xref: /linux/drivers/acpi/processor_idle.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36 
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46 
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50 
51 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
52 
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
59 
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
62 
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
64 
65 struct cpuidle_driver acpi_idle_driver = {
66 	.name =		"acpi_idle",
67 	.owner =	THIS_MODULE,
68 };
69 
70 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
71 static
72 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
73 
74 static int disabled_by_idle_boot_param(void)
75 {
76 	return boot_option_idle_override == IDLE_POLL ||
77 		boot_option_idle_override == IDLE_HALT;
78 }
79 
80 /*
81  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
82  * For now disable this. Probably a bug somewhere else.
83  *
84  * To skip this limit, boot/load with a large max_cstate limit.
85  */
86 static int set_max_cstate(const struct dmi_system_id *id)
87 {
88 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
89 		return 0;
90 
91 	pr_notice("%s detected - limiting to C%ld max_cstate."
92 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
93 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
94 
95 	max_cstate = (long)id->driver_data;
96 
97 	return 0;
98 }
99 
100 static const struct dmi_system_id processor_power_dmi_table[] = {
101 	{ set_max_cstate, "Clevo 5600D", {
102 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
103 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
104 	 (void *)2},
105 	{ set_max_cstate, "Pavilion zv5000", {
106 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
107 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
108 	 (void *)1},
109 	{ set_max_cstate, "Asus L8400B", {
110 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
111 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
112 	 (void *)1},
113 	{},
114 };
115 
116 
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void __cpuidle acpi_safe_halt(void)
122 {
123 	if (!tif_need_resched()) {
124 		safe_halt();
125 		local_irq_disable();
126 	}
127 }
128 
129 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130 
131 /*
132  * Some BIOS implementations switch to C3 in the published C2 state.
133  * This seems to be a common problem on AMD boxen, but other vendors
134  * are affected too. We pick the most conservative approach: we assume
135  * that the local APIC stops in both C2 and C3.
136  */
137 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
138 				   struct acpi_processor_cx *cx)
139 {
140 	struct acpi_processor_power *pwr = &pr->power;
141 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
142 
143 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
144 		return;
145 
146 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
147 		type = ACPI_STATE_C1;
148 
149 	/*
150 	 * Check, if one of the previous states already marked the lapic
151 	 * unstable
152 	 */
153 	if (pwr->timer_broadcast_on_state < state)
154 		return;
155 
156 	if (cx->type >= type)
157 		pr->power.timer_broadcast_on_state = state;
158 }
159 
160 static void __lapic_timer_propagate_broadcast(void *arg)
161 {
162 	struct acpi_processor *pr = (struct acpi_processor *) arg;
163 
164 	if (pr->power.timer_broadcast_on_state < INT_MAX)
165 		tick_broadcast_enable();
166 	else
167 		tick_broadcast_disable();
168 }
169 
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173 				 (void *)pr, 1);
174 }
175 
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178 				       struct acpi_processor_cx *cx,
179 				       int broadcast)
180 {
181 	int state = cx - pr->power.states;
182 
183 	if (state >= pr->power.timer_broadcast_on_state) {
184 		if (broadcast)
185 			tick_broadcast_enter();
186 		else
187 			tick_broadcast_exit();
188 	}
189 }
190 
191 #else
192 
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194 				   struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 }
201 
202 #endif
203 
204 #if defined(CONFIG_X86)
205 static void tsc_check_state(int state)
206 {
207 	switch (boot_cpu_data.x86_vendor) {
208 	case X86_VENDOR_AMD:
209 	case X86_VENDOR_INTEL:
210 	case X86_VENDOR_CENTAUR:
211 		/*
212 		 * AMD Fam10h TSC will tick in all
213 		 * C/P/S0/S1 states when this bit is set.
214 		 */
215 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
216 			return;
217 
218 		/*FALL THROUGH*/
219 	default:
220 		/* TSC could halt in idle, so notify users */
221 		if (state > ACPI_STATE_C1)
222 			mark_tsc_unstable("TSC halts in idle");
223 	}
224 }
225 #else
226 static void tsc_check_state(int state) { return; }
227 #endif
228 
229 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
230 {
231 
232 	if (!pr->pblk)
233 		return -ENODEV;
234 
235 	/* if info is obtained from pblk/fadt, type equals state */
236 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
237 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
238 
239 #ifndef CONFIG_HOTPLUG_CPU
240 	/*
241 	 * Check for P_LVL2_UP flag before entering C2 and above on
242 	 * an SMP system.
243 	 */
244 	if ((num_online_cpus() > 1) &&
245 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
246 		return -ENODEV;
247 #endif
248 
249 	/* determine C2 and C3 address from pblk */
250 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
251 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
252 
253 	/* determine latencies from FADT */
254 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
255 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
256 
257 	/*
258 	 * FADT specified C2 latency must be less than or equal to
259 	 * 100 microseconds.
260 	 */
261 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
262 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
264 		/* invalidate C2 */
265 		pr->power.states[ACPI_STATE_C2].address = 0;
266 	}
267 
268 	/*
269 	 * FADT supplied C3 latency must be less than or equal to
270 	 * 1000 microseconds.
271 	 */
272 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
273 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
274 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
275 		/* invalidate C3 */
276 		pr->power.states[ACPI_STATE_C3].address = 0;
277 	}
278 
279 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
280 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
281 			  pr->power.states[ACPI_STATE_C2].address,
282 			  pr->power.states[ACPI_STATE_C3].address));
283 
284 	return 0;
285 }
286 
287 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
288 {
289 	if (!pr->power.states[ACPI_STATE_C1].valid) {
290 		/* set the first C-State to C1 */
291 		/* all processors need to support C1 */
292 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
293 		pr->power.states[ACPI_STATE_C1].valid = 1;
294 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
295 	}
296 	/* the C0 state only exists as a filler in our array */
297 	pr->power.states[ACPI_STATE_C0].valid = 1;
298 	return 0;
299 }
300 
301 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
302 {
303 	acpi_status status;
304 	u64 count;
305 	int current_count;
306 	int i, ret = 0;
307 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
308 	union acpi_object *cst;
309 
310 	if (nocst)
311 		return -ENODEV;
312 
313 	current_count = 0;
314 
315 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
316 	if (ACPI_FAILURE(status)) {
317 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
318 		return -ENODEV;
319 	}
320 
321 	cst = buffer.pointer;
322 
323 	/* There must be at least 2 elements */
324 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
325 		pr_err("not enough elements in _CST\n");
326 		ret = -EFAULT;
327 		goto end;
328 	}
329 
330 	count = cst->package.elements[0].integer.value;
331 
332 	/* Validate number of power states. */
333 	if (count < 1 || count != cst->package.count - 1) {
334 		pr_err("count given by _CST is not valid\n");
335 		ret = -EFAULT;
336 		goto end;
337 	}
338 
339 	/* Tell driver that at least _CST is supported. */
340 	pr->flags.has_cst = 1;
341 
342 	for (i = 1; i <= count; i++) {
343 		union acpi_object *element;
344 		union acpi_object *obj;
345 		struct acpi_power_register *reg;
346 		struct acpi_processor_cx cx;
347 
348 		memset(&cx, 0, sizeof(cx));
349 
350 		element = &(cst->package.elements[i]);
351 		if (element->type != ACPI_TYPE_PACKAGE)
352 			continue;
353 
354 		if (element->package.count != 4)
355 			continue;
356 
357 		obj = &(element->package.elements[0]);
358 
359 		if (obj->type != ACPI_TYPE_BUFFER)
360 			continue;
361 
362 		reg = (struct acpi_power_register *)obj->buffer.pointer;
363 
364 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
365 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
366 			continue;
367 
368 		/* There should be an easy way to extract an integer... */
369 		obj = &(element->package.elements[1]);
370 		if (obj->type != ACPI_TYPE_INTEGER)
371 			continue;
372 
373 		cx.type = obj->integer.value;
374 		/*
375 		 * Some buggy BIOSes won't list C1 in _CST -
376 		 * Let acpi_processor_get_power_info_default() handle them later
377 		 */
378 		if (i == 1 && cx.type != ACPI_STATE_C1)
379 			current_count++;
380 
381 		cx.address = reg->address;
382 		cx.index = current_count + 1;
383 
384 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
385 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
386 			if (acpi_processor_ffh_cstate_probe
387 					(pr->id, &cx, reg) == 0) {
388 				cx.entry_method = ACPI_CSTATE_FFH;
389 			} else if (cx.type == ACPI_STATE_C1) {
390 				/*
391 				 * C1 is a special case where FIXED_HARDWARE
392 				 * can be handled in non-MWAIT way as well.
393 				 * In that case, save this _CST entry info.
394 				 * Otherwise, ignore this info and continue.
395 				 */
396 				cx.entry_method = ACPI_CSTATE_HALT;
397 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
398 			} else {
399 				continue;
400 			}
401 			if (cx.type == ACPI_STATE_C1 &&
402 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
403 				/*
404 				 * In most cases the C1 space_id obtained from
405 				 * _CST object is FIXED_HARDWARE access mode.
406 				 * But when the option of idle=halt is added,
407 				 * the entry_method type should be changed from
408 				 * CSTATE_FFH to CSTATE_HALT.
409 				 * When the option of idle=nomwait is added,
410 				 * the C1 entry_method type should be
411 				 * CSTATE_HALT.
412 				 */
413 				cx.entry_method = ACPI_CSTATE_HALT;
414 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
415 			}
416 		} else {
417 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
418 				 cx.address);
419 		}
420 
421 		if (cx.type == ACPI_STATE_C1) {
422 			cx.valid = 1;
423 		}
424 
425 		obj = &(element->package.elements[2]);
426 		if (obj->type != ACPI_TYPE_INTEGER)
427 			continue;
428 
429 		cx.latency = obj->integer.value;
430 
431 		obj = &(element->package.elements[3]);
432 		if (obj->type != ACPI_TYPE_INTEGER)
433 			continue;
434 
435 		current_count++;
436 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
437 
438 		/*
439 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
440 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
441 		 */
442 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
443 			pr_warn("Limiting number of power states to max (%d)\n",
444 				ACPI_PROCESSOR_MAX_POWER);
445 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
446 			break;
447 		}
448 	}
449 
450 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
451 			  current_count));
452 
453 	/* Validate number of power states discovered */
454 	if (current_count < 2)
455 		ret = -EFAULT;
456 
457       end:
458 	kfree(buffer.pointer);
459 
460 	return ret;
461 }
462 
463 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
464 					   struct acpi_processor_cx *cx)
465 {
466 	static int bm_check_flag = -1;
467 	static int bm_control_flag = -1;
468 
469 
470 	if (!cx->address)
471 		return;
472 
473 	/*
474 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
475 	 * DMA transfers are used by any ISA device to avoid livelock.
476 	 * Note that we could disable Type-F DMA (as recommended by
477 	 * the erratum), but this is known to disrupt certain ISA
478 	 * devices thus we take the conservative approach.
479 	 */
480 	else if (errata.piix4.fdma) {
481 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
482 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
483 		return;
484 	}
485 
486 	/* All the logic here assumes flags.bm_check is same across all CPUs */
487 	if (bm_check_flag == -1) {
488 		/* Determine whether bm_check is needed based on CPU  */
489 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
490 		bm_check_flag = pr->flags.bm_check;
491 		bm_control_flag = pr->flags.bm_control;
492 	} else {
493 		pr->flags.bm_check = bm_check_flag;
494 		pr->flags.bm_control = bm_control_flag;
495 	}
496 
497 	if (pr->flags.bm_check) {
498 		if (!pr->flags.bm_control) {
499 			if (pr->flags.has_cst != 1) {
500 				/* bus mastering control is necessary */
501 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
502 					"C3 support requires BM control\n"));
503 				return;
504 			} else {
505 				/* Here we enter C3 without bus mastering */
506 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
507 					"C3 support without BM control\n"));
508 			}
509 		}
510 	} else {
511 		/*
512 		 * WBINVD should be set in fadt, for C3 state to be
513 		 * supported on when bm_check is not required.
514 		 */
515 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
516 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
517 					  "Cache invalidation should work properly"
518 					  " for C3 to be enabled on SMP systems\n"));
519 			return;
520 		}
521 	}
522 
523 	/*
524 	 * Otherwise we've met all of our C3 requirements.
525 	 * Normalize the C3 latency to expidite policy.  Enable
526 	 * checking of bus mastering status (bm_check) so we can
527 	 * use this in our C3 policy
528 	 */
529 	cx->valid = 1;
530 
531 	/*
532 	 * On older chipsets, BM_RLD needs to be set
533 	 * in order for Bus Master activity to wake the
534 	 * system from C3.  Newer chipsets handle DMA
535 	 * during C3 automatically and BM_RLD is a NOP.
536 	 * In either case, the proper way to
537 	 * handle BM_RLD is to set it and leave it set.
538 	 */
539 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
540 
541 	return;
542 }
543 
544 static int acpi_processor_power_verify(struct acpi_processor *pr)
545 {
546 	unsigned int i;
547 	unsigned int working = 0;
548 
549 	pr->power.timer_broadcast_on_state = INT_MAX;
550 
551 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
552 		struct acpi_processor_cx *cx = &pr->power.states[i];
553 
554 		switch (cx->type) {
555 		case ACPI_STATE_C1:
556 			cx->valid = 1;
557 			break;
558 
559 		case ACPI_STATE_C2:
560 			if (!cx->address)
561 				break;
562 			cx->valid = 1;
563 			break;
564 
565 		case ACPI_STATE_C3:
566 			acpi_processor_power_verify_c3(pr, cx);
567 			break;
568 		}
569 		if (!cx->valid)
570 			continue;
571 
572 		lapic_timer_check_state(i, pr, cx);
573 		tsc_check_state(cx->type);
574 		working++;
575 	}
576 
577 	lapic_timer_propagate_broadcast(pr);
578 
579 	return (working);
580 }
581 
582 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
583 {
584 	unsigned int i;
585 	int result;
586 
587 
588 	/* NOTE: the idle thread may not be running while calling
589 	 * this function */
590 
591 	/* Zero initialize all the C-states info. */
592 	memset(pr->power.states, 0, sizeof(pr->power.states));
593 
594 	result = acpi_processor_get_power_info_cst(pr);
595 	if (result == -ENODEV)
596 		result = acpi_processor_get_power_info_fadt(pr);
597 
598 	if (result)
599 		return result;
600 
601 	acpi_processor_get_power_info_default(pr);
602 
603 	pr->power.count = acpi_processor_power_verify(pr);
604 
605 	/*
606 	 * if one state of type C2 or C3 is available, mark this
607 	 * CPU as being "idle manageable"
608 	 */
609 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
610 		if (pr->power.states[i].valid) {
611 			pr->power.count = i;
612 			if (pr->power.states[i].type >= ACPI_STATE_C2)
613 				pr->flags.power = 1;
614 		}
615 	}
616 
617 	return 0;
618 }
619 
620 /**
621  * acpi_idle_bm_check - checks if bus master activity was detected
622  */
623 static int acpi_idle_bm_check(void)
624 {
625 	u32 bm_status = 0;
626 
627 	if (bm_check_disable)
628 		return 0;
629 
630 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
631 	if (bm_status)
632 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
633 	/*
634 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
635 	 * the true state of bus mastering activity; forcing us to
636 	 * manually check the BMIDEA bit of each IDE channel.
637 	 */
638 	else if (errata.piix4.bmisx) {
639 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
640 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
641 			bm_status = 1;
642 	}
643 	return bm_status;
644 }
645 
646 /**
647  * acpi_idle_do_entry - enter idle state using the appropriate method
648  * @cx: cstate data
649  *
650  * Caller disables interrupt before call and enables interrupt after return.
651  */
652 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
653 {
654 	if (cx->entry_method == ACPI_CSTATE_FFH) {
655 		/* Call into architectural FFH based C-state */
656 		acpi_processor_ffh_cstate_enter(cx);
657 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
658 		acpi_safe_halt();
659 	} else {
660 		/* IO port based C-state */
661 		inb(cx->address);
662 		/* Dummy wait op - must do something useless after P_LVL2 read
663 		   because chipsets cannot guarantee that STPCLK# signal
664 		   gets asserted in time to freeze execution properly. */
665 		inl(acpi_gbl_FADT.xpm_timer_block.address);
666 	}
667 }
668 
669 /**
670  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
671  * @dev: the target CPU
672  * @index: the index of suggested state
673  */
674 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
675 {
676 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
677 
678 	ACPI_FLUSH_CPU_CACHE();
679 
680 	while (1) {
681 
682 		if (cx->entry_method == ACPI_CSTATE_HALT)
683 			safe_halt();
684 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
685 			inb(cx->address);
686 			/* See comment in acpi_idle_do_entry() */
687 			inl(acpi_gbl_FADT.xpm_timer_block.address);
688 		} else
689 			return -ENODEV;
690 	}
691 
692 	/* Never reached */
693 	return 0;
694 }
695 
696 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
697 {
698 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
699 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
700 }
701 
702 static int c3_cpu_count;
703 static DEFINE_RAW_SPINLOCK(c3_lock);
704 
705 /**
706  * acpi_idle_enter_bm - enters C3 with proper BM handling
707  * @pr: Target processor
708  * @cx: Target state context
709  * @timer_bc: Whether or not to change timer mode to broadcast
710  */
711 static void acpi_idle_enter_bm(struct acpi_processor *pr,
712 			       struct acpi_processor_cx *cx, bool timer_bc)
713 {
714 	acpi_unlazy_tlb(smp_processor_id());
715 
716 	/*
717 	 * Must be done before busmaster disable as we might need to
718 	 * access HPET !
719 	 */
720 	if (timer_bc)
721 		lapic_timer_state_broadcast(pr, cx, 1);
722 
723 	/*
724 	 * disable bus master
725 	 * bm_check implies we need ARB_DIS
726 	 * bm_control implies whether we can do ARB_DIS
727 	 *
728 	 * That leaves a case where bm_check is set and bm_control is
729 	 * not set. In that case we cannot do much, we enter C3
730 	 * without doing anything.
731 	 */
732 	if (pr->flags.bm_control) {
733 		raw_spin_lock(&c3_lock);
734 		c3_cpu_count++;
735 		/* Disable bus master arbitration when all CPUs are in C3 */
736 		if (c3_cpu_count == num_online_cpus())
737 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
738 		raw_spin_unlock(&c3_lock);
739 	}
740 
741 	acpi_idle_do_entry(cx);
742 
743 	/* Re-enable bus master arbitration */
744 	if (pr->flags.bm_control) {
745 		raw_spin_lock(&c3_lock);
746 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
747 		c3_cpu_count--;
748 		raw_spin_unlock(&c3_lock);
749 	}
750 
751 	if (timer_bc)
752 		lapic_timer_state_broadcast(pr, cx, 0);
753 }
754 
755 static int acpi_idle_enter(struct cpuidle_device *dev,
756 			   struct cpuidle_driver *drv, int index)
757 {
758 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
759 	struct acpi_processor *pr;
760 
761 	pr = __this_cpu_read(processors);
762 	if (unlikely(!pr))
763 		return -EINVAL;
764 
765 	if (cx->type != ACPI_STATE_C1) {
766 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
767 			index = ACPI_IDLE_STATE_START;
768 			cx = per_cpu(acpi_cstate[index], dev->cpu);
769 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
770 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
771 				acpi_idle_enter_bm(pr, cx, true);
772 				return index;
773 			} else if (drv->safe_state_index >= 0) {
774 				index = drv->safe_state_index;
775 				cx = per_cpu(acpi_cstate[index], dev->cpu);
776 			} else {
777 				acpi_safe_halt();
778 				return -EBUSY;
779 			}
780 		}
781 	}
782 
783 	lapic_timer_state_broadcast(pr, cx, 1);
784 
785 	if (cx->type == ACPI_STATE_C3)
786 		ACPI_FLUSH_CPU_CACHE();
787 
788 	acpi_idle_do_entry(cx);
789 
790 	lapic_timer_state_broadcast(pr, cx, 0);
791 
792 	return index;
793 }
794 
795 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
796 				   struct cpuidle_driver *drv, int index)
797 {
798 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
799 
800 	if (cx->type == ACPI_STATE_C3) {
801 		struct acpi_processor *pr = __this_cpu_read(processors);
802 
803 		if (unlikely(!pr))
804 			return;
805 
806 		if (pr->flags.bm_check) {
807 			acpi_idle_enter_bm(pr, cx, false);
808 			return;
809 		} else {
810 			ACPI_FLUSH_CPU_CACHE();
811 		}
812 	}
813 	acpi_idle_do_entry(cx);
814 }
815 
816 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
817 					   struct cpuidle_device *dev)
818 {
819 	int i, count = ACPI_IDLE_STATE_START;
820 	struct acpi_processor_cx *cx;
821 
822 	if (max_cstate == 0)
823 		max_cstate = 1;
824 
825 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
826 		cx = &pr->power.states[i];
827 
828 		if (!cx->valid)
829 			continue;
830 
831 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
832 
833 		count++;
834 		if (count == CPUIDLE_STATE_MAX)
835 			break;
836 	}
837 
838 	if (!count)
839 		return -EINVAL;
840 
841 	return 0;
842 }
843 
844 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
845 {
846 	int i, count;
847 	struct acpi_processor_cx *cx;
848 	struct cpuidle_state *state;
849 	struct cpuidle_driver *drv = &acpi_idle_driver;
850 
851 	if (max_cstate == 0)
852 		max_cstate = 1;
853 
854 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
855 		cpuidle_poll_state_init(drv);
856 		count = 1;
857 	} else {
858 		count = 0;
859 	}
860 
861 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
862 		cx = &pr->power.states[i];
863 
864 		if (!cx->valid)
865 			continue;
866 
867 		state = &drv->states[count];
868 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
869 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
870 		state->exit_latency = cx->latency;
871 		state->target_residency = cx->latency * latency_factor;
872 		state->enter = acpi_idle_enter;
873 
874 		state->flags = 0;
875 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
876 			state->enter_dead = acpi_idle_play_dead;
877 			drv->safe_state_index = count;
878 		}
879 		/*
880 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
881 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
882 		 * particularly interesting from the suspend-to-idle angle, so
883 		 * avoid C1 and the situations in which we may need to fall back
884 		 * to it altogether.
885 		 */
886 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
887 			state->enter_s2idle = acpi_idle_enter_s2idle;
888 
889 		count++;
890 		if (count == CPUIDLE_STATE_MAX)
891 			break;
892 	}
893 
894 	drv->state_count = count;
895 
896 	if (!count)
897 		return -EINVAL;
898 
899 	return 0;
900 }
901 
902 static inline void acpi_processor_cstate_first_run_checks(void)
903 {
904 	acpi_status status;
905 	static int first_run;
906 
907 	if (first_run)
908 		return;
909 	dmi_check_system(processor_power_dmi_table);
910 	max_cstate = acpi_processor_cstate_check(max_cstate);
911 	if (max_cstate < ACPI_C_STATES_MAX)
912 		pr_notice("ACPI: processor limited to max C-state %d\n",
913 			  max_cstate);
914 	first_run++;
915 
916 	if (acpi_gbl_FADT.cst_control && !nocst) {
917 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
918 					    acpi_gbl_FADT.cst_control, 8);
919 		if (ACPI_FAILURE(status))
920 			ACPI_EXCEPTION((AE_INFO, status,
921 					"Notifying BIOS of _CST ability failed"));
922 	}
923 }
924 #else
925 
926 static inline int disabled_by_idle_boot_param(void) { return 0; }
927 static inline void acpi_processor_cstate_first_run_checks(void) { }
928 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
929 {
930 	return -ENODEV;
931 }
932 
933 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
934 					   struct cpuidle_device *dev)
935 {
936 	return -EINVAL;
937 }
938 
939 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
940 {
941 	return -EINVAL;
942 }
943 
944 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
945 
946 struct acpi_lpi_states_array {
947 	unsigned int size;
948 	unsigned int composite_states_size;
949 	struct acpi_lpi_state *entries;
950 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
951 };
952 
953 static int obj_get_integer(union acpi_object *obj, u32 *value)
954 {
955 	if (obj->type != ACPI_TYPE_INTEGER)
956 		return -EINVAL;
957 
958 	*value = obj->integer.value;
959 	return 0;
960 }
961 
962 static int acpi_processor_evaluate_lpi(acpi_handle handle,
963 				       struct acpi_lpi_states_array *info)
964 {
965 	acpi_status status;
966 	int ret = 0;
967 	int pkg_count, state_idx = 1, loop;
968 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
969 	union acpi_object *lpi_data;
970 	struct acpi_lpi_state *lpi_state;
971 
972 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
973 	if (ACPI_FAILURE(status)) {
974 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
975 		return -ENODEV;
976 	}
977 
978 	lpi_data = buffer.pointer;
979 
980 	/* There must be at least 4 elements = 3 elements + 1 package */
981 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
982 	    lpi_data->package.count < 4) {
983 		pr_debug("not enough elements in _LPI\n");
984 		ret = -ENODATA;
985 		goto end;
986 	}
987 
988 	pkg_count = lpi_data->package.elements[2].integer.value;
989 
990 	/* Validate number of power states. */
991 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
992 		pr_debug("count given by _LPI is not valid\n");
993 		ret = -ENODATA;
994 		goto end;
995 	}
996 
997 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
998 	if (!lpi_state) {
999 		ret = -ENOMEM;
1000 		goto end;
1001 	}
1002 
1003 	info->size = pkg_count;
1004 	info->entries = lpi_state;
1005 
1006 	/* LPI States start at index 3 */
1007 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1008 		union acpi_object *element, *pkg_elem, *obj;
1009 
1010 		element = &lpi_data->package.elements[loop];
1011 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1012 			continue;
1013 
1014 		pkg_elem = element->package.elements;
1015 
1016 		obj = pkg_elem + 6;
1017 		if (obj->type == ACPI_TYPE_BUFFER) {
1018 			struct acpi_power_register *reg;
1019 
1020 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1021 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1022 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1023 				continue;
1024 
1025 			lpi_state->address = reg->address;
1026 			lpi_state->entry_method =
1027 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1028 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1029 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1030 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1031 			lpi_state->address = obj->integer.value;
1032 		} else {
1033 			continue;
1034 		}
1035 
1036 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1037 
1038 		obj = pkg_elem + 9;
1039 		if (obj->type == ACPI_TYPE_STRING)
1040 			strlcpy(lpi_state->desc, obj->string.pointer,
1041 				ACPI_CX_DESC_LEN);
1042 
1043 		lpi_state->index = state_idx;
1044 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1045 			pr_debug("No min. residency found, assuming 10 us\n");
1046 			lpi_state->min_residency = 10;
1047 		}
1048 
1049 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1050 			pr_debug("No wakeup residency found, assuming 10 us\n");
1051 			lpi_state->wake_latency = 10;
1052 		}
1053 
1054 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1055 			lpi_state->flags = 0;
1056 
1057 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1058 			lpi_state->arch_flags = 0;
1059 
1060 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1061 			lpi_state->res_cnt_freq = 1;
1062 
1063 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1064 			lpi_state->enable_parent_state = 0;
1065 	}
1066 
1067 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1068 end:
1069 	kfree(buffer.pointer);
1070 	return ret;
1071 }
1072 
1073 /*
1074  * flat_state_cnt - the number of composite LPI states after the process of flattening
1075  */
1076 static int flat_state_cnt;
1077 
1078 /**
1079  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1080  *
1081  * @local: local LPI state
1082  * @parent: parent LPI state
1083  * @result: composite LPI state
1084  */
1085 static bool combine_lpi_states(struct acpi_lpi_state *local,
1086 			       struct acpi_lpi_state *parent,
1087 			       struct acpi_lpi_state *result)
1088 {
1089 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1090 		if (!parent->address) /* 0 means autopromotable */
1091 			return false;
1092 		result->address = local->address + parent->address;
1093 	} else {
1094 		result->address = parent->address;
1095 	}
1096 
1097 	result->min_residency = max(local->min_residency, parent->min_residency);
1098 	result->wake_latency = local->wake_latency + parent->wake_latency;
1099 	result->enable_parent_state = parent->enable_parent_state;
1100 	result->entry_method = local->entry_method;
1101 
1102 	result->flags = parent->flags;
1103 	result->arch_flags = parent->arch_flags;
1104 	result->index = parent->index;
1105 
1106 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1107 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1108 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1109 	return true;
1110 }
1111 
1112 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1113 
1114 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1115 				  struct acpi_lpi_state *t)
1116 {
1117 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1118 }
1119 
1120 static int flatten_lpi_states(struct acpi_processor *pr,
1121 			      struct acpi_lpi_states_array *curr_level,
1122 			      struct acpi_lpi_states_array *prev_level)
1123 {
1124 	int i, j, state_count = curr_level->size;
1125 	struct acpi_lpi_state *p, *t = curr_level->entries;
1126 
1127 	curr_level->composite_states_size = 0;
1128 	for (j = 0; j < state_count; j++, t++) {
1129 		struct acpi_lpi_state *flpi;
1130 
1131 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1132 			continue;
1133 
1134 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1135 			pr_warn("Limiting number of LPI states to max (%d)\n",
1136 				ACPI_PROCESSOR_MAX_POWER);
1137 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1138 			break;
1139 		}
1140 
1141 		flpi = &pr->power.lpi_states[flat_state_cnt];
1142 
1143 		if (!prev_level) { /* leaf/processor node */
1144 			memcpy(flpi, t, sizeof(*t));
1145 			stash_composite_state(curr_level, flpi);
1146 			flat_state_cnt++;
1147 			continue;
1148 		}
1149 
1150 		for (i = 0; i < prev_level->composite_states_size; i++) {
1151 			p = prev_level->composite_states[i];
1152 			if (t->index <= p->enable_parent_state &&
1153 			    combine_lpi_states(p, t, flpi)) {
1154 				stash_composite_state(curr_level, flpi);
1155 				flat_state_cnt++;
1156 				flpi++;
1157 			}
1158 		}
1159 	}
1160 
1161 	kfree(curr_level->entries);
1162 	return 0;
1163 }
1164 
1165 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1166 {
1167 	int ret, i;
1168 	acpi_status status;
1169 	acpi_handle handle = pr->handle, pr_ahandle;
1170 	struct acpi_device *d = NULL;
1171 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1172 
1173 	if (!osc_pc_lpi_support_confirmed)
1174 		return -EOPNOTSUPP;
1175 
1176 	if (!acpi_has_method(handle, "_LPI"))
1177 		return -EINVAL;
1178 
1179 	flat_state_cnt = 0;
1180 	prev = &info[0];
1181 	curr = &info[1];
1182 	handle = pr->handle;
1183 	ret = acpi_processor_evaluate_lpi(handle, prev);
1184 	if (ret)
1185 		return ret;
1186 	flatten_lpi_states(pr, prev, NULL);
1187 
1188 	status = acpi_get_parent(handle, &pr_ahandle);
1189 	while (ACPI_SUCCESS(status)) {
1190 		acpi_bus_get_device(pr_ahandle, &d);
1191 		handle = pr_ahandle;
1192 
1193 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1194 			break;
1195 
1196 		/* can be optional ? */
1197 		if (!acpi_has_method(handle, "_LPI"))
1198 			break;
1199 
1200 		ret = acpi_processor_evaluate_lpi(handle, curr);
1201 		if (ret)
1202 			break;
1203 
1204 		/* flatten all the LPI states in this level of hierarchy */
1205 		flatten_lpi_states(pr, curr, prev);
1206 
1207 		tmp = prev, prev = curr, curr = tmp;
1208 
1209 		status = acpi_get_parent(handle, &pr_ahandle);
1210 	}
1211 
1212 	pr->power.count = flat_state_cnt;
1213 	/* reset the index after flattening */
1214 	for (i = 0; i < pr->power.count; i++)
1215 		pr->power.lpi_states[i].index = i;
1216 
1217 	/* Tell driver that _LPI is supported. */
1218 	pr->flags.has_lpi = 1;
1219 	pr->flags.power = 1;
1220 
1221 	return 0;
1222 }
1223 
1224 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1225 {
1226 	return -ENODEV;
1227 }
1228 
1229 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1230 {
1231 	return -ENODEV;
1232 }
1233 
1234 /**
1235  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1236  * @dev: the target CPU
1237  * @drv: cpuidle driver containing cpuidle state info
1238  * @index: index of target state
1239  *
1240  * Return: 0 for success or negative value for error
1241  */
1242 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1243 			       struct cpuidle_driver *drv, int index)
1244 {
1245 	struct acpi_processor *pr;
1246 	struct acpi_lpi_state *lpi;
1247 
1248 	pr = __this_cpu_read(processors);
1249 
1250 	if (unlikely(!pr))
1251 		return -EINVAL;
1252 
1253 	lpi = &pr->power.lpi_states[index];
1254 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1255 		return acpi_processor_ffh_lpi_enter(lpi);
1256 
1257 	return -EINVAL;
1258 }
1259 
1260 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1261 {
1262 	int i;
1263 	struct acpi_lpi_state *lpi;
1264 	struct cpuidle_state *state;
1265 	struct cpuidle_driver *drv = &acpi_idle_driver;
1266 
1267 	if (!pr->flags.has_lpi)
1268 		return -EOPNOTSUPP;
1269 
1270 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1271 		lpi = &pr->power.lpi_states[i];
1272 
1273 		state = &drv->states[i];
1274 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1275 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1276 		state->exit_latency = lpi->wake_latency;
1277 		state->target_residency = lpi->min_residency;
1278 		if (lpi->arch_flags)
1279 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1280 		state->enter = acpi_idle_lpi_enter;
1281 		drv->safe_state_index = i;
1282 	}
1283 
1284 	drv->state_count = i;
1285 
1286 	return 0;
1287 }
1288 
1289 /**
1290  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1291  * global state data i.e. idle routines
1292  *
1293  * @pr: the ACPI processor
1294  */
1295 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1296 {
1297 	int i;
1298 	struct cpuidle_driver *drv = &acpi_idle_driver;
1299 
1300 	if (!pr->flags.power_setup_done || !pr->flags.power)
1301 		return -EINVAL;
1302 
1303 	drv->safe_state_index = -1;
1304 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1305 		drv->states[i].name[0] = '\0';
1306 		drv->states[i].desc[0] = '\0';
1307 	}
1308 
1309 	if (pr->flags.has_lpi)
1310 		return acpi_processor_setup_lpi_states(pr);
1311 
1312 	return acpi_processor_setup_cstates(pr);
1313 }
1314 
1315 /**
1316  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1317  * device i.e. per-cpu data
1318  *
1319  * @pr: the ACPI processor
1320  * @dev : the cpuidle device
1321  */
1322 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1323 					    struct cpuidle_device *dev)
1324 {
1325 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1326 		return -EINVAL;
1327 
1328 	dev->cpu = pr->id;
1329 	if (pr->flags.has_lpi)
1330 		return acpi_processor_ffh_lpi_probe(pr->id);
1331 
1332 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1333 }
1334 
1335 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1336 {
1337 	int ret;
1338 
1339 	ret = acpi_processor_get_lpi_info(pr);
1340 	if (ret)
1341 		ret = acpi_processor_get_cstate_info(pr);
1342 
1343 	return ret;
1344 }
1345 
1346 int acpi_processor_hotplug(struct acpi_processor *pr)
1347 {
1348 	int ret = 0;
1349 	struct cpuidle_device *dev;
1350 
1351 	if (disabled_by_idle_boot_param())
1352 		return 0;
1353 
1354 	if (!pr->flags.power_setup_done)
1355 		return -ENODEV;
1356 
1357 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1358 	cpuidle_pause_and_lock();
1359 	cpuidle_disable_device(dev);
1360 	ret = acpi_processor_get_power_info(pr);
1361 	if (!ret && pr->flags.power) {
1362 		acpi_processor_setup_cpuidle_dev(pr, dev);
1363 		ret = cpuidle_enable_device(dev);
1364 	}
1365 	cpuidle_resume_and_unlock();
1366 
1367 	return ret;
1368 }
1369 
1370 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1371 {
1372 	int cpu;
1373 	struct acpi_processor *_pr;
1374 	struct cpuidle_device *dev;
1375 
1376 	if (disabled_by_idle_boot_param())
1377 		return 0;
1378 
1379 	if (!pr->flags.power_setup_done)
1380 		return -ENODEV;
1381 
1382 	/*
1383 	 * FIXME:  Design the ACPI notification to make it once per
1384 	 * system instead of once per-cpu.  This condition is a hack
1385 	 * to make the code that updates C-States be called once.
1386 	 */
1387 
1388 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1389 
1390 		/* Protect against cpu-hotplug */
1391 		get_online_cpus();
1392 		cpuidle_pause_and_lock();
1393 
1394 		/* Disable all cpuidle devices */
1395 		for_each_online_cpu(cpu) {
1396 			_pr = per_cpu(processors, cpu);
1397 			if (!_pr || !_pr->flags.power_setup_done)
1398 				continue;
1399 			dev = per_cpu(acpi_cpuidle_device, cpu);
1400 			cpuidle_disable_device(dev);
1401 		}
1402 
1403 		/* Populate Updated C-state information */
1404 		acpi_processor_get_power_info(pr);
1405 		acpi_processor_setup_cpuidle_states(pr);
1406 
1407 		/* Enable all cpuidle devices */
1408 		for_each_online_cpu(cpu) {
1409 			_pr = per_cpu(processors, cpu);
1410 			if (!_pr || !_pr->flags.power_setup_done)
1411 				continue;
1412 			acpi_processor_get_power_info(_pr);
1413 			if (_pr->flags.power) {
1414 				dev = per_cpu(acpi_cpuidle_device, cpu);
1415 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1416 				cpuidle_enable_device(dev);
1417 			}
1418 		}
1419 		cpuidle_resume_and_unlock();
1420 		put_online_cpus();
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 static int acpi_processor_registered;
1427 
1428 int acpi_processor_power_init(struct acpi_processor *pr)
1429 {
1430 	int retval;
1431 	struct cpuidle_device *dev;
1432 
1433 	if (disabled_by_idle_boot_param())
1434 		return 0;
1435 
1436 	acpi_processor_cstate_first_run_checks();
1437 
1438 	if (!acpi_processor_get_power_info(pr))
1439 		pr->flags.power_setup_done = 1;
1440 
1441 	/*
1442 	 * Install the idle handler if processor power management is supported.
1443 	 * Note that we use previously set idle handler will be used on
1444 	 * platforms that only support C1.
1445 	 */
1446 	if (pr->flags.power) {
1447 		/* Register acpi_idle_driver if not already registered */
1448 		if (!acpi_processor_registered) {
1449 			acpi_processor_setup_cpuidle_states(pr);
1450 			retval = cpuidle_register_driver(&acpi_idle_driver);
1451 			if (retval)
1452 				return retval;
1453 			pr_debug("%s registered with cpuidle\n",
1454 				 acpi_idle_driver.name);
1455 		}
1456 
1457 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1458 		if (!dev)
1459 			return -ENOMEM;
1460 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1461 
1462 		acpi_processor_setup_cpuidle_dev(pr, dev);
1463 
1464 		/* Register per-cpu cpuidle_device. Cpuidle driver
1465 		 * must already be registered before registering device
1466 		 */
1467 		retval = cpuidle_register_device(dev);
1468 		if (retval) {
1469 			if (acpi_processor_registered == 0)
1470 				cpuidle_unregister_driver(&acpi_idle_driver);
1471 			return retval;
1472 		}
1473 		acpi_processor_registered++;
1474 	}
1475 	return 0;
1476 }
1477 
1478 int acpi_processor_power_exit(struct acpi_processor *pr)
1479 {
1480 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1481 
1482 	if (disabled_by_idle_boot_param())
1483 		return 0;
1484 
1485 	if (pr->flags.power) {
1486 		cpuidle_unregister_device(dev);
1487 		acpi_processor_registered--;
1488 		if (acpi_processor_registered == 0)
1489 			cpuidle_unregister_driver(&acpi_idle_driver);
1490 	}
1491 
1492 	pr->flags.power_setup_done = 0;
1493 	return 0;
1494 }
1495