1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/slab.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/acpi.h> 39 #include <linux/dmi.h> 40 #include <linux/moduleparam.h> 41 #include <linux/sched.h> /* need_resched() */ 42 #include <linux/pm_qos_params.h> 43 #include <linux/clockchips.h> 44 #include <linux/cpuidle.h> 45 #include <linux/irqflags.h> 46 47 /* 48 * Include the apic definitions for x86 to have the APIC timer related defines 49 * available also for UP (on SMP it gets magically included via linux/smp.h). 50 * asm/acpi.h is not an option, as it would require more include magic. Also 51 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 52 */ 53 #ifdef CONFIG_X86 54 #include <asm/apic.h> 55 #endif 56 57 #include <asm/io.h> 58 #include <asm/uaccess.h> 59 60 #include <acpi/acpi_bus.h> 61 #include <acpi/processor.h> 62 #include <asm/processor.h> 63 64 #define PREFIX "ACPI: " 65 66 #define ACPI_PROCESSOR_CLASS "processor" 67 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 68 ACPI_MODULE_NAME("processor_idle"); 69 #define ACPI_PROCESSOR_FILE_POWER "power" 70 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) 71 #define C2_OVERHEAD 1 /* 1us */ 72 #define C3_OVERHEAD 1 /* 1us */ 73 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) 74 75 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; 76 module_param(max_cstate, uint, 0000); 77 static unsigned int nocst __read_mostly; 78 module_param(nocst, uint, 0000); 79 static int bm_check_disable __read_mostly; 80 module_param(bm_check_disable, uint, 0000); 81 82 static unsigned int latency_factor __read_mostly = 2; 83 module_param(latency_factor, uint, 0644); 84 85 #ifdef CONFIG_ACPI_PROCFS 86 static u64 us_to_pm_timer_ticks(s64 t) 87 { 88 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000); 89 } 90 #endif 91 92 /* 93 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 94 * For now disable this. Probably a bug somewhere else. 95 * 96 * To skip this limit, boot/load with a large max_cstate limit. 97 */ 98 static int set_max_cstate(const struct dmi_system_id *id) 99 { 100 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 101 return 0; 102 103 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 104 " Override with \"processor.max_cstate=%d\"\n", id->ident, 105 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 106 107 max_cstate = (long)id->driver_data; 108 109 return 0; 110 } 111 112 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 113 callers to only run once -AK */ 114 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 115 { set_max_cstate, "Clevo 5600D", { 116 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 117 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 118 (void *)2}, 119 { set_max_cstate, "Pavilion zv5000", { 120 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 121 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, 122 (void *)1}, 123 { set_max_cstate, "Asus L8400B", { 124 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), 125 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, 126 (void *)1}, 127 {}, 128 }; 129 130 131 /* 132 * Callers should disable interrupts before the call and enable 133 * interrupts after return. 134 */ 135 static void acpi_safe_halt(void) 136 { 137 current_thread_info()->status &= ~TS_POLLING; 138 /* 139 * TS_POLLING-cleared state must be visible before we 140 * test NEED_RESCHED: 141 */ 142 smp_mb(); 143 if (!need_resched()) { 144 safe_halt(); 145 local_irq_disable(); 146 } 147 current_thread_info()->status |= TS_POLLING; 148 } 149 150 #ifdef ARCH_APICTIMER_STOPS_ON_C3 151 152 /* 153 * Some BIOS implementations switch to C3 in the published C2 state. 154 * This seems to be a common problem on AMD boxen, but other vendors 155 * are affected too. We pick the most conservative approach: we assume 156 * that the local APIC stops in both C2 and C3. 157 */ 158 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 159 struct acpi_processor_cx *cx) 160 { 161 struct acpi_processor_power *pwr = &pr->power; 162 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 163 164 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) 165 return; 166 167 if (c1e_detected) 168 type = ACPI_STATE_C1; 169 170 /* 171 * Check, if one of the previous states already marked the lapic 172 * unstable 173 */ 174 if (pwr->timer_broadcast_on_state < state) 175 return; 176 177 if (cx->type >= type) 178 pr->power.timer_broadcast_on_state = state; 179 } 180 181 static void __lapic_timer_propagate_broadcast(void *arg) 182 { 183 struct acpi_processor *pr = (struct acpi_processor *) arg; 184 unsigned long reason; 185 186 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 187 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 188 189 clockevents_notify(reason, &pr->id); 190 } 191 192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) 193 { 194 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, 195 (void *)pr, 1); 196 } 197 198 /* Power(C) State timer broadcast control */ 199 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 200 struct acpi_processor_cx *cx, 201 int broadcast) 202 { 203 int state = cx - pr->power.states; 204 205 if (state >= pr->power.timer_broadcast_on_state) { 206 unsigned long reason; 207 208 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 209 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 210 clockevents_notify(reason, &pr->id); 211 } 212 } 213 214 #else 215 216 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 217 struct acpi_processor_cx *cstate) { } 218 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } 219 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 220 struct acpi_processor_cx *cx, 221 int broadcast) 222 { 223 } 224 225 #endif 226 227 /* 228 * Suspend / resume control 229 */ 230 static int acpi_idle_suspend; 231 static u32 saved_bm_rld; 232 233 static void acpi_idle_bm_rld_save(void) 234 { 235 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); 236 } 237 static void acpi_idle_bm_rld_restore(void) 238 { 239 u32 resumed_bm_rld; 240 241 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); 242 243 if (resumed_bm_rld != saved_bm_rld) 244 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); 245 } 246 247 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) 248 { 249 if (acpi_idle_suspend == 1) 250 return 0; 251 252 acpi_idle_bm_rld_save(); 253 acpi_idle_suspend = 1; 254 return 0; 255 } 256 257 int acpi_processor_resume(struct acpi_device * device) 258 { 259 if (acpi_idle_suspend == 0) 260 return 0; 261 262 acpi_idle_bm_rld_restore(); 263 acpi_idle_suspend = 0; 264 return 0; 265 } 266 267 #if defined(CONFIG_X86) 268 static void tsc_check_state(int state) 269 { 270 switch (boot_cpu_data.x86_vendor) { 271 case X86_VENDOR_AMD: 272 case X86_VENDOR_INTEL: 273 /* 274 * AMD Fam10h TSC will tick in all 275 * C/P/S0/S1 states when this bit is set. 276 */ 277 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 278 return; 279 280 /*FALL THROUGH*/ 281 default: 282 /* TSC could halt in idle, so notify users */ 283 if (state > ACPI_STATE_C1) 284 mark_tsc_unstable("TSC halts in idle"); 285 } 286 } 287 #else 288 static void tsc_check_state(int state) { return; } 289 #endif 290 291 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 292 { 293 294 if (!pr) 295 return -EINVAL; 296 297 if (!pr->pblk) 298 return -ENODEV; 299 300 /* if info is obtained from pblk/fadt, type equals state */ 301 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 302 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 303 304 #ifndef CONFIG_HOTPLUG_CPU 305 /* 306 * Check for P_LVL2_UP flag before entering C2 and above on 307 * an SMP system. 308 */ 309 if ((num_online_cpus() > 1) && 310 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 311 return -ENODEV; 312 #endif 313 314 /* determine C2 and C3 address from pblk */ 315 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 316 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 317 318 /* determine latencies from FADT */ 319 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 320 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 321 322 /* 323 * FADT specified C2 latency must be less than or equal to 324 * 100 microseconds. 325 */ 326 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 327 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 328 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency)); 329 /* invalidate C2 */ 330 pr->power.states[ACPI_STATE_C2].address = 0; 331 } 332 333 /* 334 * FADT supplied C3 latency must be less than or equal to 335 * 1000 microseconds. 336 */ 337 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 338 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 339 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency)); 340 /* invalidate C3 */ 341 pr->power.states[ACPI_STATE_C3].address = 0; 342 } 343 344 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 345 "lvl2[0x%08x] lvl3[0x%08x]\n", 346 pr->power.states[ACPI_STATE_C2].address, 347 pr->power.states[ACPI_STATE_C3].address)); 348 349 return 0; 350 } 351 352 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 353 { 354 if (!pr->power.states[ACPI_STATE_C1].valid) { 355 /* set the first C-State to C1 */ 356 /* all processors need to support C1 */ 357 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 358 pr->power.states[ACPI_STATE_C1].valid = 1; 359 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; 360 } 361 /* the C0 state only exists as a filler in our array */ 362 pr->power.states[ACPI_STATE_C0].valid = 1; 363 return 0; 364 } 365 366 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 367 { 368 acpi_status status = 0; 369 u64 count; 370 int current_count; 371 int i; 372 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 373 union acpi_object *cst; 374 375 376 if (nocst) 377 return -ENODEV; 378 379 current_count = 0; 380 381 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 382 if (ACPI_FAILURE(status)) { 383 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 384 return -ENODEV; 385 } 386 387 cst = buffer.pointer; 388 389 /* There must be at least 2 elements */ 390 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 391 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 392 status = -EFAULT; 393 goto end; 394 } 395 396 count = cst->package.elements[0].integer.value; 397 398 /* Validate number of power states. */ 399 if (count < 1 || count != cst->package.count - 1) { 400 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 401 status = -EFAULT; 402 goto end; 403 } 404 405 /* Tell driver that at least _CST is supported. */ 406 pr->flags.has_cst = 1; 407 408 for (i = 1; i <= count; i++) { 409 union acpi_object *element; 410 union acpi_object *obj; 411 struct acpi_power_register *reg; 412 struct acpi_processor_cx cx; 413 414 memset(&cx, 0, sizeof(cx)); 415 416 element = &(cst->package.elements[i]); 417 if (element->type != ACPI_TYPE_PACKAGE) 418 continue; 419 420 if (element->package.count != 4) 421 continue; 422 423 obj = &(element->package.elements[0]); 424 425 if (obj->type != ACPI_TYPE_BUFFER) 426 continue; 427 428 reg = (struct acpi_power_register *)obj->buffer.pointer; 429 430 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 431 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 432 continue; 433 434 /* There should be an easy way to extract an integer... */ 435 obj = &(element->package.elements[1]); 436 if (obj->type != ACPI_TYPE_INTEGER) 437 continue; 438 439 cx.type = obj->integer.value; 440 /* 441 * Some buggy BIOSes won't list C1 in _CST - 442 * Let acpi_processor_get_power_info_default() handle them later 443 */ 444 if (i == 1 && cx.type != ACPI_STATE_C1) 445 current_count++; 446 447 cx.address = reg->address; 448 cx.index = current_count + 1; 449 450 cx.entry_method = ACPI_CSTATE_SYSTEMIO; 451 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 452 if (acpi_processor_ffh_cstate_probe 453 (pr->id, &cx, reg) == 0) { 454 cx.entry_method = ACPI_CSTATE_FFH; 455 } else if (cx.type == ACPI_STATE_C1) { 456 /* 457 * C1 is a special case where FIXED_HARDWARE 458 * can be handled in non-MWAIT way as well. 459 * In that case, save this _CST entry info. 460 * Otherwise, ignore this info and continue. 461 */ 462 cx.entry_method = ACPI_CSTATE_HALT; 463 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 464 } else { 465 continue; 466 } 467 if (cx.type == ACPI_STATE_C1 && 468 (idle_halt || idle_nomwait)) { 469 /* 470 * In most cases the C1 space_id obtained from 471 * _CST object is FIXED_HARDWARE access mode. 472 * But when the option of idle=halt is added, 473 * the entry_method type should be changed from 474 * CSTATE_FFH to CSTATE_HALT. 475 * When the option of idle=nomwait is added, 476 * the C1 entry_method type should be 477 * CSTATE_HALT. 478 */ 479 cx.entry_method = ACPI_CSTATE_HALT; 480 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 481 } 482 } else { 483 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", 484 cx.address); 485 } 486 487 if (cx.type == ACPI_STATE_C1) { 488 cx.valid = 1; 489 } 490 491 obj = &(element->package.elements[2]); 492 if (obj->type != ACPI_TYPE_INTEGER) 493 continue; 494 495 cx.latency = obj->integer.value; 496 497 obj = &(element->package.elements[3]); 498 if (obj->type != ACPI_TYPE_INTEGER) 499 continue; 500 501 cx.power = obj->integer.value; 502 503 current_count++; 504 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 505 506 /* 507 * We support total ACPI_PROCESSOR_MAX_POWER - 1 508 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 509 */ 510 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 511 printk(KERN_WARNING 512 "Limiting number of power states to max (%d)\n", 513 ACPI_PROCESSOR_MAX_POWER); 514 printk(KERN_WARNING 515 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 516 break; 517 } 518 } 519 520 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 521 current_count)); 522 523 /* Validate number of power states discovered */ 524 if (current_count < 2) 525 status = -EFAULT; 526 527 end: 528 kfree(buffer.pointer); 529 530 return status; 531 } 532 533 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 534 struct acpi_processor_cx *cx) 535 { 536 static int bm_check_flag = -1; 537 static int bm_control_flag = -1; 538 539 540 if (!cx->address) 541 return; 542 543 /* 544 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 545 * DMA transfers are used by any ISA device to avoid livelock. 546 * Note that we could disable Type-F DMA (as recommended by 547 * the erratum), but this is known to disrupt certain ISA 548 * devices thus we take the conservative approach. 549 */ 550 else if (errata.piix4.fdma) { 551 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 552 "C3 not supported on PIIX4 with Type-F DMA\n")); 553 return; 554 } 555 556 /* All the logic here assumes flags.bm_check is same across all CPUs */ 557 if (bm_check_flag == -1) { 558 /* Determine whether bm_check is needed based on CPU */ 559 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 560 bm_check_flag = pr->flags.bm_check; 561 bm_control_flag = pr->flags.bm_control; 562 } else { 563 pr->flags.bm_check = bm_check_flag; 564 pr->flags.bm_control = bm_control_flag; 565 } 566 567 if (pr->flags.bm_check) { 568 if (!pr->flags.bm_control) { 569 if (pr->flags.has_cst != 1) { 570 /* bus mastering control is necessary */ 571 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 572 "C3 support requires BM control\n")); 573 return; 574 } else { 575 /* Here we enter C3 without bus mastering */ 576 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 577 "C3 support without BM control\n")); 578 } 579 } 580 } else { 581 /* 582 * WBINVD should be set in fadt, for C3 state to be 583 * supported on when bm_check is not required. 584 */ 585 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 586 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 587 "Cache invalidation should work properly" 588 " for C3 to be enabled on SMP systems\n")); 589 return; 590 } 591 } 592 593 /* 594 * Otherwise we've met all of our C3 requirements. 595 * Normalize the C3 latency to expidite policy. Enable 596 * checking of bus mastering status (bm_check) so we can 597 * use this in our C3 policy 598 */ 599 cx->valid = 1; 600 601 cx->latency_ticks = cx->latency; 602 /* 603 * On older chipsets, BM_RLD needs to be set 604 * in order for Bus Master activity to wake the 605 * system from C3. Newer chipsets handle DMA 606 * during C3 automatically and BM_RLD is a NOP. 607 * In either case, the proper way to 608 * handle BM_RLD is to set it and leave it set. 609 */ 610 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 611 612 return; 613 } 614 615 static int acpi_processor_power_verify(struct acpi_processor *pr) 616 { 617 unsigned int i; 618 unsigned int working = 0; 619 620 pr->power.timer_broadcast_on_state = INT_MAX; 621 622 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 623 struct acpi_processor_cx *cx = &pr->power.states[i]; 624 625 switch (cx->type) { 626 case ACPI_STATE_C1: 627 cx->valid = 1; 628 break; 629 630 case ACPI_STATE_C2: 631 if (!cx->address) 632 break; 633 cx->valid = 1; 634 cx->latency_ticks = cx->latency; /* Normalize latency */ 635 break; 636 637 case ACPI_STATE_C3: 638 acpi_processor_power_verify_c3(pr, cx); 639 break; 640 } 641 if (!cx->valid) 642 continue; 643 644 lapic_timer_check_state(i, pr, cx); 645 tsc_check_state(cx->type); 646 working++; 647 } 648 649 lapic_timer_propagate_broadcast(pr); 650 651 return (working); 652 } 653 654 static int acpi_processor_get_power_info(struct acpi_processor *pr) 655 { 656 unsigned int i; 657 int result; 658 659 660 /* NOTE: the idle thread may not be running while calling 661 * this function */ 662 663 /* Zero initialize all the C-states info. */ 664 memset(pr->power.states, 0, sizeof(pr->power.states)); 665 666 result = acpi_processor_get_power_info_cst(pr); 667 if (result == -ENODEV) 668 result = acpi_processor_get_power_info_fadt(pr); 669 670 if (result) 671 return result; 672 673 acpi_processor_get_power_info_default(pr); 674 675 pr->power.count = acpi_processor_power_verify(pr); 676 677 /* 678 * if one state of type C2 or C3 is available, mark this 679 * CPU as being "idle manageable" 680 */ 681 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 682 if (pr->power.states[i].valid) { 683 pr->power.count = i; 684 if (pr->power.states[i].type >= ACPI_STATE_C2) 685 pr->flags.power = 1; 686 } 687 } 688 689 return 0; 690 } 691 692 #ifdef CONFIG_ACPI_PROCFS 693 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 694 { 695 struct acpi_processor *pr = seq->private; 696 unsigned int i; 697 698 699 if (!pr) 700 goto end; 701 702 seq_printf(seq, "active state: C%zd\n" 703 "max_cstate: C%d\n" 704 "maximum allowed latency: %d usec\n", 705 pr->power.state ? pr->power.state - pr->power.states : 0, 706 max_cstate, pm_qos_request(PM_QOS_CPU_DMA_LATENCY)); 707 708 seq_puts(seq, "states:\n"); 709 710 for (i = 1; i <= pr->power.count; i++) { 711 seq_printf(seq, " %cC%d: ", 712 (&pr->power.states[i] == 713 pr->power.state ? '*' : ' '), i); 714 715 if (!pr->power.states[i].valid) { 716 seq_puts(seq, "<not supported>\n"); 717 continue; 718 } 719 720 switch (pr->power.states[i].type) { 721 case ACPI_STATE_C1: 722 seq_printf(seq, "type[C1] "); 723 break; 724 case ACPI_STATE_C2: 725 seq_printf(seq, "type[C2] "); 726 break; 727 case ACPI_STATE_C3: 728 seq_printf(seq, "type[C3] "); 729 break; 730 default: 731 seq_printf(seq, "type[--] "); 732 break; 733 } 734 735 seq_puts(seq, "promotion[--] "); 736 737 seq_puts(seq, "demotion[--] "); 738 739 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020Lu]\n", 740 pr->power.states[i].latency, 741 pr->power.states[i].usage, 742 us_to_pm_timer_ticks(pr->power.states[i].time)); 743 } 744 745 end: 746 return 0; 747 } 748 749 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 750 { 751 return single_open(file, acpi_processor_power_seq_show, 752 PDE(inode)->data); 753 } 754 755 static const struct file_operations acpi_processor_power_fops = { 756 .owner = THIS_MODULE, 757 .open = acpi_processor_power_open_fs, 758 .read = seq_read, 759 .llseek = seq_lseek, 760 .release = single_release, 761 }; 762 #endif 763 764 /** 765 * acpi_idle_bm_check - checks if bus master activity was detected 766 */ 767 static int acpi_idle_bm_check(void) 768 { 769 u32 bm_status = 0; 770 771 if (bm_check_disable) 772 return 0; 773 774 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 775 if (bm_status) 776 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 777 /* 778 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 779 * the true state of bus mastering activity; forcing us to 780 * manually check the BMIDEA bit of each IDE channel. 781 */ 782 else if (errata.piix4.bmisx) { 783 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 784 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 785 bm_status = 1; 786 } 787 return bm_status; 788 } 789 790 /** 791 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry 792 * @cx: cstate data 793 * 794 * Caller disables interrupt before call and enables interrupt after return. 795 */ 796 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) 797 { 798 /* Don't trace irqs off for idle */ 799 stop_critical_timings(); 800 if (cx->entry_method == ACPI_CSTATE_FFH) { 801 /* Call into architectural FFH based C-state */ 802 acpi_processor_ffh_cstate_enter(cx); 803 } else if (cx->entry_method == ACPI_CSTATE_HALT) { 804 acpi_safe_halt(); 805 } else { 806 int unused; 807 /* IO port based C-state */ 808 inb(cx->address); 809 /* Dummy wait op - must do something useless after P_LVL2 read 810 because chipsets cannot guarantee that STPCLK# signal 811 gets asserted in time to freeze execution properly. */ 812 unused = inl(acpi_gbl_FADT.xpm_timer_block.address); 813 } 814 start_critical_timings(); 815 } 816 817 /** 818 * acpi_idle_enter_c1 - enters an ACPI C1 state-type 819 * @dev: the target CPU 820 * @state: the state data 821 * 822 * This is equivalent to the HALT instruction. 823 */ 824 static int acpi_idle_enter_c1(struct cpuidle_device *dev, 825 struct cpuidle_state *state) 826 { 827 ktime_t kt1, kt2; 828 s64 idle_time; 829 struct acpi_processor *pr; 830 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 831 832 pr = __get_cpu_var(processors); 833 834 if (unlikely(!pr)) 835 return 0; 836 837 local_irq_disable(); 838 839 /* Do not access any ACPI IO ports in suspend path */ 840 if (acpi_idle_suspend) { 841 local_irq_enable(); 842 cpu_relax(); 843 return 0; 844 } 845 846 lapic_timer_state_broadcast(pr, cx, 1); 847 kt1 = ktime_get_real(); 848 acpi_idle_do_entry(cx); 849 kt2 = ktime_get_real(); 850 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 851 852 local_irq_enable(); 853 cx->usage++; 854 lapic_timer_state_broadcast(pr, cx, 0); 855 856 return idle_time; 857 } 858 859 /** 860 * acpi_idle_enter_simple - enters an ACPI state without BM handling 861 * @dev: the target CPU 862 * @state: the state data 863 */ 864 static int acpi_idle_enter_simple(struct cpuidle_device *dev, 865 struct cpuidle_state *state) 866 { 867 struct acpi_processor *pr; 868 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 869 ktime_t kt1, kt2; 870 s64 idle_time_ns; 871 s64 idle_time; 872 873 pr = __get_cpu_var(processors); 874 875 if (unlikely(!pr)) 876 return 0; 877 878 if (acpi_idle_suspend) 879 return(acpi_idle_enter_c1(dev, state)); 880 881 local_irq_disable(); 882 883 if (cx->entry_method != ACPI_CSTATE_FFH) { 884 current_thread_info()->status &= ~TS_POLLING; 885 /* 886 * TS_POLLING-cleared state must be visible before we test 887 * NEED_RESCHED: 888 */ 889 smp_mb(); 890 891 if (unlikely(need_resched())) { 892 current_thread_info()->status |= TS_POLLING; 893 local_irq_enable(); 894 return 0; 895 } 896 } 897 898 /* 899 * Must be done before busmaster disable as we might need to 900 * access HPET ! 901 */ 902 lapic_timer_state_broadcast(pr, cx, 1); 903 904 if (cx->type == ACPI_STATE_C3) 905 ACPI_FLUSH_CPU_CACHE(); 906 907 kt1 = ktime_get_real(); 908 /* Tell the scheduler that we are going deep-idle: */ 909 sched_clock_idle_sleep_event(); 910 acpi_idle_do_entry(cx); 911 kt2 = ktime_get_real(); 912 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); 913 idle_time = idle_time_ns; 914 do_div(idle_time, NSEC_PER_USEC); 915 916 /* Tell the scheduler how much we idled: */ 917 sched_clock_idle_wakeup_event(idle_time_ns); 918 919 local_irq_enable(); 920 if (cx->entry_method != ACPI_CSTATE_FFH) 921 current_thread_info()->status |= TS_POLLING; 922 923 cx->usage++; 924 925 lapic_timer_state_broadcast(pr, cx, 0); 926 cx->time += idle_time; 927 return idle_time; 928 } 929 930 static int c3_cpu_count; 931 static DEFINE_SPINLOCK(c3_lock); 932 933 /** 934 * acpi_idle_enter_bm - enters C3 with proper BM handling 935 * @dev: the target CPU 936 * @state: the state data 937 * 938 * If BM is detected, the deepest non-C3 idle state is entered instead. 939 */ 940 static int acpi_idle_enter_bm(struct cpuidle_device *dev, 941 struct cpuidle_state *state) 942 { 943 struct acpi_processor *pr; 944 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 945 ktime_t kt1, kt2; 946 s64 idle_time_ns; 947 s64 idle_time; 948 949 950 pr = __get_cpu_var(processors); 951 952 if (unlikely(!pr)) 953 return 0; 954 955 if (acpi_idle_suspend) 956 return(acpi_idle_enter_c1(dev, state)); 957 958 if (!cx->bm_sts_skip && acpi_idle_bm_check()) { 959 if (dev->safe_state) { 960 dev->last_state = dev->safe_state; 961 return dev->safe_state->enter(dev, dev->safe_state); 962 } else { 963 local_irq_disable(); 964 acpi_safe_halt(); 965 local_irq_enable(); 966 return 0; 967 } 968 } 969 970 local_irq_disable(); 971 972 if (cx->entry_method != ACPI_CSTATE_FFH) { 973 current_thread_info()->status &= ~TS_POLLING; 974 /* 975 * TS_POLLING-cleared state must be visible before we test 976 * NEED_RESCHED: 977 */ 978 smp_mb(); 979 980 if (unlikely(need_resched())) { 981 current_thread_info()->status |= TS_POLLING; 982 local_irq_enable(); 983 return 0; 984 } 985 } 986 987 acpi_unlazy_tlb(smp_processor_id()); 988 989 /* Tell the scheduler that we are going deep-idle: */ 990 sched_clock_idle_sleep_event(); 991 /* 992 * Must be done before busmaster disable as we might need to 993 * access HPET ! 994 */ 995 lapic_timer_state_broadcast(pr, cx, 1); 996 997 kt1 = ktime_get_real(); 998 /* 999 * disable bus master 1000 * bm_check implies we need ARB_DIS 1001 * !bm_check implies we need cache flush 1002 * bm_control implies whether we can do ARB_DIS 1003 * 1004 * That leaves a case where bm_check is set and bm_control is 1005 * not set. In that case we cannot do much, we enter C3 1006 * without doing anything. 1007 */ 1008 if (pr->flags.bm_check && pr->flags.bm_control) { 1009 spin_lock(&c3_lock); 1010 c3_cpu_count++; 1011 /* Disable bus master arbitration when all CPUs are in C3 */ 1012 if (c3_cpu_count == num_online_cpus()) 1013 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); 1014 spin_unlock(&c3_lock); 1015 } else if (!pr->flags.bm_check) { 1016 ACPI_FLUSH_CPU_CACHE(); 1017 } 1018 1019 acpi_idle_do_entry(cx); 1020 1021 /* Re-enable bus master arbitration */ 1022 if (pr->flags.bm_check && pr->flags.bm_control) { 1023 spin_lock(&c3_lock); 1024 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); 1025 c3_cpu_count--; 1026 spin_unlock(&c3_lock); 1027 } 1028 kt2 = ktime_get_real(); 1029 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); 1030 idle_time = idle_time_ns; 1031 do_div(idle_time, NSEC_PER_USEC); 1032 1033 /* Tell the scheduler how much we idled: */ 1034 sched_clock_idle_wakeup_event(idle_time_ns); 1035 1036 local_irq_enable(); 1037 if (cx->entry_method != ACPI_CSTATE_FFH) 1038 current_thread_info()->status |= TS_POLLING; 1039 1040 cx->usage++; 1041 1042 lapic_timer_state_broadcast(pr, cx, 0); 1043 cx->time += idle_time; 1044 return idle_time; 1045 } 1046 1047 struct cpuidle_driver acpi_idle_driver = { 1048 .name = "acpi_idle", 1049 .owner = THIS_MODULE, 1050 }; 1051 1052 /** 1053 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE 1054 * @pr: the ACPI processor 1055 */ 1056 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) 1057 { 1058 int i, count = CPUIDLE_DRIVER_STATE_START; 1059 struct acpi_processor_cx *cx; 1060 struct cpuidle_state *state; 1061 struct cpuidle_device *dev = &pr->power.dev; 1062 1063 if (!pr->flags.power_setup_done) 1064 return -EINVAL; 1065 1066 if (pr->flags.power == 0) { 1067 return -EINVAL; 1068 } 1069 1070 dev->cpu = pr->id; 1071 for (i = 0; i < CPUIDLE_STATE_MAX; i++) { 1072 dev->states[i].name[0] = '\0'; 1073 dev->states[i].desc[0] = '\0'; 1074 } 1075 1076 if (max_cstate == 0) 1077 max_cstate = 1; 1078 1079 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 1080 cx = &pr->power.states[i]; 1081 state = &dev->states[count]; 1082 1083 if (!cx->valid) 1084 continue; 1085 1086 #ifdef CONFIG_HOTPLUG_CPU 1087 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 1088 !pr->flags.has_cst && 1089 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 1090 continue; 1091 #endif 1092 cpuidle_set_statedata(state, cx); 1093 1094 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); 1095 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); 1096 state->exit_latency = cx->latency; 1097 state->target_residency = cx->latency * latency_factor; 1098 state->power_usage = cx->power; 1099 1100 state->flags = 0; 1101 switch (cx->type) { 1102 case ACPI_STATE_C1: 1103 state->flags |= CPUIDLE_FLAG_SHALLOW; 1104 if (cx->entry_method == ACPI_CSTATE_FFH) 1105 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1106 1107 state->enter = acpi_idle_enter_c1; 1108 dev->safe_state = state; 1109 break; 1110 1111 case ACPI_STATE_C2: 1112 state->flags |= CPUIDLE_FLAG_BALANCED; 1113 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1114 state->enter = acpi_idle_enter_simple; 1115 dev->safe_state = state; 1116 break; 1117 1118 case ACPI_STATE_C3: 1119 state->flags |= CPUIDLE_FLAG_DEEP; 1120 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1121 state->flags |= CPUIDLE_FLAG_CHECK_BM; 1122 state->enter = pr->flags.bm_check ? 1123 acpi_idle_enter_bm : 1124 acpi_idle_enter_simple; 1125 break; 1126 } 1127 1128 count++; 1129 if (count == CPUIDLE_STATE_MAX) 1130 break; 1131 } 1132 1133 dev->state_count = count; 1134 1135 if (!count) 1136 return -EINVAL; 1137 1138 return 0; 1139 } 1140 1141 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1142 { 1143 int ret = 0; 1144 1145 if (boot_option_idle_override) 1146 return 0; 1147 1148 if (!pr) 1149 return -EINVAL; 1150 1151 if (nocst) { 1152 return -ENODEV; 1153 } 1154 1155 if (!pr->flags.power_setup_done) 1156 return -ENODEV; 1157 1158 cpuidle_pause_and_lock(); 1159 cpuidle_disable_device(&pr->power.dev); 1160 acpi_processor_get_power_info(pr); 1161 if (pr->flags.power) { 1162 acpi_processor_setup_cpuidle(pr); 1163 ret = cpuidle_enable_device(&pr->power.dev); 1164 } 1165 cpuidle_resume_and_unlock(); 1166 1167 return ret; 1168 } 1169 1170 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1171 struct acpi_device *device) 1172 { 1173 acpi_status status = 0; 1174 static int first_run; 1175 #ifdef CONFIG_ACPI_PROCFS 1176 struct proc_dir_entry *entry = NULL; 1177 #endif 1178 1179 if (boot_option_idle_override) 1180 return 0; 1181 1182 if (!first_run) { 1183 if (idle_halt) { 1184 /* 1185 * When the boot option of "idle=halt" is added, halt 1186 * is used for CPU IDLE. 1187 * In such case C2/C3 is meaningless. So the max_cstate 1188 * is set to one. 1189 */ 1190 max_cstate = 1; 1191 } 1192 dmi_check_system(processor_power_dmi_table); 1193 max_cstate = acpi_processor_cstate_check(max_cstate); 1194 if (max_cstate < ACPI_C_STATES_MAX) 1195 printk(KERN_NOTICE 1196 "ACPI: processor limited to max C-state %d\n", 1197 max_cstate); 1198 first_run++; 1199 } 1200 1201 if (!pr) 1202 return -EINVAL; 1203 1204 if (acpi_gbl_FADT.cst_control && !nocst) { 1205 status = 1206 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1207 if (ACPI_FAILURE(status)) { 1208 ACPI_EXCEPTION((AE_INFO, status, 1209 "Notifying BIOS of _CST ability failed")); 1210 } 1211 } 1212 1213 acpi_processor_get_power_info(pr); 1214 pr->flags.power_setup_done = 1; 1215 1216 /* 1217 * Install the idle handler if processor power management is supported. 1218 * Note that we use previously set idle handler will be used on 1219 * platforms that only support C1. 1220 */ 1221 if (pr->flags.power) { 1222 acpi_processor_setup_cpuidle(pr); 1223 if (cpuidle_register_device(&pr->power.dev)) 1224 return -EIO; 1225 } 1226 #ifdef CONFIG_ACPI_PROCFS 1227 /* 'power' [R] */ 1228 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER, 1229 S_IRUGO, acpi_device_dir(device), 1230 &acpi_processor_power_fops, 1231 acpi_driver_data(device)); 1232 if (!entry) 1233 return -EIO; 1234 #endif 1235 return 0; 1236 } 1237 1238 int acpi_processor_power_exit(struct acpi_processor *pr, 1239 struct acpi_device *device) 1240 { 1241 if (boot_option_idle_override) 1242 return 0; 1243 1244 cpuidle_unregister_device(&pr->power.dev); 1245 pr->flags.power_setup_done = 0; 1246 1247 #ifdef CONFIG_ACPI_PROCFS 1248 if (acpi_device_dir(device)) 1249 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1250 acpi_device_dir(device)); 1251 #endif 1252 1253 return 0; 1254 } 1255