1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * pptt.c - parsing of Processor Properties Topology Table (PPTT) 4 * 5 * Copyright (C) 2018, ARM 6 * 7 * This file implements parsing of the Processor Properties Topology Table 8 * which is optionally used to describe the processor and cache topology. 9 * Due to the relative pointers used throughout the table, this doesn't 10 * leverage the existing subtable parsing in the kernel. 11 * 12 * The PPTT structure is an inverted tree, with each node potentially 13 * holding one or two inverted tree data structures describing 14 * the caches available at that level. Each cache structure optionally 15 * contains properties describing the cache at a given level which can be 16 * used to override hardware probed values. 17 */ 18 #define pr_fmt(fmt) "ACPI PPTT: " fmt 19 20 #include <linux/acpi.h> 21 #include <linux/cacheinfo.h> 22 #include <acpi/processor.h> 23 24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, 25 u32 pptt_ref) 26 { 27 struct acpi_subtable_header *entry; 28 29 /* there isn't a subtable at reference 0 */ 30 if (pptt_ref < sizeof(struct acpi_subtable_header)) 31 return NULL; 32 33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) 34 return NULL; 35 36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref); 37 38 if (entry->length == 0) 39 return NULL; 40 41 if (pptt_ref + entry->length > table_hdr->length) 42 return NULL; 43 44 return entry; 45 } 46 47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr, 48 u32 pptt_ref) 49 { 50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); 51 } 52 53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr, 54 u32 pptt_ref) 55 { 56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); 57 } 58 59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, 60 struct acpi_pptt_processor *node, 61 int resource) 62 { 63 u32 *ref; 64 65 if (resource >= node->number_of_priv_resources) 66 return NULL; 67 68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor)); 69 ref += resource; 70 71 return fetch_pptt_subtable(table_hdr, *ref); 72 } 73 74 static inline bool acpi_pptt_match_type(int table_type, int type) 75 { 76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type || 77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type); 78 } 79 80 /** 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache 82 * @table_hdr: Pointer to the head of the PPTT table 83 * @local_level: passed res reflects this cache level 84 * @split_levels: Number of split cache levels (data/instruction). 85 * @res: cache resource in the PPTT we want to walk 86 * @found: returns a pointer to the requested level if found 87 * @level: the requested cache level 88 * @type: the requested cache type 89 * 90 * Attempt to find a given cache level, while counting the max number 91 * of cache levels for the cache node. 92 * 93 * Given a pptt resource, verify that it is a cache node, then walk 94 * down each level of caches, counting how many levels are found 95 * as well as checking the cache type (icache, dcache, unified). If a 96 * level & type match, then we set found, and continue the search. 97 * Once the entire cache branch has been walked return its max 98 * depth. 99 * 100 * Return: The cache structure and the level we terminated with. 101 */ 102 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, 103 unsigned int local_level, 104 unsigned int *split_levels, 105 struct acpi_subtable_header *res, 106 struct acpi_pptt_cache **found, 107 unsigned int level, int type) 108 { 109 struct acpi_pptt_cache *cache; 110 111 if (res->type != ACPI_PPTT_TYPE_CACHE) 112 return 0; 113 114 cache = (struct acpi_pptt_cache *) res; 115 while (cache) { 116 local_level++; 117 118 if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) { 119 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); 120 continue; 121 } 122 123 if (split_levels && 124 (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) || 125 acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR))) 126 *split_levels = local_level; 127 128 if (local_level == level && 129 acpi_pptt_match_type(cache->attributes, type)) { 130 if (*found != NULL && cache != *found) 131 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); 132 133 pr_debug("Found cache @ level %u\n", level); 134 *found = cache; 135 /* 136 * continue looking at this node's resource list 137 * to verify that we don't find a duplicate 138 * cache node. 139 */ 140 } 141 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); 142 } 143 return local_level; 144 } 145 146 static struct acpi_pptt_cache * 147 acpi_find_cache_level(struct acpi_table_header *table_hdr, 148 struct acpi_pptt_processor *cpu_node, 149 unsigned int *starting_level, unsigned int *split_levels, 150 unsigned int level, int type) 151 { 152 struct acpi_subtable_header *res; 153 unsigned int number_of_levels = *starting_level; 154 int resource = 0; 155 struct acpi_pptt_cache *ret = NULL; 156 unsigned int local_level; 157 158 /* walk down from processor node */ 159 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { 160 resource++; 161 162 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, 163 split_levels, res, &ret, 164 level, type); 165 /* 166 * we are looking for the max depth. Since its potentially 167 * possible for a given node to have resources with differing 168 * depths verify that the depth we have found is the largest. 169 */ 170 if (number_of_levels < local_level) 171 number_of_levels = local_level; 172 } 173 if (number_of_levels > *starting_level) 174 *starting_level = number_of_levels; 175 176 return ret; 177 } 178 179 /** 180 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache 181 * levels and split cache levels (data/instruction). 182 * @table_hdr: Pointer to the head of the PPTT table 183 * @cpu_node: processor node we wish to count caches for 184 * @levels: Number of levels if success. 185 * @split_levels: Number of split cache levels (data/instruction) if 186 * success. Can by NULL. 187 * 188 * Given a processor node containing a processing unit, walk into it and count 189 * how many levels exist solely for it, and then walk up each level until we hit 190 * the root node (ignore the package level because it may be possible to have 191 * caches that exist across packages). Count the number of cache levels and 192 * split cache levels (data/instruction) that exist at each level on the way 193 * up. 194 */ 195 static void acpi_count_levels(struct acpi_table_header *table_hdr, 196 struct acpi_pptt_processor *cpu_node, 197 unsigned int *levels, unsigned int *split_levels) 198 { 199 do { 200 acpi_find_cache_level(table_hdr, cpu_node, levels, split_levels, 0, 0); 201 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 202 } while (cpu_node); 203 } 204 205 /** 206 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf 207 * @table_hdr: Pointer to the head of the PPTT table 208 * @node: passed node is checked to see if its a leaf 209 * 210 * Determine if the *node parameter is a leaf node by iterating the 211 * PPTT table, looking for nodes which reference it. 212 * 213 * Return: 0 if we find a node referencing the passed node (or table error), 214 * or 1 if we don't. 215 */ 216 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, 217 struct acpi_pptt_processor *node) 218 { 219 struct acpi_subtable_header *entry; 220 unsigned long table_end; 221 u32 node_entry; 222 struct acpi_pptt_processor *cpu_node; 223 u32 proc_sz; 224 225 if (table_hdr->revision > 1) 226 return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE); 227 228 table_end = (unsigned long)table_hdr + table_hdr->length; 229 node_entry = ACPI_PTR_DIFF(node, table_hdr); 230 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 231 sizeof(struct acpi_table_pptt)); 232 proc_sz = sizeof(struct acpi_pptt_processor *); 233 234 while ((unsigned long)entry + proc_sz < table_end) { 235 cpu_node = (struct acpi_pptt_processor *)entry; 236 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 237 cpu_node->parent == node_entry) 238 return 0; 239 if (entry->length == 0) 240 return 0; 241 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 242 entry->length); 243 244 } 245 return 1; 246 } 247 248 /** 249 * acpi_find_processor_node() - Given a PPTT table find the requested processor 250 * @table_hdr: Pointer to the head of the PPTT table 251 * @acpi_cpu_id: CPU we are searching for 252 * 253 * Find the subtable entry describing the provided processor. 254 * This is done by iterating the PPTT table looking for processor nodes 255 * which have an acpi_processor_id that matches the acpi_cpu_id parameter 256 * passed into the function. If we find a node that matches this criteria 257 * we verify that its a leaf node in the topology rather than depending 258 * on the valid flag, which doesn't need to be set for leaf nodes. 259 * 260 * Return: NULL, or the processors acpi_pptt_processor* 261 */ 262 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr, 263 u32 acpi_cpu_id) 264 { 265 struct acpi_subtable_header *entry; 266 unsigned long table_end; 267 struct acpi_pptt_processor *cpu_node; 268 u32 proc_sz; 269 270 table_end = (unsigned long)table_hdr + table_hdr->length; 271 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 272 sizeof(struct acpi_table_pptt)); 273 proc_sz = sizeof(struct acpi_pptt_processor *); 274 275 /* find the processor structure associated with this cpuid */ 276 while ((unsigned long)entry + proc_sz < table_end) { 277 cpu_node = (struct acpi_pptt_processor *)entry; 278 279 if (entry->length == 0) { 280 pr_warn("Invalid zero length subtable\n"); 281 break; 282 } 283 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 284 acpi_cpu_id == cpu_node->acpi_processor_id && 285 acpi_pptt_leaf_node(table_hdr, cpu_node)) { 286 return (struct acpi_pptt_processor *)entry; 287 } 288 289 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 290 entry->length); 291 } 292 293 return NULL; 294 } 295 296 static u8 acpi_cache_type(enum cache_type type) 297 { 298 switch (type) { 299 case CACHE_TYPE_DATA: 300 pr_debug("Looking for data cache\n"); 301 return ACPI_PPTT_CACHE_TYPE_DATA; 302 case CACHE_TYPE_INST: 303 pr_debug("Looking for instruction cache\n"); 304 return ACPI_PPTT_CACHE_TYPE_INSTR; 305 default: 306 case CACHE_TYPE_UNIFIED: 307 pr_debug("Looking for unified cache\n"); 308 /* 309 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED 310 * contains the bit pattern that will match both 311 * ACPI unified bit patterns because we use it later 312 * to match both cases. 313 */ 314 return ACPI_PPTT_CACHE_TYPE_UNIFIED; 315 } 316 } 317 318 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr, 319 u32 acpi_cpu_id, 320 enum cache_type type, 321 unsigned int level, 322 struct acpi_pptt_processor **node) 323 { 324 unsigned int total_levels = 0; 325 struct acpi_pptt_cache *found = NULL; 326 struct acpi_pptt_processor *cpu_node; 327 u8 acpi_type = acpi_cache_type(type); 328 329 pr_debug("Looking for CPU %d's level %u cache type %d\n", 330 acpi_cpu_id, level, acpi_type); 331 332 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); 333 334 while (cpu_node && !found) { 335 found = acpi_find_cache_level(table_hdr, cpu_node, 336 &total_levels, NULL, level, acpi_type); 337 *node = cpu_node; 338 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 339 } 340 341 return found; 342 } 343 344 /** 345 * update_cache_properties() - Update cacheinfo for the given processor 346 * @this_leaf: Kernel cache info structure being updated 347 * @found_cache: The PPTT node describing this cache instance 348 * @cpu_node: A unique reference to describe this cache instance 349 * @revision: The revision of the PPTT table 350 * 351 * The ACPI spec implies that the fields in the cache structures are used to 352 * extend and correct the information probed from the hardware. Lets only 353 * set fields that we determine are VALID. 354 * 355 * Return: nothing. Side effect of updating the global cacheinfo 356 */ 357 static void update_cache_properties(struct cacheinfo *this_leaf, 358 struct acpi_pptt_cache *found_cache, 359 struct acpi_pptt_processor *cpu_node, 360 u8 revision) 361 { 362 struct acpi_pptt_cache_v1* found_cache_v1; 363 364 this_leaf->fw_token = cpu_node; 365 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) 366 this_leaf->size = found_cache->size; 367 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) 368 this_leaf->coherency_line_size = found_cache->line_size; 369 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) 370 this_leaf->number_of_sets = found_cache->number_of_sets; 371 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) 372 this_leaf->ways_of_associativity = found_cache->associativity; 373 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) { 374 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { 375 case ACPI_PPTT_CACHE_POLICY_WT: 376 this_leaf->attributes = CACHE_WRITE_THROUGH; 377 break; 378 case ACPI_PPTT_CACHE_POLICY_WB: 379 this_leaf->attributes = CACHE_WRITE_BACK; 380 break; 381 } 382 } 383 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) { 384 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { 385 case ACPI_PPTT_CACHE_READ_ALLOCATE: 386 this_leaf->attributes |= CACHE_READ_ALLOCATE; 387 break; 388 case ACPI_PPTT_CACHE_WRITE_ALLOCATE: 389 this_leaf->attributes |= CACHE_WRITE_ALLOCATE; 390 break; 391 case ACPI_PPTT_CACHE_RW_ALLOCATE: 392 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT: 393 this_leaf->attributes |= 394 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE; 395 break; 396 } 397 } 398 /* 399 * If cache type is NOCACHE, then the cache hasn't been specified 400 * via other mechanisms. Update the type if a cache type has been 401 * provided. 402 * 403 * Note, we assume such caches are unified based on conventional system 404 * design and known examples. Significant work is required elsewhere to 405 * fully support data/instruction only type caches which are only 406 * specified in PPTT. 407 */ 408 if (this_leaf->type == CACHE_TYPE_NOCACHE && 409 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) 410 this_leaf->type = CACHE_TYPE_UNIFIED; 411 412 if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) { 413 found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1, 414 found_cache, sizeof(struct acpi_pptt_cache)); 415 this_leaf->id = found_cache_v1->cache_id; 416 this_leaf->attributes |= CACHE_ID; 417 } 418 } 419 420 static void cache_setup_acpi_cpu(struct acpi_table_header *table, 421 unsigned int cpu) 422 { 423 struct acpi_pptt_cache *found_cache; 424 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 425 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 426 struct cacheinfo *this_leaf; 427 unsigned int index = 0; 428 struct acpi_pptt_processor *cpu_node = NULL; 429 430 while (index < get_cpu_cacheinfo(cpu)->num_leaves) { 431 this_leaf = this_cpu_ci->info_list + index; 432 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 433 this_leaf->type, 434 this_leaf->level, 435 &cpu_node); 436 pr_debug("found = %p %p\n", found_cache, cpu_node); 437 if (found_cache) 438 update_cache_properties(this_leaf, found_cache, 439 ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)), 440 table->revision); 441 442 index++; 443 } 444 } 445 446 static bool flag_identical(struct acpi_table_header *table_hdr, 447 struct acpi_pptt_processor *cpu) 448 { 449 struct acpi_pptt_processor *next; 450 451 /* heterogeneous machines must use PPTT revision > 1 */ 452 if (table_hdr->revision < 2) 453 return false; 454 455 /* Locate the last node in the tree with IDENTICAL set */ 456 if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) { 457 next = fetch_pptt_node(table_hdr, cpu->parent); 458 if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL)) 459 return true; 460 } 461 462 return false; 463 } 464 465 /* Passing level values greater than this will result in search termination */ 466 #define PPTT_ABORT_PACKAGE 0xFF 467 468 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr, 469 struct acpi_pptt_processor *cpu, 470 int level, int flag) 471 { 472 struct acpi_pptt_processor *prev_node; 473 474 while (cpu && level) { 475 /* special case the identical flag to find last identical */ 476 if (flag == ACPI_PPTT_ACPI_IDENTICAL) { 477 if (flag_identical(table_hdr, cpu)) 478 break; 479 } else if (cpu->flags & flag) 480 break; 481 pr_debug("level %d\n", level); 482 prev_node = fetch_pptt_node(table_hdr, cpu->parent); 483 if (prev_node == NULL) 484 break; 485 cpu = prev_node; 486 level--; 487 } 488 return cpu; 489 } 490 491 static void acpi_pptt_warn_missing(void) 492 { 493 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n"); 494 } 495 496 /** 497 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature 498 * @table: Pointer to the head of the PPTT table 499 * @cpu: Kernel logical CPU number 500 * @level: A level that terminates the search 501 * @flag: A flag which terminates the search 502 * 503 * Get a unique value given a CPU, and a topology level, that can be 504 * matched to determine which cpus share common topological features 505 * at that level. 506 * 507 * Return: Unique value, or -ENOENT if unable to locate CPU 508 */ 509 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, 510 unsigned int cpu, int level, int flag) 511 { 512 struct acpi_pptt_processor *cpu_node; 513 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 514 515 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 516 if (cpu_node) { 517 cpu_node = acpi_find_processor_tag(table, cpu_node, 518 level, flag); 519 /* 520 * As per specification if the processor structure represents 521 * an actual processor, then ACPI processor ID must be valid. 522 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID 523 * should be set if the UID is valid 524 */ 525 if (level == 0 || 526 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 527 return cpu_node->acpi_processor_id; 528 return ACPI_PTR_DIFF(cpu_node, table); 529 } 530 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n", 531 cpu, acpi_cpu_id); 532 return -ENOENT; 533 } 534 535 536 static struct acpi_table_header *acpi_get_pptt(void) 537 { 538 static struct acpi_table_header *pptt; 539 static bool is_pptt_checked; 540 acpi_status status; 541 542 /* 543 * PPTT will be used at runtime on every CPU hotplug in path, so we 544 * don't need to call acpi_put_table() to release the table mapping. 545 */ 546 if (!pptt && !is_pptt_checked) { 547 status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt); 548 if (ACPI_FAILURE(status)) 549 acpi_pptt_warn_missing(); 550 551 is_pptt_checked = true; 552 } 553 554 return pptt; 555 } 556 557 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag) 558 { 559 struct acpi_table_header *table; 560 int retval; 561 562 table = acpi_get_pptt(); 563 if (!table) 564 return -ENOENT; 565 566 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag); 567 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n", 568 cpu, level, retval); 569 570 return retval; 571 } 572 573 /** 574 * check_acpi_cpu_flag() - Determine if CPU node has a flag set 575 * @cpu: Kernel logical CPU number 576 * @rev: The minimum PPTT revision defining the flag 577 * @flag: The flag itself 578 * 579 * Check the node representing a CPU for a given flag. 580 * 581 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or 582 * the table revision isn't new enough. 583 * 1, any passed flag set 584 * 0, flag unset 585 */ 586 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag) 587 { 588 struct acpi_table_header *table; 589 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 590 struct acpi_pptt_processor *cpu_node = NULL; 591 int ret = -ENOENT; 592 593 table = acpi_get_pptt(); 594 if (!table) 595 return -ENOENT; 596 597 if (table->revision >= rev) 598 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 599 600 if (cpu_node) 601 ret = (cpu_node->flags & flag) != 0; 602 603 return ret; 604 } 605 606 /** 607 * acpi_get_cache_info() - Determine the number of cache levels and 608 * split cache levels (data/instruction) and for a PE. 609 * @cpu: Kernel logical CPU number 610 * @levels: Number of levels if success. 611 * @split_levels: Number of levels being split (i.e. data/instruction) 612 * if success. Can by NULL. 613 * 614 * Given a logical CPU number, returns the number of levels of cache represented 615 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 616 * indicating we didn't find any cache levels. 617 * 618 * Return: -ENOENT if no PPTT table or no PPTT processor struct found. 619 * 0 on success. 620 */ 621 int acpi_get_cache_info(unsigned int cpu, unsigned int *levels, 622 unsigned int *split_levels) 623 { 624 struct acpi_pptt_processor *cpu_node; 625 struct acpi_table_header *table; 626 u32 acpi_cpu_id; 627 628 *levels = 0; 629 if (split_levels) 630 *split_levels = 0; 631 632 table = acpi_get_pptt(); 633 if (!table) 634 return -ENOENT; 635 636 pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu); 637 638 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 639 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 640 if (!cpu_node) 641 return -ENOENT; 642 643 acpi_count_levels(table, cpu_node, levels, split_levels); 644 645 pr_debug("Cache Setup: last_level=%d split_levels=%d\n", 646 *levels, split_levels ? *split_levels : -1); 647 648 return 0; 649 } 650 651 /** 652 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT 653 * @cpu: Kernel logical CPU number 654 * 655 * Updates the global cache info provided by cpu_get_cacheinfo() 656 * when there are valid properties in the acpi_pptt_cache nodes. A 657 * successful parse may not result in any updates if none of the 658 * cache levels have any valid flags set. Further, a unique value is 659 * associated with each known CPU cache entry. This unique value 660 * can be used to determine whether caches are shared between CPUs. 661 * 662 * Return: -ENOENT on failure to find table, or 0 on success 663 */ 664 int cache_setup_acpi(unsigned int cpu) 665 { 666 struct acpi_table_header *table; 667 668 table = acpi_get_pptt(); 669 if (!table) 670 return -ENOENT; 671 672 pr_debug("Cache Setup ACPI CPU %d\n", cpu); 673 674 cache_setup_acpi_cpu(table, cpu); 675 676 return 0; 677 } 678 679 /** 680 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread 681 * @cpu: Kernel logical CPU number 682 * 683 * Return: 1, a thread 684 * 0, not a thread 685 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or 686 * the table revision isn't new enough. 687 */ 688 int acpi_pptt_cpu_is_thread(unsigned int cpu) 689 { 690 return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD); 691 } 692 693 /** 694 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU 695 * @cpu: Kernel logical CPU number 696 * @level: The topological level for which we would like a unique ID 697 * 698 * Determine a topology unique ID for each thread/core/cluster/mc_grouping 699 * /socket/etc. This ID can then be used to group peers, which will have 700 * matching ids. 701 * 702 * The search terminates when either the requested level is found or 703 * we reach a root node. Levels beyond the termination point will return the 704 * same unique ID. The unique id for level 0 is the acpi processor id. All 705 * other levels beyond this use a generated value to uniquely identify 706 * a topological feature. 707 * 708 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 709 * Otherwise returns a value which represents a unique topological feature. 710 */ 711 int find_acpi_cpu_topology(unsigned int cpu, int level) 712 { 713 return find_acpi_cpu_topology_tag(cpu, level, 0); 714 } 715 716 /** 717 * find_acpi_cpu_topology_package() - Determine a unique CPU package value 718 * @cpu: Kernel logical CPU number 719 * 720 * Determine a topology unique package ID for the given CPU. 721 * This ID can then be used to group peers, which will have matching ids. 722 * 723 * The search terminates when either a level is found with the PHYSICAL_PACKAGE 724 * flag set or we reach a root node. 725 * 726 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 727 * Otherwise returns a value which represents the package for this CPU. 728 */ 729 int find_acpi_cpu_topology_package(unsigned int cpu) 730 { 731 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 732 ACPI_PPTT_PHYSICAL_PACKAGE); 733 } 734 735 /** 736 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value 737 * @cpu: Kernel logical CPU number 738 * 739 * Determine a topology unique cluster ID for the given CPU/thread. 740 * This ID can then be used to group peers, which will have matching ids. 741 * 742 * The cluster, if present is the level of topology above CPUs. In a 743 * multi-thread CPU, it will be the level above the CPU, not the thread. 744 * It may not exist in single CPU systems. In simple multi-CPU systems, 745 * it may be equal to the package topology level. 746 * 747 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found 748 * or there is no toplogy level above the CPU.. 749 * Otherwise returns a value which represents the package for this CPU. 750 */ 751 752 int find_acpi_cpu_topology_cluster(unsigned int cpu) 753 { 754 struct acpi_table_header *table; 755 struct acpi_pptt_processor *cpu_node, *cluster_node; 756 u32 acpi_cpu_id; 757 int retval; 758 int is_thread; 759 760 table = acpi_get_pptt(); 761 if (!table) 762 return -ENOENT; 763 764 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 765 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 766 if (!cpu_node || !cpu_node->parent) 767 return -ENOENT; 768 769 is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD; 770 cluster_node = fetch_pptt_node(table, cpu_node->parent); 771 if (!cluster_node) 772 return -ENOENT; 773 774 if (is_thread) { 775 if (!cluster_node->parent) 776 return -ENOENT; 777 778 cluster_node = fetch_pptt_node(table, cluster_node->parent); 779 if (!cluster_node) 780 return -ENOENT; 781 } 782 if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 783 retval = cluster_node->acpi_processor_id; 784 else 785 retval = ACPI_PTR_DIFF(cluster_node, table); 786 787 return retval; 788 } 789 790 /** 791 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag 792 * @cpu: Kernel logical CPU number 793 * 794 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same 795 * implementation should have matching tags. 796 * 797 * The returned tag can be used to group peers with identical implementation. 798 * 799 * The search terminates when a level is found with the identical implementation 800 * flag set or we reach a root node. 801 * 802 * Due to limitations in the PPTT data structure, there may be rare situations 803 * where two cores in a heterogeneous machine may be identical, but won't have 804 * the same tag. 805 * 806 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 807 * Otherwise returns a value which represents a group of identical cores 808 * similar to this CPU. 809 */ 810 int find_acpi_cpu_topology_hetero_id(unsigned int cpu) 811 { 812 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 813 ACPI_PPTT_ACPI_IDENTICAL); 814 } 815