xref: /linux/drivers/acpi/processor_idle.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/module.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <linux/sched.h>       /* need_resched() */
35 #include <linux/tick.h>
36 #include <linux/cpuidle.h>
37 #include <linux/syscore_ops.h>
38 #include <acpi/processor.h>
39 
40 /*
41  * Include the apic definitions for x86 to have the APIC timer related defines
42  * available also for UP (on SMP it gets magically included via linux/smp.h).
43  * asm/acpi.h is not an option, as it would require more include magic. Also
44  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
45  */
46 #ifdef CONFIG_X86
47 #include <asm/apic.h>
48 #endif
49 
50 #define PREFIX "ACPI: "
51 
52 #define ACPI_PROCESSOR_CLASS            "processor"
53 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
54 ACPI_MODULE_NAME("processor_idle");
55 
56 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
57 module_param(max_cstate, uint, 0000);
58 static unsigned int nocst __read_mostly;
59 module_param(nocst, uint, 0000);
60 static int bm_check_disable __read_mostly;
61 module_param(bm_check_disable, uint, 0000);
62 
63 static unsigned int latency_factor __read_mostly = 2;
64 module_param(latency_factor, uint, 0644);
65 
66 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
67 
68 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
69 								acpi_cstate);
70 
71 static int disabled_by_idle_boot_param(void)
72 {
73 	return boot_option_idle_override == IDLE_POLL ||
74 		boot_option_idle_override == IDLE_HALT;
75 }
76 
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 		return 0;
87 
88 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91 
92 	max_cstate = (long)id->driver_data;
93 
94 	return 0;
95 }
96 
97 static const struct dmi_system_id processor_power_dmi_table[] = {
98 	{ set_max_cstate, "Clevo 5600D", {
99 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101 	 (void *)2},
102 	{ set_max_cstate, "Pavilion zv5000", {
103 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105 	 (void *)1},
106 	{ set_max_cstate, "Asus L8400B", {
107 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109 	 (void *)1},
110 	{},
111 };
112 
113 
114 /*
115  * Callers should disable interrupts before the call and enable
116  * interrupts after return.
117  */
118 static void acpi_safe_halt(void)
119 {
120 	if (!tif_need_resched()) {
121 		safe_halt();
122 		local_irq_disable();
123 	}
124 }
125 
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
127 
128 /*
129  * Some BIOS implementations switch to C3 in the published C2 state.
130  * This seems to be a common problem on AMD boxen, but other vendors
131  * are affected too. We pick the most conservative approach: we assume
132  * that the local APIC stops in both C2 and C3.
133  */
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135 				   struct acpi_processor_cx *cx)
136 {
137 	struct acpi_processor_power *pwr = &pr->power;
138 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139 
140 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141 		return;
142 
143 	if (amd_e400_c1e_detected)
144 		type = ACPI_STATE_C1;
145 
146 	/*
147 	 * Check, if one of the previous states already marked the lapic
148 	 * unstable
149 	 */
150 	if (pwr->timer_broadcast_on_state < state)
151 		return;
152 
153 	if (cx->type >= type)
154 		pr->power.timer_broadcast_on_state = state;
155 }
156 
157 static void __lapic_timer_propagate_broadcast(void *arg)
158 {
159 	struct acpi_processor *pr = (struct acpi_processor *) arg;
160 
161 	if (pr->power.timer_broadcast_on_state < INT_MAX)
162 		tick_broadcast_enable();
163 	else
164 		tick_broadcast_disable();
165 }
166 
167 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
168 {
169 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
170 				 (void *)pr, 1);
171 }
172 
173 /* Power(C) State timer broadcast control */
174 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
175 				       struct acpi_processor_cx *cx,
176 				       int broadcast)
177 {
178 	int state = cx - pr->power.states;
179 
180 	if (state >= pr->power.timer_broadcast_on_state) {
181 		if (broadcast)
182 			tick_broadcast_enter();
183 		else
184 			tick_broadcast_exit();
185 	}
186 }
187 
188 #else
189 
190 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
191 				   struct acpi_processor_cx *cstate) { }
192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194 				       struct acpi_processor_cx *cx,
195 				       int broadcast)
196 {
197 }
198 
199 #endif
200 
201 #ifdef CONFIG_PM_SLEEP
202 static u32 saved_bm_rld;
203 
204 static int acpi_processor_suspend(void)
205 {
206 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
207 	return 0;
208 }
209 
210 static void acpi_processor_resume(void)
211 {
212 	u32 resumed_bm_rld = 0;
213 
214 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
215 	if (resumed_bm_rld == saved_bm_rld)
216 		return;
217 
218 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
219 }
220 
221 static struct syscore_ops acpi_processor_syscore_ops = {
222 	.suspend = acpi_processor_suspend,
223 	.resume = acpi_processor_resume,
224 };
225 
226 void acpi_processor_syscore_init(void)
227 {
228 	register_syscore_ops(&acpi_processor_syscore_ops);
229 }
230 
231 void acpi_processor_syscore_exit(void)
232 {
233 	unregister_syscore_ops(&acpi_processor_syscore_ops);
234 }
235 #endif /* CONFIG_PM_SLEEP */
236 
237 #if defined(CONFIG_X86)
238 static void tsc_check_state(int state)
239 {
240 	switch (boot_cpu_data.x86_vendor) {
241 	case X86_VENDOR_AMD:
242 	case X86_VENDOR_INTEL:
243 		/*
244 		 * AMD Fam10h TSC will tick in all
245 		 * C/P/S0/S1 states when this bit is set.
246 		 */
247 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
248 			return;
249 
250 		/*FALL THROUGH*/
251 	default:
252 		/* TSC could halt in idle, so notify users */
253 		if (state > ACPI_STATE_C1)
254 			mark_tsc_unstable("TSC halts in idle");
255 	}
256 }
257 #else
258 static void tsc_check_state(int state) { return; }
259 #endif
260 
261 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
262 {
263 
264 	if (!pr->pblk)
265 		return -ENODEV;
266 
267 	/* if info is obtained from pblk/fadt, type equals state */
268 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
269 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
270 
271 #ifndef CONFIG_HOTPLUG_CPU
272 	/*
273 	 * Check for P_LVL2_UP flag before entering C2 and above on
274 	 * an SMP system.
275 	 */
276 	if ((num_online_cpus() > 1) &&
277 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
278 		return -ENODEV;
279 #endif
280 
281 	/* determine C2 and C3 address from pblk */
282 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
283 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
284 
285 	/* determine latencies from FADT */
286 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
287 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
288 
289 	/*
290 	 * FADT specified C2 latency must be less than or equal to
291 	 * 100 microseconds.
292 	 */
293 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
294 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
295 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
296 		/* invalidate C2 */
297 		pr->power.states[ACPI_STATE_C2].address = 0;
298 	}
299 
300 	/*
301 	 * FADT supplied C3 latency must be less than or equal to
302 	 * 1000 microseconds.
303 	 */
304 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
305 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
306 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
307 		/* invalidate C3 */
308 		pr->power.states[ACPI_STATE_C3].address = 0;
309 	}
310 
311 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
312 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
313 			  pr->power.states[ACPI_STATE_C2].address,
314 			  pr->power.states[ACPI_STATE_C3].address));
315 
316 	return 0;
317 }
318 
319 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
320 {
321 	if (!pr->power.states[ACPI_STATE_C1].valid) {
322 		/* set the first C-State to C1 */
323 		/* all processors need to support C1 */
324 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
325 		pr->power.states[ACPI_STATE_C1].valid = 1;
326 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
327 	}
328 	/* the C0 state only exists as a filler in our array */
329 	pr->power.states[ACPI_STATE_C0].valid = 1;
330 	return 0;
331 }
332 
333 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
334 {
335 	acpi_status status;
336 	u64 count;
337 	int current_count;
338 	int i, ret = 0;
339 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
340 	union acpi_object *cst;
341 
342 
343 	if (nocst)
344 		return -ENODEV;
345 
346 	current_count = 0;
347 
348 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
349 	if (ACPI_FAILURE(status)) {
350 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
351 		return -ENODEV;
352 	}
353 
354 	cst = buffer.pointer;
355 
356 	/* There must be at least 2 elements */
357 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
358 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
359 		ret = -EFAULT;
360 		goto end;
361 	}
362 
363 	count = cst->package.elements[0].integer.value;
364 
365 	/* Validate number of power states. */
366 	if (count < 1 || count != cst->package.count - 1) {
367 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
368 		ret = -EFAULT;
369 		goto end;
370 	}
371 
372 	/* Tell driver that at least _CST is supported. */
373 	pr->flags.has_cst = 1;
374 
375 	for (i = 1; i <= count; i++) {
376 		union acpi_object *element;
377 		union acpi_object *obj;
378 		struct acpi_power_register *reg;
379 		struct acpi_processor_cx cx;
380 
381 		memset(&cx, 0, sizeof(cx));
382 
383 		element = &(cst->package.elements[i]);
384 		if (element->type != ACPI_TYPE_PACKAGE)
385 			continue;
386 
387 		if (element->package.count != 4)
388 			continue;
389 
390 		obj = &(element->package.elements[0]);
391 
392 		if (obj->type != ACPI_TYPE_BUFFER)
393 			continue;
394 
395 		reg = (struct acpi_power_register *)obj->buffer.pointer;
396 
397 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
398 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
399 			continue;
400 
401 		/* There should be an easy way to extract an integer... */
402 		obj = &(element->package.elements[1]);
403 		if (obj->type != ACPI_TYPE_INTEGER)
404 			continue;
405 
406 		cx.type = obj->integer.value;
407 		/*
408 		 * Some buggy BIOSes won't list C1 in _CST -
409 		 * Let acpi_processor_get_power_info_default() handle them later
410 		 */
411 		if (i == 1 && cx.type != ACPI_STATE_C1)
412 			current_count++;
413 
414 		cx.address = reg->address;
415 		cx.index = current_count + 1;
416 
417 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
418 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
419 			if (acpi_processor_ffh_cstate_probe
420 					(pr->id, &cx, reg) == 0) {
421 				cx.entry_method = ACPI_CSTATE_FFH;
422 			} else if (cx.type == ACPI_STATE_C1) {
423 				/*
424 				 * C1 is a special case where FIXED_HARDWARE
425 				 * can be handled in non-MWAIT way as well.
426 				 * In that case, save this _CST entry info.
427 				 * Otherwise, ignore this info and continue.
428 				 */
429 				cx.entry_method = ACPI_CSTATE_HALT;
430 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
431 			} else {
432 				continue;
433 			}
434 			if (cx.type == ACPI_STATE_C1 &&
435 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
436 				/*
437 				 * In most cases the C1 space_id obtained from
438 				 * _CST object is FIXED_HARDWARE access mode.
439 				 * But when the option of idle=halt is added,
440 				 * the entry_method type should be changed from
441 				 * CSTATE_FFH to CSTATE_HALT.
442 				 * When the option of idle=nomwait is added,
443 				 * the C1 entry_method type should be
444 				 * CSTATE_HALT.
445 				 */
446 				cx.entry_method = ACPI_CSTATE_HALT;
447 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
448 			}
449 		} else {
450 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
451 				 cx.address);
452 		}
453 
454 		if (cx.type == ACPI_STATE_C1) {
455 			cx.valid = 1;
456 		}
457 
458 		obj = &(element->package.elements[2]);
459 		if (obj->type != ACPI_TYPE_INTEGER)
460 			continue;
461 
462 		cx.latency = obj->integer.value;
463 
464 		obj = &(element->package.elements[3]);
465 		if (obj->type != ACPI_TYPE_INTEGER)
466 			continue;
467 
468 		current_count++;
469 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
470 
471 		/*
472 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
473 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
474 		 */
475 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
476 			printk(KERN_WARNING
477 			       "Limiting number of power states to max (%d)\n",
478 			       ACPI_PROCESSOR_MAX_POWER);
479 			printk(KERN_WARNING
480 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
481 			break;
482 		}
483 	}
484 
485 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
486 			  current_count));
487 
488 	/* Validate number of power states discovered */
489 	if (current_count < 2)
490 		ret = -EFAULT;
491 
492       end:
493 	kfree(buffer.pointer);
494 
495 	return ret;
496 }
497 
498 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
499 					   struct acpi_processor_cx *cx)
500 {
501 	static int bm_check_flag = -1;
502 	static int bm_control_flag = -1;
503 
504 
505 	if (!cx->address)
506 		return;
507 
508 	/*
509 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
510 	 * DMA transfers are used by any ISA device to avoid livelock.
511 	 * Note that we could disable Type-F DMA (as recommended by
512 	 * the erratum), but this is known to disrupt certain ISA
513 	 * devices thus we take the conservative approach.
514 	 */
515 	else if (errata.piix4.fdma) {
516 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
517 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
518 		return;
519 	}
520 
521 	/* All the logic here assumes flags.bm_check is same across all CPUs */
522 	if (bm_check_flag == -1) {
523 		/* Determine whether bm_check is needed based on CPU  */
524 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
525 		bm_check_flag = pr->flags.bm_check;
526 		bm_control_flag = pr->flags.bm_control;
527 	} else {
528 		pr->flags.bm_check = bm_check_flag;
529 		pr->flags.bm_control = bm_control_flag;
530 	}
531 
532 	if (pr->flags.bm_check) {
533 		if (!pr->flags.bm_control) {
534 			if (pr->flags.has_cst != 1) {
535 				/* bus mastering control is necessary */
536 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
537 					"C3 support requires BM control\n"));
538 				return;
539 			} else {
540 				/* Here we enter C3 without bus mastering */
541 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
542 					"C3 support without BM control\n"));
543 			}
544 		}
545 	} else {
546 		/*
547 		 * WBINVD should be set in fadt, for C3 state to be
548 		 * supported on when bm_check is not required.
549 		 */
550 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
551 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
552 					  "Cache invalidation should work properly"
553 					  " for C3 to be enabled on SMP systems\n"));
554 			return;
555 		}
556 	}
557 
558 	/*
559 	 * Otherwise we've met all of our C3 requirements.
560 	 * Normalize the C3 latency to expidite policy.  Enable
561 	 * checking of bus mastering status (bm_check) so we can
562 	 * use this in our C3 policy
563 	 */
564 	cx->valid = 1;
565 
566 	/*
567 	 * On older chipsets, BM_RLD needs to be set
568 	 * in order for Bus Master activity to wake the
569 	 * system from C3.  Newer chipsets handle DMA
570 	 * during C3 automatically and BM_RLD is a NOP.
571 	 * In either case, the proper way to
572 	 * handle BM_RLD is to set it and leave it set.
573 	 */
574 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
575 
576 	return;
577 }
578 
579 static int acpi_processor_power_verify(struct acpi_processor *pr)
580 {
581 	unsigned int i;
582 	unsigned int working = 0;
583 
584 	pr->power.timer_broadcast_on_state = INT_MAX;
585 
586 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
587 		struct acpi_processor_cx *cx = &pr->power.states[i];
588 
589 		switch (cx->type) {
590 		case ACPI_STATE_C1:
591 			cx->valid = 1;
592 			break;
593 
594 		case ACPI_STATE_C2:
595 			if (!cx->address)
596 				break;
597 			cx->valid = 1;
598 			break;
599 
600 		case ACPI_STATE_C3:
601 			acpi_processor_power_verify_c3(pr, cx);
602 			break;
603 		}
604 		if (!cx->valid)
605 			continue;
606 
607 		lapic_timer_check_state(i, pr, cx);
608 		tsc_check_state(cx->type);
609 		working++;
610 	}
611 
612 	lapic_timer_propagate_broadcast(pr);
613 
614 	return (working);
615 }
616 
617 static int acpi_processor_get_power_info(struct acpi_processor *pr)
618 {
619 	unsigned int i;
620 	int result;
621 
622 
623 	/* NOTE: the idle thread may not be running while calling
624 	 * this function */
625 
626 	/* Zero initialize all the C-states info. */
627 	memset(pr->power.states, 0, sizeof(pr->power.states));
628 
629 	result = acpi_processor_get_power_info_cst(pr);
630 	if (result == -ENODEV)
631 		result = acpi_processor_get_power_info_fadt(pr);
632 
633 	if (result)
634 		return result;
635 
636 	acpi_processor_get_power_info_default(pr);
637 
638 	pr->power.count = acpi_processor_power_verify(pr);
639 
640 	/*
641 	 * if one state of type C2 or C3 is available, mark this
642 	 * CPU as being "idle manageable"
643 	 */
644 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
645 		if (pr->power.states[i].valid) {
646 			pr->power.count = i;
647 			if (pr->power.states[i].type >= ACPI_STATE_C2)
648 				pr->flags.power = 1;
649 		}
650 	}
651 
652 	return 0;
653 }
654 
655 /**
656  * acpi_idle_bm_check - checks if bus master activity was detected
657  */
658 static int acpi_idle_bm_check(void)
659 {
660 	u32 bm_status = 0;
661 
662 	if (bm_check_disable)
663 		return 0;
664 
665 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
666 	if (bm_status)
667 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
668 	/*
669 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
670 	 * the true state of bus mastering activity; forcing us to
671 	 * manually check the BMIDEA bit of each IDE channel.
672 	 */
673 	else if (errata.piix4.bmisx) {
674 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
675 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
676 			bm_status = 1;
677 	}
678 	return bm_status;
679 }
680 
681 /**
682  * acpi_idle_do_entry - enter idle state using the appropriate method
683  * @cx: cstate data
684  *
685  * Caller disables interrupt before call and enables interrupt after return.
686  */
687 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
688 {
689 	if (cx->entry_method == ACPI_CSTATE_FFH) {
690 		/* Call into architectural FFH based C-state */
691 		acpi_processor_ffh_cstate_enter(cx);
692 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
693 		acpi_safe_halt();
694 	} else {
695 		/* IO port based C-state */
696 		inb(cx->address);
697 		/* Dummy wait op - must do something useless after P_LVL2 read
698 		   because chipsets cannot guarantee that STPCLK# signal
699 		   gets asserted in time to freeze execution properly. */
700 		inl(acpi_gbl_FADT.xpm_timer_block.address);
701 	}
702 }
703 
704 /**
705  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
706  * @dev: the target CPU
707  * @index: the index of suggested state
708  */
709 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
710 {
711 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
712 
713 	ACPI_FLUSH_CPU_CACHE();
714 
715 	while (1) {
716 
717 		if (cx->entry_method == ACPI_CSTATE_HALT)
718 			safe_halt();
719 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
720 			inb(cx->address);
721 			/* See comment in acpi_idle_do_entry() */
722 			inl(acpi_gbl_FADT.xpm_timer_block.address);
723 		} else
724 			return -ENODEV;
725 	}
726 
727 	/* Never reached */
728 	return 0;
729 }
730 
731 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
732 {
733 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
734 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
735 }
736 
737 static int c3_cpu_count;
738 static DEFINE_RAW_SPINLOCK(c3_lock);
739 
740 /**
741  * acpi_idle_enter_bm - enters C3 with proper BM handling
742  * @pr: Target processor
743  * @cx: Target state context
744  * @timer_bc: Whether or not to change timer mode to broadcast
745  */
746 static void acpi_idle_enter_bm(struct acpi_processor *pr,
747 			       struct acpi_processor_cx *cx, bool timer_bc)
748 {
749 	acpi_unlazy_tlb(smp_processor_id());
750 
751 	/*
752 	 * Must be done before busmaster disable as we might need to
753 	 * access HPET !
754 	 */
755 	if (timer_bc)
756 		lapic_timer_state_broadcast(pr, cx, 1);
757 
758 	/*
759 	 * disable bus master
760 	 * bm_check implies we need ARB_DIS
761 	 * bm_control implies whether we can do ARB_DIS
762 	 *
763 	 * That leaves a case where bm_check is set and bm_control is
764 	 * not set. In that case we cannot do much, we enter C3
765 	 * without doing anything.
766 	 */
767 	if (pr->flags.bm_control) {
768 		raw_spin_lock(&c3_lock);
769 		c3_cpu_count++;
770 		/* Disable bus master arbitration when all CPUs are in C3 */
771 		if (c3_cpu_count == num_online_cpus())
772 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
773 		raw_spin_unlock(&c3_lock);
774 	}
775 
776 	acpi_idle_do_entry(cx);
777 
778 	/* Re-enable bus master arbitration */
779 	if (pr->flags.bm_control) {
780 		raw_spin_lock(&c3_lock);
781 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
782 		c3_cpu_count--;
783 		raw_spin_unlock(&c3_lock);
784 	}
785 
786 	if (timer_bc)
787 		lapic_timer_state_broadcast(pr, cx, 0);
788 }
789 
790 static int acpi_idle_enter(struct cpuidle_device *dev,
791 			   struct cpuidle_driver *drv, int index)
792 {
793 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
794 	struct acpi_processor *pr;
795 
796 	pr = __this_cpu_read(processors);
797 	if (unlikely(!pr))
798 		return -EINVAL;
799 
800 	if (cx->type != ACPI_STATE_C1) {
801 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
802 			index = CPUIDLE_DRIVER_STATE_START;
803 			cx = per_cpu(acpi_cstate[index], dev->cpu);
804 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
805 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
806 				acpi_idle_enter_bm(pr, cx, true);
807 				return index;
808 			} else if (drv->safe_state_index >= 0) {
809 				index = drv->safe_state_index;
810 				cx = per_cpu(acpi_cstate[index], dev->cpu);
811 			} else {
812 				acpi_safe_halt();
813 				return -EBUSY;
814 			}
815 		}
816 	}
817 
818 	lapic_timer_state_broadcast(pr, cx, 1);
819 
820 	if (cx->type == ACPI_STATE_C3)
821 		ACPI_FLUSH_CPU_CACHE();
822 
823 	acpi_idle_do_entry(cx);
824 
825 	lapic_timer_state_broadcast(pr, cx, 0);
826 
827 	return index;
828 }
829 
830 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
831 				   struct cpuidle_driver *drv, int index)
832 {
833 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
834 
835 	if (cx->type == ACPI_STATE_C3) {
836 		struct acpi_processor *pr = __this_cpu_read(processors);
837 
838 		if (unlikely(!pr))
839 			return;
840 
841 		if (pr->flags.bm_check) {
842 			acpi_idle_enter_bm(pr, cx, false);
843 			return;
844 		} else {
845 			ACPI_FLUSH_CPU_CACHE();
846 		}
847 	}
848 	acpi_idle_do_entry(cx);
849 }
850 
851 struct cpuidle_driver acpi_idle_driver = {
852 	.name =		"acpi_idle",
853 	.owner =	THIS_MODULE,
854 };
855 
856 /**
857  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
858  * device i.e. per-cpu data
859  *
860  * @pr: the ACPI processor
861  * @dev : the cpuidle device
862  */
863 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
864 					   struct cpuidle_device *dev)
865 {
866 	int i, count = CPUIDLE_DRIVER_STATE_START;
867 	struct acpi_processor_cx *cx;
868 
869 	if (!pr->flags.power_setup_done)
870 		return -EINVAL;
871 
872 	if (pr->flags.power == 0) {
873 		return -EINVAL;
874 	}
875 
876 	if (!dev)
877 		return -EINVAL;
878 
879 	dev->cpu = pr->id;
880 
881 	if (max_cstate == 0)
882 		max_cstate = 1;
883 
884 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
885 		cx = &pr->power.states[i];
886 
887 		if (!cx->valid)
888 			continue;
889 
890 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
891 
892 		count++;
893 		if (count == CPUIDLE_STATE_MAX)
894 			break;
895 	}
896 
897 	if (!count)
898 		return -EINVAL;
899 
900 	return 0;
901 }
902 
903 /**
904  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
905  * global state data i.e. idle routines
906  *
907  * @pr: the ACPI processor
908  */
909 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
910 {
911 	int i, count = CPUIDLE_DRIVER_STATE_START;
912 	struct acpi_processor_cx *cx;
913 	struct cpuidle_state *state;
914 	struct cpuidle_driver *drv = &acpi_idle_driver;
915 
916 	if (!pr->flags.power_setup_done)
917 		return -EINVAL;
918 
919 	if (pr->flags.power == 0)
920 		return -EINVAL;
921 
922 	drv->safe_state_index = -1;
923 	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
924 		drv->states[i].name[0] = '\0';
925 		drv->states[i].desc[0] = '\0';
926 	}
927 
928 	if (max_cstate == 0)
929 		max_cstate = 1;
930 
931 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
932 		cx = &pr->power.states[i];
933 
934 		if (!cx->valid)
935 			continue;
936 
937 		state = &drv->states[count];
938 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
939 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
940 		state->exit_latency = cx->latency;
941 		state->target_residency = cx->latency * latency_factor;
942 		state->enter = acpi_idle_enter;
943 
944 		state->flags = 0;
945 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
946 			state->enter_dead = acpi_idle_play_dead;
947 			drv->safe_state_index = count;
948 		}
949 		/*
950 		 * Halt-induced C1 is not good for ->enter_freeze, because it
951 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
952 		 * particularly interesting from the suspend-to-idle angle, so
953 		 * avoid C1 and the situations in which we may need to fall back
954 		 * to it altogether.
955 		 */
956 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
957 			state->enter_freeze = acpi_idle_enter_freeze;
958 
959 		count++;
960 		if (count == CPUIDLE_STATE_MAX)
961 			break;
962 	}
963 
964 	drv->state_count = count;
965 
966 	if (!count)
967 		return -EINVAL;
968 
969 	return 0;
970 }
971 
972 int acpi_processor_hotplug(struct acpi_processor *pr)
973 {
974 	int ret = 0;
975 	struct cpuidle_device *dev;
976 
977 	if (disabled_by_idle_boot_param())
978 		return 0;
979 
980 	if (nocst)
981 		return -ENODEV;
982 
983 	if (!pr->flags.power_setup_done)
984 		return -ENODEV;
985 
986 	dev = per_cpu(acpi_cpuidle_device, pr->id);
987 	cpuidle_pause_and_lock();
988 	cpuidle_disable_device(dev);
989 	acpi_processor_get_power_info(pr);
990 	if (pr->flags.power) {
991 		acpi_processor_setup_cpuidle_cx(pr, dev);
992 		ret = cpuidle_enable_device(dev);
993 	}
994 	cpuidle_resume_and_unlock();
995 
996 	return ret;
997 }
998 
999 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1000 {
1001 	int cpu;
1002 	struct acpi_processor *_pr;
1003 	struct cpuidle_device *dev;
1004 
1005 	if (disabled_by_idle_boot_param())
1006 		return 0;
1007 
1008 	if (nocst)
1009 		return -ENODEV;
1010 
1011 	if (!pr->flags.power_setup_done)
1012 		return -ENODEV;
1013 
1014 	/*
1015 	 * FIXME:  Design the ACPI notification to make it once per
1016 	 * system instead of once per-cpu.  This condition is a hack
1017 	 * to make the code that updates C-States be called once.
1018 	 */
1019 
1020 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1021 
1022 		/* Protect against cpu-hotplug */
1023 		get_online_cpus();
1024 		cpuidle_pause_and_lock();
1025 
1026 		/* Disable all cpuidle devices */
1027 		for_each_online_cpu(cpu) {
1028 			_pr = per_cpu(processors, cpu);
1029 			if (!_pr || !_pr->flags.power_setup_done)
1030 				continue;
1031 			dev = per_cpu(acpi_cpuidle_device, cpu);
1032 			cpuidle_disable_device(dev);
1033 		}
1034 
1035 		/* Populate Updated C-state information */
1036 		acpi_processor_get_power_info(pr);
1037 		acpi_processor_setup_cpuidle_states(pr);
1038 
1039 		/* Enable all cpuidle devices */
1040 		for_each_online_cpu(cpu) {
1041 			_pr = per_cpu(processors, cpu);
1042 			if (!_pr || !_pr->flags.power_setup_done)
1043 				continue;
1044 			acpi_processor_get_power_info(_pr);
1045 			if (_pr->flags.power) {
1046 				dev = per_cpu(acpi_cpuidle_device, cpu);
1047 				acpi_processor_setup_cpuidle_cx(_pr, dev);
1048 				cpuidle_enable_device(dev);
1049 			}
1050 		}
1051 		cpuidle_resume_and_unlock();
1052 		put_online_cpus();
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 static int acpi_processor_registered;
1059 
1060 int acpi_processor_power_init(struct acpi_processor *pr)
1061 {
1062 	acpi_status status;
1063 	int retval;
1064 	struct cpuidle_device *dev;
1065 	static int first_run;
1066 
1067 	if (disabled_by_idle_boot_param())
1068 		return 0;
1069 
1070 	if (!first_run) {
1071 		dmi_check_system(processor_power_dmi_table);
1072 		max_cstate = acpi_processor_cstate_check(max_cstate);
1073 		if (max_cstate < ACPI_C_STATES_MAX)
1074 			printk(KERN_NOTICE
1075 			       "ACPI: processor limited to max C-state %d\n",
1076 			       max_cstate);
1077 		first_run++;
1078 	}
1079 
1080 	if (acpi_gbl_FADT.cst_control && !nocst) {
1081 		status =
1082 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1083 		if (ACPI_FAILURE(status)) {
1084 			ACPI_EXCEPTION((AE_INFO, status,
1085 					"Notifying BIOS of _CST ability failed"));
1086 		}
1087 	}
1088 
1089 	acpi_processor_get_power_info(pr);
1090 	pr->flags.power_setup_done = 1;
1091 
1092 	/*
1093 	 * Install the idle handler if processor power management is supported.
1094 	 * Note that we use previously set idle handler will be used on
1095 	 * platforms that only support C1.
1096 	 */
1097 	if (pr->flags.power) {
1098 		/* Register acpi_idle_driver if not already registered */
1099 		if (!acpi_processor_registered) {
1100 			acpi_processor_setup_cpuidle_states(pr);
1101 			retval = cpuidle_register_driver(&acpi_idle_driver);
1102 			if (retval)
1103 				return retval;
1104 			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1105 					acpi_idle_driver.name);
1106 		}
1107 
1108 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1109 		if (!dev)
1110 			return -ENOMEM;
1111 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1112 
1113 		acpi_processor_setup_cpuidle_cx(pr, dev);
1114 
1115 		/* Register per-cpu cpuidle_device. Cpuidle driver
1116 		 * must already be registered before registering device
1117 		 */
1118 		retval = cpuidle_register_device(dev);
1119 		if (retval) {
1120 			if (acpi_processor_registered == 0)
1121 				cpuidle_unregister_driver(&acpi_idle_driver);
1122 			return retval;
1123 		}
1124 		acpi_processor_registered++;
1125 	}
1126 	return 0;
1127 }
1128 
1129 int acpi_processor_power_exit(struct acpi_processor *pr)
1130 {
1131 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1132 
1133 	if (disabled_by_idle_boot_param())
1134 		return 0;
1135 
1136 	if (pr->flags.power) {
1137 		cpuidle_unregister_device(dev);
1138 		acpi_processor_registered--;
1139 		if (acpi_processor_registered == 0)
1140 			cpuidle_unregister_driver(&acpi_idle_driver);
1141 	}
1142 
1143 	pr->flags.power_setup_done = 0;
1144 	return 0;
1145 }
1146