1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/proc_fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/acpi.h> 38 #include <linux/dmi.h> 39 #include <linux/moduleparam.h> 40 #include <linux/sched.h> /* need_resched() */ 41 #include <linux/pm_qos_params.h> 42 #include <linux/clockchips.h> 43 #include <linux/cpuidle.h> 44 #include <linux/irqflags.h> 45 46 /* 47 * Include the apic definitions for x86 to have the APIC timer related defines 48 * available also for UP (on SMP it gets magically included via linux/smp.h). 49 * asm/acpi.h is not an option, as it would require more include magic. Also 50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 51 */ 52 #ifdef CONFIG_X86 53 #include <asm/apic.h> 54 #endif 55 56 #include <asm/io.h> 57 #include <asm/uaccess.h> 58 59 #include <acpi/acpi_bus.h> 60 #include <acpi/processor.h> 61 #include <asm/processor.h> 62 63 #define PREFIX "ACPI: " 64 65 #define ACPI_PROCESSOR_CLASS "processor" 66 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 67 ACPI_MODULE_NAME("processor_idle"); 68 #define ACPI_PROCESSOR_FILE_POWER "power" 69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) 70 #define C2_OVERHEAD 1 /* 1us */ 71 #define C3_OVERHEAD 1 /* 1us */ 72 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) 73 74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; 75 module_param(max_cstate, uint, 0000); 76 static unsigned int nocst __read_mostly; 77 module_param(nocst, uint, 0000); 78 79 static unsigned int latency_factor __read_mostly = 2; 80 module_param(latency_factor, uint, 0644); 81 82 static s64 us_to_pm_timer_ticks(s64 t) 83 { 84 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000); 85 } 86 /* 87 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 88 * For now disable this. Probably a bug somewhere else. 89 * 90 * To skip this limit, boot/load with a large max_cstate limit. 91 */ 92 static int set_max_cstate(const struct dmi_system_id *id) 93 { 94 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 95 return 0; 96 97 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 98 " Override with \"processor.max_cstate=%d\"\n", id->ident, 99 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 100 101 max_cstate = (long)id->driver_data; 102 103 return 0; 104 } 105 106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 107 callers to only run once -AK */ 108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 109 { set_max_cstate, "Clevo 5600D", { 110 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 111 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 112 (void *)2}, 113 { set_max_cstate, "Pavilion zv5000", { 114 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 115 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, 116 (void *)1}, 117 { set_max_cstate, "Asus L8400B", { 118 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), 119 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, 120 (void *)1}, 121 {}, 122 }; 123 124 125 /* 126 * Callers should disable interrupts before the call and enable 127 * interrupts after return. 128 */ 129 static void acpi_safe_halt(void) 130 { 131 current_thread_info()->status &= ~TS_POLLING; 132 /* 133 * TS_POLLING-cleared state must be visible before we 134 * test NEED_RESCHED: 135 */ 136 smp_mb(); 137 if (!need_resched()) { 138 safe_halt(); 139 local_irq_disable(); 140 } 141 current_thread_info()->status |= TS_POLLING; 142 } 143 144 #ifdef ARCH_APICTIMER_STOPS_ON_C3 145 146 /* 147 * Some BIOS implementations switch to C3 in the published C2 state. 148 * This seems to be a common problem on AMD boxen, but other vendors 149 * are affected too. We pick the most conservative approach: we assume 150 * that the local APIC stops in both C2 and C3. 151 */ 152 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 153 struct acpi_processor_cx *cx) 154 { 155 struct acpi_processor_power *pwr = &pr->power; 156 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 157 158 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) 159 return; 160 161 if (boot_cpu_has(X86_FEATURE_AMDC1E)) 162 type = ACPI_STATE_C1; 163 164 /* 165 * Check, if one of the previous states already marked the lapic 166 * unstable 167 */ 168 if (pwr->timer_broadcast_on_state < state) 169 return; 170 171 if (cx->type >= type) 172 pr->power.timer_broadcast_on_state = state; 173 } 174 175 static void __lapic_timer_propagate_broadcast(void *arg) 176 { 177 struct acpi_processor *pr = (struct acpi_processor *) arg; 178 unsigned long reason; 179 180 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 181 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 182 183 clockevents_notify(reason, &pr->id); 184 } 185 186 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) 187 { 188 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, 189 (void *)pr, 1); 190 } 191 192 /* Power(C) State timer broadcast control */ 193 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 194 struct acpi_processor_cx *cx, 195 int broadcast) 196 { 197 int state = cx - pr->power.states; 198 199 if (state >= pr->power.timer_broadcast_on_state) { 200 unsigned long reason; 201 202 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 203 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 204 clockevents_notify(reason, &pr->id); 205 } 206 } 207 208 #else 209 210 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 211 struct acpi_processor_cx *cstate) { } 212 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } 213 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 214 struct acpi_processor_cx *cx, 215 int broadcast) 216 { 217 } 218 219 #endif 220 221 /* 222 * Suspend / resume control 223 */ 224 static int acpi_idle_suspend; 225 static u32 saved_bm_rld; 226 227 static void acpi_idle_bm_rld_save(void) 228 { 229 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); 230 } 231 static void acpi_idle_bm_rld_restore(void) 232 { 233 u32 resumed_bm_rld; 234 235 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); 236 237 if (resumed_bm_rld != saved_bm_rld) 238 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); 239 } 240 241 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) 242 { 243 if (acpi_idle_suspend == 1) 244 return 0; 245 246 acpi_idle_bm_rld_save(); 247 acpi_idle_suspend = 1; 248 return 0; 249 } 250 251 int acpi_processor_resume(struct acpi_device * device) 252 { 253 if (acpi_idle_suspend == 0) 254 return 0; 255 256 acpi_idle_bm_rld_restore(); 257 acpi_idle_suspend = 0; 258 return 0; 259 } 260 261 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) 262 static void tsc_check_state(int state) 263 { 264 switch (boot_cpu_data.x86_vendor) { 265 case X86_VENDOR_AMD: 266 case X86_VENDOR_INTEL: 267 /* 268 * AMD Fam10h TSC will tick in all 269 * C/P/S0/S1 states when this bit is set. 270 */ 271 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 272 return; 273 274 /*FALL THROUGH*/ 275 default: 276 /* TSC could halt in idle, so notify users */ 277 if (state > ACPI_STATE_C1) 278 mark_tsc_unstable("TSC halts in idle"); 279 } 280 } 281 #else 282 static void tsc_check_state(int state) { return; } 283 #endif 284 285 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 286 { 287 288 if (!pr) 289 return -EINVAL; 290 291 if (!pr->pblk) 292 return -ENODEV; 293 294 /* if info is obtained from pblk/fadt, type equals state */ 295 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 296 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 297 298 #ifndef CONFIG_HOTPLUG_CPU 299 /* 300 * Check for P_LVL2_UP flag before entering C2 and above on 301 * an SMP system. 302 */ 303 if ((num_online_cpus() > 1) && 304 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 305 return -ENODEV; 306 #endif 307 308 /* determine C2 and C3 address from pblk */ 309 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 310 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 311 312 /* determine latencies from FADT */ 313 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 314 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 315 316 /* 317 * FADT specified C2 latency must be less than or equal to 318 * 100 microseconds. 319 */ 320 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 321 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 322 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency)); 323 /* invalidate C2 */ 324 pr->power.states[ACPI_STATE_C2].address = 0; 325 } 326 327 /* 328 * FADT supplied C3 latency must be less than or equal to 329 * 1000 microseconds. 330 */ 331 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 332 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 333 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency)); 334 /* invalidate C3 */ 335 pr->power.states[ACPI_STATE_C3].address = 0; 336 } 337 338 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 339 "lvl2[0x%08x] lvl3[0x%08x]\n", 340 pr->power.states[ACPI_STATE_C2].address, 341 pr->power.states[ACPI_STATE_C3].address)); 342 343 return 0; 344 } 345 346 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 347 { 348 if (!pr->power.states[ACPI_STATE_C1].valid) { 349 /* set the first C-State to C1 */ 350 /* all processors need to support C1 */ 351 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 352 pr->power.states[ACPI_STATE_C1].valid = 1; 353 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; 354 } 355 /* the C0 state only exists as a filler in our array */ 356 pr->power.states[ACPI_STATE_C0].valid = 1; 357 return 0; 358 } 359 360 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 361 { 362 acpi_status status = 0; 363 acpi_integer count; 364 int current_count; 365 int i; 366 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 367 union acpi_object *cst; 368 369 370 if (nocst) 371 return -ENODEV; 372 373 current_count = 0; 374 375 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 376 if (ACPI_FAILURE(status)) { 377 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 378 return -ENODEV; 379 } 380 381 cst = buffer.pointer; 382 383 /* There must be at least 2 elements */ 384 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 385 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 386 status = -EFAULT; 387 goto end; 388 } 389 390 count = cst->package.elements[0].integer.value; 391 392 /* Validate number of power states. */ 393 if (count < 1 || count != cst->package.count - 1) { 394 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 395 status = -EFAULT; 396 goto end; 397 } 398 399 /* Tell driver that at least _CST is supported. */ 400 pr->flags.has_cst = 1; 401 402 for (i = 1; i <= count; i++) { 403 union acpi_object *element; 404 union acpi_object *obj; 405 struct acpi_power_register *reg; 406 struct acpi_processor_cx cx; 407 408 memset(&cx, 0, sizeof(cx)); 409 410 element = &(cst->package.elements[i]); 411 if (element->type != ACPI_TYPE_PACKAGE) 412 continue; 413 414 if (element->package.count != 4) 415 continue; 416 417 obj = &(element->package.elements[0]); 418 419 if (obj->type != ACPI_TYPE_BUFFER) 420 continue; 421 422 reg = (struct acpi_power_register *)obj->buffer.pointer; 423 424 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 425 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 426 continue; 427 428 /* There should be an easy way to extract an integer... */ 429 obj = &(element->package.elements[1]); 430 if (obj->type != ACPI_TYPE_INTEGER) 431 continue; 432 433 cx.type = obj->integer.value; 434 /* 435 * Some buggy BIOSes won't list C1 in _CST - 436 * Let acpi_processor_get_power_info_default() handle them later 437 */ 438 if (i == 1 && cx.type != ACPI_STATE_C1) 439 current_count++; 440 441 cx.address = reg->address; 442 cx.index = current_count + 1; 443 444 cx.entry_method = ACPI_CSTATE_SYSTEMIO; 445 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 446 if (acpi_processor_ffh_cstate_probe 447 (pr->id, &cx, reg) == 0) { 448 cx.entry_method = ACPI_CSTATE_FFH; 449 } else if (cx.type == ACPI_STATE_C1) { 450 /* 451 * C1 is a special case where FIXED_HARDWARE 452 * can be handled in non-MWAIT way as well. 453 * In that case, save this _CST entry info. 454 * Otherwise, ignore this info and continue. 455 */ 456 cx.entry_method = ACPI_CSTATE_HALT; 457 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 458 } else { 459 continue; 460 } 461 if (cx.type == ACPI_STATE_C1 && 462 (idle_halt || idle_nomwait)) { 463 /* 464 * In most cases the C1 space_id obtained from 465 * _CST object is FIXED_HARDWARE access mode. 466 * But when the option of idle=halt is added, 467 * the entry_method type should be changed from 468 * CSTATE_FFH to CSTATE_HALT. 469 * When the option of idle=nomwait is added, 470 * the C1 entry_method type should be 471 * CSTATE_HALT. 472 */ 473 cx.entry_method = ACPI_CSTATE_HALT; 474 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 475 } 476 } else { 477 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", 478 cx.address); 479 } 480 481 if (cx.type == ACPI_STATE_C1) { 482 cx.valid = 1; 483 } 484 485 obj = &(element->package.elements[2]); 486 if (obj->type != ACPI_TYPE_INTEGER) 487 continue; 488 489 cx.latency = obj->integer.value; 490 491 obj = &(element->package.elements[3]); 492 if (obj->type != ACPI_TYPE_INTEGER) 493 continue; 494 495 cx.power = obj->integer.value; 496 497 current_count++; 498 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 499 500 /* 501 * We support total ACPI_PROCESSOR_MAX_POWER - 1 502 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 503 */ 504 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 505 printk(KERN_WARNING 506 "Limiting number of power states to max (%d)\n", 507 ACPI_PROCESSOR_MAX_POWER); 508 printk(KERN_WARNING 509 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 510 break; 511 } 512 } 513 514 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 515 current_count)); 516 517 /* Validate number of power states discovered */ 518 if (current_count < 2) 519 status = -EFAULT; 520 521 end: 522 kfree(buffer.pointer); 523 524 return status; 525 } 526 527 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 528 struct acpi_processor_cx *cx) 529 { 530 static int bm_check_flag = -1; 531 static int bm_control_flag = -1; 532 533 534 if (!cx->address) 535 return; 536 537 /* 538 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 539 * DMA transfers are used by any ISA device to avoid livelock. 540 * Note that we could disable Type-F DMA (as recommended by 541 * the erratum), but this is known to disrupt certain ISA 542 * devices thus we take the conservative approach. 543 */ 544 else if (errata.piix4.fdma) { 545 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 546 "C3 not supported on PIIX4 with Type-F DMA\n")); 547 return; 548 } 549 550 /* All the logic here assumes flags.bm_check is same across all CPUs */ 551 if (bm_check_flag == -1) { 552 /* Determine whether bm_check is needed based on CPU */ 553 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 554 bm_check_flag = pr->flags.bm_check; 555 bm_control_flag = pr->flags.bm_control; 556 } else { 557 pr->flags.bm_check = bm_check_flag; 558 pr->flags.bm_control = bm_control_flag; 559 } 560 561 if (pr->flags.bm_check) { 562 if (!pr->flags.bm_control) { 563 if (pr->flags.has_cst != 1) { 564 /* bus mastering control is necessary */ 565 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 566 "C3 support requires BM control\n")); 567 return; 568 } else { 569 /* Here we enter C3 without bus mastering */ 570 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 571 "C3 support without BM control\n")); 572 } 573 } 574 } else { 575 /* 576 * WBINVD should be set in fadt, for C3 state to be 577 * supported on when bm_check is not required. 578 */ 579 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 580 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 581 "Cache invalidation should work properly" 582 " for C3 to be enabled on SMP systems\n")); 583 return; 584 } 585 } 586 587 /* 588 * Otherwise we've met all of our C3 requirements. 589 * Normalize the C3 latency to expidite policy. Enable 590 * checking of bus mastering status (bm_check) so we can 591 * use this in our C3 policy 592 */ 593 cx->valid = 1; 594 595 cx->latency_ticks = cx->latency; 596 /* 597 * On older chipsets, BM_RLD needs to be set 598 * in order for Bus Master activity to wake the 599 * system from C3. Newer chipsets handle DMA 600 * during C3 automatically and BM_RLD is a NOP. 601 * In either case, the proper way to 602 * handle BM_RLD is to set it and leave it set. 603 */ 604 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 605 606 return; 607 } 608 609 static int acpi_processor_power_verify(struct acpi_processor *pr) 610 { 611 unsigned int i; 612 unsigned int working = 0; 613 614 pr->power.timer_broadcast_on_state = INT_MAX; 615 616 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 617 struct acpi_processor_cx *cx = &pr->power.states[i]; 618 619 switch (cx->type) { 620 case ACPI_STATE_C1: 621 cx->valid = 1; 622 break; 623 624 case ACPI_STATE_C2: 625 if (!cx->address) 626 break; 627 cx->valid = 1; 628 cx->latency_ticks = cx->latency; /* Normalize latency */ 629 break; 630 631 case ACPI_STATE_C3: 632 acpi_processor_power_verify_c3(pr, cx); 633 break; 634 } 635 if (!cx->valid) 636 continue; 637 638 lapic_timer_check_state(i, pr, cx); 639 tsc_check_state(cx->type); 640 working++; 641 } 642 643 lapic_timer_propagate_broadcast(pr); 644 645 return (working); 646 } 647 648 static int acpi_processor_get_power_info(struct acpi_processor *pr) 649 { 650 unsigned int i; 651 int result; 652 653 654 /* NOTE: the idle thread may not be running while calling 655 * this function */ 656 657 /* Zero initialize all the C-states info. */ 658 memset(pr->power.states, 0, sizeof(pr->power.states)); 659 660 result = acpi_processor_get_power_info_cst(pr); 661 if (result == -ENODEV) 662 result = acpi_processor_get_power_info_fadt(pr); 663 664 if (result) 665 return result; 666 667 acpi_processor_get_power_info_default(pr); 668 669 pr->power.count = acpi_processor_power_verify(pr); 670 671 /* 672 * if one state of type C2 or C3 is available, mark this 673 * CPU as being "idle manageable" 674 */ 675 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 676 if (pr->power.states[i].valid) { 677 pr->power.count = i; 678 if (pr->power.states[i].type >= ACPI_STATE_C2) 679 pr->flags.power = 1; 680 } 681 } 682 683 return 0; 684 } 685 686 #ifdef CONFIG_ACPI_PROCFS 687 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 688 { 689 struct acpi_processor *pr = seq->private; 690 unsigned int i; 691 692 693 if (!pr) 694 goto end; 695 696 seq_printf(seq, "active state: C%zd\n" 697 "max_cstate: C%d\n" 698 "maximum allowed latency: %d usec\n", 699 pr->power.state ? pr->power.state - pr->power.states : 0, 700 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)); 701 702 seq_puts(seq, "states:\n"); 703 704 for (i = 1; i <= pr->power.count; i++) { 705 seq_printf(seq, " %cC%d: ", 706 (&pr->power.states[i] == 707 pr->power.state ? '*' : ' '), i); 708 709 if (!pr->power.states[i].valid) { 710 seq_puts(seq, "<not supported>\n"); 711 continue; 712 } 713 714 switch (pr->power.states[i].type) { 715 case ACPI_STATE_C1: 716 seq_printf(seq, "type[C1] "); 717 break; 718 case ACPI_STATE_C2: 719 seq_printf(seq, "type[C2] "); 720 break; 721 case ACPI_STATE_C3: 722 seq_printf(seq, "type[C3] "); 723 break; 724 default: 725 seq_printf(seq, "type[--] "); 726 break; 727 } 728 729 if (pr->power.states[i].promotion.state) 730 seq_printf(seq, "promotion[C%zd] ", 731 (pr->power.states[i].promotion.state - 732 pr->power.states)); 733 else 734 seq_puts(seq, "promotion[--] "); 735 736 if (pr->power.states[i].demotion.state) 737 seq_printf(seq, "demotion[C%zd] ", 738 (pr->power.states[i].demotion.state - 739 pr->power.states)); 740 else 741 seq_puts(seq, "demotion[--] "); 742 743 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", 744 pr->power.states[i].latency, 745 pr->power.states[i].usage, 746 (unsigned long long)pr->power.states[i].time); 747 } 748 749 end: 750 return 0; 751 } 752 753 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 754 { 755 return single_open(file, acpi_processor_power_seq_show, 756 PDE(inode)->data); 757 } 758 759 static const struct file_operations acpi_processor_power_fops = { 760 .owner = THIS_MODULE, 761 .open = acpi_processor_power_open_fs, 762 .read = seq_read, 763 .llseek = seq_lseek, 764 .release = single_release, 765 }; 766 #endif 767 768 /** 769 * acpi_idle_bm_check - checks if bus master activity was detected 770 */ 771 static int acpi_idle_bm_check(void) 772 { 773 u32 bm_status = 0; 774 775 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 776 if (bm_status) 777 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 778 /* 779 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 780 * the true state of bus mastering activity; forcing us to 781 * manually check the BMIDEA bit of each IDE channel. 782 */ 783 else if (errata.piix4.bmisx) { 784 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 785 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 786 bm_status = 1; 787 } 788 return bm_status; 789 } 790 791 /** 792 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry 793 * @cx: cstate data 794 * 795 * Caller disables interrupt before call and enables interrupt after return. 796 */ 797 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) 798 { 799 /* Don't trace irqs off for idle */ 800 stop_critical_timings(); 801 if (cx->entry_method == ACPI_CSTATE_FFH) { 802 /* Call into architectural FFH based C-state */ 803 acpi_processor_ffh_cstate_enter(cx); 804 } else if (cx->entry_method == ACPI_CSTATE_HALT) { 805 acpi_safe_halt(); 806 } else { 807 int unused; 808 /* IO port based C-state */ 809 inb(cx->address); 810 /* Dummy wait op - must do something useless after P_LVL2 read 811 because chipsets cannot guarantee that STPCLK# signal 812 gets asserted in time to freeze execution properly. */ 813 unused = inl(acpi_gbl_FADT.xpm_timer_block.address); 814 } 815 start_critical_timings(); 816 } 817 818 /** 819 * acpi_idle_enter_c1 - enters an ACPI C1 state-type 820 * @dev: the target CPU 821 * @state: the state data 822 * 823 * This is equivalent to the HALT instruction. 824 */ 825 static int acpi_idle_enter_c1(struct cpuidle_device *dev, 826 struct cpuidle_state *state) 827 { 828 ktime_t kt1, kt2; 829 s64 idle_time; 830 struct acpi_processor *pr; 831 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 832 833 pr = __get_cpu_var(processors); 834 835 if (unlikely(!pr)) 836 return 0; 837 838 local_irq_disable(); 839 840 /* Do not access any ACPI IO ports in suspend path */ 841 if (acpi_idle_suspend) { 842 local_irq_enable(); 843 cpu_relax(); 844 return 0; 845 } 846 847 lapic_timer_state_broadcast(pr, cx, 1); 848 kt1 = ktime_get_real(); 849 acpi_idle_do_entry(cx); 850 kt2 = ktime_get_real(); 851 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 852 853 local_irq_enable(); 854 cx->usage++; 855 lapic_timer_state_broadcast(pr, cx, 0); 856 857 return idle_time; 858 } 859 860 /** 861 * acpi_idle_enter_simple - enters an ACPI state without BM handling 862 * @dev: the target CPU 863 * @state: the state data 864 */ 865 static int acpi_idle_enter_simple(struct cpuidle_device *dev, 866 struct cpuidle_state *state) 867 { 868 struct acpi_processor *pr; 869 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 870 ktime_t kt1, kt2; 871 s64 idle_time; 872 s64 sleep_ticks = 0; 873 874 pr = __get_cpu_var(processors); 875 876 if (unlikely(!pr)) 877 return 0; 878 879 if (acpi_idle_suspend) 880 return(acpi_idle_enter_c1(dev, state)); 881 882 local_irq_disable(); 883 if (cx->entry_method != ACPI_CSTATE_FFH) { 884 current_thread_info()->status &= ~TS_POLLING; 885 /* 886 * TS_POLLING-cleared state must be visible before we test 887 * NEED_RESCHED: 888 */ 889 smp_mb(); 890 } 891 892 if (unlikely(need_resched())) { 893 current_thread_info()->status |= TS_POLLING; 894 local_irq_enable(); 895 return 0; 896 } 897 898 /* 899 * Must be done before busmaster disable as we might need to 900 * access HPET ! 901 */ 902 lapic_timer_state_broadcast(pr, cx, 1); 903 904 if (cx->type == ACPI_STATE_C3) 905 ACPI_FLUSH_CPU_CACHE(); 906 907 kt1 = ktime_get_real(); 908 /* Tell the scheduler that we are going deep-idle: */ 909 sched_clock_idle_sleep_event(); 910 acpi_idle_do_entry(cx); 911 kt2 = ktime_get_real(); 912 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 913 914 sleep_ticks = us_to_pm_timer_ticks(idle_time); 915 916 /* Tell the scheduler how much we idled: */ 917 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); 918 919 local_irq_enable(); 920 current_thread_info()->status |= TS_POLLING; 921 922 cx->usage++; 923 924 lapic_timer_state_broadcast(pr, cx, 0); 925 cx->time += sleep_ticks; 926 return idle_time; 927 } 928 929 static int c3_cpu_count; 930 static DEFINE_SPINLOCK(c3_lock); 931 932 /** 933 * acpi_idle_enter_bm - enters C3 with proper BM handling 934 * @dev: the target CPU 935 * @state: the state data 936 * 937 * If BM is detected, the deepest non-C3 idle state is entered instead. 938 */ 939 static int acpi_idle_enter_bm(struct cpuidle_device *dev, 940 struct cpuidle_state *state) 941 { 942 struct acpi_processor *pr; 943 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 944 ktime_t kt1, kt2; 945 s64 idle_time; 946 s64 sleep_ticks = 0; 947 948 949 pr = __get_cpu_var(processors); 950 951 if (unlikely(!pr)) 952 return 0; 953 954 if (acpi_idle_suspend) 955 return(acpi_idle_enter_c1(dev, state)); 956 957 if (acpi_idle_bm_check()) { 958 if (dev->safe_state) { 959 dev->last_state = dev->safe_state; 960 return dev->safe_state->enter(dev, dev->safe_state); 961 } else { 962 local_irq_disable(); 963 acpi_safe_halt(); 964 local_irq_enable(); 965 return 0; 966 } 967 } 968 969 local_irq_disable(); 970 if (cx->entry_method != ACPI_CSTATE_FFH) { 971 current_thread_info()->status &= ~TS_POLLING; 972 /* 973 * TS_POLLING-cleared state must be visible before we test 974 * NEED_RESCHED: 975 */ 976 smp_mb(); 977 } 978 979 if (unlikely(need_resched())) { 980 current_thread_info()->status |= TS_POLLING; 981 local_irq_enable(); 982 return 0; 983 } 984 985 acpi_unlazy_tlb(smp_processor_id()); 986 987 /* Tell the scheduler that we are going deep-idle: */ 988 sched_clock_idle_sleep_event(); 989 /* 990 * Must be done before busmaster disable as we might need to 991 * access HPET ! 992 */ 993 lapic_timer_state_broadcast(pr, cx, 1); 994 995 kt1 = ktime_get_real(); 996 /* 997 * disable bus master 998 * bm_check implies we need ARB_DIS 999 * !bm_check implies we need cache flush 1000 * bm_control implies whether we can do ARB_DIS 1001 * 1002 * That leaves a case where bm_check is set and bm_control is 1003 * not set. In that case we cannot do much, we enter C3 1004 * without doing anything. 1005 */ 1006 if (pr->flags.bm_check && pr->flags.bm_control) { 1007 spin_lock(&c3_lock); 1008 c3_cpu_count++; 1009 /* Disable bus master arbitration when all CPUs are in C3 */ 1010 if (c3_cpu_count == num_online_cpus()) 1011 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); 1012 spin_unlock(&c3_lock); 1013 } else if (!pr->flags.bm_check) { 1014 ACPI_FLUSH_CPU_CACHE(); 1015 } 1016 1017 acpi_idle_do_entry(cx); 1018 1019 /* Re-enable bus master arbitration */ 1020 if (pr->flags.bm_check && pr->flags.bm_control) { 1021 spin_lock(&c3_lock); 1022 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); 1023 c3_cpu_count--; 1024 spin_unlock(&c3_lock); 1025 } 1026 kt2 = ktime_get_real(); 1027 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 1028 1029 sleep_ticks = us_to_pm_timer_ticks(idle_time); 1030 /* Tell the scheduler how much we idled: */ 1031 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); 1032 1033 local_irq_enable(); 1034 current_thread_info()->status |= TS_POLLING; 1035 1036 cx->usage++; 1037 1038 lapic_timer_state_broadcast(pr, cx, 0); 1039 cx->time += sleep_ticks; 1040 return idle_time; 1041 } 1042 1043 struct cpuidle_driver acpi_idle_driver = { 1044 .name = "acpi_idle", 1045 .owner = THIS_MODULE, 1046 }; 1047 1048 /** 1049 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE 1050 * @pr: the ACPI processor 1051 */ 1052 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) 1053 { 1054 int i, count = CPUIDLE_DRIVER_STATE_START; 1055 struct acpi_processor_cx *cx; 1056 struct cpuidle_state *state; 1057 struct cpuidle_device *dev = &pr->power.dev; 1058 1059 if (!pr->flags.power_setup_done) 1060 return -EINVAL; 1061 1062 if (pr->flags.power == 0) { 1063 return -EINVAL; 1064 } 1065 1066 dev->cpu = pr->id; 1067 for (i = 0; i < CPUIDLE_STATE_MAX; i++) { 1068 dev->states[i].name[0] = '\0'; 1069 dev->states[i].desc[0] = '\0'; 1070 } 1071 1072 if (max_cstate == 0) 1073 max_cstate = 1; 1074 1075 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 1076 cx = &pr->power.states[i]; 1077 state = &dev->states[count]; 1078 1079 if (!cx->valid) 1080 continue; 1081 1082 #ifdef CONFIG_HOTPLUG_CPU 1083 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 1084 !pr->flags.has_cst && 1085 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 1086 continue; 1087 #endif 1088 cpuidle_set_statedata(state, cx); 1089 1090 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); 1091 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); 1092 state->exit_latency = cx->latency; 1093 state->target_residency = cx->latency * latency_factor; 1094 state->power_usage = cx->power; 1095 1096 state->flags = 0; 1097 switch (cx->type) { 1098 case ACPI_STATE_C1: 1099 state->flags |= CPUIDLE_FLAG_SHALLOW; 1100 if (cx->entry_method == ACPI_CSTATE_FFH) 1101 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1102 1103 state->enter = acpi_idle_enter_c1; 1104 dev->safe_state = state; 1105 break; 1106 1107 case ACPI_STATE_C2: 1108 state->flags |= CPUIDLE_FLAG_BALANCED; 1109 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1110 state->enter = acpi_idle_enter_simple; 1111 dev->safe_state = state; 1112 break; 1113 1114 case ACPI_STATE_C3: 1115 state->flags |= CPUIDLE_FLAG_DEEP; 1116 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1117 state->flags |= CPUIDLE_FLAG_CHECK_BM; 1118 state->enter = pr->flags.bm_check ? 1119 acpi_idle_enter_bm : 1120 acpi_idle_enter_simple; 1121 break; 1122 } 1123 1124 count++; 1125 if (count == CPUIDLE_STATE_MAX) 1126 break; 1127 } 1128 1129 dev->state_count = count; 1130 1131 if (!count) 1132 return -EINVAL; 1133 1134 return 0; 1135 } 1136 1137 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1138 { 1139 int ret = 0; 1140 1141 if (boot_option_idle_override) 1142 return 0; 1143 1144 if (!pr) 1145 return -EINVAL; 1146 1147 if (nocst) { 1148 return -ENODEV; 1149 } 1150 1151 if (!pr->flags.power_setup_done) 1152 return -ENODEV; 1153 1154 cpuidle_pause_and_lock(); 1155 cpuidle_disable_device(&pr->power.dev); 1156 acpi_processor_get_power_info(pr); 1157 if (pr->flags.power) { 1158 acpi_processor_setup_cpuidle(pr); 1159 ret = cpuidle_enable_device(&pr->power.dev); 1160 } 1161 cpuidle_resume_and_unlock(); 1162 1163 return ret; 1164 } 1165 1166 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1167 struct acpi_device *device) 1168 { 1169 acpi_status status = 0; 1170 static int first_run; 1171 #ifdef CONFIG_ACPI_PROCFS 1172 struct proc_dir_entry *entry = NULL; 1173 #endif 1174 1175 if (boot_option_idle_override) 1176 return 0; 1177 1178 if (!first_run) { 1179 if (idle_halt) { 1180 /* 1181 * When the boot option of "idle=halt" is added, halt 1182 * is used for CPU IDLE. 1183 * In such case C2/C3 is meaningless. So the max_cstate 1184 * is set to one. 1185 */ 1186 max_cstate = 1; 1187 } 1188 dmi_check_system(processor_power_dmi_table); 1189 max_cstate = acpi_processor_cstate_check(max_cstate); 1190 if (max_cstate < ACPI_C_STATES_MAX) 1191 printk(KERN_NOTICE 1192 "ACPI: processor limited to max C-state %d\n", 1193 max_cstate); 1194 first_run++; 1195 } 1196 1197 if (!pr) 1198 return -EINVAL; 1199 1200 if (acpi_gbl_FADT.cst_control && !nocst) { 1201 status = 1202 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1203 if (ACPI_FAILURE(status)) { 1204 ACPI_EXCEPTION((AE_INFO, status, 1205 "Notifying BIOS of _CST ability failed")); 1206 } 1207 } 1208 1209 acpi_processor_get_power_info(pr); 1210 pr->flags.power_setup_done = 1; 1211 1212 /* 1213 * Install the idle handler if processor power management is supported. 1214 * Note that we use previously set idle handler will be used on 1215 * platforms that only support C1. 1216 */ 1217 if (pr->flags.power) { 1218 acpi_processor_setup_cpuidle(pr); 1219 if (cpuidle_register_device(&pr->power.dev)) 1220 return -EIO; 1221 } 1222 #ifdef CONFIG_ACPI_PROCFS 1223 /* 'power' [R] */ 1224 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER, 1225 S_IRUGO, acpi_device_dir(device), 1226 &acpi_processor_power_fops, 1227 acpi_driver_data(device)); 1228 if (!entry) 1229 return -EIO; 1230 #endif 1231 return 0; 1232 } 1233 1234 int acpi_processor_power_exit(struct acpi_processor *pr, 1235 struct acpi_device *device) 1236 { 1237 if (boot_option_idle_override) 1238 return 0; 1239 1240 cpuidle_unregister_device(&pr->power.dev); 1241 pr->flags.power_setup_done = 0; 1242 1243 #ifdef CONFIG_ACPI_PROCFS 1244 if (acpi_device_dir(device)) 1245 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1246 acpi_device_dir(device)); 1247 #endif 1248 1249 return 0; 1250 } 1251