1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * pptt.c - parsing of Processor Properties Topology Table (PPTT) 4 * 5 * Copyright (C) 2018, ARM 6 * 7 * This file implements parsing of the Processor Properties Topology Table 8 * which is optionally used to describe the processor and cache topology. 9 * Due to the relative pointers used throughout the table, this doesn't 10 * leverage the existing subtable parsing in the kernel. 11 * 12 * The PPTT structure is an inverted tree, with each node potentially 13 * holding one or two inverted tree data structures describing 14 * the caches available at that level. Each cache structure optionally 15 * contains properties describing the cache at a given level which can be 16 * used to override hardware probed values. 17 */ 18 #define pr_fmt(fmt) "ACPI PPTT: " fmt 19 20 #include <linux/acpi.h> 21 #include <linux/cacheinfo.h> 22 #include <acpi/processor.h> 23 24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, 25 u32 pptt_ref) 26 { 27 struct acpi_subtable_header *entry; 28 29 /* there isn't a subtable at reference 0 */ 30 if (pptt_ref < sizeof(struct acpi_subtable_header)) 31 return NULL; 32 33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) 34 return NULL; 35 36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref); 37 38 if (entry->length == 0) 39 return NULL; 40 41 if (pptt_ref + entry->length > table_hdr->length) 42 return NULL; 43 44 return entry; 45 } 46 47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr, 48 u32 pptt_ref) 49 { 50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); 51 } 52 53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr, 54 u32 pptt_ref) 55 { 56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); 57 } 58 59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, 60 struct acpi_pptt_processor *node, 61 int resource) 62 { 63 u32 *ref; 64 65 if (resource >= node->number_of_priv_resources) 66 return NULL; 67 68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor)); 69 ref += resource; 70 71 return fetch_pptt_subtable(table_hdr, *ref); 72 } 73 74 static inline bool acpi_pptt_match_type(int table_type, int type) 75 { 76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type || 77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type); 78 } 79 80 /** 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache 82 * @table_hdr: Pointer to the head of the PPTT table 83 * @local_level: passed res reflects this cache level 84 * @res: cache resource in the PPTT we want to walk 85 * @found: returns a pointer to the requested level if found 86 * @level: the requested cache level 87 * @type: the requested cache type 88 * 89 * Attempt to find a given cache level, while counting the max number 90 * of cache levels for the cache node. 91 * 92 * Given a pptt resource, verify that it is a cache node, then walk 93 * down each level of caches, counting how many levels are found 94 * as well as checking the cache type (icache, dcache, unified). If a 95 * level & type match, then we set found, and continue the search. 96 * Once the entire cache branch has been walked return its max 97 * depth. 98 * 99 * Return: The cache structure and the level we terminated with. 100 */ 101 static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, 102 int local_level, 103 struct acpi_subtable_header *res, 104 struct acpi_pptt_cache **found, 105 int level, int type) 106 { 107 struct acpi_pptt_cache *cache; 108 109 if (res->type != ACPI_PPTT_TYPE_CACHE) 110 return 0; 111 112 cache = (struct acpi_pptt_cache *) res; 113 while (cache) { 114 local_level++; 115 116 if (local_level == level && 117 cache->flags & ACPI_PPTT_CACHE_TYPE_VALID && 118 acpi_pptt_match_type(cache->attributes, type)) { 119 if (*found != NULL && cache != *found) 120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); 121 122 pr_debug("Found cache @ level %d\n", level); 123 *found = cache; 124 /* 125 * continue looking at this node's resource list 126 * to verify that we don't find a duplicate 127 * cache node. 128 */ 129 } 130 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); 131 } 132 return local_level; 133 } 134 135 static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr, 136 struct acpi_pptt_processor *cpu_node, 137 int *starting_level, int level, 138 int type) 139 { 140 struct acpi_subtable_header *res; 141 int number_of_levels = *starting_level; 142 int resource = 0; 143 struct acpi_pptt_cache *ret = NULL; 144 int local_level; 145 146 /* walk down from processor node */ 147 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { 148 resource++; 149 150 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, 151 res, &ret, level, type); 152 /* 153 * we are looking for the max depth. Since its potentially 154 * possible for a given node to have resources with differing 155 * depths verify that the depth we have found is the largest. 156 */ 157 if (number_of_levels < local_level) 158 number_of_levels = local_level; 159 } 160 if (number_of_levels > *starting_level) 161 *starting_level = number_of_levels; 162 163 return ret; 164 } 165 166 /** 167 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches 168 * @table_hdr: Pointer to the head of the PPTT table 169 * @cpu_node: processor node we wish to count caches for 170 * 171 * Given a processor node containing a processing unit, walk into it and count 172 * how many levels exist solely for it, and then walk up each level until we hit 173 * the root node (ignore the package level because it may be possible to have 174 * caches that exist across packages). Count the number of cache levels that 175 * exist at each level on the way up. 176 * 177 * Return: Total number of levels found. 178 */ 179 static int acpi_count_levels(struct acpi_table_header *table_hdr, 180 struct acpi_pptt_processor *cpu_node) 181 { 182 int total_levels = 0; 183 184 do { 185 acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); 186 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 187 } while (cpu_node); 188 189 return total_levels; 190 } 191 192 /** 193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf 194 * @table_hdr: Pointer to the head of the PPTT table 195 * @node: passed node is checked to see if its a leaf 196 * 197 * Determine if the *node parameter is a leaf node by iterating the 198 * PPTT table, looking for nodes which reference it. 199 * 200 * Return: 0 if we find a node referencing the passed node (or table error), 201 * or 1 if we don't. 202 */ 203 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, 204 struct acpi_pptt_processor *node) 205 { 206 struct acpi_subtable_header *entry; 207 unsigned long table_end; 208 u32 node_entry; 209 struct acpi_pptt_processor *cpu_node; 210 u32 proc_sz; 211 212 if (table_hdr->revision > 1) 213 return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE); 214 215 table_end = (unsigned long)table_hdr + table_hdr->length; 216 node_entry = ACPI_PTR_DIFF(node, table_hdr); 217 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 218 sizeof(struct acpi_table_pptt)); 219 proc_sz = sizeof(struct acpi_pptt_processor *); 220 221 while ((unsigned long)entry + proc_sz < table_end) { 222 cpu_node = (struct acpi_pptt_processor *)entry; 223 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 224 cpu_node->parent == node_entry) 225 return 0; 226 if (entry->length == 0) 227 return 0; 228 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 229 entry->length); 230 231 } 232 return 1; 233 } 234 235 /** 236 * acpi_find_processor_node() - Given a PPTT table find the requested processor 237 * @table_hdr: Pointer to the head of the PPTT table 238 * @acpi_cpu_id: CPU we are searching for 239 * 240 * Find the subtable entry describing the provided processor. 241 * This is done by iterating the PPTT table looking for processor nodes 242 * which have an acpi_processor_id that matches the acpi_cpu_id parameter 243 * passed into the function. If we find a node that matches this criteria 244 * we verify that its a leaf node in the topology rather than depending 245 * on the valid flag, which doesn't need to be set for leaf nodes. 246 * 247 * Return: NULL, or the processors acpi_pptt_processor* 248 */ 249 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr, 250 u32 acpi_cpu_id) 251 { 252 struct acpi_subtable_header *entry; 253 unsigned long table_end; 254 struct acpi_pptt_processor *cpu_node; 255 u32 proc_sz; 256 257 table_end = (unsigned long)table_hdr + table_hdr->length; 258 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 259 sizeof(struct acpi_table_pptt)); 260 proc_sz = sizeof(struct acpi_pptt_processor *); 261 262 /* find the processor structure associated with this cpuid */ 263 while ((unsigned long)entry + proc_sz < table_end) { 264 cpu_node = (struct acpi_pptt_processor *)entry; 265 266 if (entry->length == 0) { 267 pr_warn("Invalid zero length subtable\n"); 268 break; 269 } 270 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 271 acpi_cpu_id == cpu_node->acpi_processor_id && 272 acpi_pptt_leaf_node(table_hdr, cpu_node)) { 273 return (struct acpi_pptt_processor *)entry; 274 } 275 276 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 277 entry->length); 278 } 279 280 return NULL; 281 } 282 283 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr, 284 u32 acpi_cpu_id) 285 { 286 int number_of_levels = 0; 287 struct acpi_pptt_processor *cpu; 288 289 cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); 290 if (cpu) 291 number_of_levels = acpi_count_levels(table_hdr, cpu); 292 293 return number_of_levels; 294 } 295 296 static u8 acpi_cache_type(enum cache_type type) 297 { 298 switch (type) { 299 case CACHE_TYPE_DATA: 300 pr_debug("Looking for data cache\n"); 301 return ACPI_PPTT_CACHE_TYPE_DATA; 302 case CACHE_TYPE_INST: 303 pr_debug("Looking for instruction cache\n"); 304 return ACPI_PPTT_CACHE_TYPE_INSTR; 305 default: 306 case CACHE_TYPE_UNIFIED: 307 pr_debug("Looking for unified cache\n"); 308 /* 309 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED 310 * contains the bit pattern that will match both 311 * ACPI unified bit patterns because we use it later 312 * to match both cases. 313 */ 314 return ACPI_PPTT_CACHE_TYPE_UNIFIED; 315 } 316 } 317 318 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr, 319 u32 acpi_cpu_id, 320 enum cache_type type, 321 unsigned int level, 322 struct acpi_pptt_processor **node) 323 { 324 int total_levels = 0; 325 struct acpi_pptt_cache *found = NULL; 326 struct acpi_pptt_processor *cpu_node; 327 u8 acpi_type = acpi_cache_type(type); 328 329 pr_debug("Looking for CPU %d's level %d cache type %d\n", 330 acpi_cpu_id, level, acpi_type); 331 332 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); 333 334 while (cpu_node && !found) { 335 found = acpi_find_cache_level(table_hdr, cpu_node, 336 &total_levels, level, acpi_type); 337 *node = cpu_node; 338 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 339 } 340 341 return found; 342 } 343 344 /** 345 * update_cache_properties() - Update cacheinfo for the given processor 346 * @this_leaf: Kernel cache info structure being updated 347 * @found_cache: The PPTT node describing this cache instance 348 * @cpu_node: A unique reference to describe this cache instance 349 * 350 * The ACPI spec implies that the fields in the cache structures are used to 351 * extend and correct the information probed from the hardware. Lets only 352 * set fields that we determine are VALID. 353 * 354 * Return: nothing. Side effect of updating the global cacheinfo 355 */ 356 static void update_cache_properties(struct cacheinfo *this_leaf, 357 struct acpi_pptt_cache *found_cache, 358 struct acpi_pptt_processor *cpu_node) 359 { 360 this_leaf->fw_token = cpu_node; 361 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) 362 this_leaf->size = found_cache->size; 363 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) 364 this_leaf->coherency_line_size = found_cache->line_size; 365 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) 366 this_leaf->number_of_sets = found_cache->number_of_sets; 367 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) 368 this_leaf->ways_of_associativity = found_cache->associativity; 369 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) { 370 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { 371 case ACPI_PPTT_CACHE_POLICY_WT: 372 this_leaf->attributes = CACHE_WRITE_THROUGH; 373 break; 374 case ACPI_PPTT_CACHE_POLICY_WB: 375 this_leaf->attributes = CACHE_WRITE_BACK; 376 break; 377 } 378 } 379 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) { 380 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { 381 case ACPI_PPTT_CACHE_READ_ALLOCATE: 382 this_leaf->attributes |= CACHE_READ_ALLOCATE; 383 break; 384 case ACPI_PPTT_CACHE_WRITE_ALLOCATE: 385 this_leaf->attributes |= CACHE_WRITE_ALLOCATE; 386 break; 387 case ACPI_PPTT_CACHE_RW_ALLOCATE: 388 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT: 389 this_leaf->attributes |= 390 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE; 391 break; 392 } 393 } 394 /* 395 * If cache type is NOCACHE, then the cache hasn't been specified 396 * via other mechanisms. Update the type if a cache type has been 397 * provided. 398 * 399 * Note, we assume such caches are unified based on conventional system 400 * design and known examples. Significant work is required elsewhere to 401 * fully support data/instruction only type caches which are only 402 * specified in PPTT. 403 */ 404 if (this_leaf->type == CACHE_TYPE_NOCACHE && 405 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) 406 this_leaf->type = CACHE_TYPE_UNIFIED; 407 } 408 409 static void cache_setup_acpi_cpu(struct acpi_table_header *table, 410 unsigned int cpu) 411 { 412 struct acpi_pptt_cache *found_cache; 413 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 414 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 415 struct cacheinfo *this_leaf; 416 unsigned int index = 0; 417 struct acpi_pptt_processor *cpu_node = NULL; 418 419 while (index < get_cpu_cacheinfo(cpu)->num_leaves) { 420 this_leaf = this_cpu_ci->info_list + index; 421 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 422 this_leaf->type, 423 this_leaf->level, 424 &cpu_node); 425 pr_debug("found = %p %p\n", found_cache, cpu_node); 426 if (found_cache) 427 update_cache_properties(this_leaf, 428 found_cache, 429 cpu_node); 430 431 index++; 432 } 433 } 434 435 static bool flag_identical(struct acpi_table_header *table_hdr, 436 struct acpi_pptt_processor *cpu) 437 { 438 struct acpi_pptt_processor *next; 439 440 /* heterogeneous machines must use PPTT revision > 1 */ 441 if (table_hdr->revision < 2) 442 return false; 443 444 /* Locate the last node in the tree with IDENTICAL set */ 445 if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) { 446 next = fetch_pptt_node(table_hdr, cpu->parent); 447 if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL)) 448 return true; 449 } 450 451 return false; 452 } 453 454 /* Passing level values greater than this will result in search termination */ 455 #define PPTT_ABORT_PACKAGE 0xFF 456 457 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr, 458 struct acpi_pptt_processor *cpu, 459 int level, int flag) 460 { 461 struct acpi_pptt_processor *prev_node; 462 463 while (cpu && level) { 464 /* special case the identical flag to find last identical */ 465 if (flag == ACPI_PPTT_ACPI_IDENTICAL) { 466 if (flag_identical(table_hdr, cpu)) 467 break; 468 } else if (cpu->flags & flag) 469 break; 470 pr_debug("level %d\n", level); 471 prev_node = fetch_pptt_node(table_hdr, cpu->parent); 472 if (prev_node == NULL) 473 break; 474 cpu = prev_node; 475 level--; 476 } 477 return cpu; 478 } 479 480 static void acpi_pptt_warn_missing(void) 481 { 482 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n"); 483 } 484 485 /** 486 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature 487 * @table: Pointer to the head of the PPTT table 488 * @cpu: Kernel logical CPU number 489 * @level: A level that terminates the search 490 * @flag: A flag which terminates the search 491 * 492 * Get a unique value given a CPU, and a topology level, that can be 493 * matched to determine which cpus share common topological features 494 * at that level. 495 * 496 * Return: Unique value, or -ENOENT if unable to locate CPU 497 */ 498 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, 499 unsigned int cpu, int level, int flag) 500 { 501 struct acpi_pptt_processor *cpu_node; 502 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 503 504 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 505 if (cpu_node) { 506 cpu_node = acpi_find_processor_tag(table, cpu_node, 507 level, flag); 508 /* 509 * As per specification if the processor structure represents 510 * an actual processor, then ACPI processor ID must be valid. 511 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID 512 * should be set if the UID is valid 513 */ 514 if (level == 0 || 515 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 516 return cpu_node->acpi_processor_id; 517 return ACPI_PTR_DIFF(cpu_node, table); 518 } 519 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n", 520 cpu, acpi_cpu_id); 521 return -ENOENT; 522 } 523 524 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag) 525 { 526 struct acpi_table_header *table; 527 acpi_status status; 528 int retval; 529 530 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 531 if (ACPI_FAILURE(status)) { 532 acpi_pptt_warn_missing(); 533 return -ENOENT; 534 } 535 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag); 536 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n", 537 cpu, level, retval); 538 acpi_put_table(table); 539 540 return retval; 541 } 542 543 /** 544 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE 545 * @cpu: Kernel logical CPU number 546 * 547 * Given a logical CPU number, returns the number of levels of cache represented 548 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 549 * indicating we didn't find any cache levels. 550 * 551 * Return: Cache levels visible to this core. 552 */ 553 int acpi_find_last_cache_level(unsigned int cpu) 554 { 555 u32 acpi_cpu_id; 556 struct acpi_table_header *table; 557 int number_of_levels = 0; 558 acpi_status status; 559 560 pr_debug("Cache Setup find last level CPU=%d\n", cpu); 561 562 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 563 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 564 if (ACPI_FAILURE(status)) { 565 acpi_pptt_warn_missing(); 566 } else { 567 number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id); 568 acpi_put_table(table); 569 } 570 pr_debug("Cache Setup find last level level=%d\n", number_of_levels); 571 572 return number_of_levels; 573 } 574 575 /** 576 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT 577 * @cpu: Kernel logical CPU number 578 * 579 * Updates the global cache info provided by cpu_get_cacheinfo() 580 * when there are valid properties in the acpi_pptt_cache nodes. A 581 * successful parse may not result in any updates if none of the 582 * cache levels have any valid flags set. Further, a unique value is 583 * associated with each known CPU cache entry. This unique value 584 * can be used to determine whether caches are shared between CPUs. 585 * 586 * Return: -ENOENT on failure to find table, or 0 on success 587 */ 588 int cache_setup_acpi(unsigned int cpu) 589 { 590 struct acpi_table_header *table; 591 acpi_status status; 592 593 pr_debug("Cache Setup ACPI CPU %d\n", cpu); 594 595 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 596 if (ACPI_FAILURE(status)) { 597 acpi_pptt_warn_missing(); 598 return -ENOENT; 599 } 600 601 cache_setup_acpi_cpu(table, cpu); 602 acpi_put_table(table); 603 604 return status; 605 } 606 607 /** 608 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU 609 * @cpu: Kernel logical CPU number 610 * @level: The topological level for which we would like a unique ID 611 * 612 * Determine a topology unique ID for each thread/core/cluster/mc_grouping 613 * /socket/etc. This ID can then be used to group peers, which will have 614 * matching ids. 615 * 616 * The search terminates when either the requested level is found or 617 * we reach a root node. Levels beyond the termination point will return the 618 * same unique ID. The unique id for level 0 is the acpi processor id. All 619 * other levels beyond this use a generated value to uniquely identify 620 * a topological feature. 621 * 622 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 623 * Otherwise returns a value which represents a unique topological feature. 624 */ 625 int find_acpi_cpu_topology(unsigned int cpu, int level) 626 { 627 return find_acpi_cpu_topology_tag(cpu, level, 0); 628 } 629 630 /** 631 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value 632 * @cpu: Kernel logical CPU number 633 * @level: The cache level for which we would like a unique ID 634 * 635 * Determine a unique ID for each unified cache in the system 636 * 637 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 638 * Otherwise returns a value which represents a unique topological feature. 639 */ 640 int find_acpi_cpu_cache_topology(unsigned int cpu, int level) 641 { 642 struct acpi_table_header *table; 643 struct acpi_pptt_cache *found_cache; 644 acpi_status status; 645 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 646 struct acpi_pptt_processor *cpu_node = NULL; 647 int ret = -1; 648 649 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 650 if (ACPI_FAILURE(status)) { 651 acpi_pptt_warn_missing(); 652 return -ENOENT; 653 } 654 655 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 656 CACHE_TYPE_UNIFIED, 657 level, 658 &cpu_node); 659 if (found_cache) 660 ret = ACPI_PTR_DIFF(cpu_node, table); 661 662 acpi_put_table(table); 663 664 return ret; 665 } 666 667 668 /** 669 * find_acpi_cpu_topology_package() - Determine a unique CPU package value 670 * @cpu: Kernel logical CPU number 671 * 672 * Determine a topology unique package ID for the given CPU. 673 * This ID can then be used to group peers, which will have matching ids. 674 * 675 * The search terminates when either a level is found with the PHYSICAL_PACKAGE 676 * flag set or we reach a root node. 677 * 678 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 679 * Otherwise returns a value which represents the package for this CPU. 680 */ 681 int find_acpi_cpu_topology_package(unsigned int cpu) 682 { 683 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 684 ACPI_PPTT_PHYSICAL_PACKAGE); 685 } 686 687 /** 688 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag 689 * @cpu: Kernel logical CPU number 690 * 691 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same 692 * implementation should have matching tags. 693 * 694 * The returned tag can be used to group peers with identical implementation. 695 * 696 * The search terminates when a level is found with the identical implementation 697 * flag set or we reach a root node. 698 * 699 * Due to limitations in the PPTT data structure, there may be rare situations 700 * where two cores in a heterogeneous machine may be identical, but won't have 701 * the same tag. 702 * 703 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 704 * Otherwise returns a value which represents a group of identical cores 705 * similar to this CPU. 706 */ 707 int find_acpi_cpu_topology_hetero_id(unsigned int cpu) 708 { 709 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 710 ACPI_PPTT_ACPI_IDENTICAL); 711 } 712