xref: /linux/drivers/acpi/processor_idle.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45 
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55 
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58 
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62 
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER	"power"
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD			1	/* 1us */
69 #define C3_OVERHEAD			1	/* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71 
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76 
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79 
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86  * For now disable this. Probably a bug somewhere else.
87  *
88  * To skip this limit, boot/load with a large max_cstate limit.
89  */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93 		return 0;
94 
95 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
97 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98 
99 	max_cstate = (long)id->driver_data;
100 
101 	return 0;
102 }
103 
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105    callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107 	{ set_max_cstate, "Clevo 5600D", {
108 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110 	 (void *)2},
111 	{},
112 };
113 
114 
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void acpi_safe_halt(void)
120 {
121 	current_thread_info()->status &= ~TS_POLLING;
122 	/*
123 	 * TS_POLLING-cleared state must be visible before we
124 	 * test NEED_RESCHED:
125 	 */
126 	smp_mb();
127 	if (!need_resched()) {
128 		safe_halt();
129 		local_irq_disable();
130 	}
131 	current_thread_info()->status |= TS_POLLING;
132 }
133 
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135 
136 /*
137  * Some BIOS implementations switch to C3 in the published C2 state.
138  * This seems to be a common problem on AMD boxen, but other vendors
139  * are affected too. We pick the most conservative approach: we assume
140  * that the local APIC stops in both C2 and C3.
141  */
142 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
143 				   struct acpi_processor_cx *cx)
144 {
145 	struct acpi_processor_power *pwr = &pr->power;
146 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147 
148 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149 		return;
150 
151 	if (boot_cpu_has(X86_FEATURE_AMDC1E))
152 		type = ACPI_STATE_C1;
153 
154 	/*
155 	 * Check, if one of the previous states already marked the lapic
156 	 * unstable
157 	 */
158 	if (pwr->timer_broadcast_on_state < state)
159 		return;
160 
161 	if (cx->type >= type)
162 		pr->power.timer_broadcast_on_state = state;
163 }
164 
165 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
166 {
167 	unsigned long reason;
168 
169 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
170 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
171 
172 	clockevents_notify(reason, &pr->id);
173 }
174 
175 /* Power(C) State timer broadcast control */
176 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
177 				       struct acpi_processor_cx *cx,
178 				       int broadcast)
179 {
180 	int state = cx - pr->power.states;
181 
182 	if (state >= pr->power.timer_broadcast_on_state) {
183 		unsigned long reason;
184 
185 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
186 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
187 		clockevents_notify(reason, &pr->id);
188 	}
189 }
190 
191 #else
192 
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194 				   struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 }
201 
202 #endif
203 
204 /*
205  * Suspend / resume control
206  */
207 static int acpi_idle_suspend;
208 static u32 saved_bm_rld;
209 
210 static void acpi_idle_bm_rld_save(void)
211 {
212 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
213 }
214 static void acpi_idle_bm_rld_restore(void)
215 {
216 	u32 resumed_bm_rld;
217 
218 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
219 
220 	if (resumed_bm_rld != saved_bm_rld)
221 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
222 }
223 
224 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
225 {
226 	if (acpi_idle_suspend == 1)
227 		return 0;
228 
229 	acpi_idle_bm_rld_save();
230 	acpi_idle_suspend = 1;
231 	return 0;
232 }
233 
234 int acpi_processor_resume(struct acpi_device * device)
235 {
236 	if (acpi_idle_suspend == 0)
237 		return 0;
238 
239 	acpi_idle_bm_rld_restore();
240 	acpi_idle_suspend = 0;
241 	return 0;
242 }
243 
244 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
245 static void tsc_check_state(int state)
246 {
247 	switch (boot_cpu_data.x86_vendor) {
248 	case X86_VENDOR_AMD:
249 	case X86_VENDOR_INTEL:
250 		/*
251 		 * AMD Fam10h TSC will tick in all
252 		 * C/P/S0/S1 states when this bit is set.
253 		 */
254 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
255 			return;
256 
257 		/*FALL THROUGH*/
258 	default:
259 		/* TSC could halt in idle, so notify users */
260 		if (state > ACPI_STATE_C1)
261 			mark_tsc_unstable("TSC halts in idle");
262 	}
263 }
264 #else
265 static void tsc_check_state(int state) { return; }
266 #endif
267 
268 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
269 {
270 
271 	if (!pr)
272 		return -EINVAL;
273 
274 	if (!pr->pblk)
275 		return -ENODEV;
276 
277 	/* if info is obtained from pblk/fadt, type equals state */
278 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
279 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
280 
281 #ifndef CONFIG_HOTPLUG_CPU
282 	/*
283 	 * Check for P_LVL2_UP flag before entering C2 and above on
284 	 * an SMP system.
285 	 */
286 	if ((num_online_cpus() > 1) &&
287 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
288 		return -ENODEV;
289 #endif
290 
291 	/* determine C2 and C3 address from pblk */
292 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
293 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
294 
295 	/* determine latencies from FADT */
296 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
297 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
298 
299 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
300 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
301 			  pr->power.states[ACPI_STATE_C2].address,
302 			  pr->power.states[ACPI_STATE_C3].address));
303 
304 	return 0;
305 }
306 
307 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
308 {
309 	if (!pr->power.states[ACPI_STATE_C1].valid) {
310 		/* set the first C-State to C1 */
311 		/* all processors need to support C1 */
312 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
313 		pr->power.states[ACPI_STATE_C1].valid = 1;
314 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
315 	}
316 	/* the C0 state only exists as a filler in our array */
317 	pr->power.states[ACPI_STATE_C0].valid = 1;
318 	return 0;
319 }
320 
321 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
322 {
323 	acpi_status status = 0;
324 	acpi_integer count;
325 	int current_count;
326 	int i;
327 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
328 	union acpi_object *cst;
329 
330 
331 	if (nocst)
332 		return -ENODEV;
333 
334 	current_count = 0;
335 
336 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
337 	if (ACPI_FAILURE(status)) {
338 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
339 		return -ENODEV;
340 	}
341 
342 	cst = buffer.pointer;
343 
344 	/* There must be at least 2 elements */
345 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
346 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
347 		status = -EFAULT;
348 		goto end;
349 	}
350 
351 	count = cst->package.elements[0].integer.value;
352 
353 	/* Validate number of power states. */
354 	if (count < 1 || count != cst->package.count - 1) {
355 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
356 		status = -EFAULT;
357 		goto end;
358 	}
359 
360 	/* Tell driver that at least _CST is supported. */
361 	pr->flags.has_cst = 1;
362 
363 	for (i = 1; i <= count; i++) {
364 		union acpi_object *element;
365 		union acpi_object *obj;
366 		struct acpi_power_register *reg;
367 		struct acpi_processor_cx cx;
368 
369 		memset(&cx, 0, sizeof(cx));
370 
371 		element = &(cst->package.elements[i]);
372 		if (element->type != ACPI_TYPE_PACKAGE)
373 			continue;
374 
375 		if (element->package.count != 4)
376 			continue;
377 
378 		obj = &(element->package.elements[0]);
379 
380 		if (obj->type != ACPI_TYPE_BUFFER)
381 			continue;
382 
383 		reg = (struct acpi_power_register *)obj->buffer.pointer;
384 
385 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
386 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
387 			continue;
388 
389 		/* There should be an easy way to extract an integer... */
390 		obj = &(element->package.elements[1]);
391 		if (obj->type != ACPI_TYPE_INTEGER)
392 			continue;
393 
394 		cx.type = obj->integer.value;
395 		/*
396 		 * Some buggy BIOSes won't list C1 in _CST -
397 		 * Let acpi_processor_get_power_info_default() handle them later
398 		 */
399 		if (i == 1 && cx.type != ACPI_STATE_C1)
400 			current_count++;
401 
402 		cx.address = reg->address;
403 		cx.index = current_count + 1;
404 
405 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
406 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
407 			if (acpi_processor_ffh_cstate_probe
408 					(pr->id, &cx, reg) == 0) {
409 				cx.entry_method = ACPI_CSTATE_FFH;
410 			} else if (cx.type == ACPI_STATE_C1) {
411 				/*
412 				 * C1 is a special case where FIXED_HARDWARE
413 				 * can be handled in non-MWAIT way as well.
414 				 * In that case, save this _CST entry info.
415 				 * Otherwise, ignore this info and continue.
416 				 */
417 				cx.entry_method = ACPI_CSTATE_HALT;
418 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
419 			} else {
420 				continue;
421 			}
422 			if (cx.type == ACPI_STATE_C1 &&
423 					(idle_halt || idle_nomwait)) {
424 				/*
425 				 * In most cases the C1 space_id obtained from
426 				 * _CST object is FIXED_HARDWARE access mode.
427 				 * But when the option of idle=halt is added,
428 				 * the entry_method type should be changed from
429 				 * CSTATE_FFH to CSTATE_HALT.
430 				 * When the option of idle=nomwait is added,
431 				 * the C1 entry_method type should be
432 				 * CSTATE_HALT.
433 				 */
434 				cx.entry_method = ACPI_CSTATE_HALT;
435 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
436 			}
437 		} else {
438 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
439 				 cx.address);
440 		}
441 
442 		if (cx.type == ACPI_STATE_C1) {
443 			cx.valid = 1;
444 		}
445 
446 		obj = &(element->package.elements[2]);
447 		if (obj->type != ACPI_TYPE_INTEGER)
448 			continue;
449 
450 		cx.latency = obj->integer.value;
451 
452 		obj = &(element->package.elements[3]);
453 		if (obj->type != ACPI_TYPE_INTEGER)
454 			continue;
455 
456 		cx.power = obj->integer.value;
457 
458 		current_count++;
459 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
460 
461 		/*
462 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
463 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
464 		 */
465 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
466 			printk(KERN_WARNING
467 			       "Limiting number of power states to max (%d)\n",
468 			       ACPI_PROCESSOR_MAX_POWER);
469 			printk(KERN_WARNING
470 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
471 			break;
472 		}
473 	}
474 
475 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
476 			  current_count));
477 
478 	/* Validate number of power states discovered */
479 	if (current_count < 2)
480 		status = -EFAULT;
481 
482       end:
483 	kfree(buffer.pointer);
484 
485 	return status;
486 }
487 
488 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
489 {
490 
491 	if (!cx->address)
492 		return;
493 
494 	/*
495 	 * C2 latency must be less than or equal to 100
496 	 * microseconds.
497 	 */
498 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
499 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
500 				  "latency too large [%d]\n", cx->latency));
501 		return;
502 	}
503 
504 	/*
505 	 * Otherwise we've met all of our C2 requirements.
506 	 * Normalize the C2 latency to expidite policy
507 	 */
508 	cx->valid = 1;
509 
510 	cx->latency_ticks = cx->latency;
511 
512 	return;
513 }
514 
515 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
516 					   struct acpi_processor_cx *cx)
517 {
518 	static int bm_check_flag = -1;
519 	static int bm_control_flag = -1;
520 
521 
522 	if (!cx->address)
523 		return;
524 
525 	/*
526 	 * C3 latency must be less than or equal to 1000
527 	 * microseconds.
528 	 */
529 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
530 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
531 				  "latency too large [%d]\n", cx->latency));
532 		return;
533 	}
534 
535 	/*
536 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
537 	 * DMA transfers are used by any ISA device to avoid livelock.
538 	 * Note that we could disable Type-F DMA (as recommended by
539 	 * the erratum), but this is known to disrupt certain ISA
540 	 * devices thus we take the conservative approach.
541 	 */
542 	else if (errata.piix4.fdma) {
543 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
544 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
545 		return;
546 	}
547 
548 	/* All the logic here assumes flags.bm_check is same across all CPUs */
549 	if (bm_check_flag == -1) {
550 		/* Determine whether bm_check is needed based on CPU  */
551 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
552 		bm_check_flag = pr->flags.bm_check;
553 		bm_control_flag = pr->flags.bm_control;
554 	} else {
555 		pr->flags.bm_check = bm_check_flag;
556 		pr->flags.bm_control = bm_control_flag;
557 	}
558 
559 	if (pr->flags.bm_check) {
560 		if (!pr->flags.bm_control) {
561 			if (pr->flags.has_cst != 1) {
562 				/* bus mastering control is necessary */
563 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
564 					"C3 support requires BM control\n"));
565 				return;
566 			} else {
567 				/* Here we enter C3 without bus mastering */
568 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
569 					"C3 support without BM control\n"));
570 			}
571 		}
572 	} else {
573 		/*
574 		 * WBINVD should be set in fadt, for C3 state to be
575 		 * supported on when bm_check is not required.
576 		 */
577 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
578 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
579 					  "Cache invalidation should work properly"
580 					  " for C3 to be enabled on SMP systems\n"));
581 			return;
582 		}
583 	}
584 
585 	/*
586 	 * Otherwise we've met all of our C3 requirements.
587 	 * Normalize the C3 latency to expidite policy.  Enable
588 	 * checking of bus mastering status (bm_check) so we can
589 	 * use this in our C3 policy
590 	 */
591 	cx->valid = 1;
592 
593 	cx->latency_ticks = cx->latency;
594 	/*
595 	 * On older chipsets, BM_RLD needs to be set
596 	 * in order for Bus Master activity to wake the
597 	 * system from C3.  Newer chipsets handle DMA
598 	 * during C3 automatically and BM_RLD is a NOP.
599 	 * In either case, the proper way to
600 	 * handle BM_RLD is to set it and leave it set.
601 	 */
602 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
603 
604 	return;
605 }
606 
607 static int acpi_processor_power_verify(struct acpi_processor *pr)
608 {
609 	unsigned int i;
610 	unsigned int working = 0;
611 
612 	pr->power.timer_broadcast_on_state = INT_MAX;
613 
614 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
615 		struct acpi_processor_cx *cx = &pr->power.states[i];
616 
617 		switch (cx->type) {
618 		case ACPI_STATE_C1:
619 			cx->valid = 1;
620 			break;
621 
622 		case ACPI_STATE_C2:
623 			acpi_processor_power_verify_c2(cx);
624 			break;
625 
626 		case ACPI_STATE_C3:
627 			acpi_processor_power_verify_c3(pr, cx);
628 			break;
629 		}
630 		if (!cx->valid)
631 			continue;
632 
633 		lapic_timer_check_state(i, pr, cx);
634 		tsc_check_state(cx->type);
635 		working++;
636 	}
637 
638 	lapic_timer_propagate_broadcast(pr);
639 
640 	return (working);
641 }
642 
643 static int acpi_processor_get_power_info(struct acpi_processor *pr)
644 {
645 	unsigned int i;
646 	int result;
647 
648 
649 	/* NOTE: the idle thread may not be running while calling
650 	 * this function */
651 
652 	/* Zero initialize all the C-states info. */
653 	memset(pr->power.states, 0, sizeof(pr->power.states));
654 
655 	result = acpi_processor_get_power_info_cst(pr);
656 	if (result == -ENODEV)
657 		result = acpi_processor_get_power_info_fadt(pr);
658 
659 	if (result)
660 		return result;
661 
662 	acpi_processor_get_power_info_default(pr);
663 
664 	pr->power.count = acpi_processor_power_verify(pr);
665 
666 	/*
667 	 * if one state of type C2 or C3 is available, mark this
668 	 * CPU as being "idle manageable"
669 	 */
670 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
671 		if (pr->power.states[i].valid) {
672 			pr->power.count = i;
673 			if (pr->power.states[i].type >= ACPI_STATE_C2)
674 				pr->flags.power = 1;
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
682 {
683 	struct acpi_processor *pr = seq->private;
684 	unsigned int i;
685 
686 
687 	if (!pr)
688 		goto end;
689 
690 	seq_printf(seq, "active state:            C%zd\n"
691 		   "max_cstate:              C%d\n"
692 		   "maximum allowed latency: %d usec\n",
693 		   pr->power.state ? pr->power.state - pr->power.states : 0,
694 		   max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
695 
696 	seq_puts(seq, "states:\n");
697 
698 	for (i = 1; i <= pr->power.count; i++) {
699 		seq_printf(seq, "   %cC%d:                  ",
700 			   (&pr->power.states[i] ==
701 			    pr->power.state ? '*' : ' '), i);
702 
703 		if (!pr->power.states[i].valid) {
704 			seq_puts(seq, "<not supported>\n");
705 			continue;
706 		}
707 
708 		switch (pr->power.states[i].type) {
709 		case ACPI_STATE_C1:
710 			seq_printf(seq, "type[C1] ");
711 			break;
712 		case ACPI_STATE_C2:
713 			seq_printf(seq, "type[C2] ");
714 			break;
715 		case ACPI_STATE_C3:
716 			seq_printf(seq, "type[C3] ");
717 			break;
718 		default:
719 			seq_printf(seq, "type[--] ");
720 			break;
721 		}
722 
723 		if (pr->power.states[i].promotion.state)
724 			seq_printf(seq, "promotion[C%zd] ",
725 				   (pr->power.states[i].promotion.state -
726 				    pr->power.states));
727 		else
728 			seq_puts(seq, "promotion[--] ");
729 
730 		if (pr->power.states[i].demotion.state)
731 			seq_printf(seq, "demotion[C%zd] ",
732 				   (pr->power.states[i].demotion.state -
733 				    pr->power.states));
734 		else
735 			seq_puts(seq, "demotion[--] ");
736 
737 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
738 			   pr->power.states[i].latency,
739 			   pr->power.states[i].usage,
740 			   (unsigned long long)pr->power.states[i].time);
741 	}
742 
743       end:
744 	return 0;
745 }
746 
747 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
748 {
749 	return single_open(file, acpi_processor_power_seq_show,
750 			   PDE(inode)->data);
751 }
752 
753 static const struct file_operations acpi_processor_power_fops = {
754 	.owner = THIS_MODULE,
755 	.open = acpi_processor_power_open_fs,
756 	.read = seq_read,
757 	.llseek = seq_lseek,
758 	.release = single_release,
759 };
760 
761 
762 /**
763  * acpi_idle_bm_check - checks if bus master activity was detected
764  */
765 static int acpi_idle_bm_check(void)
766 {
767 	u32 bm_status = 0;
768 
769 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
770 	if (bm_status)
771 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
772 	/*
773 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
774 	 * the true state of bus mastering activity; forcing us to
775 	 * manually check the BMIDEA bit of each IDE channel.
776 	 */
777 	else if (errata.piix4.bmisx) {
778 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
779 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
780 			bm_status = 1;
781 	}
782 	return bm_status;
783 }
784 
785 /**
786  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
787  * @cx: cstate data
788  *
789  * Caller disables interrupt before call and enables interrupt after return.
790  */
791 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
792 {
793 	/* Don't trace irqs off for idle */
794 	stop_critical_timings();
795 	if (cx->entry_method == ACPI_CSTATE_FFH) {
796 		/* Call into architectural FFH based C-state */
797 		acpi_processor_ffh_cstate_enter(cx);
798 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
799 		acpi_safe_halt();
800 	} else {
801 		int unused;
802 		/* IO port based C-state */
803 		inb(cx->address);
804 		/* Dummy wait op - must do something useless after P_LVL2 read
805 		   because chipsets cannot guarantee that STPCLK# signal
806 		   gets asserted in time to freeze execution properly. */
807 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
808 	}
809 	start_critical_timings();
810 }
811 
812 /**
813  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
814  * @dev: the target CPU
815  * @state: the state data
816  *
817  * This is equivalent to the HALT instruction.
818  */
819 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
820 			      struct cpuidle_state *state)
821 {
822 	ktime_t  kt1, kt2;
823 	s64 idle_time;
824 	struct acpi_processor *pr;
825 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
826 
827 	pr = __get_cpu_var(processors);
828 
829 	if (unlikely(!pr))
830 		return 0;
831 
832 	local_irq_disable();
833 
834 	/* Do not access any ACPI IO ports in suspend path */
835 	if (acpi_idle_suspend) {
836 		local_irq_enable();
837 		cpu_relax();
838 		return 0;
839 	}
840 
841 	lapic_timer_state_broadcast(pr, cx, 1);
842 	kt1 = ktime_get_real();
843 	acpi_idle_do_entry(cx);
844 	kt2 = ktime_get_real();
845 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
846 
847 	local_irq_enable();
848 	cx->usage++;
849 	lapic_timer_state_broadcast(pr, cx, 0);
850 
851 	return idle_time;
852 }
853 
854 /**
855  * acpi_idle_enter_simple - enters an ACPI state without BM handling
856  * @dev: the target CPU
857  * @state: the state data
858  */
859 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
860 				  struct cpuidle_state *state)
861 {
862 	struct acpi_processor *pr;
863 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
864 	ktime_t  kt1, kt2;
865 	s64 idle_time;
866 	s64 sleep_ticks = 0;
867 
868 	pr = __get_cpu_var(processors);
869 
870 	if (unlikely(!pr))
871 		return 0;
872 
873 	if (acpi_idle_suspend)
874 		return(acpi_idle_enter_c1(dev, state));
875 
876 	local_irq_disable();
877 	current_thread_info()->status &= ~TS_POLLING;
878 	/*
879 	 * TS_POLLING-cleared state must be visible before we test
880 	 * NEED_RESCHED:
881 	 */
882 	smp_mb();
883 
884 	if (unlikely(need_resched())) {
885 		current_thread_info()->status |= TS_POLLING;
886 		local_irq_enable();
887 		return 0;
888 	}
889 
890 	/*
891 	 * Must be done before busmaster disable as we might need to
892 	 * access HPET !
893 	 */
894 	lapic_timer_state_broadcast(pr, cx, 1);
895 
896 	if (cx->type == ACPI_STATE_C3)
897 		ACPI_FLUSH_CPU_CACHE();
898 
899 	kt1 = ktime_get_real();
900 	/* Tell the scheduler that we are going deep-idle: */
901 	sched_clock_idle_sleep_event();
902 	acpi_idle_do_entry(cx);
903 	kt2 = ktime_get_real();
904 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
905 
906 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
907 
908 	/* Tell the scheduler how much we idled: */
909 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
910 
911 	local_irq_enable();
912 	current_thread_info()->status |= TS_POLLING;
913 
914 	cx->usage++;
915 
916 	lapic_timer_state_broadcast(pr, cx, 0);
917 	cx->time += sleep_ticks;
918 	return idle_time;
919 }
920 
921 static int c3_cpu_count;
922 static DEFINE_SPINLOCK(c3_lock);
923 
924 /**
925  * acpi_idle_enter_bm - enters C3 with proper BM handling
926  * @dev: the target CPU
927  * @state: the state data
928  *
929  * If BM is detected, the deepest non-C3 idle state is entered instead.
930  */
931 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
932 			      struct cpuidle_state *state)
933 {
934 	struct acpi_processor *pr;
935 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
936 	ktime_t  kt1, kt2;
937 	s64 idle_time;
938 	s64 sleep_ticks = 0;
939 
940 
941 	pr = __get_cpu_var(processors);
942 
943 	if (unlikely(!pr))
944 		return 0;
945 
946 	if (acpi_idle_suspend)
947 		return(acpi_idle_enter_c1(dev, state));
948 
949 	if (acpi_idle_bm_check()) {
950 		if (dev->safe_state) {
951 			dev->last_state = dev->safe_state;
952 			return dev->safe_state->enter(dev, dev->safe_state);
953 		} else {
954 			local_irq_disable();
955 			acpi_safe_halt();
956 			local_irq_enable();
957 			return 0;
958 		}
959 	}
960 
961 	local_irq_disable();
962 	current_thread_info()->status &= ~TS_POLLING;
963 	/*
964 	 * TS_POLLING-cleared state must be visible before we test
965 	 * NEED_RESCHED:
966 	 */
967 	smp_mb();
968 
969 	if (unlikely(need_resched())) {
970 		current_thread_info()->status |= TS_POLLING;
971 		local_irq_enable();
972 		return 0;
973 	}
974 
975 	acpi_unlazy_tlb(smp_processor_id());
976 
977 	/* Tell the scheduler that we are going deep-idle: */
978 	sched_clock_idle_sleep_event();
979 	/*
980 	 * Must be done before busmaster disable as we might need to
981 	 * access HPET !
982 	 */
983 	lapic_timer_state_broadcast(pr, cx, 1);
984 
985 	kt1 = ktime_get_real();
986 	/*
987 	 * disable bus master
988 	 * bm_check implies we need ARB_DIS
989 	 * !bm_check implies we need cache flush
990 	 * bm_control implies whether we can do ARB_DIS
991 	 *
992 	 * That leaves a case where bm_check is set and bm_control is
993 	 * not set. In that case we cannot do much, we enter C3
994 	 * without doing anything.
995 	 */
996 	if (pr->flags.bm_check && pr->flags.bm_control) {
997 		spin_lock(&c3_lock);
998 		c3_cpu_count++;
999 		/* Disable bus master arbitration when all CPUs are in C3 */
1000 		if (c3_cpu_count == num_online_cpus())
1001 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1002 		spin_unlock(&c3_lock);
1003 	} else if (!pr->flags.bm_check) {
1004 		ACPI_FLUSH_CPU_CACHE();
1005 	}
1006 
1007 	acpi_idle_do_entry(cx);
1008 
1009 	/* Re-enable bus master arbitration */
1010 	if (pr->flags.bm_check && pr->flags.bm_control) {
1011 		spin_lock(&c3_lock);
1012 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1013 		c3_cpu_count--;
1014 		spin_unlock(&c3_lock);
1015 	}
1016 	kt2 = ktime_get_real();
1017 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1018 
1019 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
1020 	/* Tell the scheduler how much we idled: */
1021 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1022 
1023 	local_irq_enable();
1024 	current_thread_info()->status |= TS_POLLING;
1025 
1026 	cx->usage++;
1027 
1028 	lapic_timer_state_broadcast(pr, cx, 0);
1029 	cx->time += sleep_ticks;
1030 	return idle_time;
1031 }
1032 
1033 struct cpuidle_driver acpi_idle_driver = {
1034 	.name =		"acpi_idle",
1035 	.owner =	THIS_MODULE,
1036 };
1037 
1038 /**
1039  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1040  * @pr: the ACPI processor
1041  */
1042 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1043 {
1044 	int i, count = CPUIDLE_DRIVER_STATE_START;
1045 	struct acpi_processor_cx *cx;
1046 	struct cpuidle_state *state;
1047 	struct cpuidle_device *dev = &pr->power.dev;
1048 
1049 	if (!pr->flags.power_setup_done)
1050 		return -EINVAL;
1051 
1052 	if (pr->flags.power == 0) {
1053 		return -EINVAL;
1054 	}
1055 
1056 	dev->cpu = pr->id;
1057 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1058 		dev->states[i].name[0] = '\0';
1059 		dev->states[i].desc[0] = '\0';
1060 	}
1061 
1062 	if (max_cstate == 0)
1063 		max_cstate = 1;
1064 
1065 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1066 		cx = &pr->power.states[i];
1067 		state = &dev->states[count];
1068 
1069 		if (!cx->valid)
1070 			continue;
1071 
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1074 		    !pr->flags.has_cst &&
1075 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1076 			continue;
1077 #endif
1078 		cpuidle_set_statedata(state, cx);
1079 
1080 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1081 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1082 		state->exit_latency = cx->latency;
1083 		state->target_residency = cx->latency * latency_factor;
1084 		state->power_usage = cx->power;
1085 
1086 		state->flags = 0;
1087 		switch (cx->type) {
1088 			case ACPI_STATE_C1:
1089 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1090 			if (cx->entry_method == ACPI_CSTATE_FFH)
1091 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1092 
1093 			state->enter = acpi_idle_enter_c1;
1094 			dev->safe_state = state;
1095 			break;
1096 
1097 			case ACPI_STATE_C2:
1098 			state->flags |= CPUIDLE_FLAG_BALANCED;
1099 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1100 			state->enter = acpi_idle_enter_simple;
1101 			dev->safe_state = state;
1102 			break;
1103 
1104 			case ACPI_STATE_C3:
1105 			state->flags |= CPUIDLE_FLAG_DEEP;
1106 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1107 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1108 			state->enter = pr->flags.bm_check ?
1109 					acpi_idle_enter_bm :
1110 					acpi_idle_enter_simple;
1111 			break;
1112 		}
1113 
1114 		count++;
1115 		if (count == CPUIDLE_STATE_MAX)
1116 			break;
1117 	}
1118 
1119 	dev->state_count = count;
1120 
1121 	if (!count)
1122 		return -EINVAL;
1123 
1124 	return 0;
1125 }
1126 
1127 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1128 {
1129 	int ret = 0;
1130 
1131 	if (boot_option_idle_override)
1132 		return 0;
1133 
1134 	if (!pr)
1135 		return -EINVAL;
1136 
1137 	if (nocst) {
1138 		return -ENODEV;
1139 	}
1140 
1141 	if (!pr->flags.power_setup_done)
1142 		return -ENODEV;
1143 
1144 	cpuidle_pause_and_lock();
1145 	cpuidle_disable_device(&pr->power.dev);
1146 	acpi_processor_get_power_info(pr);
1147 	if (pr->flags.power) {
1148 		acpi_processor_setup_cpuidle(pr);
1149 		ret = cpuidle_enable_device(&pr->power.dev);
1150 	}
1151 	cpuidle_resume_and_unlock();
1152 
1153 	return ret;
1154 }
1155 
1156 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1157 			      struct acpi_device *device)
1158 {
1159 	acpi_status status = 0;
1160 	static int first_run;
1161 	struct proc_dir_entry *entry = NULL;
1162 	unsigned int i;
1163 
1164 	if (boot_option_idle_override)
1165 		return 0;
1166 
1167 	if (!first_run) {
1168 		if (idle_halt) {
1169 			/*
1170 			 * When the boot option of "idle=halt" is added, halt
1171 			 * is used for CPU IDLE.
1172 			 * In such case C2/C3 is meaningless. So the max_cstate
1173 			 * is set to one.
1174 			 */
1175 			max_cstate = 1;
1176 		}
1177 		dmi_check_system(processor_power_dmi_table);
1178 		max_cstate = acpi_processor_cstate_check(max_cstate);
1179 		if (max_cstate < ACPI_C_STATES_MAX)
1180 			printk(KERN_NOTICE
1181 			       "ACPI: processor limited to max C-state %d\n",
1182 			       max_cstate);
1183 		first_run++;
1184 	}
1185 
1186 	if (!pr)
1187 		return -EINVAL;
1188 
1189 	if (acpi_gbl_FADT.cst_control && !nocst) {
1190 		status =
1191 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1192 		if (ACPI_FAILURE(status)) {
1193 			ACPI_EXCEPTION((AE_INFO, status,
1194 					"Notifying BIOS of _CST ability failed"));
1195 		}
1196 	}
1197 
1198 	acpi_processor_get_power_info(pr);
1199 	pr->flags.power_setup_done = 1;
1200 
1201 	/*
1202 	 * Install the idle handler if processor power management is supported.
1203 	 * Note that we use previously set idle handler will be used on
1204 	 * platforms that only support C1.
1205 	 */
1206 	if (pr->flags.power) {
1207 		acpi_processor_setup_cpuidle(pr);
1208 		if (cpuidle_register_device(&pr->power.dev))
1209 			return -EIO;
1210 
1211 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1212 		for (i = 1; i <= pr->power.count; i++)
1213 			if (pr->power.states[i].valid)
1214 				printk(" C%d[C%d]", i,
1215 				       pr->power.states[i].type);
1216 		printk(")\n");
1217 	}
1218 
1219 	/* 'power' [R] */
1220 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1221 				 S_IRUGO, acpi_device_dir(device),
1222 				 &acpi_processor_power_fops,
1223 				 acpi_driver_data(device));
1224 	if (!entry)
1225 		return -EIO;
1226 	return 0;
1227 }
1228 
1229 int acpi_processor_power_exit(struct acpi_processor *pr,
1230 			      struct acpi_device *device)
1231 {
1232 	if (boot_option_idle_override)
1233 		return 0;
1234 
1235 	cpuidle_unregister_device(&pr->power.dev);
1236 	pr->flags.power_setup_done = 0;
1237 
1238 	if (acpi_device_dir(device))
1239 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1240 				  acpi_device_dir(device));
1241 
1242 	return 0;
1243 }
1244