1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * pptt.c - parsing of Processor Properties Topology Table (PPTT) 4 * 5 * Copyright (C) 2018, ARM 6 * 7 * This file implements parsing of the Processor Properties Topology Table 8 * which is optionally used to describe the processor and cache topology. 9 * Due to the relative pointers used throughout the table, this doesn't 10 * leverage the existing subtable parsing in the kernel. 11 * 12 * The PPTT structure is an inverted tree, with each node potentially 13 * holding one or two inverted tree data structures describing 14 * the caches available at that level. Each cache structure optionally 15 * contains properties describing the cache at a given level which can be 16 * used to override hardware probed values. 17 */ 18 #define pr_fmt(fmt) "ACPI PPTT: " fmt 19 20 #include <linux/acpi.h> 21 #include <linux/cacheinfo.h> 22 #include <acpi/processor.h> 23 24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, 25 u32 pptt_ref) 26 { 27 struct acpi_subtable_header *entry; 28 29 /* there isn't a subtable at reference 0 */ 30 if (pptt_ref < sizeof(struct acpi_subtable_header)) 31 return NULL; 32 33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) 34 return NULL; 35 36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref); 37 38 if (entry->length == 0) 39 return NULL; 40 41 if (pptt_ref + entry->length > table_hdr->length) 42 return NULL; 43 44 return entry; 45 } 46 47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr, 48 u32 pptt_ref) 49 { 50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); 51 } 52 53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr, 54 u32 pptt_ref) 55 { 56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); 57 } 58 59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, 60 struct acpi_pptt_processor *node, 61 int resource) 62 { 63 u32 *ref; 64 65 if (resource >= node->number_of_priv_resources) 66 return NULL; 67 68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor)); 69 ref += resource; 70 71 return fetch_pptt_subtable(table_hdr, *ref); 72 } 73 74 static inline bool acpi_pptt_match_type(int table_type, int type) 75 { 76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type || 77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type); 78 } 79 80 /** 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache 82 * @table_hdr: Pointer to the head of the PPTT table 83 * @local_level: passed res reflects this cache level 84 * @res: cache resource in the PPTT we want to walk 85 * @found: returns a pointer to the requested level if found 86 * @level: the requested cache level 87 * @type: the requested cache type 88 * 89 * Attempt to find a given cache level, while counting the max number 90 * of cache levels for the cache node. 91 * 92 * Given a pptt resource, verify that it is a cache node, then walk 93 * down each level of caches, counting how many levels are found 94 * as well as checking the cache type (icache, dcache, unified). If a 95 * level & type match, then we set found, and continue the search. 96 * Once the entire cache branch has been walked return its max 97 * depth. 98 * 99 * Return: The cache structure and the level we terminated with. 100 */ 101 static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, 102 int local_level, 103 struct acpi_subtable_header *res, 104 struct acpi_pptt_cache **found, 105 int level, int type) 106 { 107 struct acpi_pptt_cache *cache; 108 109 if (res->type != ACPI_PPTT_TYPE_CACHE) 110 return 0; 111 112 cache = (struct acpi_pptt_cache *) res; 113 while (cache) { 114 local_level++; 115 116 if (local_level == level && 117 cache->flags & ACPI_PPTT_CACHE_TYPE_VALID && 118 acpi_pptt_match_type(cache->attributes, type)) { 119 if (*found != NULL && cache != *found) 120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); 121 122 pr_debug("Found cache @ level %d\n", level); 123 *found = cache; 124 /* 125 * continue looking at this node's resource list 126 * to verify that we don't find a duplicate 127 * cache node. 128 */ 129 } 130 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); 131 } 132 return local_level; 133 } 134 135 static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr, 136 struct acpi_pptt_processor *cpu_node, 137 int *starting_level, int level, 138 int type) 139 { 140 struct acpi_subtable_header *res; 141 int number_of_levels = *starting_level; 142 int resource = 0; 143 struct acpi_pptt_cache *ret = NULL; 144 int local_level; 145 146 /* walk down from processor node */ 147 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { 148 resource++; 149 150 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, 151 res, &ret, level, type); 152 /* 153 * we are looking for the max depth. Since its potentially 154 * possible for a given node to have resources with differing 155 * depths verify that the depth we have found is the largest. 156 */ 157 if (number_of_levels < local_level) 158 number_of_levels = local_level; 159 } 160 if (number_of_levels > *starting_level) 161 *starting_level = number_of_levels; 162 163 return ret; 164 } 165 166 /** 167 * acpi_count_levels() - Given a PPTT table, and a cpu node, count the caches 168 * @table_hdr: Pointer to the head of the PPTT table 169 * @cpu_node: processor node we wish to count caches for 170 * 171 * Given a processor node containing a processing unit, walk into it and count 172 * how many levels exist solely for it, and then walk up each level until we hit 173 * the root node (ignore the package level because it may be possible to have 174 * caches that exist across packages). Count the number of cache levels that 175 * exist at each level on the way up. 176 * 177 * Return: Total number of levels found. 178 */ 179 static int acpi_count_levels(struct acpi_table_header *table_hdr, 180 struct acpi_pptt_processor *cpu_node) 181 { 182 int total_levels = 0; 183 184 do { 185 acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); 186 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 187 } while (cpu_node); 188 189 return total_levels; 190 } 191 192 /** 193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf 194 * @table_hdr: Pointer to the head of the PPTT table 195 * @node: passed node is checked to see if its a leaf 196 * 197 * Determine if the *node parameter is a leaf node by iterating the 198 * PPTT table, looking for nodes which reference it. 199 * 200 * Return: 0 if we find a node referencing the passed node (or table error), 201 * or 1 if we don't. 202 */ 203 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, 204 struct acpi_pptt_processor *node) 205 { 206 struct acpi_subtable_header *entry; 207 unsigned long table_end; 208 u32 node_entry; 209 struct acpi_pptt_processor *cpu_node; 210 u32 proc_sz; 211 212 table_end = (unsigned long)table_hdr + table_hdr->length; 213 node_entry = ACPI_PTR_DIFF(node, table_hdr); 214 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 215 sizeof(struct acpi_table_pptt)); 216 proc_sz = sizeof(struct acpi_pptt_processor *); 217 218 while ((unsigned long)entry + proc_sz < table_end) { 219 cpu_node = (struct acpi_pptt_processor *)entry; 220 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 221 cpu_node->parent == node_entry) 222 return 0; 223 if (entry->length == 0) 224 return 0; 225 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 226 entry->length); 227 228 } 229 return 1; 230 } 231 232 /** 233 * acpi_find_processor_node() - Given a PPTT table find the requested processor 234 * @table_hdr: Pointer to the head of the PPTT table 235 * @acpi_cpu_id: cpu we are searching for 236 * 237 * Find the subtable entry describing the provided processor. 238 * This is done by iterating the PPTT table looking for processor nodes 239 * which have an acpi_processor_id that matches the acpi_cpu_id parameter 240 * passed into the function. If we find a node that matches this criteria 241 * we verify that its a leaf node in the topology rather than depending 242 * on the valid flag, which doesn't need to be set for leaf nodes. 243 * 244 * Return: NULL, or the processors acpi_pptt_processor* 245 */ 246 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr, 247 u32 acpi_cpu_id) 248 { 249 struct acpi_subtable_header *entry; 250 unsigned long table_end; 251 struct acpi_pptt_processor *cpu_node; 252 u32 proc_sz; 253 254 table_end = (unsigned long)table_hdr + table_hdr->length; 255 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 256 sizeof(struct acpi_table_pptt)); 257 proc_sz = sizeof(struct acpi_pptt_processor *); 258 259 /* find the processor structure associated with this cpuid */ 260 while ((unsigned long)entry + proc_sz < table_end) { 261 cpu_node = (struct acpi_pptt_processor *)entry; 262 263 if (entry->length == 0) { 264 pr_warn("Invalid zero length subtable\n"); 265 break; 266 } 267 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 268 acpi_cpu_id == cpu_node->acpi_processor_id && 269 acpi_pptt_leaf_node(table_hdr, cpu_node)) { 270 return (struct acpi_pptt_processor *)entry; 271 } 272 273 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 274 entry->length); 275 } 276 277 return NULL; 278 } 279 280 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr, 281 u32 acpi_cpu_id) 282 { 283 int number_of_levels = 0; 284 struct acpi_pptt_processor *cpu; 285 286 cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); 287 if (cpu) 288 number_of_levels = acpi_count_levels(table_hdr, cpu); 289 290 return number_of_levels; 291 } 292 293 static u8 acpi_cache_type(enum cache_type type) 294 { 295 switch (type) { 296 case CACHE_TYPE_DATA: 297 pr_debug("Looking for data cache\n"); 298 return ACPI_PPTT_CACHE_TYPE_DATA; 299 case CACHE_TYPE_INST: 300 pr_debug("Looking for instruction cache\n"); 301 return ACPI_PPTT_CACHE_TYPE_INSTR; 302 default: 303 case CACHE_TYPE_UNIFIED: 304 pr_debug("Looking for unified cache\n"); 305 /* 306 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED 307 * contains the bit pattern that will match both 308 * ACPI unified bit patterns because we use it later 309 * to match both cases. 310 */ 311 return ACPI_PPTT_CACHE_TYPE_UNIFIED; 312 } 313 } 314 315 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr, 316 u32 acpi_cpu_id, 317 enum cache_type type, 318 unsigned int level, 319 struct acpi_pptt_processor **node) 320 { 321 int total_levels = 0; 322 struct acpi_pptt_cache *found = NULL; 323 struct acpi_pptt_processor *cpu_node; 324 u8 acpi_type = acpi_cache_type(type); 325 326 pr_debug("Looking for CPU %d's level %d cache type %d\n", 327 acpi_cpu_id, level, acpi_type); 328 329 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); 330 331 while (cpu_node && !found) { 332 found = acpi_find_cache_level(table_hdr, cpu_node, 333 &total_levels, level, acpi_type); 334 *node = cpu_node; 335 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 336 } 337 338 return found; 339 } 340 341 /* total number of attributes checked by the properties code */ 342 #define PPTT_CHECKED_ATTRIBUTES 4 343 344 /** 345 * update_cache_properties() - Update cacheinfo for the given processor 346 * @this_leaf: Kernel cache info structure being updated 347 * @found_cache: The PPTT node describing this cache instance 348 * @cpu_node: A unique reference to describe this cache instance 349 * 350 * The ACPI spec implies that the fields in the cache structures are used to 351 * extend and correct the information probed from the hardware. Lets only 352 * set fields that we determine are VALID. 353 * 354 * Return: nothing. Side effect of updating the global cacheinfo 355 */ 356 static void update_cache_properties(struct cacheinfo *this_leaf, 357 struct acpi_pptt_cache *found_cache, 358 struct acpi_pptt_processor *cpu_node) 359 { 360 int valid_flags = 0; 361 362 this_leaf->fw_token = cpu_node; 363 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) { 364 this_leaf->size = found_cache->size; 365 valid_flags++; 366 } 367 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) { 368 this_leaf->coherency_line_size = found_cache->line_size; 369 valid_flags++; 370 } 371 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) { 372 this_leaf->number_of_sets = found_cache->number_of_sets; 373 valid_flags++; 374 } 375 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) { 376 this_leaf->ways_of_associativity = found_cache->associativity; 377 valid_flags++; 378 } 379 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) { 380 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { 381 case ACPI_PPTT_CACHE_POLICY_WT: 382 this_leaf->attributes = CACHE_WRITE_THROUGH; 383 break; 384 case ACPI_PPTT_CACHE_POLICY_WB: 385 this_leaf->attributes = CACHE_WRITE_BACK; 386 break; 387 } 388 } 389 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) { 390 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { 391 case ACPI_PPTT_CACHE_READ_ALLOCATE: 392 this_leaf->attributes |= CACHE_READ_ALLOCATE; 393 break; 394 case ACPI_PPTT_CACHE_WRITE_ALLOCATE: 395 this_leaf->attributes |= CACHE_WRITE_ALLOCATE; 396 break; 397 case ACPI_PPTT_CACHE_RW_ALLOCATE: 398 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT: 399 this_leaf->attributes |= 400 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE; 401 break; 402 } 403 } 404 /* 405 * If the above flags are valid, and the cache type is NOCACHE 406 * update the cache type as well. 407 */ 408 if (this_leaf->type == CACHE_TYPE_NOCACHE && 409 valid_flags == PPTT_CHECKED_ATTRIBUTES) 410 this_leaf->type = CACHE_TYPE_UNIFIED; 411 } 412 413 static void cache_setup_acpi_cpu(struct acpi_table_header *table, 414 unsigned int cpu) 415 { 416 struct acpi_pptt_cache *found_cache; 417 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 418 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 419 struct cacheinfo *this_leaf; 420 unsigned int index = 0; 421 struct acpi_pptt_processor *cpu_node = NULL; 422 423 while (index < get_cpu_cacheinfo(cpu)->num_leaves) { 424 this_leaf = this_cpu_ci->info_list + index; 425 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 426 this_leaf->type, 427 this_leaf->level, 428 &cpu_node); 429 pr_debug("found = %p %p\n", found_cache, cpu_node); 430 if (found_cache) 431 update_cache_properties(this_leaf, 432 found_cache, 433 cpu_node); 434 435 index++; 436 } 437 } 438 439 /* Passing level values greater than this will result in search termination */ 440 #define PPTT_ABORT_PACKAGE 0xFF 441 442 static struct acpi_pptt_processor *acpi_find_processor_package_id(struct acpi_table_header *table_hdr, 443 struct acpi_pptt_processor *cpu, 444 int level, int flag) 445 { 446 struct acpi_pptt_processor *prev_node; 447 448 while (cpu && level) { 449 if (cpu->flags & flag) 450 break; 451 pr_debug("level %d\n", level); 452 prev_node = fetch_pptt_node(table_hdr, cpu->parent); 453 if (prev_node == NULL) 454 break; 455 cpu = prev_node; 456 level--; 457 } 458 return cpu; 459 } 460 461 /** 462 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature 463 * @table: Pointer to the head of the PPTT table 464 * @cpu: Kernel logical cpu number 465 * @level: A level that terminates the search 466 * @flag: A flag which terminates the search 467 * 468 * Get a unique value given a cpu, and a topology level, that can be 469 * matched to determine which cpus share common topological features 470 * at that level. 471 * 472 * Return: Unique value, or -ENOENT if unable to locate cpu 473 */ 474 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, 475 unsigned int cpu, int level, int flag) 476 { 477 struct acpi_pptt_processor *cpu_node; 478 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 479 480 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 481 if (cpu_node) { 482 cpu_node = acpi_find_processor_package_id(table, cpu_node, 483 level, flag); 484 /* 485 * As per specification if the processor structure represents 486 * an actual processor, then ACPI processor ID must be valid. 487 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID 488 * should be set if the UID is valid 489 */ 490 if (level == 0 || 491 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 492 return cpu_node->acpi_processor_id; 493 return ACPI_PTR_DIFF(cpu_node, table); 494 } 495 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n", 496 cpu, acpi_cpu_id); 497 return -ENOENT; 498 } 499 500 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag) 501 { 502 struct acpi_table_header *table; 503 acpi_status status; 504 int retval; 505 506 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 507 if (ACPI_FAILURE(status)) { 508 pr_warn_once("No PPTT table found, cpu topology may be inaccurate\n"); 509 return -ENOENT; 510 } 511 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag); 512 pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n", 513 cpu, level, retval); 514 acpi_put_table(table); 515 516 return retval; 517 } 518 519 /** 520 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE 521 * @cpu: Kernel logical cpu number 522 * 523 * Given a logical cpu number, returns the number of levels of cache represented 524 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 525 * indicating we didn't find any cache levels. 526 * 527 * Return: Cache levels visible to this core. 528 */ 529 int acpi_find_last_cache_level(unsigned int cpu) 530 { 531 u32 acpi_cpu_id; 532 struct acpi_table_header *table; 533 int number_of_levels = 0; 534 acpi_status status; 535 536 pr_debug("Cache Setup find last level cpu=%d\n", cpu); 537 538 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 539 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 540 if (ACPI_FAILURE(status)) { 541 pr_warn_once("No PPTT table found, cache topology may be inaccurate\n"); 542 } else { 543 number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id); 544 acpi_put_table(table); 545 } 546 pr_debug("Cache Setup find last level level=%d\n", number_of_levels); 547 548 return number_of_levels; 549 } 550 551 /** 552 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT 553 * @cpu: Kernel logical cpu number 554 * 555 * Updates the global cache info provided by cpu_get_cacheinfo() 556 * when there are valid properties in the acpi_pptt_cache nodes. A 557 * successful parse may not result in any updates if none of the 558 * cache levels have any valid flags set. Futher, a unique value is 559 * associated with each known CPU cache entry. This unique value 560 * can be used to determine whether caches are shared between cpus. 561 * 562 * Return: -ENOENT on failure to find table, or 0 on success 563 */ 564 int cache_setup_acpi(unsigned int cpu) 565 { 566 struct acpi_table_header *table; 567 acpi_status status; 568 569 pr_debug("Cache Setup ACPI cpu %d\n", cpu); 570 571 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 572 if (ACPI_FAILURE(status)) { 573 pr_warn_once("No PPTT table found, cache topology may be inaccurate\n"); 574 return -ENOENT; 575 } 576 577 cache_setup_acpi_cpu(table, cpu); 578 acpi_put_table(table); 579 580 return status; 581 } 582 583 /** 584 * find_acpi_cpu_topology() - Determine a unique topology value for a given cpu 585 * @cpu: Kernel logical cpu number 586 * @level: The topological level for which we would like a unique ID 587 * 588 * Determine a topology unique ID for each thread/core/cluster/mc_grouping 589 * /socket/etc. This ID can then be used to group peers, which will have 590 * matching ids. 591 * 592 * The search terminates when either the requested level is found or 593 * we reach a root node. Levels beyond the termination point will return the 594 * same unique ID. The unique id for level 0 is the acpi processor id. All 595 * other levels beyond this use a generated value to uniquely identify 596 * a topological feature. 597 * 598 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found. 599 * Otherwise returns a value which represents a unique topological feature. 600 */ 601 int find_acpi_cpu_topology(unsigned int cpu, int level) 602 { 603 return find_acpi_cpu_topology_tag(cpu, level, 0); 604 } 605 606 /** 607 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value 608 * @cpu: Kernel logical cpu number 609 * @level: The cache level for which we would like a unique ID 610 * 611 * Determine a unique ID for each unified cache in the system 612 * 613 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found. 614 * Otherwise returns a value which represents a unique topological feature. 615 */ 616 int find_acpi_cpu_cache_topology(unsigned int cpu, int level) 617 { 618 struct acpi_table_header *table; 619 struct acpi_pptt_cache *found_cache; 620 acpi_status status; 621 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 622 struct acpi_pptt_processor *cpu_node = NULL; 623 int ret = -1; 624 625 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 626 if (ACPI_FAILURE(status)) { 627 pr_warn_once("No PPTT table found, topology may be inaccurate\n"); 628 return -ENOENT; 629 } 630 631 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 632 CACHE_TYPE_UNIFIED, 633 level, 634 &cpu_node); 635 if (found_cache) 636 ret = ACPI_PTR_DIFF(cpu_node, table); 637 638 acpi_put_table(table); 639 640 return ret; 641 } 642 643 644 /** 645 * find_acpi_cpu_topology_package() - Determine a unique cpu package value 646 * @cpu: Kernel logical cpu number 647 * 648 * Determine a topology unique package ID for the given cpu. 649 * This ID can then be used to group peers, which will have matching ids. 650 * 651 * The search terminates when either a level is found with the PHYSICAL_PACKAGE 652 * flag set or we reach a root node. 653 * 654 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found. 655 * Otherwise returns a value which represents the package for this cpu. 656 */ 657 int find_acpi_cpu_topology_package(unsigned int cpu) 658 { 659 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 660 ACPI_PPTT_PHYSICAL_PACKAGE); 661 } 662