xref: /linux/drivers/acpi/pptt.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4  *
5  * Copyright (C) 2018, ARM
6  *
7  * This file implements parsing of the Processor Properties Topology Table
8  * which is optionally used to describe the processor and cache topology.
9  * Due to the relative pointers used throughout the table, this doesn't
10  * leverage the existing subtable parsing in the kernel.
11  *
12  * The PPTT structure is an inverted tree, with each node potentially
13  * holding one or two inverted tree data structures describing
14  * the caches available at that level. Each cache structure optionally
15  * contains properties describing the cache at a given level which can be
16  * used to override hardware probed values.
17  */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19 
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23 
24 /*
25  * The acpi_pptt_cache_v1 in actbl2.h, which is imported from acpica,
26  * only contains the cache_id field rather than all the fields of the
27  * Cache Type Structure. Use this alternative structure until it is
28  * resolved in acpica.
29  */
30 struct acpi_pptt_cache_v1_full {
31 	struct acpi_subtable_header header;
32 	u16 reserved;
33 	u32 flags;
34 	u32 next_level_of_cache;
35 	u32 size;
36 	u32 number_of_sets;
37 	u8 associativity;
38 	u8 attributes;
39 	u16 line_size;
40 	u32 cache_id;
41 } __packed;
42 
43 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
44 							u32 pptt_ref)
45 {
46 	struct acpi_subtable_header *entry;
47 
48 	/* there isn't a subtable at reference 0 */
49 	if (pptt_ref < sizeof(struct acpi_subtable_header))
50 		return NULL;
51 
52 	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
53 		return NULL;
54 
55 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
56 
57 	if (entry->length == 0)
58 		return NULL;
59 
60 	if (pptt_ref + entry->length > table_hdr->length)
61 		return NULL;
62 
63 	return entry;
64 }
65 
66 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
67 						   u32 pptt_ref)
68 {
69 	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
70 }
71 
72 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
73 						u32 pptt_ref)
74 {
75 	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
76 }
77 
78 static struct acpi_pptt_cache_v1_full *upgrade_pptt_cache(struct acpi_pptt_cache *cache)
79 {
80 	if (cache->header.length < sizeof(struct acpi_pptt_cache_v1_full))
81 		return NULL;
82 
83 	/* No use for v1 if the only additional field is invalid */
84 	if (!(cache->flags & ACPI_PPTT_CACHE_ID_VALID))
85 		return NULL;
86 
87 	return (struct acpi_pptt_cache_v1_full *)cache;
88 }
89 
90 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
91 							   struct acpi_pptt_processor *node,
92 							   int resource)
93 {
94 	u32 *ref;
95 
96 	if (resource >= node->number_of_priv_resources)
97 		return NULL;
98 
99 	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
100 	ref += resource;
101 
102 	return fetch_pptt_subtable(table_hdr, *ref);
103 }
104 
105 static inline bool acpi_pptt_match_type(int table_type, int type)
106 {
107 	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
108 		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
109 }
110 
111 /**
112  * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
113  * @table_hdr: Pointer to the head of the PPTT table
114  * @local_level: passed res reflects this cache level
115  * @split_levels: Number of split cache levels (data/instruction).
116  * @res: cache resource in the PPTT we want to walk
117  * @found: returns a pointer to the requested level if found
118  * @level: the requested cache level
119  * @type: the requested cache type
120  *
121  * Attempt to find a given cache level, while counting the max number
122  * of cache levels for the cache node.
123  *
124  * Given a pptt resource, verify that it is a cache node, then walk
125  * down each level of caches, counting how many levels are found
126  * as well as checking the cache type (icache, dcache, unified). If a
127  * level & type match, then we set found, and continue the search.
128  * Once the entire cache branch has been walked return its max
129  * depth.
130  *
131  * Return: The cache structure and the level we terminated with.
132  */
133 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
134 					 unsigned int local_level,
135 					 unsigned int *split_levels,
136 					 struct acpi_subtable_header *res,
137 					 struct acpi_pptt_cache **found,
138 					 unsigned int level, int type)
139 {
140 	struct acpi_pptt_cache *cache;
141 
142 	if (res->type != ACPI_PPTT_TYPE_CACHE)
143 		return 0;
144 
145 	cache = (struct acpi_pptt_cache *) res;
146 	while (cache) {
147 		local_level++;
148 
149 		if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) {
150 			cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
151 			continue;
152 		}
153 
154 		if (split_levels &&
155 		    (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) ||
156 		     acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR)))
157 			*split_levels = local_level;
158 
159 		if (local_level == level &&
160 		    acpi_pptt_match_type(cache->attributes, type)) {
161 			if (*found != NULL && cache != *found)
162 				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
163 
164 			pr_debug("Found cache @ level %u\n", level);
165 			*found = cache;
166 			/*
167 			 * continue looking at this node's resource list
168 			 * to verify that we don't find a duplicate
169 			 * cache node.
170 			 */
171 		}
172 		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
173 	}
174 	return local_level;
175 }
176 
177 static struct acpi_pptt_cache *
178 acpi_find_cache_level(struct acpi_table_header *table_hdr,
179 		      struct acpi_pptt_processor *cpu_node,
180 		      unsigned int *starting_level, unsigned int *split_levels,
181 		      unsigned int level, int type)
182 {
183 	struct acpi_subtable_header *res;
184 	unsigned int number_of_levels = *starting_level;
185 	int resource = 0;
186 	struct acpi_pptt_cache *ret = NULL;
187 	unsigned int local_level;
188 
189 	/* walk down from processor node */
190 	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
191 		resource++;
192 
193 		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
194 						   split_levels, res, &ret,
195 						   level, type);
196 		/*
197 		 * we are looking for the max depth. Since its potentially
198 		 * possible for a given node to have resources with differing
199 		 * depths verify that the depth we have found is the largest.
200 		 */
201 		if (number_of_levels < local_level)
202 			number_of_levels = local_level;
203 	}
204 	if (number_of_levels > *starting_level)
205 		*starting_level = number_of_levels;
206 
207 	return ret;
208 }
209 
210 /**
211  * acpi_count_levels() - Given a PPTT table, and a CPU node, count the
212  * total number of levels and split cache levels (data/instruction).
213  * @table_hdr: Pointer to the head of the PPTT table
214  * @cpu_node: processor node we wish to count caches for
215  * @split_levels:	Number of split cache levels (data/instruction) if
216  *			success. Can by NULL.
217  *
218  * Return: number of levels.
219  * Given a processor node containing a processing unit, walk into it and count
220  * how many levels exist solely for it, and then walk up each level until we hit
221  * the root node (ignore the package level because it may be possible to have
222  * caches that exist across packages). Count the number of cache levels and
223  * split cache levels (data/instruction) that exist at each level on the way
224  * up.
225  */
226 static int acpi_count_levels(struct acpi_table_header *table_hdr,
227 			     struct acpi_pptt_processor *cpu_node,
228 			     unsigned int *split_levels)
229 {
230 	int current_level = 0;
231 
232 	do {
233 		acpi_find_cache_level(table_hdr, cpu_node, &current_level, split_levels, 0, 0);
234 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
235 	} while (cpu_node);
236 
237 	return current_level;
238 }
239 
240 /**
241  * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
242  * @table_hdr: Pointer to the head of the PPTT table
243  * @node: passed node is checked to see if its a leaf
244  *
245  * Determine if the *node parameter is a leaf node by iterating the
246  * PPTT table, looking for nodes which reference it.
247  *
248  * Return: 0 if we find a node referencing the passed node (or table error),
249  * or 1 if we don't.
250  */
251 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
252 			       struct acpi_pptt_processor *node)
253 {
254 	struct acpi_subtable_header *entry;
255 	unsigned long table_end;
256 	u32 node_entry;
257 	struct acpi_pptt_processor *cpu_node;
258 	u32 proc_sz;
259 
260 	if (table_hdr->revision > 1)
261 		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
262 
263 	table_end = (unsigned long)table_hdr + table_hdr->length;
264 	node_entry = ACPI_PTR_DIFF(node, table_hdr);
265 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
266 			     sizeof(struct acpi_table_pptt));
267 	proc_sz = sizeof(struct acpi_pptt_processor);
268 
269 	/* ignore subtable types that are smaller than a processor node */
270 	while ((unsigned long)entry + proc_sz <= table_end) {
271 		cpu_node = (struct acpi_pptt_processor *)entry;
272 
273 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
274 		    cpu_node->parent == node_entry)
275 			return 0;
276 		if (entry->length == 0)
277 			return 0;
278 
279 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
280 				     entry->length);
281 	}
282 	return 1;
283 }
284 
285 /**
286  * acpi_find_processor_node() - Given a PPTT table find the requested processor
287  * @table_hdr:  Pointer to the head of the PPTT table
288  * @acpi_cpu_id: CPU we are searching for
289  *
290  * Find the subtable entry describing the provided processor.
291  * This is done by iterating the PPTT table looking for processor nodes
292  * which have an acpi_processor_id that matches the acpi_cpu_id parameter
293  * passed into the function. If we find a node that matches this criteria
294  * we verify that its a leaf node in the topology rather than depending
295  * on the valid flag, which doesn't need to be set for leaf nodes.
296  *
297  * Return: NULL, or the processors acpi_pptt_processor*
298  */
299 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
300 							    u32 acpi_cpu_id)
301 {
302 	struct acpi_subtable_header *entry;
303 	unsigned long table_end;
304 	struct acpi_pptt_processor *cpu_node;
305 	u32 proc_sz;
306 
307 	table_end = (unsigned long)table_hdr + table_hdr->length;
308 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
309 			     sizeof(struct acpi_table_pptt));
310 	proc_sz = sizeof(struct acpi_pptt_processor);
311 
312 	/* find the processor structure associated with this cpuid */
313 	while ((unsigned long)entry + proc_sz <= table_end) {
314 		cpu_node = (struct acpi_pptt_processor *)entry;
315 
316 		if (entry->length == 0) {
317 			pr_warn("Invalid zero length subtable\n");
318 			break;
319 		}
320 		/* entry->length may not equal proc_sz, revalidate the processor structure length */
321 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
322 		    acpi_cpu_id == cpu_node->acpi_processor_id &&
323 		    (unsigned long)entry + entry->length <= table_end &&
324 		    entry->length == proc_sz + cpu_node->number_of_priv_resources * sizeof(u32) &&
325 		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
326 			return (struct acpi_pptt_processor *)entry;
327 		}
328 
329 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
330 				     entry->length);
331 	}
332 
333 	return NULL;
334 }
335 
336 static u8 acpi_cache_type(enum cache_type type)
337 {
338 	switch (type) {
339 	case CACHE_TYPE_DATA:
340 		pr_debug("Looking for data cache\n");
341 		return ACPI_PPTT_CACHE_TYPE_DATA;
342 	case CACHE_TYPE_INST:
343 		pr_debug("Looking for instruction cache\n");
344 		return ACPI_PPTT_CACHE_TYPE_INSTR;
345 	default:
346 	case CACHE_TYPE_UNIFIED:
347 		pr_debug("Looking for unified cache\n");
348 		/*
349 		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
350 		 * contains the bit pattern that will match both
351 		 * ACPI unified bit patterns because we use it later
352 		 * to match both cases.
353 		 */
354 		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
355 	}
356 }
357 
358 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
359 						    u32 acpi_cpu_id,
360 						    enum cache_type type,
361 						    unsigned int level,
362 						    struct acpi_pptt_processor **node)
363 {
364 	unsigned int total_levels = 0;
365 	struct acpi_pptt_cache *found = NULL;
366 	struct acpi_pptt_processor *cpu_node;
367 	u8 acpi_type = acpi_cache_type(type);
368 
369 	pr_debug("Looking for CPU %d's level %u cache type %d\n",
370 		 acpi_cpu_id, level, acpi_type);
371 
372 	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
373 
374 	while (cpu_node && !found) {
375 		found = acpi_find_cache_level(table_hdr, cpu_node,
376 					      &total_levels, NULL, level, acpi_type);
377 		*node = cpu_node;
378 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
379 	}
380 
381 	return found;
382 }
383 
384 /**
385  * update_cache_properties() - Update cacheinfo for the given processor
386  * @this_leaf: Kernel cache info structure being updated
387  * @found_cache: The PPTT node describing this cache instance
388  * @cpu_node: A unique reference to describe this cache instance
389  *
390  * The ACPI spec implies that the fields in the cache structures are used to
391  * extend and correct the information probed from the hardware. Lets only
392  * set fields that we determine are VALID.
393  *
394  * Return: nothing. Side effect of updating the global cacheinfo
395  */
396 static void update_cache_properties(struct cacheinfo *this_leaf,
397 				    struct acpi_pptt_cache *found_cache,
398 				    struct acpi_pptt_processor *cpu_node)
399 {
400 	struct acpi_pptt_cache_v1_full *found_cache_v1;
401 
402 	this_leaf->fw_token = cpu_node;
403 	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
404 		this_leaf->size = found_cache->size;
405 	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
406 		this_leaf->coherency_line_size = found_cache->line_size;
407 	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
408 		this_leaf->number_of_sets = found_cache->number_of_sets;
409 	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
410 		this_leaf->ways_of_associativity = found_cache->associativity;
411 	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
412 		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
413 		case ACPI_PPTT_CACHE_POLICY_WT:
414 			this_leaf->attributes = CACHE_WRITE_THROUGH;
415 			break;
416 		case ACPI_PPTT_CACHE_POLICY_WB:
417 			this_leaf->attributes = CACHE_WRITE_BACK;
418 			break;
419 		}
420 	}
421 	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
422 		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
423 		case ACPI_PPTT_CACHE_READ_ALLOCATE:
424 			this_leaf->attributes |= CACHE_READ_ALLOCATE;
425 			break;
426 		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
427 			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
428 			break;
429 		case ACPI_PPTT_CACHE_RW_ALLOCATE:
430 		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
431 			this_leaf->attributes |=
432 				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
433 			break;
434 		}
435 	}
436 	/*
437 	 * If cache type is NOCACHE, then the cache hasn't been specified
438 	 * via other mechanisms.  Update the type if a cache type has been
439 	 * provided.
440 	 *
441 	 * Note, we assume such caches are unified based on conventional system
442 	 * design and known examples.  Significant work is required elsewhere to
443 	 * fully support data/instruction only type caches which are only
444 	 * specified in PPTT.
445 	 */
446 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
447 	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
448 		this_leaf->type = CACHE_TYPE_UNIFIED;
449 
450 	found_cache_v1 = upgrade_pptt_cache(found_cache);
451 	if (found_cache_v1) {
452 		this_leaf->id = found_cache_v1->cache_id;
453 		this_leaf->attributes |= CACHE_ID;
454 	}
455 }
456 
457 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
458 				 unsigned int cpu)
459 {
460 	struct acpi_pptt_cache *found_cache;
461 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
462 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
463 	struct cacheinfo *this_leaf;
464 	unsigned int index = 0;
465 	struct acpi_pptt_processor *cpu_node = NULL;
466 
467 	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
468 		this_leaf = this_cpu_ci->info_list + index;
469 		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
470 						   this_leaf->type,
471 						   this_leaf->level,
472 						   &cpu_node);
473 		pr_debug("found = %p %p\n", found_cache, cpu_node);
474 		if (found_cache)
475 			update_cache_properties(this_leaf, found_cache,
476 						ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)));
477 
478 		index++;
479 	}
480 }
481 
482 static bool flag_identical(struct acpi_table_header *table_hdr,
483 			   struct acpi_pptt_processor *cpu)
484 {
485 	struct acpi_pptt_processor *next;
486 
487 	/* heterogeneous machines must use PPTT revision > 1 */
488 	if (table_hdr->revision < 2)
489 		return false;
490 
491 	/* Locate the last node in the tree with IDENTICAL set */
492 	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
493 		next = fetch_pptt_node(table_hdr, cpu->parent);
494 		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
495 			return true;
496 	}
497 
498 	return false;
499 }
500 
501 /* Passing level values greater than this will result in search termination */
502 #define PPTT_ABORT_PACKAGE 0xFF
503 
504 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
505 							   struct acpi_pptt_processor *cpu,
506 							   int level, int flag)
507 {
508 	struct acpi_pptt_processor *prev_node;
509 
510 	while (cpu && level) {
511 		/* special case the identical flag to find last identical */
512 		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
513 			if (flag_identical(table_hdr, cpu))
514 				break;
515 		} else if (cpu->flags & flag)
516 			break;
517 		pr_debug("level %d\n", level);
518 		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
519 		if (prev_node == NULL)
520 			break;
521 		cpu = prev_node;
522 		level--;
523 	}
524 	return cpu;
525 }
526 
527 static void acpi_pptt_warn_missing(void)
528 {
529 	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
530 }
531 
532 /**
533  * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
534  * @table: Pointer to the head of the PPTT table
535  * @cpu: Kernel logical CPU number
536  * @level: A level that terminates the search
537  * @flag: A flag which terminates the search
538  *
539  * Get a unique value given a CPU, and a topology level, that can be
540  * matched to determine which cpus share common topological features
541  * at that level.
542  *
543  * Return: Unique value, or -ENOENT if unable to locate CPU
544  */
545 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
546 				     unsigned int cpu, int level, int flag)
547 {
548 	struct acpi_pptt_processor *cpu_node;
549 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
550 
551 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
552 	if (cpu_node) {
553 		cpu_node = acpi_find_processor_tag(table, cpu_node,
554 						   level, flag);
555 		/*
556 		 * As per specification if the processor structure represents
557 		 * an actual processor, then ACPI processor ID must be valid.
558 		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
559 		 * should be set if the UID is valid
560 		 */
561 		if (level == 0 ||
562 		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
563 			return cpu_node->acpi_processor_id;
564 		return ACPI_PTR_DIFF(cpu_node, table);
565 	}
566 	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
567 		    cpu, acpi_cpu_id);
568 	return -ENOENT;
569 }
570 
571 
572 static struct acpi_table_header *acpi_get_pptt(void)
573 {
574 	static struct acpi_table_header *pptt;
575 	static bool is_pptt_checked;
576 	acpi_status status;
577 
578 	/*
579 	 * PPTT will be used at runtime on every CPU hotplug in path, so we
580 	 * don't need to call acpi_put_table() to release the table mapping.
581 	 */
582 	if (!pptt && !is_pptt_checked) {
583 		status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
584 		if (ACPI_FAILURE(status))
585 			acpi_pptt_warn_missing();
586 
587 		is_pptt_checked = true;
588 	}
589 
590 	return pptt;
591 }
592 
593 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
594 {
595 	struct acpi_table_header *table;
596 	int retval;
597 
598 	table = acpi_get_pptt();
599 	if (!table)
600 		return -ENOENT;
601 
602 	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
603 	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
604 		 cpu, level, retval);
605 
606 	return retval;
607 }
608 
609 /**
610  * check_acpi_cpu_flag() - Determine if CPU node has a flag set
611  * @cpu: Kernel logical CPU number
612  * @rev: The minimum PPTT revision defining the flag
613  * @flag: The flag itself
614  *
615  * Check the node representing a CPU for a given flag.
616  *
617  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
618  *	   the table revision isn't new enough.
619  *	   1, any passed flag set
620  *	   0, flag unset
621  */
622 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
623 {
624 	struct acpi_table_header *table;
625 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
626 	struct acpi_pptt_processor *cpu_node = NULL;
627 	int ret = -ENOENT;
628 
629 	table = acpi_get_pptt();
630 	if (!table)
631 		return -ENOENT;
632 
633 	if (table->revision >= rev)
634 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
635 
636 	if (cpu_node)
637 		ret = (cpu_node->flags & flag) != 0;
638 
639 	return ret;
640 }
641 
642 /**
643  * acpi_get_cache_info() - Determine the number of cache levels and
644  * split cache levels (data/instruction) and for a PE.
645  * @cpu: Kernel logical CPU number
646  * @levels: Number of levels if success.
647  * @split_levels:	Number of levels being split (i.e. data/instruction)
648  *			if success. Can by NULL.
649  *
650  * Given a logical CPU number, returns the number of levels of cache represented
651  * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
652  * indicating we didn't find any cache levels.
653  *
654  * Return: -ENOENT if no PPTT table or no PPTT processor struct found.
655  *	   0 on success.
656  */
657 int acpi_get_cache_info(unsigned int cpu, unsigned int *levels,
658 			unsigned int *split_levels)
659 {
660 	struct acpi_pptt_processor *cpu_node;
661 	struct acpi_table_header *table;
662 	u32 acpi_cpu_id;
663 
664 	*levels = 0;
665 	if (split_levels)
666 		*split_levels = 0;
667 
668 	table = acpi_get_pptt();
669 	if (!table)
670 		return -ENOENT;
671 
672 	pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu);
673 
674 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
675 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
676 	if (!cpu_node)
677 		return -ENOENT;
678 
679 	*levels = acpi_count_levels(table, cpu_node, split_levels);
680 
681 	pr_debug("Cache Setup: last_level=%d split_levels=%d\n",
682 		 *levels, split_levels ? *split_levels : -1);
683 
684 	return 0;
685 }
686 
687 /**
688  * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
689  * @cpu: Kernel logical CPU number
690  *
691  * Updates the global cache info provided by cpu_get_cacheinfo()
692  * when there are valid properties in the acpi_pptt_cache nodes. A
693  * successful parse may not result in any updates if none of the
694  * cache levels have any valid flags set.  Further, a unique value is
695  * associated with each known CPU cache entry. This unique value
696  * can be used to determine whether caches are shared between CPUs.
697  *
698  * Return: -ENOENT on failure to find table, or 0 on success
699  */
700 int cache_setup_acpi(unsigned int cpu)
701 {
702 	struct acpi_table_header *table;
703 
704 	table = acpi_get_pptt();
705 	if (!table)
706 		return -ENOENT;
707 
708 	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
709 
710 	cache_setup_acpi_cpu(table, cpu);
711 
712 	return 0;
713 }
714 
715 /**
716  * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
717  * @cpu: Kernel logical CPU number
718  *
719  * Return: 1, a thread
720  *         0, not a thread
721  *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
722  *         the table revision isn't new enough.
723  */
724 int acpi_pptt_cpu_is_thread(unsigned int cpu)
725 {
726 	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
727 }
728 
729 /**
730  * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
731  * @cpu: Kernel logical CPU number
732  * @level: The topological level for which we would like a unique ID
733  *
734  * Determine a topology unique ID for each thread/core/cluster/mc_grouping
735  * /socket/etc. This ID can then be used to group peers, which will have
736  * matching ids.
737  *
738  * The search terminates when either the requested level is found or
739  * we reach a root node. Levels beyond the termination point will return the
740  * same unique ID. The unique id for level 0 is the acpi processor id. All
741  * other levels beyond this use a generated value to uniquely identify
742  * a topological feature.
743  *
744  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
745  * Otherwise returns a value which represents a unique topological feature.
746  */
747 int find_acpi_cpu_topology(unsigned int cpu, int level)
748 {
749 	return find_acpi_cpu_topology_tag(cpu, level, 0);
750 }
751 
752 /**
753  * find_acpi_cpu_topology_package() - Determine a unique CPU package value
754  * @cpu: Kernel logical CPU number
755  *
756  * Determine a topology unique package ID for the given CPU.
757  * This ID can then be used to group peers, which will have matching ids.
758  *
759  * The search terminates when either a level is found with the PHYSICAL_PACKAGE
760  * flag set or we reach a root node.
761  *
762  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
763  * Otherwise returns a value which represents the package for this CPU.
764  */
765 int find_acpi_cpu_topology_package(unsigned int cpu)
766 {
767 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
768 					  ACPI_PPTT_PHYSICAL_PACKAGE);
769 }
770 
771 /**
772  * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
773  * @cpu: Kernel logical CPU number
774  *
775  * Determine a topology unique cluster ID for the given CPU/thread.
776  * This ID can then be used to group peers, which will have matching ids.
777  *
778  * The cluster, if present is the level of topology above CPUs. In a
779  * multi-thread CPU, it will be the level above the CPU, not the thread.
780  * It may not exist in single CPU systems. In simple multi-CPU systems,
781  * it may be equal to the package topology level.
782  *
783  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
784  * or there is no toplogy level above the CPU..
785  * Otherwise returns a value which represents the package for this CPU.
786  */
787 
788 int find_acpi_cpu_topology_cluster(unsigned int cpu)
789 {
790 	struct acpi_table_header *table;
791 	struct acpi_pptt_processor *cpu_node, *cluster_node;
792 	u32 acpi_cpu_id;
793 	int retval;
794 	int is_thread;
795 
796 	table = acpi_get_pptt();
797 	if (!table)
798 		return -ENOENT;
799 
800 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
801 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
802 	if (!cpu_node || !cpu_node->parent)
803 		return -ENOENT;
804 
805 	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
806 	cluster_node = fetch_pptt_node(table, cpu_node->parent);
807 	if (!cluster_node)
808 		return -ENOENT;
809 
810 	if (is_thread) {
811 		if (!cluster_node->parent)
812 			return -ENOENT;
813 
814 		cluster_node = fetch_pptt_node(table, cluster_node->parent);
815 		if (!cluster_node)
816 			return -ENOENT;
817 	}
818 	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
819 		retval = cluster_node->acpi_processor_id;
820 	else
821 		retval = ACPI_PTR_DIFF(cluster_node, table);
822 
823 	return retval;
824 }
825 
826 /**
827  * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
828  * @cpu: Kernel logical CPU number
829  *
830  * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
831  * implementation should have matching tags.
832  *
833  * The returned tag can be used to group peers with identical implementation.
834  *
835  * The search terminates when a level is found with the identical implementation
836  * flag set or we reach a root node.
837  *
838  * Due to limitations in the PPTT data structure, there may be rare situations
839  * where two cores in a heterogeneous machine may be identical, but won't have
840  * the same tag.
841  *
842  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
843  * Otherwise returns a value which represents a group of identical cores
844  * similar to this CPU.
845  */
846 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
847 {
848 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
849 					  ACPI_PPTT_ACPI_IDENTICAL);
850 }
851 
852 /**
853  * acpi_pptt_get_child_cpus() - Find all the CPUs below a PPTT
854  * processor hierarchy node
855  *
856  * @table_hdr:		A reference to the PPTT table
857  * @parent_node:	A pointer to the processor hierarchy node in the
858  *			table_hdr
859  * @cpus:		A cpumask to fill with the CPUs below @parent_node
860  *
861  * Walks up the PPTT from every possible CPU to find if the provided
862  * @parent_node is a parent of this CPU.
863  */
864 static void acpi_pptt_get_child_cpus(struct acpi_table_header *table_hdr,
865 				     struct acpi_pptt_processor *parent_node,
866 				     cpumask_t *cpus)
867 {
868 	struct acpi_pptt_processor *cpu_node;
869 	u32 acpi_id;
870 	int cpu;
871 
872 	cpumask_clear(cpus);
873 
874 	for_each_possible_cpu(cpu) {
875 		acpi_id = get_acpi_id_for_cpu(cpu);
876 		cpu_node = acpi_find_processor_node(table_hdr, acpi_id);
877 
878 		while (cpu_node) {
879 			if (cpu_node == parent_node) {
880 				cpumask_set_cpu(cpu, cpus);
881 				break;
882 			}
883 			cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
884 		}
885 	}
886 }
887 
888 /**
889  * acpi_pptt_get_cpus_from_container() - Populate a cpumask with all CPUs in a
890  *                                       processor container
891  * @acpi_cpu_id:	The UID of the processor container
892  * @cpus:		The resulting CPU mask
893  *
894  * Find the specified Processor Container, and fill @cpus with all the cpus
895  * below it.
896  *
897  * Not all 'Processor Hierarchy' entries in the PPTT are either a CPU
898  * or a Processor Container, they may exist purely to describe a
899  * Private resource. CPUs have to be leaves, so a Processor Container
900  * is a non-leaf that has the 'ACPI Processor ID valid' flag set.
901  */
902 void acpi_pptt_get_cpus_from_container(u32 acpi_cpu_id, cpumask_t *cpus)
903 {
904 	struct acpi_table_header *table_hdr;
905 	struct acpi_subtable_header *entry;
906 	unsigned long table_end;
907 	u32 proc_sz;
908 
909 	cpumask_clear(cpus);
910 
911 	table_hdr = acpi_get_pptt();
912 	if (!table_hdr)
913 		return;
914 
915 	table_end = (unsigned long)table_hdr + table_hdr->length;
916 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
917 			     sizeof(struct acpi_table_pptt));
918 	proc_sz = sizeof(struct acpi_pptt_processor);
919 	while ((unsigned long)entry + proc_sz <= table_end) {
920 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR) {
921 			struct acpi_pptt_processor *cpu_node;
922 
923 			cpu_node = (struct acpi_pptt_processor *)entry;
924 			if (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID &&
925 			    !acpi_pptt_leaf_node(table_hdr, cpu_node) &&
926 			    cpu_node->acpi_processor_id == acpi_cpu_id) {
927 				acpi_pptt_get_child_cpus(table_hdr, cpu_node, cpus);
928 				break;
929 			}
930 		}
931 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
932 				     entry->length);
933 	}
934 }
935 
936 /**
937  * find_acpi_cache_level_from_id() - Get the level of the specified cache
938  * @cache_id: The id field of the cache
939  *
940  * Determine the level relative to any CPU for the cache identified by
941  * cache_id. This allows the property to be found even if the CPUs are offline.
942  *
943  * The returned level can be used to group caches that are peers.
944  *
945  * The PPTT table must be rev 3 or later.
946  *
947  * If one CPU's L2 is shared with another CPU as L3, this function will return
948  * an unpredictable value.
949  *
950  * Return: -ENOENT if the PPTT doesn't exist, the revision isn't supported or
951  * the cache cannot be found.
952  * Otherwise returns a value which represents the level of the specified cache.
953  */
954 int find_acpi_cache_level_from_id(u32 cache_id)
955 {
956 	int cpu;
957 	struct acpi_table_header *table;
958 
959 	table = acpi_get_pptt();
960 	if (!table)
961 		return -ENOENT;
962 
963 	if (table->revision < 3)
964 		return -ENOENT;
965 
966 	for_each_possible_cpu(cpu) {
967 		bool empty;
968 		int level = 1;
969 		u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
970 		struct acpi_pptt_cache *cache;
971 		struct acpi_pptt_processor *cpu_node;
972 
973 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
974 		if (!cpu_node)
975 			continue;
976 
977 		do {
978 			int cache_type[] = {CACHE_TYPE_INST, CACHE_TYPE_DATA, CACHE_TYPE_UNIFIED};
979 
980 			empty = true;
981 			for (int i = 0; i < ARRAY_SIZE(cache_type); i++) {
982 				struct acpi_pptt_cache_v1_full *cache_v1;
983 
984 				cache = acpi_find_cache_node(table, acpi_cpu_id, cache_type[i],
985 							     level, &cpu_node);
986 				if (!cache)
987 					continue;
988 
989 				empty = false;
990 
991 				cache_v1 = upgrade_pptt_cache(cache);
992 				if (cache_v1 && cache_v1->cache_id == cache_id)
993 					return level;
994 			}
995 			level++;
996 		} while (!empty);
997 	}
998 
999 	return -ENOENT;
1000 }
1001 
1002 /**
1003  * acpi_pptt_get_cpumask_from_cache_id() - Get the cpus associated with the
1004  *					   specified cache
1005  * @cache_id: The id field of the cache
1006  * @cpus: Where to build the cpumask
1007  *
1008  * Determine which CPUs are below this cache in the PPTT. This allows the property
1009  * to be found even if the CPUs are offline.
1010  *
1011  * The PPTT table must be rev 3 or later,
1012  *
1013  * Return: -ENOENT if the PPTT doesn't exist, or the cache cannot be found.
1014  * Otherwise returns 0 and sets the cpus in the provided cpumask.
1015  */
1016 int acpi_pptt_get_cpumask_from_cache_id(u32 cache_id, cpumask_t *cpus)
1017 {
1018 	int cpu;
1019 	struct acpi_table_header *table;
1020 
1021 	cpumask_clear(cpus);
1022 
1023 	table = acpi_get_pptt();
1024 	if (!table)
1025 		return -ENOENT;
1026 
1027 	if (table->revision < 3)
1028 		return -ENOENT;
1029 
1030 	for_each_possible_cpu(cpu) {
1031 		bool empty;
1032 		int level = 1;
1033 		u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
1034 		struct acpi_pptt_cache *cache;
1035 		struct acpi_pptt_processor *cpu_node;
1036 
1037 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
1038 		if (!cpu_node)
1039 			continue;
1040 
1041 		do {
1042 			int cache_type[] = {CACHE_TYPE_INST, CACHE_TYPE_DATA, CACHE_TYPE_UNIFIED};
1043 
1044 			empty = true;
1045 			for (int i = 0; i < ARRAY_SIZE(cache_type); i++) {
1046 				struct acpi_pptt_cache_v1_full *cache_v1;
1047 
1048 				cache = acpi_find_cache_node(table, acpi_cpu_id, cache_type[i],
1049 							     level, &cpu_node);
1050 
1051 				if (!cache)
1052 					continue;
1053 
1054 				empty = false;
1055 
1056 				cache_v1 = upgrade_pptt_cache(cache);
1057 				if (cache_v1 && cache_v1->cache_id == cache_id)
1058 					cpumask_set_cpu(cpu, cpus);
1059 			}
1060 			level++;
1061 		} while (!empty);
1062 	}
1063 
1064 	return 0;
1065 }
1066