xref: /linux/drivers/acpi/processor_idle.c (revision 5bf2b19320ec31d094d7370fdf536f7fd91fd799)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/acpi.h>
39 #include <linux/dmi.h>
40 #include <linux/moduleparam.h>
41 #include <linux/sched.h>	/* need_resched() */
42 #include <linux/pm_qos_params.h>
43 #include <linux/clockchips.h>
44 #include <linux/cpuidle.h>
45 #include <linux/irqflags.h>
46 
47 /*
48  * Include the apic definitions for x86 to have the APIC timer related defines
49  * available also for UP (on SMP it gets magically included via linux/smp.h).
50  * asm/acpi.h is not an option, as it would require more include magic. Also
51  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52  */
53 #ifdef CONFIG_X86
54 #include <asm/apic.h>
55 #endif
56 
57 #include <asm/io.h>
58 #include <asm/uaccess.h>
59 
60 #include <acpi/acpi_bus.h>
61 #include <acpi/processor.h>
62 #include <asm/processor.h>
63 
64 #define PREFIX "ACPI: "
65 
66 #define ACPI_PROCESSOR_CLASS            "processor"
67 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
68 ACPI_MODULE_NAME("processor_idle");
69 #define ACPI_PROCESSOR_FILE_POWER	"power"
70 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
71 #define C2_OVERHEAD			1	/* 1us */
72 #define C3_OVERHEAD			1	/* 1us */
73 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
74 
75 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
76 module_param(max_cstate, uint, 0000);
77 static unsigned int nocst __read_mostly;
78 module_param(nocst, uint, 0000);
79 static int bm_check_disable __read_mostly;
80 module_param(bm_check_disable, uint, 0000);
81 
82 static unsigned int latency_factor __read_mostly = 2;
83 module_param(latency_factor, uint, 0644);
84 
85 #ifdef CONFIG_ACPI_PROCFS
86 static u64 us_to_pm_timer_ticks(s64 t)
87 {
88 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
89 }
90 #endif
91 
92 /*
93  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
94  * For now disable this. Probably a bug somewhere else.
95  *
96  * To skip this limit, boot/load with a large max_cstate limit.
97  */
98 static int set_max_cstate(const struct dmi_system_id *id)
99 {
100 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
101 		return 0;
102 
103 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
104 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
105 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
106 
107 	max_cstate = (long)id->driver_data;
108 
109 	return 0;
110 }
111 
112 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
113    callers to only run once -AK */
114 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
115 	{ set_max_cstate, "Clevo 5600D", {
116 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
117 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
118 	 (void *)2},
119 	{ set_max_cstate, "Pavilion zv5000", {
120 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
121 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
122 	 (void *)1},
123 	{ set_max_cstate, "Asus L8400B", {
124 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
125 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
126 	 (void *)1},
127 	{},
128 };
129 
130 
131 /*
132  * Callers should disable interrupts before the call and enable
133  * interrupts after return.
134  */
135 static void acpi_safe_halt(void)
136 {
137 	current_thread_info()->status &= ~TS_POLLING;
138 	/*
139 	 * TS_POLLING-cleared state must be visible before we
140 	 * test NEED_RESCHED:
141 	 */
142 	smp_mb();
143 	if (!need_resched()) {
144 		safe_halt();
145 		local_irq_disable();
146 	}
147 	current_thread_info()->status |= TS_POLLING;
148 }
149 
150 #ifdef ARCH_APICTIMER_STOPS_ON_C3
151 
152 /*
153  * Some BIOS implementations switch to C3 in the published C2 state.
154  * This seems to be a common problem on AMD boxen, but other vendors
155  * are affected too. We pick the most conservative approach: we assume
156  * that the local APIC stops in both C2 and C3.
157  */
158 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
159 				   struct acpi_processor_cx *cx)
160 {
161 	struct acpi_processor_power *pwr = &pr->power;
162 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
163 
164 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
165 		return;
166 
167 	if (c1e_detected)
168 		type = ACPI_STATE_C1;
169 
170 	/*
171 	 * Check, if one of the previous states already marked the lapic
172 	 * unstable
173 	 */
174 	if (pwr->timer_broadcast_on_state < state)
175 		return;
176 
177 	if (cx->type >= type)
178 		pr->power.timer_broadcast_on_state = state;
179 }
180 
181 static void __lapic_timer_propagate_broadcast(void *arg)
182 {
183 	struct acpi_processor *pr = (struct acpi_processor *) arg;
184 	unsigned long reason;
185 
186 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
187 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
188 
189 	clockevents_notify(reason, &pr->id);
190 }
191 
192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
193 {
194 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
195 				 (void *)pr, 1);
196 }
197 
198 /* Power(C) State timer broadcast control */
199 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
200 				       struct acpi_processor_cx *cx,
201 				       int broadcast)
202 {
203 	int state = cx - pr->power.states;
204 
205 	if (state >= pr->power.timer_broadcast_on_state) {
206 		unsigned long reason;
207 
208 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
209 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
210 		clockevents_notify(reason, &pr->id);
211 	}
212 }
213 
214 #else
215 
216 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
217 				   struct acpi_processor_cx *cstate) { }
218 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
219 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
220 				       struct acpi_processor_cx *cx,
221 				       int broadcast)
222 {
223 }
224 
225 #endif
226 
227 /*
228  * Suspend / resume control
229  */
230 static int acpi_idle_suspend;
231 static u32 saved_bm_rld;
232 
233 static void acpi_idle_bm_rld_save(void)
234 {
235 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
236 }
237 static void acpi_idle_bm_rld_restore(void)
238 {
239 	u32 resumed_bm_rld;
240 
241 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
242 
243 	if (resumed_bm_rld != saved_bm_rld)
244 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
245 }
246 
247 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
248 {
249 	if (acpi_idle_suspend == 1)
250 		return 0;
251 
252 	acpi_idle_bm_rld_save();
253 	acpi_idle_suspend = 1;
254 	return 0;
255 }
256 
257 int acpi_processor_resume(struct acpi_device * device)
258 {
259 	if (acpi_idle_suspend == 0)
260 		return 0;
261 
262 	acpi_idle_bm_rld_restore();
263 	acpi_idle_suspend = 0;
264 	return 0;
265 }
266 
267 #if defined(CONFIG_X86)
268 static void tsc_check_state(int state)
269 {
270 	switch (boot_cpu_data.x86_vendor) {
271 	case X86_VENDOR_AMD:
272 	case X86_VENDOR_INTEL:
273 		/*
274 		 * AMD Fam10h TSC will tick in all
275 		 * C/P/S0/S1 states when this bit is set.
276 		 */
277 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
278 			return;
279 
280 		/*FALL THROUGH*/
281 	default:
282 		/* TSC could halt in idle, so notify users */
283 		if (state > ACPI_STATE_C1)
284 			mark_tsc_unstable("TSC halts in idle");
285 	}
286 }
287 #else
288 static void tsc_check_state(int state) { return; }
289 #endif
290 
291 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
292 {
293 
294 	if (!pr)
295 		return -EINVAL;
296 
297 	if (!pr->pblk)
298 		return -ENODEV;
299 
300 	/* if info is obtained from pblk/fadt, type equals state */
301 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
302 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
303 
304 #ifndef CONFIG_HOTPLUG_CPU
305 	/*
306 	 * Check for P_LVL2_UP flag before entering C2 and above on
307 	 * an SMP system.
308 	 */
309 	if ((num_online_cpus() > 1) &&
310 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
311 		return -ENODEV;
312 #endif
313 
314 	/* determine C2 and C3 address from pblk */
315 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
316 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
317 
318 	/* determine latencies from FADT */
319 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
320 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
321 
322 	/*
323 	 * FADT specified C2 latency must be less than or equal to
324 	 * 100 microseconds.
325 	 */
326 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
327 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
328 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
329 		/* invalidate C2 */
330 		pr->power.states[ACPI_STATE_C2].address = 0;
331 	}
332 
333 	/*
334 	 * FADT supplied C3 latency must be less than or equal to
335 	 * 1000 microseconds.
336 	 */
337 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
338 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
339 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
340 		/* invalidate C3 */
341 		pr->power.states[ACPI_STATE_C3].address = 0;
342 	}
343 
344 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
345 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
346 			  pr->power.states[ACPI_STATE_C2].address,
347 			  pr->power.states[ACPI_STATE_C3].address));
348 
349 	return 0;
350 }
351 
352 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
353 {
354 	if (!pr->power.states[ACPI_STATE_C1].valid) {
355 		/* set the first C-State to C1 */
356 		/* all processors need to support C1 */
357 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
358 		pr->power.states[ACPI_STATE_C1].valid = 1;
359 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
360 	}
361 	/* the C0 state only exists as a filler in our array */
362 	pr->power.states[ACPI_STATE_C0].valid = 1;
363 	return 0;
364 }
365 
366 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
367 {
368 	acpi_status status = 0;
369 	u64 count;
370 	int current_count;
371 	int i;
372 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
373 	union acpi_object *cst;
374 
375 
376 	if (nocst)
377 		return -ENODEV;
378 
379 	current_count = 0;
380 
381 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
382 	if (ACPI_FAILURE(status)) {
383 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
384 		return -ENODEV;
385 	}
386 
387 	cst = buffer.pointer;
388 
389 	/* There must be at least 2 elements */
390 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
391 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
392 		status = -EFAULT;
393 		goto end;
394 	}
395 
396 	count = cst->package.elements[0].integer.value;
397 
398 	/* Validate number of power states. */
399 	if (count < 1 || count != cst->package.count - 1) {
400 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
401 		status = -EFAULT;
402 		goto end;
403 	}
404 
405 	/* Tell driver that at least _CST is supported. */
406 	pr->flags.has_cst = 1;
407 
408 	for (i = 1; i <= count; i++) {
409 		union acpi_object *element;
410 		union acpi_object *obj;
411 		struct acpi_power_register *reg;
412 		struct acpi_processor_cx cx;
413 
414 		memset(&cx, 0, sizeof(cx));
415 
416 		element = &(cst->package.elements[i]);
417 		if (element->type != ACPI_TYPE_PACKAGE)
418 			continue;
419 
420 		if (element->package.count != 4)
421 			continue;
422 
423 		obj = &(element->package.elements[0]);
424 
425 		if (obj->type != ACPI_TYPE_BUFFER)
426 			continue;
427 
428 		reg = (struct acpi_power_register *)obj->buffer.pointer;
429 
430 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
431 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
432 			continue;
433 
434 		/* There should be an easy way to extract an integer... */
435 		obj = &(element->package.elements[1]);
436 		if (obj->type != ACPI_TYPE_INTEGER)
437 			continue;
438 
439 		cx.type = obj->integer.value;
440 		/*
441 		 * Some buggy BIOSes won't list C1 in _CST -
442 		 * Let acpi_processor_get_power_info_default() handle them later
443 		 */
444 		if (i == 1 && cx.type != ACPI_STATE_C1)
445 			current_count++;
446 
447 		cx.address = reg->address;
448 		cx.index = current_count + 1;
449 
450 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
451 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
452 			if (acpi_processor_ffh_cstate_probe
453 					(pr->id, &cx, reg) == 0) {
454 				cx.entry_method = ACPI_CSTATE_FFH;
455 			} else if (cx.type == ACPI_STATE_C1) {
456 				/*
457 				 * C1 is a special case where FIXED_HARDWARE
458 				 * can be handled in non-MWAIT way as well.
459 				 * In that case, save this _CST entry info.
460 				 * Otherwise, ignore this info and continue.
461 				 */
462 				cx.entry_method = ACPI_CSTATE_HALT;
463 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
464 			} else {
465 				continue;
466 			}
467 			if (cx.type == ACPI_STATE_C1 &&
468 					(idle_halt || idle_nomwait)) {
469 				/*
470 				 * In most cases the C1 space_id obtained from
471 				 * _CST object is FIXED_HARDWARE access mode.
472 				 * But when the option of idle=halt is added,
473 				 * the entry_method type should be changed from
474 				 * CSTATE_FFH to CSTATE_HALT.
475 				 * When the option of idle=nomwait is added,
476 				 * the C1 entry_method type should be
477 				 * CSTATE_HALT.
478 				 */
479 				cx.entry_method = ACPI_CSTATE_HALT;
480 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
481 			}
482 		} else {
483 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
484 				 cx.address);
485 		}
486 
487 		if (cx.type == ACPI_STATE_C1) {
488 			cx.valid = 1;
489 		}
490 
491 		obj = &(element->package.elements[2]);
492 		if (obj->type != ACPI_TYPE_INTEGER)
493 			continue;
494 
495 		cx.latency = obj->integer.value;
496 
497 		obj = &(element->package.elements[3]);
498 		if (obj->type != ACPI_TYPE_INTEGER)
499 			continue;
500 
501 		cx.power = obj->integer.value;
502 
503 		current_count++;
504 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
505 
506 		/*
507 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
508 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
509 		 */
510 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
511 			printk(KERN_WARNING
512 			       "Limiting number of power states to max (%d)\n",
513 			       ACPI_PROCESSOR_MAX_POWER);
514 			printk(KERN_WARNING
515 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
516 			break;
517 		}
518 	}
519 
520 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
521 			  current_count));
522 
523 	/* Validate number of power states discovered */
524 	if (current_count < 2)
525 		status = -EFAULT;
526 
527       end:
528 	kfree(buffer.pointer);
529 
530 	return status;
531 }
532 
533 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
534 					   struct acpi_processor_cx *cx)
535 {
536 	static int bm_check_flag = -1;
537 	static int bm_control_flag = -1;
538 
539 
540 	if (!cx->address)
541 		return;
542 
543 	/*
544 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
545 	 * DMA transfers are used by any ISA device to avoid livelock.
546 	 * Note that we could disable Type-F DMA (as recommended by
547 	 * the erratum), but this is known to disrupt certain ISA
548 	 * devices thus we take the conservative approach.
549 	 */
550 	else if (errata.piix4.fdma) {
551 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
552 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
553 		return;
554 	}
555 
556 	/* All the logic here assumes flags.bm_check is same across all CPUs */
557 	if (bm_check_flag == -1) {
558 		/* Determine whether bm_check is needed based on CPU  */
559 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
560 		bm_check_flag = pr->flags.bm_check;
561 		bm_control_flag = pr->flags.bm_control;
562 	} else {
563 		pr->flags.bm_check = bm_check_flag;
564 		pr->flags.bm_control = bm_control_flag;
565 	}
566 
567 	if (pr->flags.bm_check) {
568 		if (!pr->flags.bm_control) {
569 			if (pr->flags.has_cst != 1) {
570 				/* bus mastering control is necessary */
571 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
572 					"C3 support requires BM control\n"));
573 				return;
574 			} else {
575 				/* Here we enter C3 without bus mastering */
576 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
577 					"C3 support without BM control\n"));
578 			}
579 		}
580 	} else {
581 		/*
582 		 * WBINVD should be set in fadt, for C3 state to be
583 		 * supported on when bm_check is not required.
584 		 */
585 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
586 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
587 					  "Cache invalidation should work properly"
588 					  " for C3 to be enabled on SMP systems\n"));
589 			return;
590 		}
591 	}
592 
593 	/*
594 	 * Otherwise we've met all of our C3 requirements.
595 	 * Normalize the C3 latency to expidite policy.  Enable
596 	 * checking of bus mastering status (bm_check) so we can
597 	 * use this in our C3 policy
598 	 */
599 	cx->valid = 1;
600 
601 	cx->latency_ticks = cx->latency;
602 	/*
603 	 * On older chipsets, BM_RLD needs to be set
604 	 * in order for Bus Master activity to wake the
605 	 * system from C3.  Newer chipsets handle DMA
606 	 * during C3 automatically and BM_RLD is a NOP.
607 	 * In either case, the proper way to
608 	 * handle BM_RLD is to set it and leave it set.
609 	 */
610 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
611 
612 	return;
613 }
614 
615 static int acpi_processor_power_verify(struct acpi_processor *pr)
616 {
617 	unsigned int i;
618 	unsigned int working = 0;
619 
620 	pr->power.timer_broadcast_on_state = INT_MAX;
621 
622 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
623 		struct acpi_processor_cx *cx = &pr->power.states[i];
624 
625 		switch (cx->type) {
626 		case ACPI_STATE_C1:
627 			cx->valid = 1;
628 			break;
629 
630 		case ACPI_STATE_C2:
631 			if (!cx->address)
632 				break;
633 			cx->valid = 1;
634 			cx->latency_ticks = cx->latency; /* Normalize latency */
635 			break;
636 
637 		case ACPI_STATE_C3:
638 			acpi_processor_power_verify_c3(pr, cx);
639 			break;
640 		}
641 		if (!cx->valid)
642 			continue;
643 
644 		lapic_timer_check_state(i, pr, cx);
645 		tsc_check_state(cx->type);
646 		working++;
647 	}
648 
649 	lapic_timer_propagate_broadcast(pr);
650 
651 	return (working);
652 }
653 
654 static int acpi_processor_get_power_info(struct acpi_processor *pr)
655 {
656 	unsigned int i;
657 	int result;
658 
659 
660 	/* NOTE: the idle thread may not be running while calling
661 	 * this function */
662 
663 	/* Zero initialize all the C-states info. */
664 	memset(pr->power.states, 0, sizeof(pr->power.states));
665 
666 	result = acpi_processor_get_power_info_cst(pr);
667 	if (result == -ENODEV)
668 		result = acpi_processor_get_power_info_fadt(pr);
669 
670 	if (result)
671 		return result;
672 
673 	acpi_processor_get_power_info_default(pr);
674 
675 	pr->power.count = acpi_processor_power_verify(pr);
676 
677 	/*
678 	 * if one state of type C2 or C3 is available, mark this
679 	 * CPU as being "idle manageable"
680 	 */
681 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
682 		if (pr->power.states[i].valid) {
683 			pr->power.count = i;
684 			if (pr->power.states[i].type >= ACPI_STATE_C2)
685 				pr->flags.power = 1;
686 		}
687 	}
688 
689 	return 0;
690 }
691 
692 #ifdef CONFIG_ACPI_PROCFS
693 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
694 {
695 	struct acpi_processor *pr = seq->private;
696 	unsigned int i;
697 
698 
699 	if (!pr)
700 		goto end;
701 
702 	seq_printf(seq, "active state:            C%zd\n"
703 		   "max_cstate:              C%d\n"
704 		   "maximum allowed latency: %d usec\n",
705 		   pr->power.state ? pr->power.state - pr->power.states : 0,
706 		   max_cstate, pm_qos_request(PM_QOS_CPU_DMA_LATENCY));
707 
708 	seq_puts(seq, "states:\n");
709 
710 	for (i = 1; i <= pr->power.count; i++) {
711 		seq_printf(seq, "   %cC%d:                  ",
712 			   (&pr->power.states[i] ==
713 			    pr->power.state ? '*' : ' '), i);
714 
715 		if (!pr->power.states[i].valid) {
716 			seq_puts(seq, "<not supported>\n");
717 			continue;
718 		}
719 
720 		switch (pr->power.states[i].type) {
721 		case ACPI_STATE_C1:
722 			seq_printf(seq, "type[C1] ");
723 			break;
724 		case ACPI_STATE_C2:
725 			seq_printf(seq, "type[C2] ");
726 			break;
727 		case ACPI_STATE_C3:
728 			seq_printf(seq, "type[C3] ");
729 			break;
730 		default:
731 			seq_printf(seq, "type[--] ");
732 			break;
733 		}
734 
735 		seq_puts(seq, "promotion[--] ");
736 
737 		seq_puts(seq, "demotion[--] ");
738 
739 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020Lu]\n",
740 			   pr->power.states[i].latency,
741 			   pr->power.states[i].usage,
742 			   us_to_pm_timer_ticks(pr->power.states[i].time));
743 	}
744 
745       end:
746 	return 0;
747 }
748 
749 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
750 {
751 	return single_open(file, acpi_processor_power_seq_show,
752 			   PDE(inode)->data);
753 }
754 
755 static const struct file_operations acpi_processor_power_fops = {
756 	.owner = THIS_MODULE,
757 	.open = acpi_processor_power_open_fs,
758 	.read = seq_read,
759 	.llseek = seq_lseek,
760 	.release = single_release,
761 };
762 #endif
763 
764 /**
765  * acpi_idle_bm_check - checks if bus master activity was detected
766  */
767 static int acpi_idle_bm_check(void)
768 {
769 	u32 bm_status = 0;
770 
771 	if (bm_check_disable)
772 		return 0;
773 
774 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
775 	if (bm_status)
776 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
777 	/*
778 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
779 	 * the true state of bus mastering activity; forcing us to
780 	 * manually check the BMIDEA bit of each IDE channel.
781 	 */
782 	else if (errata.piix4.bmisx) {
783 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
784 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
785 			bm_status = 1;
786 	}
787 	return bm_status;
788 }
789 
790 /**
791  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
792  * @cx: cstate data
793  *
794  * Caller disables interrupt before call and enables interrupt after return.
795  */
796 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
797 {
798 	/* Don't trace irqs off for idle */
799 	stop_critical_timings();
800 	if (cx->entry_method == ACPI_CSTATE_FFH) {
801 		/* Call into architectural FFH based C-state */
802 		acpi_processor_ffh_cstate_enter(cx);
803 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
804 		acpi_safe_halt();
805 	} else {
806 		int unused;
807 		/* IO port based C-state */
808 		inb(cx->address);
809 		/* Dummy wait op - must do something useless after P_LVL2 read
810 		   because chipsets cannot guarantee that STPCLK# signal
811 		   gets asserted in time to freeze execution properly. */
812 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
813 	}
814 	start_critical_timings();
815 }
816 
817 /**
818  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
819  * @dev: the target CPU
820  * @state: the state data
821  *
822  * This is equivalent to the HALT instruction.
823  */
824 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
825 			      struct cpuidle_state *state)
826 {
827 	ktime_t  kt1, kt2;
828 	s64 idle_time;
829 	struct acpi_processor *pr;
830 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
831 
832 	pr = __get_cpu_var(processors);
833 
834 	if (unlikely(!pr))
835 		return 0;
836 
837 	local_irq_disable();
838 
839 	/* Do not access any ACPI IO ports in suspend path */
840 	if (acpi_idle_suspend) {
841 		local_irq_enable();
842 		cpu_relax();
843 		return 0;
844 	}
845 
846 	lapic_timer_state_broadcast(pr, cx, 1);
847 	kt1 = ktime_get_real();
848 	acpi_idle_do_entry(cx);
849 	kt2 = ktime_get_real();
850 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
851 
852 	local_irq_enable();
853 	cx->usage++;
854 	lapic_timer_state_broadcast(pr, cx, 0);
855 
856 	return idle_time;
857 }
858 
859 /**
860  * acpi_idle_enter_simple - enters an ACPI state without BM handling
861  * @dev: the target CPU
862  * @state: the state data
863  */
864 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
865 				  struct cpuidle_state *state)
866 {
867 	struct acpi_processor *pr;
868 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
869 	ktime_t  kt1, kt2;
870 	s64 idle_time_ns;
871 	s64 idle_time;
872 
873 	pr = __get_cpu_var(processors);
874 
875 	if (unlikely(!pr))
876 		return 0;
877 
878 	if (acpi_idle_suspend)
879 		return(acpi_idle_enter_c1(dev, state));
880 
881 	local_irq_disable();
882 
883 	if (cx->entry_method != ACPI_CSTATE_FFH) {
884 		current_thread_info()->status &= ~TS_POLLING;
885 		/*
886 		 * TS_POLLING-cleared state must be visible before we test
887 		 * NEED_RESCHED:
888 		 */
889 		smp_mb();
890 
891 		if (unlikely(need_resched())) {
892 			current_thread_info()->status |= TS_POLLING;
893 			local_irq_enable();
894 			return 0;
895 		}
896 	}
897 
898 	/*
899 	 * Must be done before busmaster disable as we might need to
900 	 * access HPET !
901 	 */
902 	lapic_timer_state_broadcast(pr, cx, 1);
903 
904 	if (cx->type == ACPI_STATE_C3)
905 		ACPI_FLUSH_CPU_CACHE();
906 
907 	kt1 = ktime_get_real();
908 	/* Tell the scheduler that we are going deep-idle: */
909 	sched_clock_idle_sleep_event();
910 	acpi_idle_do_entry(cx);
911 	kt2 = ktime_get_real();
912 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
913 	idle_time = idle_time_ns;
914 	do_div(idle_time, NSEC_PER_USEC);
915 
916 	/* Tell the scheduler how much we idled: */
917 	sched_clock_idle_wakeup_event(idle_time_ns);
918 
919 	local_irq_enable();
920 	if (cx->entry_method != ACPI_CSTATE_FFH)
921 		current_thread_info()->status |= TS_POLLING;
922 
923 	cx->usage++;
924 
925 	lapic_timer_state_broadcast(pr, cx, 0);
926 	cx->time += idle_time;
927 	return idle_time;
928 }
929 
930 static int c3_cpu_count;
931 static DEFINE_SPINLOCK(c3_lock);
932 
933 /**
934  * acpi_idle_enter_bm - enters C3 with proper BM handling
935  * @dev: the target CPU
936  * @state: the state data
937  *
938  * If BM is detected, the deepest non-C3 idle state is entered instead.
939  */
940 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
941 			      struct cpuidle_state *state)
942 {
943 	struct acpi_processor *pr;
944 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
945 	ktime_t  kt1, kt2;
946 	s64 idle_time_ns;
947 	s64 idle_time;
948 
949 
950 	pr = __get_cpu_var(processors);
951 
952 	if (unlikely(!pr))
953 		return 0;
954 
955 	if (acpi_idle_suspend)
956 		return(acpi_idle_enter_c1(dev, state));
957 
958 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
959 		if (dev->safe_state) {
960 			dev->last_state = dev->safe_state;
961 			return dev->safe_state->enter(dev, dev->safe_state);
962 		} else {
963 			local_irq_disable();
964 			acpi_safe_halt();
965 			local_irq_enable();
966 			return 0;
967 		}
968 	}
969 
970 	local_irq_disable();
971 
972 	if (cx->entry_method != ACPI_CSTATE_FFH) {
973 		current_thread_info()->status &= ~TS_POLLING;
974 		/*
975 		 * TS_POLLING-cleared state must be visible before we test
976 		 * NEED_RESCHED:
977 		 */
978 		smp_mb();
979 
980 		if (unlikely(need_resched())) {
981 			current_thread_info()->status |= TS_POLLING;
982 			local_irq_enable();
983 			return 0;
984 		}
985 	}
986 
987 	acpi_unlazy_tlb(smp_processor_id());
988 
989 	/* Tell the scheduler that we are going deep-idle: */
990 	sched_clock_idle_sleep_event();
991 	/*
992 	 * Must be done before busmaster disable as we might need to
993 	 * access HPET !
994 	 */
995 	lapic_timer_state_broadcast(pr, cx, 1);
996 
997 	kt1 = ktime_get_real();
998 	/*
999 	 * disable bus master
1000 	 * bm_check implies we need ARB_DIS
1001 	 * !bm_check implies we need cache flush
1002 	 * bm_control implies whether we can do ARB_DIS
1003 	 *
1004 	 * That leaves a case where bm_check is set and bm_control is
1005 	 * not set. In that case we cannot do much, we enter C3
1006 	 * without doing anything.
1007 	 */
1008 	if (pr->flags.bm_check && pr->flags.bm_control) {
1009 		spin_lock(&c3_lock);
1010 		c3_cpu_count++;
1011 		/* Disable bus master arbitration when all CPUs are in C3 */
1012 		if (c3_cpu_count == num_online_cpus())
1013 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1014 		spin_unlock(&c3_lock);
1015 	} else if (!pr->flags.bm_check) {
1016 		ACPI_FLUSH_CPU_CACHE();
1017 	}
1018 
1019 	acpi_idle_do_entry(cx);
1020 
1021 	/* Re-enable bus master arbitration */
1022 	if (pr->flags.bm_check && pr->flags.bm_control) {
1023 		spin_lock(&c3_lock);
1024 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1025 		c3_cpu_count--;
1026 		spin_unlock(&c3_lock);
1027 	}
1028 	kt2 = ktime_get_real();
1029 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
1030 	idle_time = idle_time_ns;
1031 	do_div(idle_time, NSEC_PER_USEC);
1032 
1033 	/* Tell the scheduler how much we idled: */
1034 	sched_clock_idle_wakeup_event(idle_time_ns);
1035 
1036 	local_irq_enable();
1037 	if (cx->entry_method != ACPI_CSTATE_FFH)
1038 		current_thread_info()->status |= TS_POLLING;
1039 
1040 	cx->usage++;
1041 
1042 	lapic_timer_state_broadcast(pr, cx, 0);
1043 	cx->time += idle_time;
1044 	return idle_time;
1045 }
1046 
1047 struct cpuidle_driver acpi_idle_driver = {
1048 	.name =		"acpi_idle",
1049 	.owner =	THIS_MODULE,
1050 };
1051 
1052 /**
1053  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1054  * @pr: the ACPI processor
1055  */
1056 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1057 {
1058 	int i, count = CPUIDLE_DRIVER_STATE_START;
1059 	struct acpi_processor_cx *cx;
1060 	struct cpuidle_state *state;
1061 	struct cpuidle_device *dev = &pr->power.dev;
1062 
1063 	if (!pr->flags.power_setup_done)
1064 		return -EINVAL;
1065 
1066 	if (pr->flags.power == 0) {
1067 		return -EINVAL;
1068 	}
1069 
1070 	dev->cpu = pr->id;
1071 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1072 		dev->states[i].name[0] = '\0';
1073 		dev->states[i].desc[0] = '\0';
1074 	}
1075 
1076 	if (max_cstate == 0)
1077 		max_cstate = 1;
1078 
1079 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1080 		cx = &pr->power.states[i];
1081 		state = &dev->states[count];
1082 
1083 		if (!cx->valid)
1084 			continue;
1085 
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1088 		    !pr->flags.has_cst &&
1089 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1090 			continue;
1091 #endif
1092 		cpuidle_set_statedata(state, cx);
1093 
1094 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1095 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1096 		state->exit_latency = cx->latency;
1097 		state->target_residency = cx->latency * latency_factor;
1098 		state->power_usage = cx->power;
1099 
1100 		state->flags = 0;
1101 		switch (cx->type) {
1102 			case ACPI_STATE_C1:
1103 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1104 			if (cx->entry_method == ACPI_CSTATE_FFH)
1105 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1106 
1107 			state->enter = acpi_idle_enter_c1;
1108 			dev->safe_state = state;
1109 			break;
1110 
1111 			case ACPI_STATE_C2:
1112 			state->flags |= CPUIDLE_FLAG_BALANCED;
1113 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1114 			state->enter = acpi_idle_enter_simple;
1115 			dev->safe_state = state;
1116 			break;
1117 
1118 			case ACPI_STATE_C3:
1119 			state->flags |= CPUIDLE_FLAG_DEEP;
1120 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1121 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1122 			state->enter = pr->flags.bm_check ?
1123 					acpi_idle_enter_bm :
1124 					acpi_idle_enter_simple;
1125 			break;
1126 		}
1127 
1128 		count++;
1129 		if (count == CPUIDLE_STATE_MAX)
1130 			break;
1131 	}
1132 
1133 	dev->state_count = count;
1134 
1135 	if (!count)
1136 		return -EINVAL;
1137 
1138 	return 0;
1139 }
1140 
1141 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1142 {
1143 	int ret = 0;
1144 
1145 	if (boot_option_idle_override)
1146 		return 0;
1147 
1148 	if (!pr)
1149 		return -EINVAL;
1150 
1151 	if (nocst) {
1152 		return -ENODEV;
1153 	}
1154 
1155 	if (!pr->flags.power_setup_done)
1156 		return -ENODEV;
1157 
1158 	cpuidle_pause_and_lock();
1159 	cpuidle_disable_device(&pr->power.dev);
1160 	acpi_processor_get_power_info(pr);
1161 	if (pr->flags.power) {
1162 		acpi_processor_setup_cpuidle(pr);
1163 		ret = cpuidle_enable_device(&pr->power.dev);
1164 	}
1165 	cpuidle_resume_and_unlock();
1166 
1167 	return ret;
1168 }
1169 
1170 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1171 			      struct acpi_device *device)
1172 {
1173 	acpi_status status = 0;
1174 	static int first_run;
1175 #ifdef CONFIG_ACPI_PROCFS
1176 	struct proc_dir_entry *entry = NULL;
1177 #endif
1178 
1179 	if (boot_option_idle_override)
1180 		return 0;
1181 
1182 	if (!first_run) {
1183 		if (idle_halt) {
1184 			/*
1185 			 * When the boot option of "idle=halt" is added, halt
1186 			 * is used for CPU IDLE.
1187 			 * In such case C2/C3 is meaningless. So the max_cstate
1188 			 * is set to one.
1189 			 */
1190 			max_cstate = 1;
1191 		}
1192 		dmi_check_system(processor_power_dmi_table);
1193 		max_cstate = acpi_processor_cstate_check(max_cstate);
1194 		if (max_cstate < ACPI_C_STATES_MAX)
1195 			printk(KERN_NOTICE
1196 			       "ACPI: processor limited to max C-state %d\n",
1197 			       max_cstate);
1198 		first_run++;
1199 	}
1200 
1201 	if (!pr)
1202 		return -EINVAL;
1203 
1204 	if (acpi_gbl_FADT.cst_control && !nocst) {
1205 		status =
1206 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1207 		if (ACPI_FAILURE(status)) {
1208 			ACPI_EXCEPTION((AE_INFO, status,
1209 					"Notifying BIOS of _CST ability failed"));
1210 		}
1211 	}
1212 
1213 	acpi_processor_get_power_info(pr);
1214 	pr->flags.power_setup_done = 1;
1215 
1216 	/*
1217 	 * Install the idle handler if processor power management is supported.
1218 	 * Note that we use previously set idle handler will be used on
1219 	 * platforms that only support C1.
1220 	 */
1221 	if (pr->flags.power) {
1222 		acpi_processor_setup_cpuidle(pr);
1223 		if (cpuidle_register_device(&pr->power.dev))
1224 			return -EIO;
1225 	}
1226 #ifdef CONFIG_ACPI_PROCFS
1227 	/* 'power' [R] */
1228 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1229 				 S_IRUGO, acpi_device_dir(device),
1230 				 &acpi_processor_power_fops,
1231 				 acpi_driver_data(device));
1232 	if (!entry)
1233 		return -EIO;
1234 #endif
1235 	return 0;
1236 }
1237 
1238 int acpi_processor_power_exit(struct acpi_processor *pr,
1239 			      struct acpi_device *device)
1240 {
1241 	if (boot_option_idle_override)
1242 		return 0;
1243 
1244 	cpuidle_unregister_device(&pr->power.dev);
1245 	pr->flags.power_setup_done = 0;
1246 
1247 #ifdef CONFIG_ACPI_PROCFS
1248 	if (acpi_device_dir(device))
1249 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1250 				  acpi_device_dir(device));
1251 #endif
1252 
1253 	return 0;
1254 }
1255