1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/slab.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/acpi.h> 39 #include <linux/dmi.h> 40 #include <linux/moduleparam.h> 41 #include <linux/sched.h> /* need_resched() */ 42 #include <linux/pm_qos_params.h> 43 #include <linux/clockchips.h> 44 #include <linux/cpuidle.h> 45 #include <linux/irqflags.h> 46 47 /* 48 * Include the apic definitions for x86 to have the APIC timer related defines 49 * available also for UP (on SMP it gets magically included via linux/smp.h). 50 * asm/acpi.h is not an option, as it would require more include magic. Also 51 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 52 */ 53 #ifdef CONFIG_X86 54 #include <asm/apic.h> 55 #endif 56 57 #include <asm/io.h> 58 #include <asm/uaccess.h> 59 60 #include <acpi/acpi_bus.h> 61 #include <acpi/processor.h> 62 #include <asm/processor.h> 63 64 #define PREFIX "ACPI: " 65 66 #define ACPI_PROCESSOR_CLASS "processor" 67 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 68 ACPI_MODULE_NAME("processor_idle"); 69 #define ACPI_PROCESSOR_FILE_POWER "power" 70 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) 71 #define C2_OVERHEAD 1 /* 1us */ 72 #define C3_OVERHEAD 1 /* 1us */ 73 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) 74 75 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; 76 module_param(max_cstate, uint, 0000); 77 static unsigned int nocst __read_mostly; 78 module_param(nocst, uint, 0000); 79 80 static unsigned int latency_factor __read_mostly = 2; 81 module_param(latency_factor, uint, 0644); 82 83 static s64 us_to_pm_timer_ticks(s64 t) 84 { 85 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000); 86 } 87 /* 88 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 89 * For now disable this. Probably a bug somewhere else. 90 * 91 * To skip this limit, boot/load with a large max_cstate limit. 92 */ 93 static int set_max_cstate(const struct dmi_system_id *id) 94 { 95 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 96 return 0; 97 98 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 99 " Override with \"processor.max_cstate=%d\"\n", id->ident, 100 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 101 102 max_cstate = (long)id->driver_data; 103 104 return 0; 105 } 106 107 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 108 callers to only run once -AK */ 109 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 110 { set_max_cstate, "Clevo 5600D", { 111 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 112 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 113 (void *)2}, 114 { set_max_cstate, "Pavilion zv5000", { 115 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 116 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, 117 (void *)1}, 118 { set_max_cstate, "Asus L8400B", { 119 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), 120 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, 121 (void *)1}, 122 {}, 123 }; 124 125 126 /* 127 * Callers should disable interrupts before the call and enable 128 * interrupts after return. 129 */ 130 static void acpi_safe_halt(void) 131 { 132 current_thread_info()->status &= ~TS_POLLING; 133 /* 134 * TS_POLLING-cleared state must be visible before we 135 * test NEED_RESCHED: 136 */ 137 smp_mb(); 138 if (!need_resched()) { 139 safe_halt(); 140 local_irq_disable(); 141 } 142 current_thread_info()->status |= TS_POLLING; 143 } 144 145 #ifdef ARCH_APICTIMER_STOPS_ON_C3 146 147 /* 148 * Some BIOS implementations switch to C3 in the published C2 state. 149 * This seems to be a common problem on AMD boxen, but other vendors 150 * are affected too. We pick the most conservative approach: we assume 151 * that the local APIC stops in both C2 and C3. 152 */ 153 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 154 struct acpi_processor_cx *cx) 155 { 156 struct acpi_processor_power *pwr = &pr->power; 157 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 158 159 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) 160 return; 161 162 if (boot_cpu_has(X86_FEATURE_AMDC1E)) 163 type = ACPI_STATE_C1; 164 165 /* 166 * Check, if one of the previous states already marked the lapic 167 * unstable 168 */ 169 if (pwr->timer_broadcast_on_state < state) 170 return; 171 172 if (cx->type >= type) 173 pr->power.timer_broadcast_on_state = state; 174 } 175 176 static void __lapic_timer_propagate_broadcast(void *arg) 177 { 178 struct acpi_processor *pr = (struct acpi_processor *) arg; 179 unsigned long reason; 180 181 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 182 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 183 184 clockevents_notify(reason, &pr->id); 185 } 186 187 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) 188 { 189 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, 190 (void *)pr, 1); 191 } 192 193 /* Power(C) State timer broadcast control */ 194 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 195 struct acpi_processor_cx *cx, 196 int broadcast) 197 { 198 int state = cx - pr->power.states; 199 200 if (state >= pr->power.timer_broadcast_on_state) { 201 unsigned long reason; 202 203 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 204 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 205 clockevents_notify(reason, &pr->id); 206 } 207 } 208 209 #else 210 211 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 212 struct acpi_processor_cx *cstate) { } 213 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } 214 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 215 struct acpi_processor_cx *cx, 216 int broadcast) 217 { 218 } 219 220 #endif 221 222 /* 223 * Suspend / resume control 224 */ 225 static int acpi_idle_suspend; 226 static u32 saved_bm_rld; 227 228 static void acpi_idle_bm_rld_save(void) 229 { 230 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); 231 } 232 static void acpi_idle_bm_rld_restore(void) 233 { 234 u32 resumed_bm_rld; 235 236 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); 237 238 if (resumed_bm_rld != saved_bm_rld) 239 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); 240 } 241 242 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) 243 { 244 if (acpi_idle_suspend == 1) 245 return 0; 246 247 acpi_idle_bm_rld_save(); 248 acpi_idle_suspend = 1; 249 return 0; 250 } 251 252 int acpi_processor_resume(struct acpi_device * device) 253 { 254 if (acpi_idle_suspend == 0) 255 return 0; 256 257 acpi_idle_bm_rld_restore(); 258 acpi_idle_suspend = 0; 259 return 0; 260 } 261 262 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) 263 static void tsc_check_state(int state) 264 { 265 switch (boot_cpu_data.x86_vendor) { 266 case X86_VENDOR_AMD: 267 case X86_VENDOR_INTEL: 268 /* 269 * AMD Fam10h TSC will tick in all 270 * C/P/S0/S1 states when this bit is set. 271 */ 272 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 273 return; 274 275 /*FALL THROUGH*/ 276 default: 277 /* TSC could halt in idle, so notify users */ 278 if (state > ACPI_STATE_C1) 279 mark_tsc_unstable("TSC halts in idle"); 280 } 281 } 282 #else 283 static void tsc_check_state(int state) { return; } 284 #endif 285 286 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 287 { 288 289 if (!pr) 290 return -EINVAL; 291 292 if (!pr->pblk) 293 return -ENODEV; 294 295 /* if info is obtained from pblk/fadt, type equals state */ 296 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 297 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 298 299 #ifndef CONFIG_HOTPLUG_CPU 300 /* 301 * Check for P_LVL2_UP flag before entering C2 and above on 302 * an SMP system. 303 */ 304 if ((num_online_cpus() > 1) && 305 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 306 return -ENODEV; 307 #endif 308 309 /* determine C2 and C3 address from pblk */ 310 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 311 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 312 313 /* determine latencies from FADT */ 314 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 315 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 316 317 /* 318 * FADT specified C2 latency must be less than or equal to 319 * 100 microseconds. 320 */ 321 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 322 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 323 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency)); 324 /* invalidate C2 */ 325 pr->power.states[ACPI_STATE_C2].address = 0; 326 } 327 328 /* 329 * FADT supplied C3 latency must be less than or equal to 330 * 1000 microseconds. 331 */ 332 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 333 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 334 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency)); 335 /* invalidate C3 */ 336 pr->power.states[ACPI_STATE_C3].address = 0; 337 } 338 339 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 340 "lvl2[0x%08x] lvl3[0x%08x]\n", 341 pr->power.states[ACPI_STATE_C2].address, 342 pr->power.states[ACPI_STATE_C3].address)); 343 344 return 0; 345 } 346 347 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 348 { 349 if (!pr->power.states[ACPI_STATE_C1].valid) { 350 /* set the first C-State to C1 */ 351 /* all processors need to support C1 */ 352 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 353 pr->power.states[ACPI_STATE_C1].valid = 1; 354 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; 355 } 356 /* the C0 state only exists as a filler in our array */ 357 pr->power.states[ACPI_STATE_C0].valid = 1; 358 return 0; 359 } 360 361 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 362 { 363 acpi_status status = 0; 364 u64 count; 365 int current_count; 366 int i; 367 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 368 union acpi_object *cst; 369 370 371 if (nocst) 372 return -ENODEV; 373 374 current_count = 0; 375 376 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 377 if (ACPI_FAILURE(status)) { 378 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 379 return -ENODEV; 380 } 381 382 cst = buffer.pointer; 383 384 /* There must be at least 2 elements */ 385 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 386 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 387 status = -EFAULT; 388 goto end; 389 } 390 391 count = cst->package.elements[0].integer.value; 392 393 /* Validate number of power states. */ 394 if (count < 1 || count != cst->package.count - 1) { 395 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 396 status = -EFAULT; 397 goto end; 398 } 399 400 /* Tell driver that at least _CST is supported. */ 401 pr->flags.has_cst = 1; 402 403 for (i = 1; i <= count; i++) { 404 union acpi_object *element; 405 union acpi_object *obj; 406 struct acpi_power_register *reg; 407 struct acpi_processor_cx cx; 408 409 memset(&cx, 0, sizeof(cx)); 410 411 element = &(cst->package.elements[i]); 412 if (element->type != ACPI_TYPE_PACKAGE) 413 continue; 414 415 if (element->package.count != 4) 416 continue; 417 418 obj = &(element->package.elements[0]); 419 420 if (obj->type != ACPI_TYPE_BUFFER) 421 continue; 422 423 reg = (struct acpi_power_register *)obj->buffer.pointer; 424 425 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 426 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 427 continue; 428 429 /* There should be an easy way to extract an integer... */ 430 obj = &(element->package.elements[1]); 431 if (obj->type != ACPI_TYPE_INTEGER) 432 continue; 433 434 cx.type = obj->integer.value; 435 /* 436 * Some buggy BIOSes won't list C1 in _CST - 437 * Let acpi_processor_get_power_info_default() handle them later 438 */ 439 if (i == 1 && cx.type != ACPI_STATE_C1) 440 current_count++; 441 442 cx.address = reg->address; 443 cx.index = current_count + 1; 444 445 cx.entry_method = ACPI_CSTATE_SYSTEMIO; 446 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 447 if (acpi_processor_ffh_cstate_probe 448 (pr->id, &cx, reg) == 0) { 449 cx.entry_method = ACPI_CSTATE_FFH; 450 } else if (cx.type == ACPI_STATE_C1) { 451 /* 452 * C1 is a special case where FIXED_HARDWARE 453 * can be handled in non-MWAIT way as well. 454 * In that case, save this _CST entry info. 455 * Otherwise, ignore this info and continue. 456 */ 457 cx.entry_method = ACPI_CSTATE_HALT; 458 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 459 } else { 460 continue; 461 } 462 if (cx.type == ACPI_STATE_C1 && 463 (idle_halt || idle_nomwait)) { 464 /* 465 * In most cases the C1 space_id obtained from 466 * _CST object is FIXED_HARDWARE access mode. 467 * But when the option of idle=halt is added, 468 * the entry_method type should be changed from 469 * CSTATE_FFH to CSTATE_HALT. 470 * When the option of idle=nomwait is added, 471 * the C1 entry_method type should be 472 * CSTATE_HALT. 473 */ 474 cx.entry_method = ACPI_CSTATE_HALT; 475 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 476 } 477 } else { 478 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", 479 cx.address); 480 } 481 482 if (cx.type == ACPI_STATE_C1) { 483 cx.valid = 1; 484 } 485 486 obj = &(element->package.elements[2]); 487 if (obj->type != ACPI_TYPE_INTEGER) 488 continue; 489 490 cx.latency = obj->integer.value; 491 492 obj = &(element->package.elements[3]); 493 if (obj->type != ACPI_TYPE_INTEGER) 494 continue; 495 496 cx.power = obj->integer.value; 497 498 current_count++; 499 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 500 501 /* 502 * We support total ACPI_PROCESSOR_MAX_POWER - 1 503 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 504 */ 505 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 506 printk(KERN_WARNING 507 "Limiting number of power states to max (%d)\n", 508 ACPI_PROCESSOR_MAX_POWER); 509 printk(KERN_WARNING 510 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 511 break; 512 } 513 } 514 515 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 516 current_count)); 517 518 /* Validate number of power states discovered */ 519 if (current_count < 2) 520 status = -EFAULT; 521 522 end: 523 kfree(buffer.pointer); 524 525 return status; 526 } 527 528 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 529 struct acpi_processor_cx *cx) 530 { 531 static int bm_check_flag = -1; 532 static int bm_control_flag = -1; 533 534 535 if (!cx->address) 536 return; 537 538 /* 539 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 540 * DMA transfers are used by any ISA device to avoid livelock. 541 * Note that we could disable Type-F DMA (as recommended by 542 * the erratum), but this is known to disrupt certain ISA 543 * devices thus we take the conservative approach. 544 */ 545 else if (errata.piix4.fdma) { 546 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 547 "C3 not supported on PIIX4 with Type-F DMA\n")); 548 return; 549 } 550 551 /* All the logic here assumes flags.bm_check is same across all CPUs */ 552 if (bm_check_flag == -1) { 553 /* Determine whether bm_check is needed based on CPU */ 554 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 555 bm_check_flag = pr->flags.bm_check; 556 bm_control_flag = pr->flags.bm_control; 557 } else { 558 pr->flags.bm_check = bm_check_flag; 559 pr->flags.bm_control = bm_control_flag; 560 } 561 562 if (pr->flags.bm_check) { 563 if (!pr->flags.bm_control) { 564 if (pr->flags.has_cst != 1) { 565 /* bus mastering control is necessary */ 566 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 567 "C3 support requires BM control\n")); 568 return; 569 } else { 570 /* Here we enter C3 without bus mastering */ 571 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 572 "C3 support without BM control\n")); 573 } 574 } 575 } else { 576 /* 577 * WBINVD should be set in fadt, for C3 state to be 578 * supported on when bm_check is not required. 579 */ 580 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 581 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 582 "Cache invalidation should work properly" 583 " for C3 to be enabled on SMP systems\n")); 584 return; 585 } 586 } 587 588 /* 589 * Otherwise we've met all of our C3 requirements. 590 * Normalize the C3 latency to expidite policy. Enable 591 * checking of bus mastering status (bm_check) so we can 592 * use this in our C3 policy 593 */ 594 cx->valid = 1; 595 596 cx->latency_ticks = cx->latency; 597 /* 598 * On older chipsets, BM_RLD needs to be set 599 * in order for Bus Master activity to wake the 600 * system from C3. Newer chipsets handle DMA 601 * during C3 automatically and BM_RLD is a NOP. 602 * In either case, the proper way to 603 * handle BM_RLD is to set it and leave it set. 604 */ 605 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 606 607 return; 608 } 609 610 static int acpi_processor_power_verify(struct acpi_processor *pr) 611 { 612 unsigned int i; 613 unsigned int working = 0; 614 615 pr->power.timer_broadcast_on_state = INT_MAX; 616 617 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 618 struct acpi_processor_cx *cx = &pr->power.states[i]; 619 620 switch (cx->type) { 621 case ACPI_STATE_C1: 622 cx->valid = 1; 623 break; 624 625 case ACPI_STATE_C2: 626 if (!cx->address) 627 break; 628 cx->valid = 1; 629 cx->latency_ticks = cx->latency; /* Normalize latency */ 630 break; 631 632 case ACPI_STATE_C3: 633 acpi_processor_power_verify_c3(pr, cx); 634 break; 635 } 636 if (!cx->valid) 637 continue; 638 639 lapic_timer_check_state(i, pr, cx); 640 tsc_check_state(cx->type); 641 working++; 642 } 643 644 lapic_timer_propagate_broadcast(pr); 645 646 return (working); 647 } 648 649 static int acpi_processor_get_power_info(struct acpi_processor *pr) 650 { 651 unsigned int i; 652 int result; 653 654 655 /* NOTE: the idle thread may not be running while calling 656 * this function */ 657 658 /* Zero initialize all the C-states info. */ 659 memset(pr->power.states, 0, sizeof(pr->power.states)); 660 661 result = acpi_processor_get_power_info_cst(pr); 662 if (result == -ENODEV) 663 result = acpi_processor_get_power_info_fadt(pr); 664 665 if (result) 666 return result; 667 668 acpi_processor_get_power_info_default(pr); 669 670 pr->power.count = acpi_processor_power_verify(pr); 671 672 /* 673 * if one state of type C2 or C3 is available, mark this 674 * CPU as being "idle manageable" 675 */ 676 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 677 if (pr->power.states[i].valid) { 678 pr->power.count = i; 679 if (pr->power.states[i].type >= ACPI_STATE_C2) 680 pr->flags.power = 1; 681 } 682 } 683 684 return 0; 685 } 686 687 #ifdef CONFIG_ACPI_PROCFS 688 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 689 { 690 struct acpi_processor *pr = seq->private; 691 unsigned int i; 692 693 694 if (!pr) 695 goto end; 696 697 seq_printf(seq, "active state: C%zd\n" 698 "max_cstate: C%d\n" 699 "maximum allowed latency: %d usec\n", 700 pr->power.state ? pr->power.state - pr->power.states : 0, 701 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)); 702 703 seq_puts(seq, "states:\n"); 704 705 for (i = 1; i <= pr->power.count; i++) { 706 seq_printf(seq, " %cC%d: ", 707 (&pr->power.states[i] == 708 pr->power.state ? '*' : ' '), i); 709 710 if (!pr->power.states[i].valid) { 711 seq_puts(seq, "<not supported>\n"); 712 continue; 713 } 714 715 switch (pr->power.states[i].type) { 716 case ACPI_STATE_C1: 717 seq_printf(seq, "type[C1] "); 718 break; 719 case ACPI_STATE_C2: 720 seq_printf(seq, "type[C2] "); 721 break; 722 case ACPI_STATE_C3: 723 seq_printf(seq, "type[C3] "); 724 break; 725 default: 726 seq_printf(seq, "type[--] "); 727 break; 728 } 729 730 if (pr->power.states[i].promotion.state) 731 seq_printf(seq, "promotion[C%zd] ", 732 (pr->power.states[i].promotion.state - 733 pr->power.states)); 734 else 735 seq_puts(seq, "promotion[--] "); 736 737 if (pr->power.states[i].demotion.state) 738 seq_printf(seq, "demotion[C%zd] ", 739 (pr->power.states[i].demotion.state - 740 pr->power.states)); 741 else 742 seq_puts(seq, "demotion[--] "); 743 744 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", 745 pr->power.states[i].latency, 746 pr->power.states[i].usage, 747 (unsigned long long)pr->power.states[i].time); 748 } 749 750 end: 751 return 0; 752 } 753 754 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 755 { 756 return single_open(file, acpi_processor_power_seq_show, 757 PDE(inode)->data); 758 } 759 760 static const struct file_operations acpi_processor_power_fops = { 761 .owner = THIS_MODULE, 762 .open = acpi_processor_power_open_fs, 763 .read = seq_read, 764 .llseek = seq_lseek, 765 .release = single_release, 766 }; 767 #endif 768 769 /** 770 * acpi_idle_bm_check - checks if bus master activity was detected 771 */ 772 static int acpi_idle_bm_check(void) 773 { 774 u32 bm_status = 0; 775 776 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 777 if (bm_status) 778 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 779 /* 780 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 781 * the true state of bus mastering activity; forcing us to 782 * manually check the BMIDEA bit of each IDE channel. 783 */ 784 else if (errata.piix4.bmisx) { 785 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 786 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 787 bm_status = 1; 788 } 789 return bm_status; 790 } 791 792 /** 793 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry 794 * @cx: cstate data 795 * 796 * Caller disables interrupt before call and enables interrupt after return. 797 */ 798 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) 799 { 800 /* Don't trace irqs off for idle */ 801 stop_critical_timings(); 802 if (cx->entry_method == ACPI_CSTATE_FFH) { 803 /* Call into architectural FFH based C-state */ 804 acpi_processor_ffh_cstate_enter(cx); 805 } else if (cx->entry_method == ACPI_CSTATE_HALT) { 806 acpi_safe_halt(); 807 } else { 808 int unused; 809 /* IO port based C-state */ 810 inb(cx->address); 811 /* Dummy wait op - must do something useless after P_LVL2 read 812 because chipsets cannot guarantee that STPCLK# signal 813 gets asserted in time to freeze execution properly. */ 814 unused = inl(acpi_gbl_FADT.xpm_timer_block.address); 815 } 816 start_critical_timings(); 817 } 818 819 /** 820 * acpi_idle_enter_c1 - enters an ACPI C1 state-type 821 * @dev: the target CPU 822 * @state: the state data 823 * 824 * This is equivalent to the HALT instruction. 825 */ 826 static int acpi_idle_enter_c1(struct cpuidle_device *dev, 827 struct cpuidle_state *state) 828 { 829 ktime_t kt1, kt2; 830 s64 idle_time; 831 struct acpi_processor *pr; 832 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 833 834 pr = __get_cpu_var(processors); 835 836 if (unlikely(!pr)) 837 return 0; 838 839 local_irq_disable(); 840 841 /* Do not access any ACPI IO ports in suspend path */ 842 if (acpi_idle_suspend) { 843 local_irq_enable(); 844 cpu_relax(); 845 return 0; 846 } 847 848 lapic_timer_state_broadcast(pr, cx, 1); 849 kt1 = ktime_get_real(); 850 acpi_idle_do_entry(cx); 851 kt2 = ktime_get_real(); 852 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 853 854 local_irq_enable(); 855 cx->usage++; 856 lapic_timer_state_broadcast(pr, cx, 0); 857 858 return idle_time; 859 } 860 861 /** 862 * acpi_idle_enter_simple - enters an ACPI state without BM handling 863 * @dev: the target CPU 864 * @state: the state data 865 */ 866 static int acpi_idle_enter_simple(struct cpuidle_device *dev, 867 struct cpuidle_state *state) 868 { 869 struct acpi_processor *pr; 870 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 871 ktime_t kt1, kt2; 872 s64 idle_time; 873 s64 sleep_ticks = 0; 874 875 pr = __get_cpu_var(processors); 876 877 if (unlikely(!pr)) 878 return 0; 879 880 if (acpi_idle_suspend) 881 return(acpi_idle_enter_c1(dev, state)); 882 883 local_irq_disable(); 884 if (cx->entry_method != ACPI_CSTATE_FFH) { 885 current_thread_info()->status &= ~TS_POLLING; 886 /* 887 * TS_POLLING-cleared state must be visible before we test 888 * NEED_RESCHED: 889 */ 890 smp_mb(); 891 } 892 893 if (unlikely(need_resched())) { 894 current_thread_info()->status |= TS_POLLING; 895 local_irq_enable(); 896 return 0; 897 } 898 899 /* 900 * Must be done before busmaster disable as we might need to 901 * access HPET ! 902 */ 903 lapic_timer_state_broadcast(pr, cx, 1); 904 905 if (cx->type == ACPI_STATE_C3) 906 ACPI_FLUSH_CPU_CACHE(); 907 908 kt1 = ktime_get_real(); 909 /* Tell the scheduler that we are going deep-idle: */ 910 sched_clock_idle_sleep_event(); 911 acpi_idle_do_entry(cx); 912 kt2 = ktime_get_real(); 913 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 914 915 sleep_ticks = us_to_pm_timer_ticks(idle_time); 916 917 /* Tell the scheduler how much we idled: */ 918 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); 919 920 local_irq_enable(); 921 current_thread_info()->status |= TS_POLLING; 922 923 cx->usage++; 924 925 lapic_timer_state_broadcast(pr, cx, 0); 926 cx->time += sleep_ticks; 927 return idle_time; 928 } 929 930 static int c3_cpu_count; 931 static DEFINE_SPINLOCK(c3_lock); 932 933 /** 934 * acpi_idle_enter_bm - enters C3 with proper BM handling 935 * @dev: the target CPU 936 * @state: the state data 937 * 938 * If BM is detected, the deepest non-C3 idle state is entered instead. 939 */ 940 static int acpi_idle_enter_bm(struct cpuidle_device *dev, 941 struct cpuidle_state *state) 942 { 943 struct acpi_processor *pr; 944 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 945 ktime_t kt1, kt2; 946 s64 idle_time; 947 s64 sleep_ticks = 0; 948 949 950 pr = __get_cpu_var(processors); 951 952 if (unlikely(!pr)) 953 return 0; 954 955 if (acpi_idle_suspend) 956 return(acpi_idle_enter_c1(dev, state)); 957 958 if (acpi_idle_bm_check()) { 959 if (dev->safe_state) { 960 dev->last_state = dev->safe_state; 961 return dev->safe_state->enter(dev, dev->safe_state); 962 } else { 963 local_irq_disable(); 964 acpi_safe_halt(); 965 local_irq_enable(); 966 return 0; 967 } 968 } 969 970 local_irq_disable(); 971 if (cx->entry_method != ACPI_CSTATE_FFH) { 972 current_thread_info()->status &= ~TS_POLLING; 973 /* 974 * TS_POLLING-cleared state must be visible before we test 975 * NEED_RESCHED: 976 */ 977 smp_mb(); 978 } 979 980 if (unlikely(need_resched())) { 981 current_thread_info()->status |= TS_POLLING; 982 local_irq_enable(); 983 return 0; 984 } 985 986 acpi_unlazy_tlb(smp_processor_id()); 987 988 /* Tell the scheduler that we are going deep-idle: */ 989 sched_clock_idle_sleep_event(); 990 /* 991 * Must be done before busmaster disable as we might need to 992 * access HPET ! 993 */ 994 lapic_timer_state_broadcast(pr, cx, 1); 995 996 kt1 = ktime_get_real(); 997 /* 998 * disable bus master 999 * bm_check implies we need ARB_DIS 1000 * !bm_check implies we need cache flush 1001 * bm_control implies whether we can do ARB_DIS 1002 * 1003 * That leaves a case where bm_check is set and bm_control is 1004 * not set. In that case we cannot do much, we enter C3 1005 * without doing anything. 1006 */ 1007 if (pr->flags.bm_check && pr->flags.bm_control) { 1008 spin_lock(&c3_lock); 1009 c3_cpu_count++; 1010 /* Disable bus master arbitration when all CPUs are in C3 */ 1011 if (c3_cpu_count == num_online_cpus()) 1012 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); 1013 spin_unlock(&c3_lock); 1014 } else if (!pr->flags.bm_check) { 1015 ACPI_FLUSH_CPU_CACHE(); 1016 } 1017 1018 acpi_idle_do_entry(cx); 1019 1020 /* Re-enable bus master arbitration */ 1021 if (pr->flags.bm_check && pr->flags.bm_control) { 1022 spin_lock(&c3_lock); 1023 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); 1024 c3_cpu_count--; 1025 spin_unlock(&c3_lock); 1026 } 1027 kt2 = ktime_get_real(); 1028 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 1029 1030 sleep_ticks = us_to_pm_timer_ticks(idle_time); 1031 /* Tell the scheduler how much we idled: */ 1032 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); 1033 1034 local_irq_enable(); 1035 current_thread_info()->status |= TS_POLLING; 1036 1037 cx->usage++; 1038 1039 lapic_timer_state_broadcast(pr, cx, 0); 1040 cx->time += sleep_ticks; 1041 return idle_time; 1042 } 1043 1044 struct cpuidle_driver acpi_idle_driver = { 1045 .name = "acpi_idle", 1046 .owner = THIS_MODULE, 1047 }; 1048 1049 /** 1050 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE 1051 * @pr: the ACPI processor 1052 */ 1053 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) 1054 { 1055 int i, count = CPUIDLE_DRIVER_STATE_START; 1056 struct acpi_processor_cx *cx; 1057 struct cpuidle_state *state; 1058 struct cpuidle_device *dev = &pr->power.dev; 1059 1060 if (!pr->flags.power_setup_done) 1061 return -EINVAL; 1062 1063 if (pr->flags.power == 0) { 1064 return -EINVAL; 1065 } 1066 1067 dev->cpu = pr->id; 1068 for (i = 0; i < CPUIDLE_STATE_MAX; i++) { 1069 dev->states[i].name[0] = '\0'; 1070 dev->states[i].desc[0] = '\0'; 1071 } 1072 1073 if (max_cstate == 0) 1074 max_cstate = 1; 1075 1076 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 1077 cx = &pr->power.states[i]; 1078 state = &dev->states[count]; 1079 1080 if (!cx->valid) 1081 continue; 1082 1083 #ifdef CONFIG_HOTPLUG_CPU 1084 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 1085 !pr->flags.has_cst && 1086 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 1087 continue; 1088 #endif 1089 cpuidle_set_statedata(state, cx); 1090 1091 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); 1092 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); 1093 state->exit_latency = cx->latency; 1094 state->target_residency = cx->latency * latency_factor; 1095 state->power_usage = cx->power; 1096 1097 state->flags = 0; 1098 switch (cx->type) { 1099 case ACPI_STATE_C1: 1100 state->flags |= CPUIDLE_FLAG_SHALLOW; 1101 if (cx->entry_method == ACPI_CSTATE_FFH) 1102 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1103 1104 state->enter = acpi_idle_enter_c1; 1105 dev->safe_state = state; 1106 break; 1107 1108 case ACPI_STATE_C2: 1109 state->flags |= CPUIDLE_FLAG_BALANCED; 1110 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1111 state->enter = acpi_idle_enter_simple; 1112 dev->safe_state = state; 1113 break; 1114 1115 case ACPI_STATE_C3: 1116 state->flags |= CPUIDLE_FLAG_DEEP; 1117 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1118 state->flags |= CPUIDLE_FLAG_CHECK_BM; 1119 state->enter = pr->flags.bm_check ? 1120 acpi_idle_enter_bm : 1121 acpi_idle_enter_simple; 1122 break; 1123 } 1124 1125 count++; 1126 if (count == CPUIDLE_STATE_MAX) 1127 break; 1128 } 1129 1130 dev->state_count = count; 1131 1132 if (!count) 1133 return -EINVAL; 1134 1135 return 0; 1136 } 1137 1138 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1139 { 1140 int ret = 0; 1141 1142 if (boot_option_idle_override) 1143 return 0; 1144 1145 if (!pr) 1146 return -EINVAL; 1147 1148 if (nocst) { 1149 return -ENODEV; 1150 } 1151 1152 if (!pr->flags.power_setup_done) 1153 return -ENODEV; 1154 1155 cpuidle_pause_and_lock(); 1156 cpuidle_disable_device(&pr->power.dev); 1157 acpi_processor_get_power_info(pr); 1158 if (pr->flags.power) { 1159 acpi_processor_setup_cpuidle(pr); 1160 ret = cpuidle_enable_device(&pr->power.dev); 1161 } 1162 cpuidle_resume_and_unlock(); 1163 1164 return ret; 1165 } 1166 1167 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1168 struct acpi_device *device) 1169 { 1170 acpi_status status = 0; 1171 static int first_run; 1172 #ifdef CONFIG_ACPI_PROCFS 1173 struct proc_dir_entry *entry = NULL; 1174 #endif 1175 1176 if (boot_option_idle_override) 1177 return 0; 1178 1179 if (!first_run) { 1180 if (idle_halt) { 1181 /* 1182 * When the boot option of "idle=halt" is added, halt 1183 * is used for CPU IDLE. 1184 * In such case C2/C3 is meaningless. So the max_cstate 1185 * is set to one. 1186 */ 1187 max_cstate = 1; 1188 } 1189 dmi_check_system(processor_power_dmi_table); 1190 max_cstate = acpi_processor_cstate_check(max_cstate); 1191 if (max_cstate < ACPI_C_STATES_MAX) 1192 printk(KERN_NOTICE 1193 "ACPI: processor limited to max C-state %d\n", 1194 max_cstate); 1195 first_run++; 1196 } 1197 1198 if (!pr) 1199 return -EINVAL; 1200 1201 if (acpi_gbl_FADT.cst_control && !nocst) { 1202 status = 1203 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1204 if (ACPI_FAILURE(status)) { 1205 ACPI_EXCEPTION((AE_INFO, status, 1206 "Notifying BIOS of _CST ability failed")); 1207 } 1208 } 1209 1210 acpi_processor_get_power_info(pr); 1211 pr->flags.power_setup_done = 1; 1212 1213 /* 1214 * Install the idle handler if processor power management is supported. 1215 * Note that we use previously set idle handler will be used on 1216 * platforms that only support C1. 1217 */ 1218 if (pr->flags.power) { 1219 acpi_processor_setup_cpuidle(pr); 1220 if (cpuidle_register_device(&pr->power.dev)) 1221 return -EIO; 1222 } 1223 #ifdef CONFIG_ACPI_PROCFS 1224 /* 'power' [R] */ 1225 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER, 1226 S_IRUGO, acpi_device_dir(device), 1227 &acpi_processor_power_fops, 1228 acpi_driver_data(device)); 1229 if (!entry) 1230 return -EIO; 1231 #endif 1232 return 0; 1233 } 1234 1235 int acpi_processor_power_exit(struct acpi_processor *pr, 1236 struct acpi_device *device) 1237 { 1238 if (boot_option_idle_override) 1239 return 0; 1240 1241 cpuidle_unregister_device(&pr->power.dev); 1242 pr->flags.power_setup_done = 0; 1243 1244 #ifdef CONFIG_ACPI_PROCFS 1245 if (acpi_device_dir(device)) 1246 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1247 acpi_device_dir(device)); 1248 #endif 1249 1250 return 0; 1251 } 1252