xref: /linux/drivers/acpi/pptt.c (revision df24e1783e6e0eb3dc0e3ba5a8df3bb0cc537408)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4  *
5  * Copyright (C) 2018, ARM
6  *
7  * This file implements parsing of the Processor Properties Topology Table
8  * which is optionally used to describe the processor and cache topology.
9  * Due to the relative pointers used throughout the table, this doesn't
10  * leverage the existing subtable parsing in the kernel.
11  *
12  * The PPTT structure is an inverted tree, with each node potentially
13  * holding one or two inverted tree data structures describing
14  * the caches available at that level. Each cache structure optionally
15  * contains properties describing the cache at a given level which can be
16  * used to override hardware probed values.
17  */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19 
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23 
24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 							u32 pptt_ref)
26 {
27 	struct acpi_subtable_header *entry;
28 
29 	/* there isn't a subtable at reference 0 */
30 	if (pptt_ref < sizeof(struct acpi_subtable_header))
31 		return NULL;
32 
33 	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 		return NULL;
35 
36 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37 
38 	if (entry->length == 0)
39 		return NULL;
40 
41 	if (pptt_ref + entry->length > table_hdr->length)
42 		return NULL;
43 
44 	return entry;
45 }
46 
47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 						   u32 pptt_ref)
49 {
50 	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51 }
52 
53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 						u32 pptt_ref)
55 {
56 	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57 }
58 
59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 							   struct acpi_pptt_processor *node,
61 							   int resource)
62 {
63 	u32 *ref;
64 
65 	if (resource >= node->number_of_priv_resources)
66 		return NULL;
67 
68 	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 	ref += resource;
70 
71 	return fetch_pptt_subtable(table_hdr, *ref);
72 }
73 
74 static inline bool acpi_pptt_match_type(int table_type, int type)
75 {
76 	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78 }
79 
80 /**
81  * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82  * @table_hdr: Pointer to the head of the PPTT table
83  * @local_level: passed res reflects this cache level
84  * @res: cache resource in the PPTT we want to walk
85  * @found: returns a pointer to the requested level if found
86  * @level: the requested cache level
87  * @type: the requested cache type
88  *
89  * Attempt to find a given cache level, while counting the max number
90  * of cache levels for the cache node.
91  *
92  * Given a pptt resource, verify that it is a cache node, then walk
93  * down each level of caches, counting how many levels are found
94  * as well as checking the cache type (icache, dcache, unified). If a
95  * level & type match, then we set found, and continue the search.
96  * Once the entire cache branch has been walked return its max
97  * depth.
98  *
99  * Return: The cache structure and the level we terminated with.
100  */
101 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102 					 unsigned int local_level,
103 					 struct acpi_subtable_header *res,
104 					 struct acpi_pptt_cache **found,
105 					 unsigned int level, int type)
106 {
107 	struct acpi_pptt_cache *cache;
108 
109 	if (res->type != ACPI_PPTT_TYPE_CACHE)
110 		return 0;
111 
112 	cache = (struct acpi_pptt_cache *) res;
113 	while (cache) {
114 		local_level++;
115 
116 		if (local_level == level &&
117 		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118 		    acpi_pptt_match_type(cache->attributes, type)) {
119 			if (*found != NULL && cache != *found)
120 				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121 
122 			pr_debug("Found cache @ level %u\n", level);
123 			*found = cache;
124 			/*
125 			 * continue looking at this node's resource list
126 			 * to verify that we don't find a duplicate
127 			 * cache node.
128 			 */
129 		}
130 		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131 	}
132 	return local_level;
133 }
134 
135 static struct acpi_pptt_cache *
136 acpi_find_cache_level(struct acpi_table_header *table_hdr,
137 		      struct acpi_pptt_processor *cpu_node,
138 		      unsigned int *starting_level, unsigned int level,
139 		      int type)
140 {
141 	struct acpi_subtable_header *res;
142 	unsigned int number_of_levels = *starting_level;
143 	int resource = 0;
144 	struct acpi_pptt_cache *ret = NULL;
145 	unsigned int local_level;
146 
147 	/* walk down from processor node */
148 	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
149 		resource++;
150 
151 		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
152 						   res, &ret, level, type);
153 		/*
154 		 * we are looking for the max depth. Since its potentially
155 		 * possible for a given node to have resources with differing
156 		 * depths verify that the depth we have found is the largest.
157 		 */
158 		if (number_of_levels < local_level)
159 			number_of_levels = local_level;
160 	}
161 	if (number_of_levels > *starting_level)
162 		*starting_level = number_of_levels;
163 
164 	return ret;
165 }
166 
167 /**
168  * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
169  * @table_hdr: Pointer to the head of the PPTT table
170  * @cpu_node: processor node we wish to count caches for
171  *
172  * Given a processor node containing a processing unit, walk into it and count
173  * how many levels exist solely for it, and then walk up each level until we hit
174  * the root node (ignore the package level because it may be possible to have
175  * caches that exist across packages). Count the number of cache levels that
176  * exist at each level on the way up.
177  *
178  * Return: Total number of levels found.
179  */
180 static int acpi_count_levels(struct acpi_table_header *table_hdr,
181 			     struct acpi_pptt_processor *cpu_node)
182 {
183 	int total_levels = 0;
184 
185 	do {
186 		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
187 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
188 	} while (cpu_node);
189 
190 	return total_levels;
191 }
192 
193 /**
194  * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
195  * @table_hdr: Pointer to the head of the PPTT table
196  * @node: passed node is checked to see if its a leaf
197  *
198  * Determine if the *node parameter is a leaf node by iterating the
199  * PPTT table, looking for nodes which reference it.
200  *
201  * Return: 0 if we find a node referencing the passed node (or table error),
202  * or 1 if we don't.
203  */
204 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
205 			       struct acpi_pptt_processor *node)
206 {
207 	struct acpi_subtable_header *entry;
208 	unsigned long table_end;
209 	u32 node_entry;
210 	struct acpi_pptt_processor *cpu_node;
211 	u32 proc_sz;
212 
213 	if (table_hdr->revision > 1)
214 		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
215 
216 	table_end = (unsigned long)table_hdr + table_hdr->length;
217 	node_entry = ACPI_PTR_DIFF(node, table_hdr);
218 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
219 			     sizeof(struct acpi_table_pptt));
220 	proc_sz = sizeof(struct acpi_pptt_processor *);
221 
222 	while ((unsigned long)entry + proc_sz < table_end) {
223 		cpu_node = (struct acpi_pptt_processor *)entry;
224 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
225 		    cpu_node->parent == node_entry)
226 			return 0;
227 		if (entry->length == 0)
228 			return 0;
229 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
230 				     entry->length);
231 
232 	}
233 	return 1;
234 }
235 
236 /**
237  * acpi_find_processor_node() - Given a PPTT table find the requested processor
238  * @table_hdr:  Pointer to the head of the PPTT table
239  * @acpi_cpu_id: CPU we are searching for
240  *
241  * Find the subtable entry describing the provided processor.
242  * This is done by iterating the PPTT table looking for processor nodes
243  * which have an acpi_processor_id that matches the acpi_cpu_id parameter
244  * passed into the function. If we find a node that matches this criteria
245  * we verify that its a leaf node in the topology rather than depending
246  * on the valid flag, which doesn't need to be set for leaf nodes.
247  *
248  * Return: NULL, or the processors acpi_pptt_processor*
249  */
250 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
251 							    u32 acpi_cpu_id)
252 {
253 	struct acpi_subtable_header *entry;
254 	unsigned long table_end;
255 	struct acpi_pptt_processor *cpu_node;
256 	u32 proc_sz;
257 
258 	table_end = (unsigned long)table_hdr + table_hdr->length;
259 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
260 			     sizeof(struct acpi_table_pptt));
261 	proc_sz = sizeof(struct acpi_pptt_processor *);
262 
263 	/* find the processor structure associated with this cpuid */
264 	while ((unsigned long)entry + proc_sz < table_end) {
265 		cpu_node = (struct acpi_pptt_processor *)entry;
266 
267 		if (entry->length == 0) {
268 			pr_warn("Invalid zero length subtable\n");
269 			break;
270 		}
271 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
272 		    acpi_cpu_id == cpu_node->acpi_processor_id &&
273 		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
274 			return (struct acpi_pptt_processor *)entry;
275 		}
276 
277 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
278 				     entry->length);
279 	}
280 
281 	return NULL;
282 }
283 
284 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
285 				  u32 acpi_cpu_id)
286 {
287 	int number_of_levels = 0;
288 	struct acpi_pptt_processor *cpu;
289 
290 	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
291 	if (cpu)
292 		number_of_levels = acpi_count_levels(table_hdr, cpu);
293 
294 	return number_of_levels;
295 }
296 
297 static u8 acpi_cache_type(enum cache_type type)
298 {
299 	switch (type) {
300 	case CACHE_TYPE_DATA:
301 		pr_debug("Looking for data cache\n");
302 		return ACPI_PPTT_CACHE_TYPE_DATA;
303 	case CACHE_TYPE_INST:
304 		pr_debug("Looking for instruction cache\n");
305 		return ACPI_PPTT_CACHE_TYPE_INSTR;
306 	default:
307 	case CACHE_TYPE_UNIFIED:
308 		pr_debug("Looking for unified cache\n");
309 		/*
310 		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
311 		 * contains the bit pattern that will match both
312 		 * ACPI unified bit patterns because we use it later
313 		 * to match both cases.
314 		 */
315 		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
316 	}
317 }
318 
319 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
320 						    u32 acpi_cpu_id,
321 						    enum cache_type type,
322 						    unsigned int level,
323 						    struct acpi_pptt_processor **node)
324 {
325 	unsigned int total_levels = 0;
326 	struct acpi_pptt_cache *found = NULL;
327 	struct acpi_pptt_processor *cpu_node;
328 	u8 acpi_type = acpi_cache_type(type);
329 
330 	pr_debug("Looking for CPU %d's level %u cache type %d\n",
331 		 acpi_cpu_id, level, acpi_type);
332 
333 	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
334 
335 	while (cpu_node && !found) {
336 		found = acpi_find_cache_level(table_hdr, cpu_node,
337 					      &total_levels, level, acpi_type);
338 		*node = cpu_node;
339 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
340 	}
341 
342 	return found;
343 }
344 
345 /**
346  * update_cache_properties() - Update cacheinfo for the given processor
347  * @this_leaf: Kernel cache info structure being updated
348  * @found_cache: The PPTT node describing this cache instance
349  * @cpu_node: A unique reference to describe this cache instance
350  * @revision: The revision of the PPTT table
351  *
352  * The ACPI spec implies that the fields in the cache structures are used to
353  * extend and correct the information probed from the hardware. Lets only
354  * set fields that we determine are VALID.
355  *
356  * Return: nothing. Side effect of updating the global cacheinfo
357  */
358 static void update_cache_properties(struct cacheinfo *this_leaf,
359 				    struct acpi_pptt_cache *found_cache,
360 				    struct acpi_pptt_processor *cpu_node,
361 				    u8 revision)
362 {
363 	struct acpi_pptt_cache_v1* found_cache_v1;
364 
365 	this_leaf->fw_token = cpu_node;
366 	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
367 		this_leaf->size = found_cache->size;
368 	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
369 		this_leaf->coherency_line_size = found_cache->line_size;
370 	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
371 		this_leaf->number_of_sets = found_cache->number_of_sets;
372 	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
373 		this_leaf->ways_of_associativity = found_cache->associativity;
374 	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
375 		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
376 		case ACPI_PPTT_CACHE_POLICY_WT:
377 			this_leaf->attributes = CACHE_WRITE_THROUGH;
378 			break;
379 		case ACPI_PPTT_CACHE_POLICY_WB:
380 			this_leaf->attributes = CACHE_WRITE_BACK;
381 			break;
382 		}
383 	}
384 	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
385 		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
386 		case ACPI_PPTT_CACHE_READ_ALLOCATE:
387 			this_leaf->attributes |= CACHE_READ_ALLOCATE;
388 			break;
389 		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
390 			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
391 			break;
392 		case ACPI_PPTT_CACHE_RW_ALLOCATE:
393 		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
394 			this_leaf->attributes |=
395 				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
396 			break;
397 		}
398 	}
399 	/*
400 	 * If cache type is NOCACHE, then the cache hasn't been specified
401 	 * via other mechanisms.  Update the type if a cache type has been
402 	 * provided.
403 	 *
404 	 * Note, we assume such caches are unified based on conventional system
405 	 * design and known examples.  Significant work is required elsewhere to
406 	 * fully support data/instruction only type caches which are only
407 	 * specified in PPTT.
408 	 */
409 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
410 	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
411 		this_leaf->type = CACHE_TYPE_UNIFIED;
412 
413 	if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
414 		found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
415 	                                      found_cache, sizeof(struct acpi_pptt_cache));
416 		this_leaf->id = found_cache_v1->cache_id;
417 		this_leaf->attributes |= CACHE_ID;
418 	}
419 }
420 
421 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
422 				 unsigned int cpu)
423 {
424 	struct acpi_pptt_cache *found_cache;
425 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
426 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
427 	struct cacheinfo *this_leaf;
428 	unsigned int index = 0;
429 	struct acpi_pptt_processor *cpu_node = NULL;
430 
431 	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
432 		this_leaf = this_cpu_ci->info_list + index;
433 		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
434 						   this_leaf->type,
435 						   this_leaf->level,
436 						   &cpu_node);
437 		pr_debug("found = %p %p\n", found_cache, cpu_node);
438 		if (found_cache)
439 			update_cache_properties(this_leaf, found_cache,
440 			                        cpu_node, table->revision);
441 
442 		index++;
443 	}
444 }
445 
446 static bool flag_identical(struct acpi_table_header *table_hdr,
447 			   struct acpi_pptt_processor *cpu)
448 {
449 	struct acpi_pptt_processor *next;
450 
451 	/* heterogeneous machines must use PPTT revision > 1 */
452 	if (table_hdr->revision < 2)
453 		return false;
454 
455 	/* Locate the last node in the tree with IDENTICAL set */
456 	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
457 		next = fetch_pptt_node(table_hdr, cpu->parent);
458 		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
459 			return true;
460 	}
461 
462 	return false;
463 }
464 
465 /* Passing level values greater than this will result in search termination */
466 #define PPTT_ABORT_PACKAGE 0xFF
467 
468 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
469 							   struct acpi_pptt_processor *cpu,
470 							   int level, int flag)
471 {
472 	struct acpi_pptt_processor *prev_node;
473 
474 	while (cpu && level) {
475 		/* special case the identical flag to find last identical */
476 		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
477 			if (flag_identical(table_hdr, cpu))
478 				break;
479 		} else if (cpu->flags & flag)
480 			break;
481 		pr_debug("level %d\n", level);
482 		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
483 		if (prev_node == NULL)
484 			break;
485 		cpu = prev_node;
486 		level--;
487 	}
488 	return cpu;
489 }
490 
491 static void acpi_pptt_warn_missing(void)
492 {
493 	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
494 }
495 
496 /**
497  * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
498  * @table: Pointer to the head of the PPTT table
499  * @cpu: Kernel logical CPU number
500  * @level: A level that terminates the search
501  * @flag: A flag which terminates the search
502  *
503  * Get a unique value given a CPU, and a topology level, that can be
504  * matched to determine which cpus share common topological features
505  * at that level.
506  *
507  * Return: Unique value, or -ENOENT if unable to locate CPU
508  */
509 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
510 				     unsigned int cpu, int level, int flag)
511 {
512 	struct acpi_pptt_processor *cpu_node;
513 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
514 
515 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
516 	if (cpu_node) {
517 		cpu_node = acpi_find_processor_tag(table, cpu_node,
518 						   level, flag);
519 		/*
520 		 * As per specification if the processor structure represents
521 		 * an actual processor, then ACPI processor ID must be valid.
522 		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
523 		 * should be set if the UID is valid
524 		 */
525 		if (level == 0 ||
526 		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
527 			return cpu_node->acpi_processor_id;
528 		return ACPI_PTR_DIFF(cpu_node, table);
529 	}
530 	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
531 		    cpu, acpi_cpu_id);
532 	return -ENOENT;
533 }
534 
535 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
536 {
537 	struct acpi_table_header *table;
538 	acpi_status status;
539 	int retval;
540 
541 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
542 	if (ACPI_FAILURE(status)) {
543 		acpi_pptt_warn_missing();
544 		return -ENOENT;
545 	}
546 	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
547 	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
548 		 cpu, level, retval);
549 	acpi_put_table(table);
550 
551 	return retval;
552 }
553 
554 /**
555  * check_acpi_cpu_flag() - Determine if CPU node has a flag set
556  * @cpu: Kernel logical CPU number
557  * @rev: The minimum PPTT revision defining the flag
558  * @flag: The flag itself
559  *
560  * Check the node representing a CPU for a given flag.
561  *
562  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
563  *	   the table revision isn't new enough.
564  *	   1, any passed flag set
565  *	   0, flag unset
566  */
567 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
568 {
569 	struct acpi_table_header *table;
570 	acpi_status status;
571 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
572 	struct acpi_pptt_processor *cpu_node = NULL;
573 	int ret = -ENOENT;
574 
575 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
576 	if (ACPI_FAILURE(status)) {
577 		acpi_pptt_warn_missing();
578 		return ret;
579 	}
580 
581 	if (table->revision >= rev)
582 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
583 
584 	if (cpu_node)
585 		ret = (cpu_node->flags & flag) != 0;
586 
587 	acpi_put_table(table);
588 
589 	return ret;
590 }
591 
592 /**
593  * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
594  * @cpu: Kernel logical CPU number
595  *
596  * Given a logical CPU number, returns the number of levels of cache represented
597  * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
598  * indicating we didn't find any cache levels.
599  *
600  * Return: Cache levels visible to this core.
601  */
602 int acpi_find_last_cache_level(unsigned int cpu)
603 {
604 	u32 acpi_cpu_id;
605 	struct acpi_table_header *table;
606 	int number_of_levels = 0;
607 	acpi_status status;
608 
609 	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
610 
611 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
612 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
613 	if (ACPI_FAILURE(status)) {
614 		acpi_pptt_warn_missing();
615 	} else {
616 		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
617 		acpi_put_table(table);
618 	}
619 	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
620 
621 	return number_of_levels;
622 }
623 
624 /**
625  * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
626  * @cpu: Kernel logical CPU number
627  *
628  * Updates the global cache info provided by cpu_get_cacheinfo()
629  * when there are valid properties in the acpi_pptt_cache nodes. A
630  * successful parse may not result in any updates if none of the
631  * cache levels have any valid flags set.  Further, a unique value is
632  * associated with each known CPU cache entry. This unique value
633  * can be used to determine whether caches are shared between CPUs.
634  *
635  * Return: -ENOENT on failure to find table, or 0 on success
636  */
637 int cache_setup_acpi(unsigned int cpu)
638 {
639 	struct acpi_table_header *table;
640 	acpi_status status;
641 
642 	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
643 
644 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
645 	if (ACPI_FAILURE(status)) {
646 		acpi_pptt_warn_missing();
647 		return -ENOENT;
648 	}
649 
650 	cache_setup_acpi_cpu(table, cpu);
651 	acpi_put_table(table);
652 
653 	return status;
654 }
655 
656 /**
657  * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
658  * @cpu: Kernel logical CPU number
659  *
660  * Return: 1, a thread
661  *         0, not a thread
662  *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
663  *         the table revision isn't new enough.
664  */
665 int acpi_pptt_cpu_is_thread(unsigned int cpu)
666 {
667 	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
668 }
669 
670 /**
671  * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
672  * @cpu: Kernel logical CPU number
673  * @level: The topological level for which we would like a unique ID
674  *
675  * Determine a topology unique ID for each thread/core/cluster/mc_grouping
676  * /socket/etc. This ID can then be used to group peers, which will have
677  * matching ids.
678  *
679  * The search terminates when either the requested level is found or
680  * we reach a root node. Levels beyond the termination point will return the
681  * same unique ID. The unique id for level 0 is the acpi processor id. All
682  * other levels beyond this use a generated value to uniquely identify
683  * a topological feature.
684  *
685  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
686  * Otherwise returns a value which represents a unique topological feature.
687  */
688 int find_acpi_cpu_topology(unsigned int cpu, int level)
689 {
690 	return find_acpi_cpu_topology_tag(cpu, level, 0);
691 }
692 
693 /**
694  * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
695  * @cpu: Kernel logical CPU number
696  * @level: The cache level for which we would like a unique ID
697  *
698  * Determine a unique ID for each unified cache in the system
699  *
700  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
701  * Otherwise returns a value which represents a unique topological feature.
702  */
703 int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
704 {
705 	struct acpi_table_header *table;
706 	struct acpi_pptt_cache *found_cache;
707 	acpi_status status;
708 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
709 	struct acpi_pptt_processor *cpu_node = NULL;
710 	int ret = -1;
711 
712 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
713 	if (ACPI_FAILURE(status)) {
714 		acpi_pptt_warn_missing();
715 		return -ENOENT;
716 	}
717 
718 	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
719 					   CACHE_TYPE_UNIFIED,
720 					   level,
721 					   &cpu_node);
722 	if (found_cache)
723 		ret = ACPI_PTR_DIFF(cpu_node, table);
724 
725 	acpi_put_table(table);
726 
727 	return ret;
728 }
729 
730 /**
731  * find_acpi_cpu_topology_package() - Determine a unique CPU package value
732  * @cpu: Kernel logical CPU number
733  *
734  * Determine a topology unique package ID for the given CPU.
735  * This ID can then be used to group peers, which will have matching ids.
736  *
737  * The search terminates when either a level is found with the PHYSICAL_PACKAGE
738  * flag set or we reach a root node.
739  *
740  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
741  * Otherwise returns a value which represents the package for this CPU.
742  */
743 int find_acpi_cpu_topology_package(unsigned int cpu)
744 {
745 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
746 					  ACPI_PPTT_PHYSICAL_PACKAGE);
747 }
748 
749 /**
750  * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
751  * @cpu: Kernel logical CPU number
752  *
753  * Determine a topology unique cluster ID for the given CPU/thread.
754  * This ID can then be used to group peers, which will have matching ids.
755  *
756  * The cluster, if present is the level of topology above CPUs. In a
757  * multi-thread CPU, it will be the level above the CPU, not the thread.
758  * It may not exist in single CPU systems. In simple multi-CPU systems,
759  * it may be equal to the package topology level.
760  *
761  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
762  * or there is no toplogy level above the CPU..
763  * Otherwise returns a value which represents the package for this CPU.
764  */
765 
766 int find_acpi_cpu_topology_cluster(unsigned int cpu)
767 {
768 	struct acpi_table_header *table;
769 	acpi_status status;
770 	struct acpi_pptt_processor *cpu_node, *cluster_node;
771 	u32 acpi_cpu_id;
772 	int retval;
773 	int is_thread;
774 
775 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
776 	if (ACPI_FAILURE(status)) {
777 		acpi_pptt_warn_missing();
778 		return -ENOENT;
779 	}
780 
781 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
782 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
783 	if (cpu_node == NULL || !cpu_node->parent) {
784 		retval = -ENOENT;
785 		goto put_table;
786 	}
787 
788 	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
789 	cluster_node = fetch_pptt_node(table, cpu_node->parent);
790 	if (cluster_node == NULL) {
791 		retval = -ENOENT;
792 		goto put_table;
793 	}
794 	if (is_thread) {
795 		if (!cluster_node->parent) {
796 			retval = -ENOENT;
797 			goto put_table;
798 		}
799 		cluster_node = fetch_pptt_node(table, cluster_node->parent);
800 		if (cluster_node == NULL) {
801 			retval = -ENOENT;
802 			goto put_table;
803 		}
804 	}
805 	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
806 		retval = cluster_node->acpi_processor_id;
807 	else
808 		retval = ACPI_PTR_DIFF(cluster_node, table);
809 
810 put_table:
811 	acpi_put_table(table);
812 
813 	return retval;
814 }
815 
816 /**
817  * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
818  * @cpu: Kernel logical CPU number
819  *
820  * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
821  * implementation should have matching tags.
822  *
823  * The returned tag can be used to group peers with identical implementation.
824  *
825  * The search terminates when a level is found with the identical implementation
826  * flag set or we reach a root node.
827  *
828  * Due to limitations in the PPTT data structure, there may be rare situations
829  * where two cores in a heterogeneous machine may be identical, but won't have
830  * the same tag.
831  *
832  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
833  * Otherwise returns a value which represents a group of identical cores
834  * similar to this CPU.
835  */
836 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
837 {
838 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
839 					  ACPI_PPTT_ACPI_IDENTICAL);
840 }
841