struct acpi_device *device)
1759 {
1760 #ifdef CONFIG_CPU_IDLE
1761 	if ((pr->flags.power) && (!boot_option_idle_override))
1762 		cpuidle_unregister_device(&pr->power.dev);
1763 #endif
1764 	pr->flags.power_setup_done = 0;
1765 
1766 	if (acpi_device_dir(device))
1767 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1768 				  acpi_device_dir(device));
1769 
1770 #ifndef CONFIG_CPU_IDLE
1771 
1772 	/* Unregister the idle handler when processor #0 is removed. */
1773 	if (pr->id == 0) {
1774 		pm_idle = pm_idle_save;
1775 
1776 		/*
1777 		 * We are about to unload the current idle thread pm callback
1778 		 * (pm_idle), Wait for all processors to update cached/local
1779 		 * copies of pm_idle before proceeding.
1780 		 */
1781 		cpu_idle_wait();
1782 #ifdef CONFIG_SMP
1783 		unregister_latency_notifier(&acpi_processor_latency_notifier);
1784 #endif
1785 	}
1786 #endif
1787 
1788 	return 0;
1789 }
1790