xref: /linux/drivers/acpi/processor_idle.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <acpi/processor.h>
35 
36 /*
37  * Include the apic definitions for x86 to have the APIC timer related defines
38  * available also for UP (on SMP it gets magically included via linux/smp.h).
39  * asm/acpi.h is not an option, as it would require more include magic. Also
40  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
41  */
42 #ifdef CONFIG_X86
43 #include <asm/apic.h>
44 #endif
45 
46 #define ACPI_PROCESSOR_CLASS            "processor"
47 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
48 ACPI_MODULE_NAME("processor_idle");
49 
50 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
51 module_param(max_cstate, uint, 0000);
52 static unsigned int nocst __read_mostly;
53 module_param(nocst, uint, 0000);
54 static int bm_check_disable __read_mostly;
55 module_param(bm_check_disable, uint, 0000);
56 
57 static unsigned int latency_factor __read_mostly = 2;
58 module_param(latency_factor, uint, 0644);
59 
60 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
61 
62 static
63 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
64 
65 static int disabled_by_idle_boot_param(void)
66 {
67 	return boot_option_idle_override == IDLE_POLL ||
68 		boot_option_idle_override == IDLE_HALT;
69 }
70 
71 /*
72  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
73  * For now disable this. Probably a bug somewhere else.
74  *
75  * To skip this limit, boot/load with a large max_cstate limit.
76  */
77 static int set_max_cstate(const struct dmi_system_id *id)
78 {
79 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
80 		return 0;
81 
82 	pr_notice("%s detected - limiting to C%ld max_cstate."
83 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
84 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
85 
86 	max_cstate = (long)id->driver_data;
87 
88 	return 0;
89 }
90 
91 static const struct dmi_system_id processor_power_dmi_table[] = {
92 	{ set_max_cstate, "Clevo 5600D", {
93 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
94 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
95 	 (void *)2},
96 	{ set_max_cstate, "Pavilion zv5000", {
97 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
98 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
99 	 (void *)1},
100 	{ set_max_cstate, "Asus L8400B", {
101 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
102 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
103 	 (void *)1},
104 	{},
105 };
106 
107 
108 /*
109  * Callers should disable interrupts before the call and enable
110  * interrupts after return.
111  */
112 static void acpi_safe_halt(void)
113 {
114 	if (!tif_need_resched()) {
115 		safe_halt();
116 		local_irq_disable();
117 	}
118 }
119 
120 #ifdef ARCH_APICTIMER_STOPS_ON_C3
121 
122 /*
123  * Some BIOS implementations switch to C3 in the published C2 state.
124  * This seems to be a common problem on AMD boxen, but other vendors
125  * are affected too. We pick the most conservative approach: we assume
126  * that the local APIC stops in both C2 and C3.
127  */
128 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
129 				   struct acpi_processor_cx *cx)
130 {
131 	struct acpi_processor_power *pwr = &pr->power;
132 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
133 
134 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
135 		return;
136 
137 	if (amd_e400_c1e_detected)
138 		type = ACPI_STATE_C1;
139 
140 	/*
141 	 * Check, if one of the previous states already marked the lapic
142 	 * unstable
143 	 */
144 	if (pwr->timer_broadcast_on_state < state)
145 		return;
146 
147 	if (cx->type >= type)
148 		pr->power.timer_broadcast_on_state = state;
149 }
150 
151 static void __lapic_timer_propagate_broadcast(void *arg)
152 {
153 	struct acpi_processor *pr = (struct acpi_processor *) arg;
154 
155 	if (pr->power.timer_broadcast_on_state < INT_MAX)
156 		tick_broadcast_enable();
157 	else
158 		tick_broadcast_disable();
159 }
160 
161 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
162 {
163 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
164 				 (void *)pr, 1);
165 }
166 
167 /* Power(C) State timer broadcast control */
168 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
169 				       struct acpi_processor_cx *cx,
170 				       int broadcast)
171 {
172 	int state = cx - pr->power.states;
173 
174 	if (state >= pr->power.timer_broadcast_on_state) {
175 		if (broadcast)
176 			tick_broadcast_enter();
177 		else
178 			tick_broadcast_exit();
179 	}
180 }
181 
182 #else
183 
184 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
185 				   struct acpi_processor_cx *cstate) { }
186 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
187 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
188 				       struct acpi_processor_cx *cx,
189 				       int broadcast)
190 {
191 }
192 
193 #endif
194 
195 #if defined(CONFIG_X86)
196 static void tsc_check_state(int state)
197 {
198 	switch (boot_cpu_data.x86_vendor) {
199 	case X86_VENDOR_AMD:
200 	case X86_VENDOR_INTEL:
201 		/*
202 		 * AMD Fam10h TSC will tick in all
203 		 * C/P/S0/S1 states when this bit is set.
204 		 */
205 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
206 			return;
207 
208 		/*FALL THROUGH*/
209 	default:
210 		/* TSC could halt in idle, so notify users */
211 		if (state > ACPI_STATE_C1)
212 			mark_tsc_unstable("TSC halts in idle");
213 	}
214 }
215 #else
216 static void tsc_check_state(int state) { return; }
217 #endif
218 
219 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
220 {
221 
222 	if (!pr->pblk)
223 		return -ENODEV;
224 
225 	/* if info is obtained from pblk/fadt, type equals state */
226 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
227 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
228 
229 #ifndef CONFIG_HOTPLUG_CPU
230 	/*
231 	 * Check for P_LVL2_UP flag before entering C2 and above on
232 	 * an SMP system.
233 	 */
234 	if ((num_online_cpus() > 1) &&
235 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
236 		return -ENODEV;
237 #endif
238 
239 	/* determine C2 and C3 address from pblk */
240 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
241 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
242 
243 	/* determine latencies from FADT */
244 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
245 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
246 
247 	/*
248 	 * FADT specified C2 latency must be less than or equal to
249 	 * 100 microseconds.
250 	 */
251 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
252 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
253 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
254 		/* invalidate C2 */
255 		pr->power.states[ACPI_STATE_C2].address = 0;
256 	}
257 
258 	/*
259 	 * FADT supplied C3 latency must be less than or equal to
260 	 * 1000 microseconds.
261 	 */
262 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
263 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
264 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
265 		/* invalidate C3 */
266 		pr->power.states[ACPI_STATE_C3].address = 0;
267 	}
268 
269 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
271 			  pr->power.states[ACPI_STATE_C2].address,
272 			  pr->power.states[ACPI_STATE_C3].address));
273 
274 	return 0;
275 }
276 
277 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
278 {
279 	if (!pr->power.states[ACPI_STATE_C1].valid) {
280 		/* set the first C-State to C1 */
281 		/* all processors need to support C1 */
282 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
283 		pr->power.states[ACPI_STATE_C1].valid = 1;
284 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
285 	}
286 	/* the C0 state only exists as a filler in our array */
287 	pr->power.states[ACPI_STATE_C0].valid = 1;
288 	return 0;
289 }
290 
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
292 {
293 	acpi_status status;
294 	u64 count;
295 	int current_count;
296 	int i, ret = 0;
297 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
298 	union acpi_object *cst;
299 
300 
301 	if (nocst)
302 		return -ENODEV;
303 
304 	current_count = 0;
305 
306 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
307 	if (ACPI_FAILURE(status)) {
308 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
309 		return -ENODEV;
310 	}
311 
312 	cst = buffer.pointer;
313 
314 	/* There must be at least 2 elements */
315 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
316 		pr_err("not enough elements in _CST\n");
317 		ret = -EFAULT;
318 		goto end;
319 	}
320 
321 	count = cst->package.elements[0].integer.value;
322 
323 	/* Validate number of power states. */
324 	if (count < 1 || count != cst->package.count - 1) {
325 		pr_err("count given by _CST is not valid\n");
326 		ret = -EFAULT;
327 		goto end;
328 	}
329 
330 	/* Tell driver that at least _CST is supported. */
331 	pr->flags.has_cst = 1;
332 
333 	for (i = 1; i <= count; i++) {
334 		union acpi_object *element;
335 		union acpi_object *obj;
336 		struct acpi_power_register *reg;
337 		struct acpi_processor_cx cx;
338 
339 		memset(&cx, 0, sizeof(cx));
340 
341 		element = &(cst->package.elements[i]);
342 		if (element->type != ACPI_TYPE_PACKAGE)
343 			continue;
344 
345 		if (element->package.count != 4)
346 			continue;
347 
348 		obj = &(element->package.elements[0]);
349 
350 		if (obj->type != ACPI_TYPE_BUFFER)
351 			continue;
352 
353 		reg = (struct acpi_power_register *)obj->buffer.pointer;
354 
355 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
356 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
357 			continue;
358 
359 		/* There should be an easy way to extract an integer... */
360 		obj = &(element->package.elements[1]);
361 		if (obj->type != ACPI_TYPE_INTEGER)
362 			continue;
363 
364 		cx.type = obj->integer.value;
365 		/*
366 		 * Some buggy BIOSes won't list C1 in _CST -
367 		 * Let acpi_processor_get_power_info_default() handle them later
368 		 */
369 		if (i == 1 && cx.type != ACPI_STATE_C1)
370 			current_count++;
371 
372 		cx.address = reg->address;
373 		cx.index = current_count + 1;
374 
375 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
376 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
377 			if (acpi_processor_ffh_cstate_probe
378 					(pr->id, &cx, reg) == 0) {
379 				cx.entry_method = ACPI_CSTATE_FFH;
380 			} else if (cx.type == ACPI_STATE_C1) {
381 				/*
382 				 * C1 is a special case where FIXED_HARDWARE
383 				 * can be handled in non-MWAIT way as well.
384 				 * In that case, save this _CST entry info.
385 				 * Otherwise, ignore this info and continue.
386 				 */
387 				cx.entry_method = ACPI_CSTATE_HALT;
388 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
389 			} else {
390 				continue;
391 			}
392 			if (cx.type == ACPI_STATE_C1 &&
393 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
394 				/*
395 				 * In most cases the C1 space_id obtained from
396 				 * _CST object is FIXED_HARDWARE access mode.
397 				 * But when the option of idle=halt is added,
398 				 * the entry_method type should be changed from
399 				 * CSTATE_FFH to CSTATE_HALT.
400 				 * When the option of idle=nomwait is added,
401 				 * the C1 entry_method type should be
402 				 * CSTATE_HALT.
403 				 */
404 				cx.entry_method = ACPI_CSTATE_HALT;
405 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
406 			}
407 		} else {
408 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
409 				 cx.address);
410 		}
411 
412 		if (cx.type == ACPI_STATE_C1) {
413 			cx.valid = 1;
414 		}
415 
416 		obj = &(element->package.elements[2]);
417 		if (obj->type != ACPI_TYPE_INTEGER)
418 			continue;
419 
420 		cx.latency = obj->integer.value;
421 
422 		obj = &(element->package.elements[3]);
423 		if (obj->type != ACPI_TYPE_INTEGER)
424 			continue;
425 
426 		current_count++;
427 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
428 
429 		/*
430 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
431 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
432 		 */
433 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
434 			pr_warn("Limiting number of power states to max (%d)\n",
435 				ACPI_PROCESSOR_MAX_POWER);
436 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
437 			break;
438 		}
439 	}
440 
441 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
442 			  current_count));
443 
444 	/* Validate number of power states discovered */
445 	if (current_count < 2)
446 		ret = -EFAULT;
447 
448       end:
449 	kfree(buffer.pointer);
450 
451 	return ret;
452 }
453 
454 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
455 					   struct acpi_processor_cx *cx)
456 {
457 	static int bm_check_flag = -1;
458 	static int bm_control_flag = -1;
459 
460 
461 	if (!cx->address)
462 		return;
463 
464 	/*
465 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
466 	 * DMA transfers are used by any ISA device to avoid livelock.
467 	 * Note that we could disable Type-F DMA (as recommended by
468 	 * the erratum), but this is known to disrupt certain ISA
469 	 * devices thus we take the conservative approach.
470 	 */
471 	else if (errata.piix4.fdma) {
472 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
473 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
474 		return;
475 	}
476 
477 	/* All the logic here assumes flags.bm_check is same across all CPUs */
478 	if (bm_check_flag == -1) {
479 		/* Determine whether bm_check is needed based on CPU  */
480 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
481 		bm_check_flag = pr->flags.bm_check;
482 		bm_control_flag = pr->flags.bm_control;
483 	} else {
484 		pr->flags.bm_check = bm_check_flag;
485 		pr->flags.bm_control = bm_control_flag;
486 	}
487 
488 	if (pr->flags.bm_check) {
489 		if (!pr->flags.bm_control) {
490 			if (pr->flags.has_cst != 1) {
491 				/* bus mastering control is necessary */
492 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
493 					"C3 support requires BM control\n"));
494 				return;
495 			} else {
496 				/* Here we enter C3 without bus mastering */
497 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
498 					"C3 support without BM control\n"));
499 			}
500 		}
501 	} else {
502 		/*
503 		 * WBINVD should be set in fadt, for C3 state to be
504 		 * supported on when bm_check is not required.
505 		 */
506 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
507 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
508 					  "Cache invalidation should work properly"
509 					  " for C3 to be enabled on SMP systems\n"));
510 			return;
511 		}
512 	}
513 
514 	/*
515 	 * Otherwise we've met all of our C3 requirements.
516 	 * Normalize the C3 latency to expidite policy.  Enable
517 	 * checking of bus mastering status (bm_check) so we can
518 	 * use this in our C3 policy
519 	 */
520 	cx->valid = 1;
521 
522 	/*
523 	 * On older chipsets, BM_RLD needs to be set
524 	 * in order for Bus Master activity to wake the
525 	 * system from C3.  Newer chipsets handle DMA
526 	 * during C3 automatically and BM_RLD is a NOP.
527 	 * In either case, the proper way to
528 	 * handle BM_RLD is to set it and leave it set.
529 	 */
530 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
531 
532 	return;
533 }
534 
535 static int acpi_processor_power_verify(struct acpi_processor *pr)
536 {
537 	unsigned int i;
538 	unsigned int working = 0;
539 
540 	pr->power.timer_broadcast_on_state = INT_MAX;
541 
542 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
543 		struct acpi_processor_cx *cx = &pr->power.states[i];
544 
545 		switch (cx->type) {
546 		case ACPI_STATE_C1:
547 			cx->valid = 1;
548 			break;
549 
550 		case ACPI_STATE_C2:
551 			if (!cx->address)
552 				break;
553 			cx->valid = 1;
554 			break;
555 
556 		case ACPI_STATE_C3:
557 			acpi_processor_power_verify_c3(pr, cx);
558 			break;
559 		}
560 		if (!cx->valid)
561 			continue;
562 
563 		lapic_timer_check_state(i, pr, cx);
564 		tsc_check_state(cx->type);
565 		working++;
566 	}
567 
568 	lapic_timer_propagate_broadcast(pr);
569 
570 	return (working);
571 }
572 
573 static int acpi_processor_get_power_info(struct acpi_processor *pr)
574 {
575 	unsigned int i;
576 	int result;
577 
578 
579 	/* NOTE: the idle thread may not be running while calling
580 	 * this function */
581 
582 	/* Zero initialize all the C-states info. */
583 	memset(pr->power.states, 0, sizeof(pr->power.states));
584 
585 	result = acpi_processor_get_power_info_cst(pr);
586 	if (result == -ENODEV)
587 		result = acpi_processor_get_power_info_fadt(pr);
588 
589 	if (result)
590 		return result;
591 
592 	acpi_processor_get_power_info_default(pr);
593 
594 	pr->power.count = acpi_processor_power_verify(pr);
595 
596 	/*
597 	 * if one state of type C2 or C3 is available, mark this
598 	 * CPU as being "idle manageable"
599 	 */
600 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
601 		if (pr->power.states[i].valid) {
602 			pr->power.count = i;
603 			if (pr->power.states[i].type >= ACPI_STATE_C2)
604 				pr->flags.power = 1;
605 		}
606 	}
607 
608 	return 0;
609 }
610 
611 /**
612  * acpi_idle_bm_check - checks if bus master activity was detected
613  */
614 static int acpi_idle_bm_check(void)
615 {
616 	u32 bm_status = 0;
617 
618 	if (bm_check_disable)
619 		return 0;
620 
621 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
622 	if (bm_status)
623 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
624 	/*
625 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
626 	 * the true state of bus mastering activity; forcing us to
627 	 * manually check the BMIDEA bit of each IDE channel.
628 	 */
629 	else if (errata.piix4.bmisx) {
630 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
631 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
632 			bm_status = 1;
633 	}
634 	return bm_status;
635 }
636 
637 /**
638  * acpi_idle_do_entry - enter idle state using the appropriate method
639  * @cx: cstate data
640  *
641  * Caller disables interrupt before call and enables interrupt after return.
642  */
643 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
644 {
645 	if (cx->entry_method == ACPI_CSTATE_FFH) {
646 		/* Call into architectural FFH based C-state */
647 		acpi_processor_ffh_cstate_enter(cx);
648 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
649 		acpi_safe_halt();
650 	} else {
651 		/* IO port based C-state */
652 		inb(cx->address);
653 		/* Dummy wait op - must do something useless after P_LVL2 read
654 		   because chipsets cannot guarantee that STPCLK# signal
655 		   gets asserted in time to freeze execution properly. */
656 		inl(acpi_gbl_FADT.xpm_timer_block.address);
657 	}
658 }
659 
660 /**
661  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
662  * @dev: the target CPU
663  * @index: the index of suggested state
664  */
665 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
666 {
667 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
668 
669 	ACPI_FLUSH_CPU_CACHE();
670 
671 	while (1) {
672 
673 		if (cx->entry_method == ACPI_CSTATE_HALT)
674 			safe_halt();
675 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
676 			inb(cx->address);
677 			/* See comment in acpi_idle_do_entry() */
678 			inl(acpi_gbl_FADT.xpm_timer_block.address);
679 		} else
680 			return -ENODEV;
681 	}
682 
683 	/* Never reached */
684 	return 0;
685 }
686 
687 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
688 {
689 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
690 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
691 }
692 
693 static int c3_cpu_count;
694 static DEFINE_RAW_SPINLOCK(c3_lock);
695 
696 /**
697  * acpi_idle_enter_bm - enters C3 with proper BM handling
698  * @pr: Target processor
699  * @cx: Target state context
700  * @timer_bc: Whether or not to change timer mode to broadcast
701  */
702 static void acpi_idle_enter_bm(struct acpi_processor *pr,
703 			       struct acpi_processor_cx *cx, bool timer_bc)
704 {
705 	acpi_unlazy_tlb(smp_processor_id());
706 
707 	/*
708 	 * Must be done before busmaster disable as we might need to
709 	 * access HPET !
710 	 */
711 	if (timer_bc)
712 		lapic_timer_state_broadcast(pr, cx, 1);
713 
714 	/*
715 	 * disable bus master
716 	 * bm_check implies we need ARB_DIS
717 	 * bm_control implies whether we can do ARB_DIS
718 	 *
719 	 * That leaves a case where bm_check is set and bm_control is
720 	 * not set. In that case we cannot do much, we enter C3
721 	 * without doing anything.
722 	 */
723 	if (pr->flags.bm_control) {
724 		raw_spin_lock(&c3_lock);
725 		c3_cpu_count++;
726 		/* Disable bus master arbitration when all CPUs are in C3 */
727 		if (c3_cpu_count == num_online_cpus())
728 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
729 		raw_spin_unlock(&c3_lock);
730 	}
731 
732 	acpi_idle_do_entry(cx);
733 
734 	/* Re-enable bus master arbitration */
735 	if (pr->flags.bm_control) {
736 		raw_spin_lock(&c3_lock);
737 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
738 		c3_cpu_count--;
739 		raw_spin_unlock(&c3_lock);
740 	}
741 
742 	if (timer_bc)
743 		lapic_timer_state_broadcast(pr, cx, 0);
744 }
745 
746 static int acpi_idle_enter(struct cpuidle_device *dev,
747 			   struct cpuidle_driver *drv, int index)
748 {
749 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
750 	struct acpi_processor *pr;
751 
752 	pr = __this_cpu_read(processors);
753 	if (unlikely(!pr))
754 		return -EINVAL;
755 
756 	if (cx->type != ACPI_STATE_C1) {
757 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
758 			index = CPUIDLE_DRIVER_STATE_START;
759 			cx = per_cpu(acpi_cstate[index], dev->cpu);
760 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
761 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
762 				acpi_idle_enter_bm(pr, cx, true);
763 				return index;
764 			} else if (drv->safe_state_index >= 0) {
765 				index = drv->safe_state_index;
766 				cx = per_cpu(acpi_cstate[index], dev->cpu);
767 			} else {
768 				acpi_safe_halt();
769 				return -EBUSY;
770 			}
771 		}
772 	}
773 
774 	lapic_timer_state_broadcast(pr, cx, 1);
775 
776 	if (cx->type == ACPI_STATE_C3)
777 		ACPI_FLUSH_CPU_CACHE();
778 
779 	acpi_idle_do_entry(cx);
780 
781 	lapic_timer_state_broadcast(pr, cx, 0);
782 
783 	return index;
784 }
785 
786 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
787 				   struct cpuidle_driver *drv, int index)
788 {
789 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
790 
791 	if (cx->type == ACPI_STATE_C3) {
792 		struct acpi_processor *pr = __this_cpu_read(processors);
793 
794 		if (unlikely(!pr))
795 			return;
796 
797 		if (pr->flags.bm_check) {
798 			acpi_idle_enter_bm(pr, cx, false);
799 			return;
800 		} else {
801 			ACPI_FLUSH_CPU_CACHE();
802 		}
803 	}
804 	acpi_idle_do_entry(cx);
805 }
806 
807 struct cpuidle_driver acpi_idle_driver = {
808 	.name =		"acpi_idle",
809 	.owner =	THIS_MODULE,
810 };
811 
812 /**
813  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
814  * device i.e. per-cpu data
815  *
816  * @pr: the ACPI processor
817  * @dev : the cpuidle device
818  */
819 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
820 					   struct cpuidle_device *dev)
821 {
822 	int i, count = CPUIDLE_DRIVER_STATE_START;
823 	struct acpi_processor_cx *cx;
824 
825 	if (!pr->flags.power_setup_done)
826 		return -EINVAL;
827 
828 	if (pr->flags.power == 0) {
829 		return -EINVAL;
830 	}
831 
832 	if (!dev)
833 		return -EINVAL;
834 
835 	dev->cpu = pr->id;
836 
837 	if (max_cstate == 0)
838 		max_cstate = 1;
839 
840 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
841 		cx = &pr->power.states[i];
842 
843 		if (!cx->valid)
844 			continue;
845 
846 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
847 
848 		count++;
849 		if (count == CPUIDLE_STATE_MAX)
850 			break;
851 	}
852 
853 	if (!count)
854 		return -EINVAL;
855 
856 	return 0;
857 }
858 
859 /**
860  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
861  * global state data i.e. idle routines
862  *
863  * @pr: the ACPI processor
864  */
865 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
866 {
867 	int i, count = CPUIDLE_DRIVER_STATE_START;
868 	struct acpi_processor_cx *cx;
869 	struct cpuidle_state *state;
870 	struct cpuidle_driver *drv = &acpi_idle_driver;
871 
872 	if (!pr->flags.power_setup_done)
873 		return -EINVAL;
874 
875 	if (pr->flags.power == 0)
876 		return -EINVAL;
877 
878 	drv->safe_state_index = -1;
879 	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
880 		drv->states[i].name[0] = '\0';
881 		drv->states[i].desc[0] = '\0';
882 	}
883 
884 	if (max_cstate == 0)
885 		max_cstate = 1;
886 
887 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
888 		cx = &pr->power.states[i];
889 
890 		if (!cx->valid)
891 			continue;
892 
893 		state = &drv->states[count];
894 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
895 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
896 		state->exit_latency = cx->latency;
897 		state->target_residency = cx->latency * latency_factor;
898 		state->enter = acpi_idle_enter;
899 
900 		state->flags = 0;
901 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
902 			state->enter_dead = acpi_idle_play_dead;
903 			drv->safe_state_index = count;
904 		}
905 		/*
906 		 * Halt-induced C1 is not good for ->enter_freeze, because it
907 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
908 		 * particularly interesting from the suspend-to-idle angle, so
909 		 * avoid C1 and the situations in which we may need to fall back
910 		 * to it altogether.
911 		 */
912 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
913 			state->enter_freeze = acpi_idle_enter_freeze;
914 
915 		count++;
916 		if (count == CPUIDLE_STATE_MAX)
917 			break;
918 	}
919 
920 	drv->state_count = count;
921 
922 	if (!count)
923 		return -EINVAL;
924 
925 	return 0;
926 }
927 
928 int acpi_processor_hotplug(struct acpi_processor *pr)
929 {
930 	int ret = 0;
931 	struct cpuidle_device *dev;
932 
933 	if (disabled_by_idle_boot_param())
934 		return 0;
935 
936 	if (nocst)
937 		return -ENODEV;
938 
939 	if (!pr->flags.power_setup_done)
940 		return -ENODEV;
941 
942 	dev = per_cpu(acpi_cpuidle_device, pr->id);
943 	cpuidle_pause_and_lock();
944 	cpuidle_disable_device(dev);
945 	acpi_processor_get_power_info(pr);
946 	if (pr->flags.power) {
947 		acpi_processor_setup_cpuidle_cx(pr, dev);
948 		ret = cpuidle_enable_device(dev);
949 	}
950 	cpuidle_resume_and_unlock();
951 
952 	return ret;
953 }
954 
955 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
956 {
957 	int cpu;
958 	struct acpi_processor *_pr;
959 	struct cpuidle_device *dev;
960 
961 	if (disabled_by_idle_boot_param())
962 		return 0;
963 
964 	if (nocst)
965 		return -ENODEV;
966 
967 	if (!pr->flags.power_setup_done)
968 		return -ENODEV;
969 
970 	/*
971 	 * FIXME:  Design the ACPI notification to make it once per
972 	 * system instead of once per-cpu.  This condition is a hack
973 	 * to make the code that updates C-States be called once.
974 	 */
975 
976 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
977 
978 		/* Protect against cpu-hotplug */
979 		get_online_cpus();
980 		cpuidle_pause_and_lock();
981 
982 		/* Disable all cpuidle devices */
983 		for_each_online_cpu(cpu) {
984 			_pr = per_cpu(processors, cpu);
985 			if (!_pr || !_pr->flags.power_setup_done)
986 				continue;
987 			dev = per_cpu(acpi_cpuidle_device, cpu);
988 			cpuidle_disable_device(dev);
989 		}
990 
991 		/* Populate Updated C-state information */
992 		acpi_processor_get_power_info(pr);
993 		acpi_processor_setup_cpuidle_states(pr);
994 
995 		/* Enable all cpuidle devices */
996 		for_each_online_cpu(cpu) {
997 			_pr = per_cpu(processors, cpu);
998 			if (!_pr || !_pr->flags.power_setup_done)
999 				continue;
1000 			acpi_processor_get_power_info(_pr);
1001 			if (_pr->flags.power) {
1002 				dev = per_cpu(acpi_cpuidle_device, cpu);
1003 				acpi_processor_setup_cpuidle_cx(_pr, dev);
1004 				cpuidle_enable_device(dev);
1005 			}
1006 		}
1007 		cpuidle_resume_and_unlock();
1008 		put_online_cpus();
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int acpi_processor_registered;
1015 
1016 int acpi_processor_power_init(struct acpi_processor *pr)
1017 {
1018 	acpi_status status;
1019 	int retval;
1020 	struct cpuidle_device *dev;
1021 	static int first_run;
1022 
1023 	if (disabled_by_idle_boot_param())
1024 		return 0;
1025 
1026 	if (!first_run) {
1027 		dmi_check_system(processor_power_dmi_table);
1028 		max_cstate = acpi_processor_cstate_check(max_cstate);
1029 		if (max_cstate < ACPI_C_STATES_MAX)
1030 			printk(KERN_NOTICE
1031 			       "ACPI: processor limited to max C-state %d\n",
1032 			       max_cstate);
1033 		first_run++;
1034 	}
1035 
1036 	if (acpi_gbl_FADT.cst_control && !nocst) {
1037 		status =
1038 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1039 		if (ACPI_FAILURE(status)) {
1040 			ACPI_EXCEPTION((AE_INFO, status,
1041 					"Notifying BIOS of _CST ability failed"));
1042 		}
1043 	}
1044 
1045 	acpi_processor_get_power_info(pr);
1046 	pr->flags.power_setup_done = 1;
1047 
1048 	/*
1049 	 * Install the idle handler if processor power management is supported.
1050 	 * Note that we use previously set idle handler will be used on
1051 	 * platforms that only support C1.
1052 	 */
1053 	if (pr->flags.power) {
1054 		/* Register acpi_idle_driver if not already registered */
1055 		if (!acpi_processor_registered) {
1056 			acpi_processor_setup_cpuidle_states(pr);
1057 			retval = cpuidle_register_driver(&acpi_idle_driver);
1058 			if (retval)
1059 				return retval;
1060 			pr_debug("%s registered with cpuidle\n",
1061 				 acpi_idle_driver.name);
1062 		}
1063 
1064 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1065 		if (!dev)
1066 			return -ENOMEM;
1067 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1068 
1069 		acpi_processor_setup_cpuidle_cx(pr, dev);
1070 
1071 		/* Register per-cpu cpuidle_device. Cpuidle driver
1072 		 * must already be registered before registering device
1073 		 */
1074 		retval = cpuidle_register_device(dev);
1075 		if (retval) {
1076 			if (acpi_processor_registered == 0)
1077 				cpuidle_unregister_driver(&acpi_idle_driver);
1078 			return retval;
1079 		}
1080 		acpi_processor_registered++;
1081 	}
1082 	return 0;
1083 }
1084 
1085 int acpi_processor_power_exit(struct acpi_processor *pr)
1086 {
1087 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1088 
1089 	if (disabled_by_idle_boot_param())
1090 		return 0;
1091 
1092 	if (pr->flags.power) {
1093 		cpuidle_unregister_device(dev);
1094 		acpi_processor_registered--;
1095 		if (acpi_processor_registered == 0)
1096 			cpuidle_unregister_driver(&acpi_idle_driver);
1097 	}
1098 
1099 	pr->flags.power_setup_done = 0;
1100 	return 0;
1101 }
1102