1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * pptt.c - parsing of Processor Properties Topology Table (PPTT) 4 * 5 * Copyright (C) 2018, ARM 6 * 7 * This file implements parsing of the Processor Properties Topology Table 8 * which is optionally used to describe the processor and cache topology. 9 * Due to the relative pointers used throughout the table, this doesn't 10 * leverage the existing subtable parsing in the kernel. 11 * 12 * The PPTT structure is an inverted tree, with each node potentially 13 * holding one or two inverted tree data structures describing 14 * the caches available at that level. Each cache structure optionally 15 * contains properties describing the cache at a given level which can be 16 * used to override hardware probed values. 17 */ 18 #define pr_fmt(fmt) "ACPI PPTT: " fmt 19 20 #include <linux/acpi.h> 21 #include <linux/cacheinfo.h> 22 #include <acpi/processor.h> 23 24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, 25 u32 pptt_ref) 26 { 27 struct acpi_subtable_header *entry; 28 29 /* there isn't a subtable at reference 0 */ 30 if (pptt_ref < sizeof(struct acpi_subtable_header)) 31 return NULL; 32 33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) 34 return NULL; 35 36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref); 37 38 if (entry->length == 0) 39 return NULL; 40 41 if (pptt_ref + entry->length > table_hdr->length) 42 return NULL; 43 44 return entry; 45 } 46 47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr, 48 u32 pptt_ref) 49 { 50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); 51 } 52 53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr, 54 u32 pptt_ref) 55 { 56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); 57 } 58 59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, 60 struct acpi_pptt_processor *node, 61 int resource) 62 { 63 u32 *ref; 64 65 if (resource >= node->number_of_priv_resources) 66 return NULL; 67 68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor)); 69 ref += resource; 70 71 return fetch_pptt_subtable(table_hdr, *ref); 72 } 73 74 static inline bool acpi_pptt_match_type(int table_type, int type) 75 { 76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type || 77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type); 78 } 79 80 /** 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache 82 * @table_hdr: Pointer to the head of the PPTT table 83 * @local_level: passed res reflects this cache level 84 * @split_levels: Number of split cache levels (data/instruction). 85 * @res: cache resource in the PPTT we want to walk 86 * @found: returns a pointer to the requested level if found 87 * @level: the requested cache level 88 * @type: the requested cache type 89 * 90 * Attempt to find a given cache level, while counting the max number 91 * of cache levels for the cache node. 92 * 93 * Given a pptt resource, verify that it is a cache node, then walk 94 * down each level of caches, counting how many levels are found 95 * as well as checking the cache type (icache, dcache, unified). If a 96 * level & type match, then we set found, and continue the search. 97 * Once the entire cache branch has been walked return its max 98 * depth. 99 * 100 * Return: The cache structure and the level we terminated with. 101 */ 102 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, 103 unsigned int local_level, 104 unsigned int *split_levels, 105 struct acpi_subtable_header *res, 106 struct acpi_pptt_cache **found, 107 unsigned int level, int type) 108 { 109 struct acpi_pptt_cache *cache; 110 111 if (res->type != ACPI_PPTT_TYPE_CACHE) 112 return 0; 113 114 cache = (struct acpi_pptt_cache *) res; 115 while (cache) { 116 local_level++; 117 118 if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) { 119 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); 120 continue; 121 } 122 123 if (split_levels && 124 (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) || 125 acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR))) 126 *split_levels = local_level; 127 128 if (local_level == level && 129 acpi_pptt_match_type(cache->attributes, type)) { 130 if (*found != NULL && cache != *found) 131 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); 132 133 pr_debug("Found cache @ level %u\n", level); 134 *found = cache; 135 /* 136 * continue looking at this node's resource list 137 * to verify that we don't find a duplicate 138 * cache node. 139 */ 140 } 141 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); 142 } 143 return local_level; 144 } 145 146 static struct acpi_pptt_cache * 147 acpi_find_cache_level(struct acpi_table_header *table_hdr, 148 struct acpi_pptt_processor *cpu_node, 149 unsigned int *starting_level, unsigned int *split_levels, 150 unsigned int level, int type) 151 { 152 struct acpi_subtable_header *res; 153 unsigned int number_of_levels = *starting_level; 154 int resource = 0; 155 struct acpi_pptt_cache *ret = NULL; 156 unsigned int local_level; 157 158 /* walk down from processor node */ 159 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { 160 resource++; 161 162 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, 163 split_levels, res, &ret, 164 level, type); 165 /* 166 * we are looking for the max depth. Since its potentially 167 * possible for a given node to have resources with differing 168 * depths verify that the depth we have found is the largest. 169 */ 170 if (number_of_levels < local_level) 171 number_of_levels = local_level; 172 } 173 if (number_of_levels > *starting_level) 174 *starting_level = number_of_levels; 175 176 return ret; 177 } 178 179 /** 180 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache 181 * levels and split cache levels (data/instruction). 182 * @table_hdr: Pointer to the head of the PPTT table 183 * @cpu_node: processor node we wish to count caches for 184 * @levels: Number of levels if success. 185 * @split_levels: Number of split cache levels (data/instruction) if 186 * success. Can by NULL. 187 * 188 * Given a processor node containing a processing unit, walk into it and count 189 * how many levels exist solely for it, and then walk up each level until we hit 190 * the root node (ignore the package level because it may be possible to have 191 * caches that exist across packages). Count the number of cache levels and 192 * split cache levels (data/instruction) that exist at each level on the way 193 * up. 194 */ 195 static void acpi_count_levels(struct acpi_table_header *table_hdr, 196 struct acpi_pptt_processor *cpu_node, 197 unsigned int *levels, unsigned int *split_levels) 198 { 199 do { 200 acpi_find_cache_level(table_hdr, cpu_node, levels, split_levels, 0, 0); 201 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 202 } while (cpu_node); 203 } 204 205 /** 206 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf 207 * @table_hdr: Pointer to the head of the PPTT table 208 * @node: passed node is checked to see if its a leaf 209 * 210 * Determine if the *node parameter is a leaf node by iterating the 211 * PPTT table, looking for nodes which reference it. 212 * 213 * Return: 0 if we find a node referencing the passed node (or table error), 214 * or 1 if we don't. 215 */ 216 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, 217 struct acpi_pptt_processor *node) 218 { 219 struct acpi_subtable_header *entry; 220 unsigned long table_end; 221 u32 node_entry; 222 struct acpi_pptt_processor *cpu_node; 223 u32 proc_sz; 224 225 if (table_hdr->revision > 1) 226 return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE); 227 228 table_end = (unsigned long)table_hdr + table_hdr->length; 229 node_entry = ACPI_PTR_DIFF(node, table_hdr); 230 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 231 sizeof(struct acpi_table_pptt)); 232 proc_sz = sizeof(struct acpi_pptt_processor); 233 234 /* ignore subtable types that are smaller than a processor node */ 235 while ((unsigned long)entry + proc_sz <= table_end) { 236 cpu_node = (struct acpi_pptt_processor *)entry; 237 238 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 239 cpu_node->parent == node_entry) 240 return 0; 241 if (entry->length == 0) 242 return 0; 243 244 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 245 entry->length); 246 } 247 return 1; 248 } 249 250 /** 251 * acpi_find_processor_node() - Given a PPTT table find the requested processor 252 * @table_hdr: Pointer to the head of the PPTT table 253 * @acpi_cpu_id: CPU we are searching for 254 * 255 * Find the subtable entry describing the provided processor. 256 * This is done by iterating the PPTT table looking for processor nodes 257 * which have an acpi_processor_id that matches the acpi_cpu_id parameter 258 * passed into the function. If we find a node that matches this criteria 259 * we verify that its a leaf node in the topology rather than depending 260 * on the valid flag, which doesn't need to be set for leaf nodes. 261 * 262 * Return: NULL, or the processors acpi_pptt_processor* 263 */ 264 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr, 265 u32 acpi_cpu_id) 266 { 267 struct acpi_subtable_header *entry; 268 unsigned long table_end; 269 struct acpi_pptt_processor *cpu_node; 270 u32 proc_sz; 271 272 table_end = (unsigned long)table_hdr + table_hdr->length; 273 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 274 sizeof(struct acpi_table_pptt)); 275 proc_sz = sizeof(struct acpi_pptt_processor); 276 277 /* find the processor structure associated with this cpuid */ 278 while ((unsigned long)entry + proc_sz <= table_end) { 279 cpu_node = (struct acpi_pptt_processor *)entry; 280 281 if (entry->length == 0) { 282 pr_warn("Invalid zero length subtable\n"); 283 break; 284 } 285 /* entry->length may not equal proc_sz, revalidate the processor structure length */ 286 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 287 acpi_cpu_id == cpu_node->acpi_processor_id && 288 (unsigned long)entry + entry->length <= table_end && 289 entry->length == proc_sz + cpu_node->number_of_priv_resources * sizeof(u32) && 290 acpi_pptt_leaf_node(table_hdr, cpu_node)) { 291 return (struct acpi_pptt_processor *)entry; 292 } 293 294 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 295 entry->length); 296 } 297 298 return NULL; 299 } 300 301 static u8 acpi_cache_type(enum cache_type type) 302 { 303 switch (type) { 304 case CACHE_TYPE_DATA: 305 pr_debug("Looking for data cache\n"); 306 return ACPI_PPTT_CACHE_TYPE_DATA; 307 case CACHE_TYPE_INST: 308 pr_debug("Looking for instruction cache\n"); 309 return ACPI_PPTT_CACHE_TYPE_INSTR; 310 default: 311 case CACHE_TYPE_UNIFIED: 312 pr_debug("Looking for unified cache\n"); 313 /* 314 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED 315 * contains the bit pattern that will match both 316 * ACPI unified bit patterns because we use it later 317 * to match both cases. 318 */ 319 return ACPI_PPTT_CACHE_TYPE_UNIFIED; 320 } 321 } 322 323 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr, 324 u32 acpi_cpu_id, 325 enum cache_type type, 326 unsigned int level, 327 struct acpi_pptt_processor **node) 328 { 329 unsigned int total_levels = 0; 330 struct acpi_pptt_cache *found = NULL; 331 struct acpi_pptt_processor *cpu_node; 332 u8 acpi_type = acpi_cache_type(type); 333 334 pr_debug("Looking for CPU %d's level %u cache type %d\n", 335 acpi_cpu_id, level, acpi_type); 336 337 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); 338 339 while (cpu_node && !found) { 340 found = acpi_find_cache_level(table_hdr, cpu_node, 341 &total_levels, NULL, level, acpi_type); 342 *node = cpu_node; 343 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 344 } 345 346 return found; 347 } 348 349 /** 350 * update_cache_properties() - Update cacheinfo for the given processor 351 * @this_leaf: Kernel cache info structure being updated 352 * @found_cache: The PPTT node describing this cache instance 353 * @cpu_node: A unique reference to describe this cache instance 354 * @revision: The revision of the PPTT table 355 * 356 * The ACPI spec implies that the fields in the cache structures are used to 357 * extend and correct the information probed from the hardware. Lets only 358 * set fields that we determine are VALID. 359 * 360 * Return: nothing. Side effect of updating the global cacheinfo 361 */ 362 static void update_cache_properties(struct cacheinfo *this_leaf, 363 struct acpi_pptt_cache *found_cache, 364 struct acpi_pptt_processor *cpu_node, 365 u8 revision) 366 { 367 struct acpi_pptt_cache_v1* found_cache_v1; 368 369 this_leaf->fw_token = cpu_node; 370 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) 371 this_leaf->size = found_cache->size; 372 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) 373 this_leaf->coherency_line_size = found_cache->line_size; 374 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) 375 this_leaf->number_of_sets = found_cache->number_of_sets; 376 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) 377 this_leaf->ways_of_associativity = found_cache->associativity; 378 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) { 379 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { 380 case ACPI_PPTT_CACHE_POLICY_WT: 381 this_leaf->attributes = CACHE_WRITE_THROUGH; 382 break; 383 case ACPI_PPTT_CACHE_POLICY_WB: 384 this_leaf->attributes = CACHE_WRITE_BACK; 385 break; 386 } 387 } 388 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) { 389 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { 390 case ACPI_PPTT_CACHE_READ_ALLOCATE: 391 this_leaf->attributes |= CACHE_READ_ALLOCATE; 392 break; 393 case ACPI_PPTT_CACHE_WRITE_ALLOCATE: 394 this_leaf->attributes |= CACHE_WRITE_ALLOCATE; 395 break; 396 case ACPI_PPTT_CACHE_RW_ALLOCATE: 397 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT: 398 this_leaf->attributes |= 399 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE; 400 break; 401 } 402 } 403 /* 404 * If cache type is NOCACHE, then the cache hasn't been specified 405 * via other mechanisms. Update the type if a cache type has been 406 * provided. 407 * 408 * Note, we assume such caches are unified based on conventional system 409 * design and known examples. Significant work is required elsewhere to 410 * fully support data/instruction only type caches which are only 411 * specified in PPTT. 412 */ 413 if (this_leaf->type == CACHE_TYPE_NOCACHE && 414 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) 415 this_leaf->type = CACHE_TYPE_UNIFIED; 416 417 if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) { 418 found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1, 419 found_cache, sizeof(struct acpi_pptt_cache)); 420 this_leaf->id = found_cache_v1->cache_id; 421 this_leaf->attributes |= CACHE_ID; 422 } 423 } 424 425 static void cache_setup_acpi_cpu(struct acpi_table_header *table, 426 unsigned int cpu) 427 { 428 struct acpi_pptt_cache *found_cache; 429 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 430 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 431 struct cacheinfo *this_leaf; 432 unsigned int index = 0; 433 struct acpi_pptt_processor *cpu_node = NULL; 434 435 while (index < get_cpu_cacheinfo(cpu)->num_leaves) { 436 this_leaf = this_cpu_ci->info_list + index; 437 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 438 this_leaf->type, 439 this_leaf->level, 440 &cpu_node); 441 pr_debug("found = %p %p\n", found_cache, cpu_node); 442 if (found_cache) 443 update_cache_properties(this_leaf, found_cache, 444 ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)), 445 table->revision); 446 447 index++; 448 } 449 } 450 451 static bool flag_identical(struct acpi_table_header *table_hdr, 452 struct acpi_pptt_processor *cpu) 453 { 454 struct acpi_pptt_processor *next; 455 456 /* heterogeneous machines must use PPTT revision > 1 */ 457 if (table_hdr->revision < 2) 458 return false; 459 460 /* Locate the last node in the tree with IDENTICAL set */ 461 if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) { 462 next = fetch_pptt_node(table_hdr, cpu->parent); 463 if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL)) 464 return true; 465 } 466 467 return false; 468 } 469 470 /* Passing level values greater than this will result in search termination */ 471 #define PPTT_ABORT_PACKAGE 0xFF 472 473 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr, 474 struct acpi_pptt_processor *cpu, 475 int level, int flag) 476 { 477 struct acpi_pptt_processor *prev_node; 478 479 while (cpu && level) { 480 /* special case the identical flag to find last identical */ 481 if (flag == ACPI_PPTT_ACPI_IDENTICAL) { 482 if (flag_identical(table_hdr, cpu)) 483 break; 484 } else if (cpu->flags & flag) 485 break; 486 pr_debug("level %d\n", level); 487 prev_node = fetch_pptt_node(table_hdr, cpu->parent); 488 if (prev_node == NULL) 489 break; 490 cpu = prev_node; 491 level--; 492 } 493 return cpu; 494 } 495 496 static void acpi_pptt_warn_missing(void) 497 { 498 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n"); 499 } 500 501 /** 502 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature 503 * @table: Pointer to the head of the PPTT table 504 * @cpu: Kernel logical CPU number 505 * @level: A level that terminates the search 506 * @flag: A flag which terminates the search 507 * 508 * Get a unique value given a CPU, and a topology level, that can be 509 * matched to determine which cpus share common topological features 510 * at that level. 511 * 512 * Return: Unique value, or -ENOENT if unable to locate CPU 513 */ 514 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, 515 unsigned int cpu, int level, int flag) 516 { 517 struct acpi_pptt_processor *cpu_node; 518 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 519 520 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 521 if (cpu_node) { 522 cpu_node = acpi_find_processor_tag(table, cpu_node, 523 level, flag); 524 /* 525 * As per specification if the processor structure represents 526 * an actual processor, then ACPI processor ID must be valid. 527 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID 528 * should be set if the UID is valid 529 */ 530 if (level == 0 || 531 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 532 return cpu_node->acpi_processor_id; 533 return ACPI_PTR_DIFF(cpu_node, table); 534 } 535 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n", 536 cpu, acpi_cpu_id); 537 return -ENOENT; 538 } 539 540 541 static struct acpi_table_header *acpi_get_pptt(void) 542 { 543 static struct acpi_table_header *pptt; 544 static bool is_pptt_checked; 545 acpi_status status; 546 547 /* 548 * PPTT will be used at runtime on every CPU hotplug in path, so we 549 * don't need to call acpi_put_table() to release the table mapping. 550 */ 551 if (!pptt && !is_pptt_checked) { 552 status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt); 553 if (ACPI_FAILURE(status)) 554 acpi_pptt_warn_missing(); 555 556 is_pptt_checked = true; 557 } 558 559 return pptt; 560 } 561 562 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag) 563 { 564 struct acpi_table_header *table; 565 int retval; 566 567 table = acpi_get_pptt(); 568 if (!table) 569 return -ENOENT; 570 571 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag); 572 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n", 573 cpu, level, retval); 574 575 return retval; 576 } 577 578 /** 579 * check_acpi_cpu_flag() - Determine if CPU node has a flag set 580 * @cpu: Kernel logical CPU number 581 * @rev: The minimum PPTT revision defining the flag 582 * @flag: The flag itself 583 * 584 * Check the node representing a CPU for a given flag. 585 * 586 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or 587 * the table revision isn't new enough. 588 * 1, any passed flag set 589 * 0, flag unset 590 */ 591 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag) 592 { 593 struct acpi_table_header *table; 594 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 595 struct acpi_pptt_processor *cpu_node = NULL; 596 int ret = -ENOENT; 597 598 table = acpi_get_pptt(); 599 if (!table) 600 return -ENOENT; 601 602 if (table->revision >= rev) 603 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 604 605 if (cpu_node) 606 ret = (cpu_node->flags & flag) != 0; 607 608 return ret; 609 } 610 611 /** 612 * acpi_get_cache_info() - Determine the number of cache levels and 613 * split cache levels (data/instruction) and for a PE. 614 * @cpu: Kernel logical CPU number 615 * @levels: Number of levels if success. 616 * @split_levels: Number of levels being split (i.e. data/instruction) 617 * if success. Can by NULL. 618 * 619 * Given a logical CPU number, returns the number of levels of cache represented 620 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 621 * indicating we didn't find any cache levels. 622 * 623 * Return: -ENOENT if no PPTT table or no PPTT processor struct found. 624 * 0 on success. 625 */ 626 int acpi_get_cache_info(unsigned int cpu, unsigned int *levels, 627 unsigned int *split_levels) 628 { 629 struct acpi_pptt_processor *cpu_node; 630 struct acpi_table_header *table; 631 u32 acpi_cpu_id; 632 633 *levels = 0; 634 if (split_levels) 635 *split_levels = 0; 636 637 table = acpi_get_pptt(); 638 if (!table) 639 return -ENOENT; 640 641 pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu); 642 643 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 644 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 645 if (!cpu_node) 646 return -ENOENT; 647 648 acpi_count_levels(table, cpu_node, levels, split_levels); 649 650 pr_debug("Cache Setup: last_level=%d split_levels=%d\n", 651 *levels, split_levels ? *split_levels : -1); 652 653 return 0; 654 } 655 656 /** 657 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT 658 * @cpu: Kernel logical CPU number 659 * 660 * Updates the global cache info provided by cpu_get_cacheinfo() 661 * when there are valid properties in the acpi_pptt_cache nodes. A 662 * successful parse may not result in any updates if none of the 663 * cache levels have any valid flags set. Further, a unique value is 664 * associated with each known CPU cache entry. This unique value 665 * can be used to determine whether caches are shared between CPUs. 666 * 667 * Return: -ENOENT on failure to find table, or 0 on success 668 */ 669 int cache_setup_acpi(unsigned int cpu) 670 { 671 struct acpi_table_header *table; 672 673 table = acpi_get_pptt(); 674 if (!table) 675 return -ENOENT; 676 677 pr_debug("Cache Setup ACPI CPU %d\n", cpu); 678 679 cache_setup_acpi_cpu(table, cpu); 680 681 return 0; 682 } 683 684 /** 685 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread 686 * @cpu: Kernel logical CPU number 687 * 688 * Return: 1, a thread 689 * 0, not a thread 690 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or 691 * the table revision isn't new enough. 692 */ 693 int acpi_pptt_cpu_is_thread(unsigned int cpu) 694 { 695 return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD); 696 } 697 698 /** 699 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU 700 * @cpu: Kernel logical CPU number 701 * @level: The topological level for which we would like a unique ID 702 * 703 * Determine a topology unique ID for each thread/core/cluster/mc_grouping 704 * /socket/etc. This ID can then be used to group peers, which will have 705 * matching ids. 706 * 707 * The search terminates when either the requested level is found or 708 * we reach a root node. Levels beyond the termination point will return the 709 * same unique ID. The unique id for level 0 is the acpi processor id. All 710 * other levels beyond this use a generated value to uniquely identify 711 * a topological feature. 712 * 713 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 714 * Otherwise returns a value which represents a unique topological feature. 715 */ 716 int find_acpi_cpu_topology(unsigned int cpu, int level) 717 { 718 return find_acpi_cpu_topology_tag(cpu, level, 0); 719 } 720 721 /** 722 * find_acpi_cpu_topology_package() - Determine a unique CPU package value 723 * @cpu: Kernel logical CPU number 724 * 725 * Determine a topology unique package ID for the given CPU. 726 * This ID can then be used to group peers, which will have matching ids. 727 * 728 * The search terminates when either a level is found with the PHYSICAL_PACKAGE 729 * flag set or we reach a root node. 730 * 731 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 732 * Otherwise returns a value which represents the package for this CPU. 733 */ 734 int find_acpi_cpu_topology_package(unsigned int cpu) 735 { 736 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 737 ACPI_PPTT_PHYSICAL_PACKAGE); 738 } 739 740 /** 741 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value 742 * @cpu: Kernel logical CPU number 743 * 744 * Determine a topology unique cluster ID for the given CPU/thread. 745 * This ID can then be used to group peers, which will have matching ids. 746 * 747 * The cluster, if present is the level of topology above CPUs. In a 748 * multi-thread CPU, it will be the level above the CPU, not the thread. 749 * It may not exist in single CPU systems. In simple multi-CPU systems, 750 * it may be equal to the package topology level. 751 * 752 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found 753 * or there is no toplogy level above the CPU.. 754 * Otherwise returns a value which represents the package for this CPU. 755 */ 756 757 int find_acpi_cpu_topology_cluster(unsigned int cpu) 758 { 759 struct acpi_table_header *table; 760 struct acpi_pptt_processor *cpu_node, *cluster_node; 761 u32 acpi_cpu_id; 762 int retval; 763 int is_thread; 764 765 table = acpi_get_pptt(); 766 if (!table) 767 return -ENOENT; 768 769 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 770 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 771 if (!cpu_node || !cpu_node->parent) 772 return -ENOENT; 773 774 is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD; 775 cluster_node = fetch_pptt_node(table, cpu_node->parent); 776 if (!cluster_node) 777 return -ENOENT; 778 779 if (is_thread) { 780 if (!cluster_node->parent) 781 return -ENOENT; 782 783 cluster_node = fetch_pptt_node(table, cluster_node->parent); 784 if (!cluster_node) 785 return -ENOENT; 786 } 787 if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 788 retval = cluster_node->acpi_processor_id; 789 else 790 retval = ACPI_PTR_DIFF(cluster_node, table); 791 792 return retval; 793 } 794 795 /** 796 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag 797 * @cpu: Kernel logical CPU number 798 * 799 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same 800 * implementation should have matching tags. 801 * 802 * The returned tag can be used to group peers with identical implementation. 803 * 804 * The search terminates when a level is found with the identical implementation 805 * flag set or we reach a root node. 806 * 807 * Due to limitations in the PPTT data structure, there may be rare situations 808 * where two cores in a heterogeneous machine may be identical, but won't have 809 * the same tag. 810 * 811 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 812 * Otherwise returns a value which represents a group of identical cores 813 * similar to this CPU. 814 */ 815 int find_acpi_cpu_topology_hetero_id(unsigned int cpu) 816 { 817 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 818 ACPI_PPTT_ACPI_IDENTICAL); 819 } 820