xref: /linux/drivers/acpi/processor_idle.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45 
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55 
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58 
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62 
63 #define PREFIX "ACPI: "
64 
65 #define ACPI_PROCESSOR_CLASS            "processor"
66 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER	"power"
69 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD			1	/* 1us */
71 #define C3_OVERHEAD			1	/* 1us */
72 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
73 
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
78 
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81 
82 static s64 us_to_pm_timer_ticks(s64 t)
83 {
84 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 }
86 /*
87  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88  * For now disable this. Probably a bug somewhere else.
89  *
90  * To skip this limit, boot/load with a large max_cstate limit.
91  */
92 static int set_max_cstate(const struct dmi_system_id *id)
93 {
94 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 		return 0;
96 
97 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
100 
101 	max_cstate = (long)id->driver_data;
102 
103 	return 0;
104 }
105 
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107    callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 	{ set_max_cstate, "Clevo 5600D", {
110 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 	 (void *)2},
113 	{ set_max_cstate, "Pavilion zv5000", {
114 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
115 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
116 	 (void *)1},
117 	{ set_max_cstate, "Asus L8400B", {
118 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
119 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
120 	 (void *)1},
121 	{},
122 };
123 
124 
125 /*
126  * Callers should disable interrupts before the call and enable
127  * interrupts after return.
128  */
129 static void acpi_safe_halt(void)
130 {
131 	current_thread_info()->status &= ~TS_POLLING;
132 	/*
133 	 * TS_POLLING-cleared state must be visible before we
134 	 * test NEED_RESCHED:
135 	 */
136 	smp_mb();
137 	if (!need_resched()) {
138 		safe_halt();
139 		local_irq_disable();
140 	}
141 	current_thread_info()->status |= TS_POLLING;
142 }
143 
144 #ifdef ARCH_APICTIMER_STOPS_ON_C3
145 
146 /*
147  * Some BIOS implementations switch to C3 in the published C2 state.
148  * This seems to be a common problem on AMD boxen, but other vendors
149  * are affected too. We pick the most conservative approach: we assume
150  * that the local APIC stops in both C2 and C3.
151  */
152 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
153 				   struct acpi_processor_cx *cx)
154 {
155 	struct acpi_processor_power *pwr = &pr->power;
156 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
157 
158 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
159 		return;
160 
161 	if (boot_cpu_has(X86_FEATURE_AMDC1E))
162 		type = ACPI_STATE_C1;
163 
164 	/*
165 	 * Check, if one of the previous states already marked the lapic
166 	 * unstable
167 	 */
168 	if (pwr->timer_broadcast_on_state < state)
169 		return;
170 
171 	if (cx->type >= type)
172 		pr->power.timer_broadcast_on_state = state;
173 }
174 
175 static void __lapic_timer_propagate_broadcast(void *arg)
176 {
177 	struct acpi_processor *pr = (struct acpi_processor *) arg;
178 	unsigned long reason;
179 
180 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
181 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
182 
183 	clockevents_notify(reason, &pr->id);
184 }
185 
186 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
187 {
188 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
189 				 (void *)pr, 1);
190 }
191 
192 /* Power(C) State timer broadcast control */
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194 				       struct acpi_processor_cx *cx,
195 				       int broadcast)
196 {
197 	int state = cx - pr->power.states;
198 
199 	if (state >= pr->power.timer_broadcast_on_state) {
200 		unsigned long reason;
201 
202 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
203 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
204 		clockevents_notify(reason, &pr->id);
205 	}
206 }
207 
208 #else
209 
210 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
211 				   struct acpi_processor_cx *cstate) { }
212 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
213 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
214 				       struct acpi_processor_cx *cx,
215 				       int broadcast)
216 {
217 }
218 
219 #endif
220 
221 /*
222  * Suspend / resume control
223  */
224 static int acpi_idle_suspend;
225 static u32 saved_bm_rld;
226 
227 static void acpi_idle_bm_rld_save(void)
228 {
229 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
230 }
231 static void acpi_idle_bm_rld_restore(void)
232 {
233 	u32 resumed_bm_rld;
234 
235 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
236 
237 	if (resumed_bm_rld != saved_bm_rld)
238 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
239 }
240 
241 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
242 {
243 	if (acpi_idle_suspend == 1)
244 		return 0;
245 
246 	acpi_idle_bm_rld_save();
247 	acpi_idle_suspend = 1;
248 	return 0;
249 }
250 
251 int acpi_processor_resume(struct acpi_device * device)
252 {
253 	if (acpi_idle_suspend == 0)
254 		return 0;
255 
256 	acpi_idle_bm_rld_restore();
257 	acpi_idle_suspend = 0;
258 	return 0;
259 }
260 
261 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
262 static void tsc_check_state(int state)
263 {
264 	switch (boot_cpu_data.x86_vendor) {
265 	case X86_VENDOR_AMD:
266 	case X86_VENDOR_INTEL:
267 		/*
268 		 * AMD Fam10h TSC will tick in all
269 		 * C/P/S0/S1 states when this bit is set.
270 		 */
271 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
272 			return;
273 
274 		/*FALL THROUGH*/
275 	default:
276 		/* TSC could halt in idle, so notify users */
277 		if (state > ACPI_STATE_C1)
278 			mark_tsc_unstable("TSC halts in idle");
279 	}
280 }
281 #else
282 static void tsc_check_state(int state) { return; }
283 #endif
284 
285 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
286 {
287 
288 	if (!pr)
289 		return -EINVAL;
290 
291 	if (!pr->pblk)
292 		return -ENODEV;
293 
294 	/* if info is obtained from pblk/fadt, type equals state */
295 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
296 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
297 
298 #ifndef CONFIG_HOTPLUG_CPU
299 	/*
300 	 * Check for P_LVL2_UP flag before entering C2 and above on
301 	 * an SMP system.
302 	 */
303 	if ((num_online_cpus() > 1) &&
304 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
305 		return -ENODEV;
306 #endif
307 
308 	/* determine C2 and C3 address from pblk */
309 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
310 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
311 
312 	/* determine latencies from FADT */
313 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
314 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
315 
316 	/*
317 	 * FADT specified C2 latency must be less than or equal to
318 	 * 100 microseconds.
319 	 */
320 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
321 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
322 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
323 		/* invalidate C2 */
324 		pr->power.states[ACPI_STATE_C2].address = 0;
325 	}
326 
327 	/*
328 	 * FADT supplied C3 latency must be less than or equal to
329 	 * 1000 microseconds.
330 	 */
331 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
332 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
333 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
334 		/* invalidate C3 */
335 		pr->power.states[ACPI_STATE_C3].address = 0;
336 	}
337 
338 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
339 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
340 			  pr->power.states[ACPI_STATE_C2].address,
341 			  pr->power.states[ACPI_STATE_C3].address));
342 
343 	return 0;
344 }
345 
346 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
347 {
348 	if (!pr->power.states[ACPI_STATE_C1].valid) {
349 		/* set the first C-State to C1 */
350 		/* all processors need to support C1 */
351 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
352 		pr->power.states[ACPI_STATE_C1].valid = 1;
353 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
354 	}
355 	/* the C0 state only exists as a filler in our array */
356 	pr->power.states[ACPI_STATE_C0].valid = 1;
357 	return 0;
358 }
359 
360 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
361 {
362 	acpi_status status = 0;
363 	acpi_integer count;
364 	int current_count;
365 	int i;
366 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
367 	union acpi_object *cst;
368 
369 
370 	if (nocst)
371 		return -ENODEV;
372 
373 	current_count = 0;
374 
375 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
376 	if (ACPI_FAILURE(status)) {
377 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
378 		return -ENODEV;
379 	}
380 
381 	cst = buffer.pointer;
382 
383 	/* There must be at least 2 elements */
384 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
385 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
386 		status = -EFAULT;
387 		goto end;
388 	}
389 
390 	count = cst->package.elements[0].integer.value;
391 
392 	/* Validate number of power states. */
393 	if (count < 1 || count != cst->package.count - 1) {
394 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
395 		status = -EFAULT;
396 		goto end;
397 	}
398 
399 	/* Tell driver that at least _CST is supported. */
400 	pr->flags.has_cst = 1;
401 
402 	for (i = 1; i <= count; i++) {
403 		union acpi_object *element;
404 		union acpi_object *obj;
405 		struct acpi_power_register *reg;
406 		struct acpi_processor_cx cx;
407 
408 		memset(&cx, 0, sizeof(cx));
409 
410 		element = &(cst->package.elements[i]);
411 		if (element->type != ACPI_TYPE_PACKAGE)
412 			continue;
413 
414 		if (element->package.count != 4)
415 			continue;
416 
417 		obj = &(element->package.elements[0]);
418 
419 		if (obj->type != ACPI_TYPE_BUFFER)
420 			continue;
421 
422 		reg = (struct acpi_power_register *)obj->buffer.pointer;
423 
424 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
425 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
426 			continue;
427 
428 		/* There should be an easy way to extract an integer... */
429 		obj = &(element->package.elements[1]);
430 		if (obj->type != ACPI_TYPE_INTEGER)
431 			continue;
432 
433 		cx.type = obj->integer.value;
434 		/*
435 		 * Some buggy BIOSes won't list C1 in _CST -
436 		 * Let acpi_processor_get_power_info_default() handle them later
437 		 */
438 		if (i == 1 && cx.type != ACPI_STATE_C1)
439 			current_count++;
440 
441 		cx.address = reg->address;
442 		cx.index = current_count + 1;
443 
444 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
445 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
446 			if (acpi_processor_ffh_cstate_probe
447 					(pr->id, &cx, reg) == 0) {
448 				cx.entry_method = ACPI_CSTATE_FFH;
449 			} else if (cx.type == ACPI_STATE_C1) {
450 				/*
451 				 * C1 is a special case where FIXED_HARDWARE
452 				 * can be handled in non-MWAIT way as well.
453 				 * In that case, save this _CST entry info.
454 				 * Otherwise, ignore this info and continue.
455 				 */
456 				cx.entry_method = ACPI_CSTATE_HALT;
457 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
458 			} else {
459 				continue;
460 			}
461 			if (cx.type == ACPI_STATE_C1 &&
462 					(idle_halt || idle_nomwait)) {
463 				/*
464 				 * In most cases the C1 space_id obtained from
465 				 * _CST object is FIXED_HARDWARE access mode.
466 				 * But when the option of idle=halt is added,
467 				 * the entry_method type should be changed from
468 				 * CSTATE_FFH to CSTATE_HALT.
469 				 * When the option of idle=nomwait is added,
470 				 * the C1 entry_method type should be
471 				 * CSTATE_HALT.
472 				 */
473 				cx.entry_method = ACPI_CSTATE_HALT;
474 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
475 			}
476 		} else {
477 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
478 				 cx.address);
479 		}
480 
481 		if (cx.type == ACPI_STATE_C1) {
482 			cx.valid = 1;
483 		}
484 
485 		obj = &(element->package.elements[2]);
486 		if (obj->type != ACPI_TYPE_INTEGER)
487 			continue;
488 
489 		cx.latency = obj->integer.value;
490 
491 		obj = &(element->package.elements[3]);
492 		if (obj->type != ACPI_TYPE_INTEGER)
493 			continue;
494 
495 		cx.power = obj->integer.value;
496 
497 		current_count++;
498 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
499 
500 		/*
501 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
502 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
503 		 */
504 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
505 			printk(KERN_WARNING
506 			       "Limiting number of power states to max (%d)\n",
507 			       ACPI_PROCESSOR_MAX_POWER);
508 			printk(KERN_WARNING
509 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
510 			break;
511 		}
512 	}
513 
514 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
515 			  current_count));
516 
517 	/* Validate number of power states discovered */
518 	if (current_count < 2)
519 		status = -EFAULT;
520 
521       end:
522 	kfree(buffer.pointer);
523 
524 	return status;
525 }
526 
527 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
528 					   struct acpi_processor_cx *cx)
529 {
530 	static int bm_check_flag = -1;
531 	static int bm_control_flag = -1;
532 
533 
534 	if (!cx->address)
535 		return;
536 
537 	/*
538 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
539 	 * DMA transfers are used by any ISA device to avoid livelock.
540 	 * Note that we could disable Type-F DMA (as recommended by
541 	 * the erratum), but this is known to disrupt certain ISA
542 	 * devices thus we take the conservative approach.
543 	 */
544 	else if (errata.piix4.fdma) {
545 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
546 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
547 		return;
548 	}
549 
550 	/* All the logic here assumes flags.bm_check is same across all CPUs */
551 	if (bm_check_flag == -1) {
552 		/* Determine whether bm_check is needed based on CPU  */
553 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
554 		bm_check_flag = pr->flags.bm_check;
555 		bm_control_flag = pr->flags.bm_control;
556 	} else {
557 		pr->flags.bm_check = bm_check_flag;
558 		pr->flags.bm_control = bm_control_flag;
559 	}
560 
561 	if (pr->flags.bm_check) {
562 		if (!pr->flags.bm_control) {
563 			if (pr->flags.has_cst != 1) {
564 				/* bus mastering control is necessary */
565 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
566 					"C3 support requires BM control\n"));
567 				return;
568 			} else {
569 				/* Here we enter C3 without bus mastering */
570 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
571 					"C3 support without BM control\n"));
572 			}
573 		}
574 	} else {
575 		/*
576 		 * WBINVD should be set in fadt, for C3 state to be
577 		 * supported on when bm_check is not required.
578 		 */
579 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
580 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
581 					  "Cache invalidation should work properly"
582 					  " for C3 to be enabled on SMP systems\n"));
583 			return;
584 		}
585 	}
586 
587 	/*
588 	 * Otherwise we've met all of our C3 requirements.
589 	 * Normalize the C3 latency to expidite policy.  Enable
590 	 * checking of bus mastering status (bm_check) so we can
591 	 * use this in our C3 policy
592 	 */
593 	cx->valid = 1;
594 
595 	cx->latency_ticks = cx->latency;
596 	/*
597 	 * On older chipsets, BM_RLD needs to be set
598 	 * in order for Bus Master activity to wake the
599 	 * system from C3.  Newer chipsets handle DMA
600 	 * during C3 automatically and BM_RLD is a NOP.
601 	 * In either case, the proper way to
602 	 * handle BM_RLD is to set it and leave it set.
603 	 */
604 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
605 
606 	return;
607 }
608 
609 static int acpi_processor_power_verify(struct acpi_processor *pr)
610 {
611 	unsigned int i;
612 	unsigned int working = 0;
613 
614 	pr->power.timer_broadcast_on_state = INT_MAX;
615 
616 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
617 		struct acpi_processor_cx *cx = &pr->power.states[i];
618 
619 		switch (cx->type) {
620 		case ACPI_STATE_C1:
621 			cx->valid = 1;
622 			break;
623 
624 		case ACPI_STATE_C2:
625 			if (!cx->address)
626 				break;
627 			cx->valid = 1;
628 			cx->latency_ticks = cx->latency; /* Normalize latency */
629 			break;
630 
631 		case ACPI_STATE_C3:
632 			acpi_processor_power_verify_c3(pr, cx);
633 			break;
634 		}
635 		if (!cx->valid)
636 			continue;
637 
638 		lapic_timer_check_state(i, pr, cx);
639 		tsc_check_state(cx->type);
640 		working++;
641 	}
642 
643 	lapic_timer_propagate_broadcast(pr);
644 
645 	return (working);
646 }
647 
648 static int acpi_processor_get_power_info(struct acpi_processor *pr)
649 {
650 	unsigned int i;
651 	int result;
652 
653 
654 	/* NOTE: the idle thread may not be running while calling
655 	 * this function */
656 
657 	/* Zero initialize all the C-states info. */
658 	memset(pr->power.states, 0, sizeof(pr->power.states));
659 
660 	result = acpi_processor_get_power_info_cst(pr);
661 	if (result == -ENODEV)
662 		result = acpi_processor_get_power_info_fadt(pr);
663 
664 	if (result)
665 		return result;
666 
667 	acpi_processor_get_power_info_default(pr);
668 
669 	pr->power.count = acpi_processor_power_verify(pr);
670 
671 	/*
672 	 * if one state of type C2 or C3 is available, mark this
673 	 * CPU as being "idle manageable"
674 	 */
675 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
676 		if (pr->power.states[i].valid) {
677 			pr->power.count = i;
678 			if (pr->power.states[i].type >= ACPI_STATE_C2)
679 				pr->flags.power = 1;
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 #ifdef CONFIG_ACPI_PROCFS
687 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
688 {
689 	struct acpi_processor *pr = seq->private;
690 	unsigned int i;
691 
692 
693 	if (!pr)
694 		goto end;
695 
696 	seq_printf(seq, "active state:            C%zd\n"
697 		   "max_cstate:              C%d\n"
698 		   "maximum allowed latency: %d usec\n",
699 		   pr->power.state ? pr->power.state - pr->power.states : 0,
700 		   max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
701 
702 	seq_puts(seq, "states:\n");
703 
704 	for (i = 1; i <= pr->power.count; i++) {
705 		seq_printf(seq, "   %cC%d:                  ",
706 			   (&pr->power.states[i] ==
707 			    pr->power.state ? '*' : ' '), i);
708 
709 		if (!pr->power.states[i].valid) {
710 			seq_puts(seq, "<not supported>\n");
711 			continue;
712 		}
713 
714 		switch (pr->power.states[i].type) {
715 		case ACPI_STATE_C1:
716 			seq_printf(seq, "type[C1] ");
717 			break;
718 		case ACPI_STATE_C2:
719 			seq_printf(seq, "type[C2] ");
720 			break;
721 		case ACPI_STATE_C3:
722 			seq_printf(seq, "type[C3] ");
723 			break;
724 		default:
725 			seq_printf(seq, "type[--] ");
726 			break;
727 		}
728 
729 		if (pr->power.states[i].promotion.state)
730 			seq_printf(seq, "promotion[C%zd] ",
731 				   (pr->power.states[i].promotion.state -
732 				    pr->power.states));
733 		else
734 			seq_puts(seq, "promotion[--] ");
735 
736 		if (pr->power.states[i].demotion.state)
737 			seq_printf(seq, "demotion[C%zd] ",
738 				   (pr->power.states[i].demotion.state -
739 				    pr->power.states));
740 		else
741 			seq_puts(seq, "demotion[--] ");
742 
743 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
744 			   pr->power.states[i].latency,
745 			   pr->power.states[i].usage,
746 			   (unsigned long long)pr->power.states[i].time);
747 	}
748 
749       end:
750 	return 0;
751 }
752 
753 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
754 {
755 	return single_open(file, acpi_processor_power_seq_show,
756 			   PDE(inode)->data);
757 }
758 
759 static const struct file_operations acpi_processor_power_fops = {
760 	.owner = THIS_MODULE,
761 	.open = acpi_processor_power_open_fs,
762 	.read = seq_read,
763 	.llseek = seq_lseek,
764 	.release = single_release,
765 };
766 #endif
767 
768 /**
769  * acpi_idle_bm_check - checks if bus master activity was detected
770  */
771 static int acpi_idle_bm_check(void)
772 {
773 	u32 bm_status = 0;
774 
775 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
776 	if (bm_status)
777 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
778 	/*
779 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
780 	 * the true state of bus mastering activity; forcing us to
781 	 * manually check the BMIDEA bit of each IDE channel.
782 	 */
783 	else if (errata.piix4.bmisx) {
784 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
785 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
786 			bm_status = 1;
787 	}
788 	return bm_status;
789 }
790 
791 /**
792  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
793  * @cx: cstate data
794  *
795  * Caller disables interrupt before call and enables interrupt after return.
796  */
797 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
798 {
799 	/* Don't trace irqs off for idle */
800 	stop_critical_timings();
801 	if (cx->entry_method == ACPI_CSTATE_FFH) {
802 		/* Call into architectural FFH based C-state */
803 		acpi_processor_ffh_cstate_enter(cx);
804 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
805 		acpi_safe_halt();
806 	} else {
807 		int unused;
808 		/* IO port based C-state */
809 		inb(cx->address);
810 		/* Dummy wait op - must do something useless after P_LVL2 read
811 		   because chipsets cannot guarantee that STPCLK# signal
812 		   gets asserted in time to freeze execution properly. */
813 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
814 	}
815 	start_critical_timings();
816 }
817 
818 /**
819  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
820  * @dev: the target CPU
821  * @state: the state data
822  *
823  * This is equivalent to the HALT instruction.
824  */
825 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
826 			      struct cpuidle_state *state)
827 {
828 	ktime_t  kt1, kt2;
829 	s64 idle_time;
830 	struct acpi_processor *pr;
831 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
832 
833 	pr = __get_cpu_var(processors);
834 
835 	if (unlikely(!pr))
836 		return 0;
837 
838 	local_irq_disable();
839 
840 	/* Do not access any ACPI IO ports in suspend path */
841 	if (acpi_idle_suspend) {
842 		local_irq_enable();
843 		cpu_relax();
844 		return 0;
845 	}
846 
847 	lapic_timer_state_broadcast(pr, cx, 1);
848 	kt1 = ktime_get_real();
849 	acpi_idle_do_entry(cx);
850 	kt2 = ktime_get_real();
851 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
852 
853 	local_irq_enable();
854 	cx->usage++;
855 	lapic_timer_state_broadcast(pr, cx, 0);
856 
857 	return idle_time;
858 }
859 
860 /**
861  * acpi_idle_enter_simple - enters an ACPI state without BM handling
862  * @dev: the target CPU
863  * @state: the state data
864  */
865 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
866 				  struct cpuidle_state *state)
867 {
868 	struct acpi_processor *pr;
869 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
870 	ktime_t  kt1, kt2;
871 	s64 idle_time;
872 	s64 sleep_ticks = 0;
873 
874 	pr = __get_cpu_var(processors);
875 
876 	if (unlikely(!pr))
877 		return 0;
878 
879 	if (acpi_idle_suspend)
880 		return(acpi_idle_enter_c1(dev, state));
881 
882 	local_irq_disable();
883 	if (cx->entry_method != ACPI_CSTATE_FFH) {
884 		current_thread_info()->status &= ~TS_POLLING;
885 		/*
886 		 * TS_POLLING-cleared state must be visible before we test
887 		 * NEED_RESCHED:
888 		 */
889 		smp_mb();
890 	}
891 
892 	if (unlikely(need_resched())) {
893 		current_thread_info()->status |= TS_POLLING;
894 		local_irq_enable();
895 		return 0;
896 	}
897 
898 	/*
899 	 * Must be done before busmaster disable as we might need to
900 	 * access HPET !
901 	 */
902 	lapic_timer_state_broadcast(pr, cx, 1);
903 
904 	if (cx->type == ACPI_STATE_C3)
905 		ACPI_FLUSH_CPU_CACHE();
906 
907 	kt1 = ktime_get_real();
908 	/* Tell the scheduler that we are going deep-idle: */
909 	sched_clock_idle_sleep_event();
910 	acpi_idle_do_entry(cx);
911 	kt2 = ktime_get_real();
912 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
913 
914 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
915 
916 	/* Tell the scheduler how much we idled: */
917 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
918 
919 	local_irq_enable();
920 	current_thread_info()->status |= TS_POLLING;
921 
922 	cx->usage++;
923 
924 	lapic_timer_state_broadcast(pr, cx, 0);
925 	cx->time += sleep_ticks;
926 	return idle_time;
927 }
928 
929 static int c3_cpu_count;
930 static DEFINE_SPINLOCK(c3_lock);
931 
932 /**
933  * acpi_idle_enter_bm - enters C3 with proper BM handling
934  * @dev: the target CPU
935  * @state: the state data
936  *
937  * If BM is detected, the deepest non-C3 idle state is entered instead.
938  */
939 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
940 			      struct cpuidle_state *state)
941 {
942 	struct acpi_processor *pr;
943 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
944 	ktime_t  kt1, kt2;
945 	s64 idle_time;
946 	s64 sleep_ticks = 0;
947 
948 
949 	pr = __get_cpu_var(processors);
950 
951 	if (unlikely(!pr))
952 		return 0;
953 
954 	if (acpi_idle_suspend)
955 		return(acpi_idle_enter_c1(dev, state));
956 
957 	if (acpi_idle_bm_check()) {
958 		if (dev->safe_state) {
959 			dev->last_state = dev->safe_state;
960 			return dev->safe_state->enter(dev, dev->safe_state);
961 		} else {
962 			local_irq_disable();
963 			acpi_safe_halt();
964 			local_irq_enable();
965 			return 0;
966 		}
967 	}
968 
969 	local_irq_disable();
970 	if (cx->entry_method != ACPI_CSTATE_FFH) {
971 		current_thread_info()->status &= ~TS_POLLING;
972 		/*
973 		 * TS_POLLING-cleared state must be visible before we test
974 		 * NEED_RESCHED:
975 		 */
976 		smp_mb();
977 	}
978 
979 	if (unlikely(need_resched())) {
980 		current_thread_info()->status |= TS_POLLING;
981 		local_irq_enable();
982 		return 0;
983 	}
984 
985 	acpi_unlazy_tlb(smp_processor_id());
986 
987 	/* Tell the scheduler that we are going deep-idle: */
988 	sched_clock_idle_sleep_event();
989 	/*
990 	 * Must be done before busmaster disable as we might need to
991 	 * access HPET !
992 	 */
993 	lapic_timer_state_broadcast(pr, cx, 1);
994 
995 	kt1 = ktime_get_real();
996 	/*
997 	 * disable bus master
998 	 * bm_check implies we need ARB_DIS
999 	 * !bm_check implies we need cache flush
1000 	 * bm_control implies whether we can do ARB_DIS
1001 	 *
1002 	 * That leaves a case where bm_check is set and bm_control is
1003 	 * not set. In that case we cannot do much, we enter C3
1004 	 * without doing anything.
1005 	 */
1006 	if (pr->flags.bm_check && pr->flags.bm_control) {
1007 		spin_lock(&c3_lock);
1008 		c3_cpu_count++;
1009 		/* Disable bus master arbitration when all CPUs are in C3 */
1010 		if (c3_cpu_count == num_online_cpus())
1011 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1012 		spin_unlock(&c3_lock);
1013 	} else if (!pr->flags.bm_check) {
1014 		ACPI_FLUSH_CPU_CACHE();
1015 	}
1016 
1017 	acpi_idle_do_entry(cx);
1018 
1019 	/* Re-enable bus master arbitration */
1020 	if (pr->flags.bm_check && pr->flags.bm_control) {
1021 		spin_lock(&c3_lock);
1022 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1023 		c3_cpu_count--;
1024 		spin_unlock(&c3_lock);
1025 	}
1026 	kt2 = ktime_get_real();
1027 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1028 
1029 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
1030 	/* Tell the scheduler how much we idled: */
1031 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1032 
1033 	local_irq_enable();
1034 	current_thread_info()->status |= TS_POLLING;
1035 
1036 	cx->usage++;
1037 
1038 	lapic_timer_state_broadcast(pr, cx, 0);
1039 	cx->time += sleep_ticks;
1040 	return idle_time;
1041 }
1042 
1043 struct cpuidle_driver acpi_idle_driver = {
1044 	.name =		"acpi_idle",
1045 	.owner =	THIS_MODULE,
1046 };
1047 
1048 /**
1049  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1050  * @pr: the ACPI processor
1051  */
1052 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1053 {
1054 	int i, count = CPUIDLE_DRIVER_STATE_START;
1055 	struct acpi_processor_cx *cx;
1056 	struct cpuidle_state *state;
1057 	struct cpuidle_device *dev = &pr->power.dev;
1058 
1059 	if (!pr->flags.power_setup_done)
1060 		return -EINVAL;
1061 
1062 	if (pr->flags.power == 0) {
1063 		return -EINVAL;
1064 	}
1065 
1066 	dev->cpu = pr->id;
1067 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1068 		dev->states[i].name[0] = '\0';
1069 		dev->states[i].desc[0] = '\0';
1070 	}
1071 
1072 	if (max_cstate == 0)
1073 		max_cstate = 1;
1074 
1075 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1076 		cx = &pr->power.states[i];
1077 		state = &dev->states[count];
1078 
1079 		if (!cx->valid)
1080 			continue;
1081 
1082 #ifdef CONFIG_HOTPLUG_CPU
1083 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1084 		    !pr->flags.has_cst &&
1085 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1086 			continue;
1087 #endif
1088 		cpuidle_set_statedata(state, cx);
1089 
1090 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1091 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1092 		state->exit_latency = cx->latency;
1093 		state->target_residency = cx->latency * latency_factor;
1094 		state->power_usage = cx->power;
1095 
1096 		state->flags = 0;
1097 		switch (cx->type) {
1098 			case ACPI_STATE_C1:
1099 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1100 			if (cx->entry_method == ACPI_CSTATE_FFH)
1101 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1102 
1103 			state->enter = acpi_idle_enter_c1;
1104 			dev->safe_state = state;
1105 			break;
1106 
1107 			case ACPI_STATE_C2:
1108 			state->flags |= CPUIDLE_FLAG_BALANCED;
1109 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1110 			state->enter = acpi_idle_enter_simple;
1111 			dev->safe_state = state;
1112 			break;
1113 
1114 			case ACPI_STATE_C3:
1115 			state->flags |= CPUIDLE_FLAG_DEEP;
1116 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1117 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1118 			state->enter = pr->flags.bm_check ?
1119 					acpi_idle_enter_bm :
1120 					acpi_idle_enter_simple;
1121 			break;
1122 		}
1123 
1124 		count++;
1125 		if (count == CPUIDLE_STATE_MAX)
1126 			break;
1127 	}
1128 
1129 	dev->state_count = count;
1130 
1131 	if (!count)
1132 		return -EINVAL;
1133 
1134 	return 0;
1135 }
1136 
1137 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1138 {
1139 	int ret = 0;
1140 
1141 	if (boot_option_idle_override)
1142 		return 0;
1143 
1144 	if (!pr)
1145 		return -EINVAL;
1146 
1147 	if (nocst) {
1148 		return -ENODEV;
1149 	}
1150 
1151 	if (!pr->flags.power_setup_done)
1152 		return -ENODEV;
1153 
1154 	cpuidle_pause_and_lock();
1155 	cpuidle_disable_device(&pr->power.dev);
1156 	acpi_processor_get_power_info(pr);
1157 	if (pr->flags.power) {
1158 		acpi_processor_setup_cpuidle(pr);
1159 		ret = cpuidle_enable_device(&pr->power.dev);
1160 	}
1161 	cpuidle_resume_and_unlock();
1162 
1163 	return ret;
1164 }
1165 
1166 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1167 			      struct acpi_device *device)
1168 {
1169 	acpi_status status = 0;
1170 	static int first_run;
1171 #ifdef CONFIG_ACPI_PROCFS
1172 	struct proc_dir_entry *entry = NULL;
1173 #endif
1174 
1175 	if (boot_option_idle_override)
1176 		return 0;
1177 
1178 	if (!first_run) {
1179 		if (idle_halt) {
1180 			/*
1181 			 * When the boot option of "idle=halt" is added, halt
1182 			 * is used for CPU IDLE.
1183 			 * In such case C2/C3 is meaningless. So the max_cstate
1184 			 * is set to one.
1185 			 */
1186 			max_cstate = 1;
1187 		}
1188 		dmi_check_system(processor_power_dmi_table);
1189 		max_cstate = acpi_processor_cstate_check(max_cstate);
1190 		if (max_cstate < ACPI_C_STATES_MAX)
1191 			printk(KERN_NOTICE
1192 			       "ACPI: processor limited to max C-state %d\n",
1193 			       max_cstate);
1194 		first_run++;
1195 	}
1196 
1197 	if (!pr)
1198 		return -EINVAL;
1199 
1200 	if (acpi_gbl_FADT.cst_control && !nocst) {
1201 		status =
1202 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1203 		if (ACPI_FAILURE(status)) {
1204 			ACPI_EXCEPTION((AE_INFO, status,
1205 					"Notifying BIOS of _CST ability failed"));
1206 		}
1207 	}
1208 
1209 	acpi_processor_get_power_info(pr);
1210 	pr->flags.power_setup_done = 1;
1211 
1212 	/*
1213 	 * Install the idle handler if processor power management is supported.
1214 	 * Note that we use previously set idle handler will be used on
1215 	 * platforms that only support C1.
1216 	 */
1217 	if (pr->flags.power) {
1218 		acpi_processor_setup_cpuidle(pr);
1219 		if (cpuidle_register_device(&pr->power.dev))
1220 			return -EIO;
1221 	}
1222 #ifdef CONFIG_ACPI_PROCFS
1223 	/* 'power' [R] */
1224 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1225 				 S_IRUGO, acpi_device_dir(device),
1226 				 &acpi_processor_power_fops,
1227 				 acpi_driver_data(device));
1228 	if (!entry)
1229 		return -EIO;
1230 #endif
1231 	return 0;
1232 }
1233 
1234 int acpi_processor_power_exit(struct acpi_processor *pr,
1235 			      struct acpi_device *device)
1236 {
1237 	if (boot_option_idle_override)
1238 		return 0;
1239 
1240 	cpuidle_unregister_device(&pr->power.dev);
1241 	pr->flags.power_setup_done = 0;
1242 
1243 #ifdef CONFIG_ACPI_PROCFS
1244 	if (acpi_device_dir(device))
1245 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1246 				  acpi_device_dir(device));
1247 #endif
1248 
1249 	return 0;
1250 }
1251