xref: /linux/drivers/acpi/processor_idle.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/acpi.h>
39 #include <linux/dmi.h>
40 #include <linux/moduleparam.h>
41 #include <linux/sched.h>	/* need_resched() */
42 #include <linux/pm_qos_params.h>
43 #include <linux/clockchips.h>
44 #include <linux/cpuidle.h>
45 #include <linux/irqflags.h>
46 
47 /*
48  * Include the apic definitions for x86 to have the APIC timer related defines
49  * available also for UP (on SMP it gets magically included via linux/smp.h).
50  * asm/acpi.h is not an option, as it would require more include magic. Also
51  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52  */
53 #ifdef CONFIG_X86
54 #include <asm/apic.h>
55 #endif
56 
57 #include <asm/io.h>
58 #include <asm/uaccess.h>
59 
60 #include <acpi/acpi_bus.h>
61 #include <acpi/processor.h>
62 #include <asm/processor.h>
63 
64 #define PREFIX "ACPI: "
65 
66 #define ACPI_PROCESSOR_CLASS            "processor"
67 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
68 ACPI_MODULE_NAME("processor_idle");
69 #define ACPI_PROCESSOR_FILE_POWER	"power"
70 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
71 #define C2_OVERHEAD			1	/* 1us */
72 #define C3_OVERHEAD			1	/* 1us */
73 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
74 
75 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
76 module_param(max_cstate, uint, 0000);
77 static unsigned int nocst __read_mostly;
78 module_param(nocst, uint, 0000);
79 
80 static unsigned int latency_factor __read_mostly = 2;
81 module_param(latency_factor, uint, 0644);
82 
83 static s64 us_to_pm_timer_ticks(s64 t)
84 {
85 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
86 }
87 /*
88  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
89  * For now disable this. Probably a bug somewhere else.
90  *
91  * To skip this limit, boot/load with a large max_cstate limit.
92  */
93 static int set_max_cstate(const struct dmi_system_id *id)
94 {
95 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
96 		return 0;
97 
98 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
99 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
100 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
101 
102 	max_cstate = (long)id->driver_data;
103 
104 	return 0;
105 }
106 
107 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
108    callers to only run once -AK */
109 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
110 	{ set_max_cstate, "Clevo 5600D", {
111 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
112 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
113 	 (void *)2},
114 	{ set_max_cstate, "Pavilion zv5000", {
115 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
116 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
117 	 (void *)1},
118 	{ set_max_cstate, "Asus L8400B", {
119 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
120 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
121 	 (void *)1},
122 	{},
123 };
124 
125 
126 /*
127  * Callers should disable interrupts before the call and enable
128  * interrupts after return.
129  */
130 static void acpi_safe_halt(void)
131 {
132 	current_thread_info()->status &= ~TS_POLLING;
133 	/*
134 	 * TS_POLLING-cleared state must be visible before we
135 	 * test NEED_RESCHED:
136 	 */
137 	smp_mb();
138 	if (!need_resched()) {
139 		safe_halt();
140 		local_irq_disable();
141 	}
142 	current_thread_info()->status |= TS_POLLING;
143 }
144 
145 #ifdef ARCH_APICTIMER_STOPS_ON_C3
146 
147 /*
148  * Some BIOS implementations switch to C3 in the published C2 state.
149  * This seems to be a common problem on AMD boxen, but other vendors
150  * are affected too. We pick the most conservative approach: we assume
151  * that the local APIC stops in both C2 and C3.
152  */
153 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
154 				   struct acpi_processor_cx *cx)
155 {
156 	struct acpi_processor_power *pwr = &pr->power;
157 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
158 
159 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
160 		return;
161 
162 	if (boot_cpu_has(X86_FEATURE_AMDC1E))
163 		type = ACPI_STATE_C1;
164 
165 	/*
166 	 * Check, if one of the previous states already marked the lapic
167 	 * unstable
168 	 */
169 	if (pwr->timer_broadcast_on_state < state)
170 		return;
171 
172 	if (cx->type >= type)
173 		pr->power.timer_broadcast_on_state = state;
174 }
175 
176 static void __lapic_timer_propagate_broadcast(void *arg)
177 {
178 	struct acpi_processor *pr = (struct acpi_processor *) arg;
179 	unsigned long reason;
180 
181 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
182 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
183 
184 	clockevents_notify(reason, &pr->id);
185 }
186 
187 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
188 {
189 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
190 				 (void *)pr, 1);
191 }
192 
193 /* Power(C) State timer broadcast control */
194 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
195 				       struct acpi_processor_cx *cx,
196 				       int broadcast)
197 {
198 	int state = cx - pr->power.states;
199 
200 	if (state >= pr->power.timer_broadcast_on_state) {
201 		unsigned long reason;
202 
203 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
204 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
205 		clockevents_notify(reason, &pr->id);
206 	}
207 }
208 
209 #else
210 
211 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
212 				   struct acpi_processor_cx *cstate) { }
213 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
214 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
215 				       struct acpi_processor_cx *cx,
216 				       int broadcast)
217 {
218 }
219 
220 #endif
221 
222 /*
223  * Suspend / resume control
224  */
225 static int acpi_idle_suspend;
226 static u32 saved_bm_rld;
227 
228 static void acpi_idle_bm_rld_save(void)
229 {
230 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
231 }
232 static void acpi_idle_bm_rld_restore(void)
233 {
234 	u32 resumed_bm_rld;
235 
236 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
237 
238 	if (resumed_bm_rld != saved_bm_rld)
239 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
240 }
241 
242 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
243 {
244 	if (acpi_idle_suspend == 1)
245 		return 0;
246 
247 	acpi_idle_bm_rld_save();
248 	acpi_idle_suspend = 1;
249 	return 0;
250 }
251 
252 int acpi_processor_resume(struct acpi_device * device)
253 {
254 	if (acpi_idle_suspend == 0)
255 		return 0;
256 
257 	acpi_idle_bm_rld_restore();
258 	acpi_idle_suspend = 0;
259 	return 0;
260 }
261 
262 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
263 static void tsc_check_state(int state)
264 {
265 	switch (boot_cpu_data.x86_vendor) {
266 	case X86_VENDOR_AMD:
267 	case X86_VENDOR_INTEL:
268 		/*
269 		 * AMD Fam10h TSC will tick in all
270 		 * C/P/S0/S1 states when this bit is set.
271 		 */
272 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
273 			return;
274 
275 		/*FALL THROUGH*/
276 	default:
277 		/* TSC could halt in idle, so notify users */
278 		if (state > ACPI_STATE_C1)
279 			mark_tsc_unstable("TSC halts in idle");
280 	}
281 }
282 #else
283 static void tsc_check_state(int state) { return; }
284 #endif
285 
286 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
287 {
288 
289 	if (!pr)
290 		return -EINVAL;
291 
292 	if (!pr->pblk)
293 		return -ENODEV;
294 
295 	/* if info is obtained from pblk/fadt, type equals state */
296 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
297 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
298 
299 #ifndef CONFIG_HOTPLUG_CPU
300 	/*
301 	 * Check for P_LVL2_UP flag before entering C2 and above on
302 	 * an SMP system.
303 	 */
304 	if ((num_online_cpus() > 1) &&
305 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
306 		return -ENODEV;
307 #endif
308 
309 	/* determine C2 and C3 address from pblk */
310 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
311 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
312 
313 	/* determine latencies from FADT */
314 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
315 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
316 
317 	/*
318 	 * FADT specified C2 latency must be less than or equal to
319 	 * 100 microseconds.
320 	 */
321 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
322 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
323 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
324 		/* invalidate C2 */
325 		pr->power.states[ACPI_STATE_C2].address = 0;
326 	}
327 
328 	/*
329 	 * FADT supplied C3 latency must be less than or equal to
330 	 * 1000 microseconds.
331 	 */
332 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
333 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
334 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
335 		/* invalidate C3 */
336 		pr->power.states[ACPI_STATE_C3].address = 0;
337 	}
338 
339 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
340 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
341 			  pr->power.states[ACPI_STATE_C2].address,
342 			  pr->power.states[ACPI_STATE_C3].address));
343 
344 	return 0;
345 }
346 
347 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
348 {
349 	if (!pr->power.states[ACPI_STATE_C1].valid) {
350 		/* set the first C-State to C1 */
351 		/* all processors need to support C1 */
352 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
353 		pr->power.states[ACPI_STATE_C1].valid = 1;
354 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
355 	}
356 	/* the C0 state only exists as a filler in our array */
357 	pr->power.states[ACPI_STATE_C0].valid = 1;
358 	return 0;
359 }
360 
361 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
362 {
363 	acpi_status status = 0;
364 	u64 count;
365 	int current_count;
366 	int i;
367 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
368 	union acpi_object *cst;
369 
370 
371 	if (nocst)
372 		return -ENODEV;
373 
374 	current_count = 0;
375 
376 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
377 	if (ACPI_FAILURE(status)) {
378 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
379 		return -ENODEV;
380 	}
381 
382 	cst = buffer.pointer;
383 
384 	/* There must be at least 2 elements */
385 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
386 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
387 		status = -EFAULT;
388 		goto end;
389 	}
390 
391 	count = cst->package.elements[0].integer.value;
392 
393 	/* Validate number of power states. */
394 	if (count < 1 || count != cst->package.count - 1) {
395 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
396 		status = -EFAULT;
397 		goto end;
398 	}
399 
400 	/* Tell driver that at least _CST is supported. */
401 	pr->flags.has_cst = 1;
402 
403 	for (i = 1; i <= count; i++) {
404 		union acpi_object *element;
405 		union acpi_object *obj;
406 		struct acpi_power_register *reg;
407 		struct acpi_processor_cx cx;
408 
409 		memset(&cx, 0, sizeof(cx));
410 
411 		element = &(cst->package.elements[i]);
412 		if (element->type != ACPI_TYPE_PACKAGE)
413 			continue;
414 
415 		if (element->package.count != 4)
416 			continue;
417 
418 		obj = &(element->package.elements[0]);
419 
420 		if (obj->type != ACPI_TYPE_BUFFER)
421 			continue;
422 
423 		reg = (struct acpi_power_register *)obj->buffer.pointer;
424 
425 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
426 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
427 			continue;
428 
429 		/* There should be an easy way to extract an integer... */
430 		obj = &(element->package.elements[1]);
431 		if (obj->type != ACPI_TYPE_INTEGER)
432 			continue;
433 
434 		cx.type = obj->integer.value;
435 		/*
436 		 * Some buggy BIOSes won't list C1 in _CST -
437 		 * Let acpi_processor_get_power_info_default() handle them later
438 		 */
439 		if (i == 1 && cx.type != ACPI_STATE_C1)
440 			current_count++;
441 
442 		cx.address = reg->address;
443 		cx.index = current_count + 1;
444 
445 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
446 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
447 			if (acpi_processor_ffh_cstate_probe
448 					(pr->id, &cx, reg) == 0) {
449 				cx.entry_method = ACPI_CSTATE_FFH;
450 			} else if (cx.type == ACPI_STATE_C1) {
451 				/*
452 				 * C1 is a special case where FIXED_HARDWARE
453 				 * can be handled in non-MWAIT way as well.
454 				 * In that case, save this _CST entry info.
455 				 * Otherwise, ignore this info and continue.
456 				 */
457 				cx.entry_method = ACPI_CSTATE_HALT;
458 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
459 			} else {
460 				continue;
461 			}
462 			if (cx.type == ACPI_STATE_C1 &&
463 					(idle_halt || idle_nomwait)) {
464 				/*
465 				 * In most cases the C1 space_id obtained from
466 				 * _CST object is FIXED_HARDWARE access mode.
467 				 * But when the option of idle=halt is added,
468 				 * the entry_method type should be changed from
469 				 * CSTATE_FFH to CSTATE_HALT.
470 				 * When the option of idle=nomwait is added,
471 				 * the C1 entry_method type should be
472 				 * CSTATE_HALT.
473 				 */
474 				cx.entry_method = ACPI_CSTATE_HALT;
475 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
476 			}
477 		} else {
478 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
479 				 cx.address);
480 		}
481 
482 		if (cx.type == ACPI_STATE_C1) {
483 			cx.valid = 1;
484 		}
485 
486 		obj = &(element->package.elements[2]);
487 		if (obj->type != ACPI_TYPE_INTEGER)
488 			continue;
489 
490 		cx.latency = obj->integer.value;
491 
492 		obj = &(element->package.elements[3]);
493 		if (obj->type != ACPI_TYPE_INTEGER)
494 			continue;
495 
496 		cx.power = obj->integer.value;
497 
498 		current_count++;
499 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
500 
501 		/*
502 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
503 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
504 		 */
505 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
506 			printk(KERN_WARNING
507 			       "Limiting number of power states to max (%d)\n",
508 			       ACPI_PROCESSOR_MAX_POWER);
509 			printk(KERN_WARNING
510 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
511 			break;
512 		}
513 	}
514 
515 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
516 			  current_count));
517 
518 	/* Validate number of power states discovered */
519 	if (current_count < 2)
520 		status = -EFAULT;
521 
522       end:
523 	kfree(buffer.pointer);
524 
525 	return status;
526 }
527 
528 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
529 					   struct acpi_processor_cx *cx)
530 {
531 	static int bm_check_flag = -1;
532 	static int bm_control_flag = -1;
533 
534 
535 	if (!cx->address)
536 		return;
537 
538 	/*
539 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
540 	 * DMA transfers are used by any ISA device to avoid livelock.
541 	 * Note that we could disable Type-F DMA (as recommended by
542 	 * the erratum), but this is known to disrupt certain ISA
543 	 * devices thus we take the conservative approach.
544 	 */
545 	else if (errata.piix4.fdma) {
546 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
547 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
548 		return;
549 	}
550 
551 	/* All the logic here assumes flags.bm_check is same across all CPUs */
552 	if (bm_check_flag == -1) {
553 		/* Determine whether bm_check is needed based on CPU  */
554 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
555 		bm_check_flag = pr->flags.bm_check;
556 		bm_control_flag = pr->flags.bm_control;
557 	} else {
558 		pr->flags.bm_check = bm_check_flag;
559 		pr->flags.bm_control = bm_control_flag;
560 	}
561 
562 	if (pr->flags.bm_check) {
563 		if (!pr->flags.bm_control) {
564 			if (pr->flags.has_cst != 1) {
565 				/* bus mastering control is necessary */
566 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
567 					"C3 support requires BM control\n"));
568 				return;
569 			} else {
570 				/* Here we enter C3 without bus mastering */
571 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
572 					"C3 support without BM control\n"));
573 			}
574 		}
575 	} else {
576 		/*
577 		 * WBINVD should be set in fadt, for C3 state to be
578 		 * supported on when bm_check is not required.
579 		 */
580 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
581 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
582 					  "Cache invalidation should work properly"
583 					  " for C3 to be enabled on SMP systems\n"));
584 			return;
585 		}
586 	}
587 
588 	/*
589 	 * Otherwise we've met all of our C3 requirements.
590 	 * Normalize the C3 latency to expidite policy.  Enable
591 	 * checking of bus mastering status (bm_check) so we can
592 	 * use this in our C3 policy
593 	 */
594 	cx->valid = 1;
595 
596 	cx->latency_ticks = cx->latency;
597 	/*
598 	 * On older chipsets, BM_RLD needs to be set
599 	 * in order for Bus Master activity to wake the
600 	 * system from C3.  Newer chipsets handle DMA
601 	 * during C3 automatically and BM_RLD is a NOP.
602 	 * In either case, the proper way to
603 	 * handle BM_RLD is to set it and leave it set.
604 	 */
605 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
606 
607 	return;
608 }
609 
610 static int acpi_processor_power_verify(struct acpi_processor *pr)
611 {
612 	unsigned int i;
613 	unsigned int working = 0;
614 
615 	pr->power.timer_broadcast_on_state = INT_MAX;
616 
617 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
618 		struct acpi_processor_cx *cx = &pr->power.states[i];
619 
620 		switch (cx->type) {
621 		case ACPI_STATE_C1:
622 			cx->valid = 1;
623 			break;
624 
625 		case ACPI_STATE_C2:
626 			if (!cx->address)
627 				break;
628 			cx->valid = 1;
629 			cx->latency_ticks = cx->latency; /* Normalize latency */
630 			break;
631 
632 		case ACPI_STATE_C3:
633 			acpi_processor_power_verify_c3(pr, cx);
634 			break;
635 		}
636 		if (!cx->valid)
637 			continue;
638 
639 		lapic_timer_check_state(i, pr, cx);
640 		tsc_check_state(cx->type);
641 		working++;
642 	}
643 
644 	lapic_timer_propagate_broadcast(pr);
645 
646 	return (working);
647 }
648 
649 static int acpi_processor_get_power_info(struct acpi_processor *pr)
650 {
651 	unsigned int i;
652 	int result;
653 
654 
655 	/* NOTE: the idle thread may not be running while calling
656 	 * this function */
657 
658 	/* Zero initialize all the C-states info. */
659 	memset(pr->power.states, 0, sizeof(pr->power.states));
660 
661 	result = acpi_processor_get_power_info_cst(pr);
662 	if (result == -ENODEV)
663 		result = acpi_processor_get_power_info_fadt(pr);
664 
665 	if (result)
666 		return result;
667 
668 	acpi_processor_get_power_info_default(pr);
669 
670 	pr->power.count = acpi_processor_power_verify(pr);
671 
672 	/*
673 	 * if one state of type C2 or C3 is available, mark this
674 	 * CPU as being "idle manageable"
675 	 */
676 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
677 		if (pr->power.states[i].valid) {
678 			pr->power.count = i;
679 			if (pr->power.states[i].type >= ACPI_STATE_C2)
680 				pr->flags.power = 1;
681 		}
682 	}
683 
684 	return 0;
685 }
686 
687 #ifdef CONFIG_ACPI_PROCFS
688 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
689 {
690 	struct acpi_processor *pr = seq->private;
691 	unsigned int i;
692 
693 
694 	if (!pr)
695 		goto end;
696 
697 	seq_printf(seq, "active state:            C%zd\n"
698 		   "max_cstate:              C%d\n"
699 		   "maximum allowed latency: %d usec\n",
700 		   pr->power.state ? pr->power.state - pr->power.states : 0,
701 		   max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
702 
703 	seq_puts(seq, "states:\n");
704 
705 	for (i = 1; i <= pr->power.count; i++) {
706 		seq_printf(seq, "   %cC%d:                  ",
707 			   (&pr->power.states[i] ==
708 			    pr->power.state ? '*' : ' '), i);
709 
710 		if (!pr->power.states[i].valid) {
711 			seq_puts(seq, "<not supported>\n");
712 			continue;
713 		}
714 
715 		switch (pr->power.states[i].type) {
716 		case ACPI_STATE_C1:
717 			seq_printf(seq, "type[C1] ");
718 			break;
719 		case ACPI_STATE_C2:
720 			seq_printf(seq, "type[C2] ");
721 			break;
722 		case ACPI_STATE_C3:
723 			seq_printf(seq, "type[C3] ");
724 			break;
725 		default:
726 			seq_printf(seq, "type[--] ");
727 			break;
728 		}
729 
730 		if (pr->power.states[i].promotion.state)
731 			seq_printf(seq, "promotion[C%zd] ",
732 				   (pr->power.states[i].promotion.state -
733 				    pr->power.states));
734 		else
735 			seq_puts(seq, "promotion[--] ");
736 
737 		if (pr->power.states[i].demotion.state)
738 			seq_printf(seq, "demotion[C%zd] ",
739 				   (pr->power.states[i].demotion.state -
740 				    pr->power.states));
741 		else
742 			seq_puts(seq, "demotion[--] ");
743 
744 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
745 			   pr->power.states[i].latency,
746 			   pr->power.states[i].usage,
747 			   (unsigned long long)pr->power.states[i].time);
748 	}
749 
750       end:
751 	return 0;
752 }
753 
754 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
755 {
756 	return single_open(file, acpi_processor_power_seq_show,
757 			   PDE(inode)->data);
758 }
759 
760 static const struct file_operations acpi_processor_power_fops = {
761 	.owner = THIS_MODULE,
762 	.open = acpi_processor_power_open_fs,
763 	.read = seq_read,
764 	.llseek = seq_lseek,
765 	.release = single_release,
766 };
767 #endif
768 
769 /**
770  * acpi_idle_bm_check - checks if bus master activity was detected
771  */
772 static int acpi_idle_bm_check(void)
773 {
774 	u32 bm_status = 0;
775 
776 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
777 	if (bm_status)
778 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
779 	/*
780 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
781 	 * the true state of bus mastering activity; forcing us to
782 	 * manually check the BMIDEA bit of each IDE channel.
783 	 */
784 	else if (errata.piix4.bmisx) {
785 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
786 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
787 			bm_status = 1;
788 	}
789 	return bm_status;
790 }
791 
792 /**
793  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
794  * @cx: cstate data
795  *
796  * Caller disables interrupt before call and enables interrupt after return.
797  */
798 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
799 {
800 	/* Don't trace irqs off for idle */
801 	stop_critical_timings();
802 	if (cx->entry_method == ACPI_CSTATE_FFH) {
803 		/* Call into architectural FFH based C-state */
804 		acpi_processor_ffh_cstate_enter(cx);
805 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
806 		acpi_safe_halt();
807 	} else {
808 		int unused;
809 		/* IO port based C-state */
810 		inb(cx->address);
811 		/* Dummy wait op - must do something useless after P_LVL2 read
812 		   because chipsets cannot guarantee that STPCLK# signal
813 		   gets asserted in time to freeze execution properly. */
814 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
815 	}
816 	start_critical_timings();
817 }
818 
819 /**
820  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
821  * @dev: the target CPU
822  * @state: the state data
823  *
824  * This is equivalent to the HALT instruction.
825  */
826 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
827 			      struct cpuidle_state *state)
828 {
829 	ktime_t  kt1, kt2;
830 	s64 idle_time;
831 	struct acpi_processor *pr;
832 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
833 
834 	pr = __get_cpu_var(processors);
835 
836 	if (unlikely(!pr))
837 		return 0;
838 
839 	local_irq_disable();
840 
841 	/* Do not access any ACPI IO ports in suspend path */
842 	if (acpi_idle_suspend) {
843 		local_irq_enable();
844 		cpu_relax();
845 		return 0;
846 	}
847 
848 	lapic_timer_state_broadcast(pr, cx, 1);
849 	kt1 = ktime_get_real();
850 	acpi_idle_do_entry(cx);
851 	kt2 = ktime_get_real();
852 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
853 
854 	local_irq_enable();
855 	cx->usage++;
856 	lapic_timer_state_broadcast(pr, cx, 0);
857 
858 	return idle_time;
859 }
860 
861 /**
862  * acpi_idle_enter_simple - enters an ACPI state without BM handling
863  * @dev: the target CPU
864  * @state: the state data
865  */
866 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
867 				  struct cpuidle_state *state)
868 {
869 	struct acpi_processor *pr;
870 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
871 	ktime_t  kt1, kt2;
872 	s64 idle_time;
873 	s64 sleep_ticks = 0;
874 
875 	pr = __get_cpu_var(processors);
876 
877 	if (unlikely(!pr))
878 		return 0;
879 
880 	if (acpi_idle_suspend)
881 		return(acpi_idle_enter_c1(dev, state));
882 
883 	local_irq_disable();
884 	if (cx->entry_method != ACPI_CSTATE_FFH) {
885 		current_thread_info()->status &= ~TS_POLLING;
886 		/*
887 		 * TS_POLLING-cleared state must be visible before we test
888 		 * NEED_RESCHED:
889 		 */
890 		smp_mb();
891 	}
892 
893 	if (unlikely(need_resched())) {
894 		current_thread_info()->status |= TS_POLLING;
895 		local_irq_enable();
896 		return 0;
897 	}
898 
899 	/*
900 	 * Must be done before busmaster disable as we might need to
901 	 * access HPET !
902 	 */
903 	lapic_timer_state_broadcast(pr, cx, 1);
904 
905 	if (cx->type == ACPI_STATE_C3)
906 		ACPI_FLUSH_CPU_CACHE();
907 
908 	kt1 = ktime_get_real();
909 	/* Tell the scheduler that we are going deep-idle: */
910 	sched_clock_idle_sleep_event();
911 	acpi_idle_do_entry(cx);
912 	kt2 = ktime_get_real();
913 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
914 
915 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
916 
917 	/* Tell the scheduler how much we idled: */
918 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
919 
920 	local_irq_enable();
921 	current_thread_info()->status |= TS_POLLING;
922 
923 	cx->usage++;
924 
925 	lapic_timer_state_broadcast(pr, cx, 0);
926 	cx->time += sleep_ticks;
927 	return idle_time;
928 }
929 
930 static int c3_cpu_count;
931 static DEFINE_SPINLOCK(c3_lock);
932 
933 /**
934  * acpi_idle_enter_bm - enters C3 with proper BM handling
935  * @dev: the target CPU
936  * @state: the state data
937  *
938  * If BM is detected, the deepest non-C3 idle state is entered instead.
939  */
940 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
941 			      struct cpuidle_state *state)
942 {
943 	struct acpi_processor *pr;
944 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
945 	ktime_t  kt1, kt2;
946 	s64 idle_time;
947 	s64 sleep_ticks = 0;
948 
949 
950 	pr = __get_cpu_var(processors);
951 
952 	if (unlikely(!pr))
953 		return 0;
954 
955 	if (acpi_idle_suspend)
956 		return(acpi_idle_enter_c1(dev, state));
957 
958 	if (acpi_idle_bm_check()) {
959 		if (dev->safe_state) {
960 			dev->last_state = dev->safe_state;
961 			return dev->safe_state->enter(dev, dev->safe_state);
962 		} else {
963 			local_irq_disable();
964 			acpi_safe_halt();
965 			local_irq_enable();
966 			return 0;
967 		}
968 	}
969 
970 	local_irq_disable();
971 	if (cx->entry_method != ACPI_CSTATE_FFH) {
972 		current_thread_info()->status &= ~TS_POLLING;
973 		/*
974 		 * TS_POLLING-cleared state must be visible before we test
975 		 * NEED_RESCHED:
976 		 */
977 		smp_mb();
978 	}
979 
980 	if (unlikely(need_resched())) {
981 		current_thread_info()->status |= TS_POLLING;
982 		local_irq_enable();
983 		return 0;
984 	}
985 
986 	acpi_unlazy_tlb(smp_processor_id());
987 
988 	/* Tell the scheduler that we are going deep-idle: */
989 	sched_clock_idle_sleep_event();
990 	/*
991 	 * Must be done before busmaster disable as we might need to
992 	 * access HPET !
993 	 */
994 	lapic_timer_state_broadcast(pr, cx, 1);
995 
996 	kt1 = ktime_get_real();
997 	/*
998 	 * disable bus master
999 	 * bm_check implies we need ARB_DIS
1000 	 * !bm_check implies we need cache flush
1001 	 * bm_control implies whether we can do ARB_DIS
1002 	 *
1003 	 * That leaves a case where bm_check is set and bm_control is
1004 	 * not set. In that case we cannot do much, we enter C3
1005 	 * without doing anything.
1006 	 */
1007 	if (pr->flags.bm_check && pr->flags.bm_control) {
1008 		spin_lock(&c3_lock);
1009 		c3_cpu_count++;
1010 		/* Disable bus master arbitration when all CPUs are in C3 */
1011 		if (c3_cpu_count == num_online_cpus())
1012 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1013 		spin_unlock(&c3_lock);
1014 	} else if (!pr->flags.bm_check) {
1015 		ACPI_FLUSH_CPU_CACHE();
1016 	}
1017 
1018 	acpi_idle_do_entry(cx);
1019 
1020 	/* Re-enable bus master arbitration */
1021 	if (pr->flags.bm_check && pr->flags.bm_control) {
1022 		spin_lock(&c3_lock);
1023 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1024 		c3_cpu_count--;
1025 		spin_unlock(&c3_lock);
1026 	}
1027 	kt2 = ktime_get_real();
1028 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1029 
1030 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
1031 	/* Tell the scheduler how much we idled: */
1032 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1033 
1034 	local_irq_enable();
1035 	current_thread_info()->status |= TS_POLLING;
1036 
1037 	cx->usage++;
1038 
1039 	lapic_timer_state_broadcast(pr, cx, 0);
1040 	cx->time += sleep_ticks;
1041 	return idle_time;
1042 }
1043 
1044 struct cpuidle_driver acpi_idle_driver = {
1045 	.name =		"acpi_idle",
1046 	.owner =	THIS_MODULE,
1047 };
1048 
1049 /**
1050  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1051  * @pr: the ACPI processor
1052  */
1053 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1054 {
1055 	int i, count = CPUIDLE_DRIVER_STATE_START;
1056 	struct acpi_processor_cx *cx;
1057 	struct cpuidle_state *state;
1058 	struct cpuidle_device *dev = &pr->power.dev;
1059 
1060 	if (!pr->flags.power_setup_done)
1061 		return -EINVAL;
1062 
1063 	if (pr->flags.power == 0) {
1064 		return -EINVAL;
1065 	}
1066 
1067 	dev->cpu = pr->id;
1068 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1069 		dev->states[i].name[0] = '\0';
1070 		dev->states[i].desc[0] = '\0';
1071 	}
1072 
1073 	if (max_cstate == 0)
1074 		max_cstate = 1;
1075 
1076 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1077 		cx = &pr->power.states[i];
1078 		state = &dev->states[count];
1079 
1080 		if (!cx->valid)
1081 			continue;
1082 
1083 #ifdef CONFIG_HOTPLUG_CPU
1084 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1085 		    !pr->flags.has_cst &&
1086 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1087 			continue;
1088 #endif
1089 		cpuidle_set_statedata(state, cx);
1090 
1091 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1092 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1093 		state->exit_latency = cx->latency;
1094 		state->target_residency = cx->latency * latency_factor;
1095 		state->power_usage = cx->power;
1096 
1097 		state->flags = 0;
1098 		switch (cx->type) {
1099 			case ACPI_STATE_C1:
1100 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1101 			if (cx->entry_method == ACPI_CSTATE_FFH)
1102 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1103 
1104 			state->enter = acpi_idle_enter_c1;
1105 			dev->safe_state = state;
1106 			break;
1107 
1108 			case ACPI_STATE_C2:
1109 			state->flags |= CPUIDLE_FLAG_BALANCED;
1110 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1111 			state->enter = acpi_idle_enter_simple;
1112 			dev->safe_state = state;
1113 			break;
1114 
1115 			case ACPI_STATE_C3:
1116 			state->flags |= CPUIDLE_FLAG_DEEP;
1117 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1118 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1119 			state->enter = pr->flags.bm_check ?
1120 					acpi_idle_enter_bm :
1121 					acpi_idle_enter_simple;
1122 			break;
1123 		}
1124 
1125 		count++;
1126 		if (count == CPUIDLE_STATE_MAX)
1127 			break;
1128 	}
1129 
1130 	dev->state_count = count;
1131 
1132 	if (!count)
1133 		return -EINVAL;
1134 
1135 	return 0;
1136 }
1137 
1138 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1139 {
1140 	int ret = 0;
1141 
1142 	if (boot_option_idle_override)
1143 		return 0;
1144 
1145 	if (!pr)
1146 		return -EINVAL;
1147 
1148 	if (nocst) {
1149 		return -ENODEV;
1150 	}
1151 
1152 	if (!pr->flags.power_setup_done)
1153 		return -ENODEV;
1154 
1155 	cpuidle_pause_and_lock();
1156 	cpuidle_disable_device(&pr->power.dev);
1157 	acpi_processor_get_power_info(pr);
1158 	if (pr->flags.power) {
1159 		acpi_processor_setup_cpuidle(pr);
1160 		ret = cpuidle_enable_device(&pr->power.dev);
1161 	}
1162 	cpuidle_resume_and_unlock();
1163 
1164 	return ret;
1165 }
1166 
1167 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1168 			      struct acpi_device *device)
1169 {
1170 	acpi_status status = 0;
1171 	static int first_run;
1172 #ifdef CONFIG_ACPI_PROCFS
1173 	struct proc_dir_entry *entry = NULL;
1174 #endif
1175 
1176 	if (boot_option_idle_override)
1177 		return 0;
1178 
1179 	if (!first_run) {
1180 		if (idle_halt) {
1181 			/*
1182 			 * When the boot option of "idle=halt" is added, halt
1183 			 * is used for CPU IDLE.
1184 			 * In such case C2/C3 is meaningless. So the max_cstate
1185 			 * is set to one.
1186 			 */
1187 			max_cstate = 1;
1188 		}
1189 		dmi_check_system(processor_power_dmi_table);
1190 		max_cstate = acpi_processor_cstate_check(max_cstate);
1191 		if (max_cstate < ACPI_C_STATES_MAX)
1192 			printk(KERN_NOTICE
1193 			       "ACPI: processor limited to max C-state %d\n",
1194 			       max_cstate);
1195 		first_run++;
1196 	}
1197 
1198 	if (!pr)
1199 		return -EINVAL;
1200 
1201 	if (acpi_gbl_FADT.cst_control && !nocst) {
1202 		status =
1203 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1204 		if (ACPI_FAILURE(status)) {
1205 			ACPI_EXCEPTION((AE_INFO, status,
1206 					"Notifying BIOS of _CST ability failed"));
1207 		}
1208 	}
1209 
1210 	acpi_processor_get_power_info(pr);
1211 	pr->flags.power_setup_done = 1;
1212 
1213 	/*
1214 	 * Install the idle handler if processor power management is supported.
1215 	 * Note that we use previously set idle handler will be used on
1216 	 * platforms that only support C1.
1217 	 */
1218 	if (pr->flags.power) {
1219 		acpi_processor_setup_cpuidle(pr);
1220 		if (cpuidle_register_device(&pr->power.dev))
1221 			return -EIO;
1222 	}
1223 #ifdef CONFIG_ACPI_PROCFS
1224 	/* 'power' [R] */
1225 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1226 				 S_IRUGO, acpi_device_dir(device),
1227 				 &acpi_processor_power_fops,
1228 				 acpi_driver_data(device));
1229 	if (!entry)
1230 		return -EIO;
1231 #endif
1232 	return 0;
1233 }
1234 
1235 int acpi_processor_power_exit(struct acpi_processor *pr,
1236 			      struct acpi_device *device)
1237 {
1238 	if (boot_option_idle_override)
1239 		return 0;
1240 
1241 	cpuidle_unregister_device(&pr->power.dev);
1242 	pr->flags.power_setup_done = 0;
1243 
1244 #ifdef CONFIG_ACPI_PROCFS
1245 	if (acpi_device_dir(device))
1246 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1247 				  acpi_device_dir(device));
1248 #endif
1249 
1250 	return 0;
1251 }
1252