xref: /linux/drivers/acpi/pptt.c (revision 0d3b051adbb72ed81956447d0d1e54d5943ee6f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4  *
5  * Copyright (C) 2018, ARM
6  *
7  * This file implements parsing of the Processor Properties Topology Table
8  * which is optionally used to describe the processor and cache topology.
9  * Due to the relative pointers used throughout the table, this doesn't
10  * leverage the existing subtable parsing in the kernel.
11  *
12  * The PPTT structure is an inverted tree, with each node potentially
13  * holding one or two inverted tree data structures describing
14  * the caches available at that level. Each cache structure optionally
15  * contains properties describing the cache at a given level which can be
16  * used to override hardware probed values.
17  */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19 
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23 
24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 							u32 pptt_ref)
26 {
27 	struct acpi_subtable_header *entry;
28 
29 	/* there isn't a subtable at reference 0 */
30 	if (pptt_ref < sizeof(struct acpi_subtable_header))
31 		return NULL;
32 
33 	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 		return NULL;
35 
36 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37 
38 	if (entry->length == 0)
39 		return NULL;
40 
41 	if (pptt_ref + entry->length > table_hdr->length)
42 		return NULL;
43 
44 	return entry;
45 }
46 
47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 						   u32 pptt_ref)
49 {
50 	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51 }
52 
53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 						u32 pptt_ref)
55 {
56 	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57 }
58 
59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 							   struct acpi_pptt_processor *node,
61 							   int resource)
62 {
63 	u32 *ref;
64 
65 	if (resource >= node->number_of_priv_resources)
66 		return NULL;
67 
68 	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 	ref += resource;
70 
71 	return fetch_pptt_subtable(table_hdr, *ref);
72 }
73 
74 static inline bool acpi_pptt_match_type(int table_type, int type)
75 {
76 	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78 }
79 
80 /**
81  * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82  * @table_hdr: Pointer to the head of the PPTT table
83  * @local_level: passed res reflects this cache level
84  * @res: cache resource in the PPTT we want to walk
85  * @found: returns a pointer to the requested level if found
86  * @level: the requested cache level
87  * @type: the requested cache type
88  *
89  * Attempt to find a given cache level, while counting the max number
90  * of cache levels for the cache node.
91  *
92  * Given a pptt resource, verify that it is a cache node, then walk
93  * down each level of caches, counting how many levels are found
94  * as well as checking the cache type (icache, dcache, unified). If a
95  * level & type match, then we set found, and continue the search.
96  * Once the entire cache branch has been walked return its max
97  * depth.
98  *
99  * Return: The cache structure and the level we terminated with.
100  */
101 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102 					 unsigned int local_level,
103 					 struct acpi_subtable_header *res,
104 					 struct acpi_pptt_cache **found,
105 					 unsigned int level, int type)
106 {
107 	struct acpi_pptt_cache *cache;
108 
109 	if (res->type != ACPI_PPTT_TYPE_CACHE)
110 		return 0;
111 
112 	cache = (struct acpi_pptt_cache *) res;
113 	while (cache) {
114 		local_level++;
115 
116 		if (local_level == level &&
117 		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118 		    acpi_pptt_match_type(cache->attributes, type)) {
119 			if (*found != NULL && cache != *found)
120 				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121 
122 			pr_debug("Found cache @ level %u\n", level);
123 			*found = cache;
124 			/*
125 			 * continue looking at this node's resource list
126 			 * to verify that we don't find a duplicate
127 			 * cache node.
128 			 */
129 		}
130 		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131 	}
132 	return local_level;
133 }
134 
135 static struct acpi_pptt_cache *
136 acpi_find_cache_level(struct acpi_table_header *table_hdr,
137 		      struct acpi_pptt_processor *cpu_node,
138 		      unsigned int *starting_level, unsigned int level,
139 		      int type)
140 {
141 	struct acpi_subtable_header *res;
142 	unsigned int number_of_levels = *starting_level;
143 	int resource = 0;
144 	struct acpi_pptt_cache *ret = NULL;
145 	unsigned int local_level;
146 
147 	/* walk down from processor node */
148 	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
149 		resource++;
150 
151 		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
152 						   res, &ret, level, type);
153 		/*
154 		 * we are looking for the max depth. Since its potentially
155 		 * possible for a given node to have resources with differing
156 		 * depths verify that the depth we have found is the largest.
157 		 */
158 		if (number_of_levels < local_level)
159 			number_of_levels = local_level;
160 	}
161 	if (number_of_levels > *starting_level)
162 		*starting_level = number_of_levels;
163 
164 	return ret;
165 }
166 
167 /**
168  * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
169  * @table_hdr: Pointer to the head of the PPTT table
170  * @cpu_node: processor node we wish to count caches for
171  *
172  * Given a processor node containing a processing unit, walk into it and count
173  * how many levels exist solely for it, and then walk up each level until we hit
174  * the root node (ignore the package level because it may be possible to have
175  * caches that exist across packages). Count the number of cache levels that
176  * exist at each level on the way up.
177  *
178  * Return: Total number of levels found.
179  */
180 static int acpi_count_levels(struct acpi_table_header *table_hdr,
181 			     struct acpi_pptt_processor *cpu_node)
182 {
183 	int total_levels = 0;
184 
185 	do {
186 		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
187 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
188 	} while (cpu_node);
189 
190 	return total_levels;
191 }
192 
193 /**
194  * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
195  * @table_hdr: Pointer to the head of the PPTT table
196  * @node: passed node is checked to see if its a leaf
197  *
198  * Determine if the *node parameter is a leaf node by iterating the
199  * PPTT table, looking for nodes which reference it.
200  *
201  * Return: 0 if we find a node referencing the passed node (or table error),
202  * or 1 if we don't.
203  */
204 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
205 			       struct acpi_pptt_processor *node)
206 {
207 	struct acpi_subtable_header *entry;
208 	unsigned long table_end;
209 	u32 node_entry;
210 	struct acpi_pptt_processor *cpu_node;
211 	u32 proc_sz;
212 
213 	if (table_hdr->revision > 1)
214 		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
215 
216 	table_end = (unsigned long)table_hdr + table_hdr->length;
217 	node_entry = ACPI_PTR_DIFF(node, table_hdr);
218 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
219 			     sizeof(struct acpi_table_pptt));
220 	proc_sz = sizeof(struct acpi_pptt_processor *);
221 
222 	while ((unsigned long)entry + proc_sz < table_end) {
223 		cpu_node = (struct acpi_pptt_processor *)entry;
224 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
225 		    cpu_node->parent == node_entry)
226 			return 0;
227 		if (entry->length == 0)
228 			return 0;
229 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
230 				     entry->length);
231 
232 	}
233 	return 1;
234 }
235 
236 /**
237  * acpi_find_processor_node() - Given a PPTT table find the requested processor
238  * @table_hdr:  Pointer to the head of the PPTT table
239  * @acpi_cpu_id: CPU we are searching for
240  *
241  * Find the subtable entry describing the provided processor.
242  * This is done by iterating the PPTT table looking for processor nodes
243  * which have an acpi_processor_id that matches the acpi_cpu_id parameter
244  * passed into the function. If we find a node that matches this criteria
245  * we verify that its a leaf node in the topology rather than depending
246  * on the valid flag, which doesn't need to be set for leaf nodes.
247  *
248  * Return: NULL, or the processors acpi_pptt_processor*
249  */
250 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
251 							    u32 acpi_cpu_id)
252 {
253 	struct acpi_subtable_header *entry;
254 	unsigned long table_end;
255 	struct acpi_pptt_processor *cpu_node;
256 	u32 proc_sz;
257 
258 	table_end = (unsigned long)table_hdr + table_hdr->length;
259 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
260 			     sizeof(struct acpi_table_pptt));
261 	proc_sz = sizeof(struct acpi_pptt_processor *);
262 
263 	/* find the processor structure associated with this cpuid */
264 	while ((unsigned long)entry + proc_sz < table_end) {
265 		cpu_node = (struct acpi_pptt_processor *)entry;
266 
267 		if (entry->length == 0) {
268 			pr_warn("Invalid zero length subtable\n");
269 			break;
270 		}
271 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
272 		    acpi_cpu_id == cpu_node->acpi_processor_id &&
273 		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
274 			return (struct acpi_pptt_processor *)entry;
275 		}
276 
277 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
278 				     entry->length);
279 	}
280 
281 	return NULL;
282 }
283 
284 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
285 				  u32 acpi_cpu_id)
286 {
287 	int number_of_levels = 0;
288 	struct acpi_pptt_processor *cpu;
289 
290 	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
291 	if (cpu)
292 		number_of_levels = acpi_count_levels(table_hdr, cpu);
293 
294 	return number_of_levels;
295 }
296 
297 static u8 acpi_cache_type(enum cache_type type)
298 {
299 	switch (type) {
300 	case CACHE_TYPE_DATA:
301 		pr_debug("Looking for data cache\n");
302 		return ACPI_PPTT_CACHE_TYPE_DATA;
303 	case CACHE_TYPE_INST:
304 		pr_debug("Looking for instruction cache\n");
305 		return ACPI_PPTT_CACHE_TYPE_INSTR;
306 	default:
307 	case CACHE_TYPE_UNIFIED:
308 		pr_debug("Looking for unified cache\n");
309 		/*
310 		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
311 		 * contains the bit pattern that will match both
312 		 * ACPI unified bit patterns because we use it later
313 		 * to match both cases.
314 		 */
315 		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
316 	}
317 }
318 
319 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
320 						    u32 acpi_cpu_id,
321 						    enum cache_type type,
322 						    unsigned int level,
323 						    struct acpi_pptt_processor **node)
324 {
325 	unsigned int total_levels = 0;
326 	struct acpi_pptt_cache *found = NULL;
327 	struct acpi_pptt_processor *cpu_node;
328 	u8 acpi_type = acpi_cache_type(type);
329 
330 	pr_debug("Looking for CPU %d's level %u cache type %d\n",
331 		 acpi_cpu_id, level, acpi_type);
332 
333 	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
334 
335 	while (cpu_node && !found) {
336 		found = acpi_find_cache_level(table_hdr, cpu_node,
337 					      &total_levels, level, acpi_type);
338 		*node = cpu_node;
339 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
340 	}
341 
342 	return found;
343 }
344 
345 /**
346  * update_cache_properties() - Update cacheinfo for the given processor
347  * @this_leaf: Kernel cache info structure being updated
348  * @found_cache: The PPTT node describing this cache instance
349  * @cpu_node: A unique reference to describe this cache instance
350  *
351  * The ACPI spec implies that the fields in the cache structures are used to
352  * extend and correct the information probed from the hardware. Lets only
353  * set fields that we determine are VALID.
354  *
355  * Return: nothing. Side effect of updating the global cacheinfo
356  */
357 static void update_cache_properties(struct cacheinfo *this_leaf,
358 				    struct acpi_pptt_cache *found_cache,
359 				    struct acpi_pptt_processor *cpu_node)
360 {
361 	this_leaf->fw_token = cpu_node;
362 	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
363 		this_leaf->size = found_cache->size;
364 	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
365 		this_leaf->coherency_line_size = found_cache->line_size;
366 	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
367 		this_leaf->number_of_sets = found_cache->number_of_sets;
368 	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
369 		this_leaf->ways_of_associativity = found_cache->associativity;
370 	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
371 		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
372 		case ACPI_PPTT_CACHE_POLICY_WT:
373 			this_leaf->attributes = CACHE_WRITE_THROUGH;
374 			break;
375 		case ACPI_PPTT_CACHE_POLICY_WB:
376 			this_leaf->attributes = CACHE_WRITE_BACK;
377 			break;
378 		}
379 	}
380 	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
381 		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
382 		case ACPI_PPTT_CACHE_READ_ALLOCATE:
383 			this_leaf->attributes |= CACHE_READ_ALLOCATE;
384 			break;
385 		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
386 			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
387 			break;
388 		case ACPI_PPTT_CACHE_RW_ALLOCATE:
389 		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
390 			this_leaf->attributes |=
391 				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
392 			break;
393 		}
394 	}
395 	/*
396 	 * If cache type is NOCACHE, then the cache hasn't been specified
397 	 * via other mechanisms.  Update the type if a cache type has been
398 	 * provided.
399 	 *
400 	 * Note, we assume such caches are unified based on conventional system
401 	 * design and known examples.  Significant work is required elsewhere to
402 	 * fully support data/instruction only type caches which are only
403 	 * specified in PPTT.
404 	 */
405 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
406 	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
407 		this_leaf->type = CACHE_TYPE_UNIFIED;
408 }
409 
410 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
411 				 unsigned int cpu)
412 {
413 	struct acpi_pptt_cache *found_cache;
414 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
415 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
416 	struct cacheinfo *this_leaf;
417 	unsigned int index = 0;
418 	struct acpi_pptt_processor *cpu_node = NULL;
419 
420 	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
421 		this_leaf = this_cpu_ci->info_list + index;
422 		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
423 						   this_leaf->type,
424 						   this_leaf->level,
425 						   &cpu_node);
426 		pr_debug("found = %p %p\n", found_cache, cpu_node);
427 		if (found_cache)
428 			update_cache_properties(this_leaf,
429 						found_cache,
430 						cpu_node);
431 
432 		index++;
433 	}
434 }
435 
436 static bool flag_identical(struct acpi_table_header *table_hdr,
437 			   struct acpi_pptt_processor *cpu)
438 {
439 	struct acpi_pptt_processor *next;
440 
441 	/* heterogeneous machines must use PPTT revision > 1 */
442 	if (table_hdr->revision < 2)
443 		return false;
444 
445 	/* Locate the last node in the tree with IDENTICAL set */
446 	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
447 		next = fetch_pptt_node(table_hdr, cpu->parent);
448 		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
449 			return true;
450 	}
451 
452 	return false;
453 }
454 
455 /* Passing level values greater than this will result in search termination */
456 #define PPTT_ABORT_PACKAGE 0xFF
457 
458 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
459 							   struct acpi_pptt_processor *cpu,
460 							   int level, int flag)
461 {
462 	struct acpi_pptt_processor *prev_node;
463 
464 	while (cpu && level) {
465 		/* special case the identical flag to find last identical */
466 		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
467 			if (flag_identical(table_hdr, cpu))
468 				break;
469 		} else if (cpu->flags & flag)
470 			break;
471 		pr_debug("level %d\n", level);
472 		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
473 		if (prev_node == NULL)
474 			break;
475 		cpu = prev_node;
476 		level--;
477 	}
478 	return cpu;
479 }
480 
481 static void acpi_pptt_warn_missing(void)
482 {
483 	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
484 }
485 
486 /**
487  * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
488  * @table: Pointer to the head of the PPTT table
489  * @cpu: Kernel logical CPU number
490  * @level: A level that terminates the search
491  * @flag: A flag which terminates the search
492  *
493  * Get a unique value given a CPU, and a topology level, that can be
494  * matched to determine which cpus share common topological features
495  * at that level.
496  *
497  * Return: Unique value, or -ENOENT if unable to locate CPU
498  */
499 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
500 				     unsigned int cpu, int level, int flag)
501 {
502 	struct acpi_pptt_processor *cpu_node;
503 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
504 
505 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
506 	if (cpu_node) {
507 		cpu_node = acpi_find_processor_tag(table, cpu_node,
508 						   level, flag);
509 		/*
510 		 * As per specification if the processor structure represents
511 		 * an actual processor, then ACPI processor ID must be valid.
512 		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
513 		 * should be set if the UID is valid
514 		 */
515 		if (level == 0 ||
516 		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
517 			return cpu_node->acpi_processor_id;
518 		return ACPI_PTR_DIFF(cpu_node, table);
519 	}
520 	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
521 		    cpu, acpi_cpu_id);
522 	return -ENOENT;
523 }
524 
525 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
526 {
527 	struct acpi_table_header *table;
528 	acpi_status status;
529 	int retval;
530 
531 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
532 	if (ACPI_FAILURE(status)) {
533 		acpi_pptt_warn_missing();
534 		return -ENOENT;
535 	}
536 	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
537 	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
538 		 cpu, level, retval);
539 	acpi_put_table(table);
540 
541 	return retval;
542 }
543 
544 /**
545  * check_acpi_cpu_flag() - Determine if CPU node has a flag set
546  * @cpu: Kernel logical CPU number
547  * @rev: The minimum PPTT revision defining the flag
548  * @flag: The flag itself
549  *
550  * Check the node representing a CPU for a given flag.
551  *
552  * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
553  *	   the table revision isn't new enough.
554  *	   1, any passed flag set
555  *	   0, flag unset
556  */
557 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
558 {
559 	struct acpi_table_header *table;
560 	acpi_status status;
561 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
562 	struct acpi_pptt_processor *cpu_node = NULL;
563 	int ret = -ENOENT;
564 
565 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
566 	if (ACPI_FAILURE(status)) {
567 		acpi_pptt_warn_missing();
568 		return ret;
569 	}
570 
571 	if (table->revision >= rev)
572 		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
573 
574 	if (cpu_node)
575 		ret = (cpu_node->flags & flag) != 0;
576 
577 	acpi_put_table(table);
578 
579 	return ret;
580 }
581 
582 /**
583  * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
584  * @cpu: Kernel logical CPU number
585  *
586  * Given a logical CPU number, returns the number of levels of cache represented
587  * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
588  * indicating we didn't find any cache levels.
589  *
590  * Return: Cache levels visible to this core.
591  */
592 int acpi_find_last_cache_level(unsigned int cpu)
593 {
594 	u32 acpi_cpu_id;
595 	struct acpi_table_header *table;
596 	int number_of_levels = 0;
597 	acpi_status status;
598 
599 	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
600 
601 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
602 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
603 	if (ACPI_FAILURE(status)) {
604 		acpi_pptt_warn_missing();
605 	} else {
606 		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
607 		acpi_put_table(table);
608 	}
609 	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
610 
611 	return number_of_levels;
612 }
613 
614 /**
615  * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
616  * @cpu: Kernel logical CPU number
617  *
618  * Updates the global cache info provided by cpu_get_cacheinfo()
619  * when there are valid properties in the acpi_pptt_cache nodes. A
620  * successful parse may not result in any updates if none of the
621  * cache levels have any valid flags set.  Further, a unique value is
622  * associated with each known CPU cache entry. This unique value
623  * can be used to determine whether caches are shared between CPUs.
624  *
625  * Return: -ENOENT on failure to find table, or 0 on success
626  */
627 int cache_setup_acpi(unsigned int cpu)
628 {
629 	struct acpi_table_header *table;
630 	acpi_status status;
631 
632 	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
633 
634 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
635 	if (ACPI_FAILURE(status)) {
636 		acpi_pptt_warn_missing();
637 		return -ENOENT;
638 	}
639 
640 	cache_setup_acpi_cpu(table, cpu);
641 	acpi_put_table(table);
642 
643 	return status;
644 }
645 
646 /**
647  * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
648  * @cpu: Kernel logical CPU number
649  *
650  * Return: 1, a thread
651  *         0, not a thread
652  *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
653  *         the table revision isn't new enough.
654  */
655 int acpi_pptt_cpu_is_thread(unsigned int cpu)
656 {
657 	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
658 }
659 
660 /**
661  * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
662  * @cpu: Kernel logical CPU number
663  * @level: The topological level for which we would like a unique ID
664  *
665  * Determine a topology unique ID for each thread/core/cluster/mc_grouping
666  * /socket/etc. This ID can then be used to group peers, which will have
667  * matching ids.
668  *
669  * The search terminates when either the requested level is found or
670  * we reach a root node. Levels beyond the termination point will return the
671  * same unique ID. The unique id for level 0 is the acpi processor id. All
672  * other levels beyond this use a generated value to uniquely identify
673  * a topological feature.
674  *
675  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
676  * Otherwise returns a value which represents a unique topological feature.
677  */
678 int find_acpi_cpu_topology(unsigned int cpu, int level)
679 {
680 	return find_acpi_cpu_topology_tag(cpu, level, 0);
681 }
682 
683 /**
684  * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
685  * @cpu: Kernel logical CPU number
686  * @level: The cache level for which we would like a unique ID
687  *
688  * Determine a unique ID for each unified cache in the system
689  *
690  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
691  * Otherwise returns a value which represents a unique topological feature.
692  */
693 int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
694 {
695 	struct acpi_table_header *table;
696 	struct acpi_pptt_cache *found_cache;
697 	acpi_status status;
698 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
699 	struct acpi_pptt_processor *cpu_node = NULL;
700 	int ret = -1;
701 
702 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
703 	if (ACPI_FAILURE(status)) {
704 		acpi_pptt_warn_missing();
705 		return -ENOENT;
706 	}
707 
708 	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
709 					   CACHE_TYPE_UNIFIED,
710 					   level,
711 					   &cpu_node);
712 	if (found_cache)
713 		ret = ACPI_PTR_DIFF(cpu_node, table);
714 
715 	acpi_put_table(table);
716 
717 	return ret;
718 }
719 
720 /**
721  * find_acpi_cpu_topology_package() - Determine a unique CPU package value
722  * @cpu: Kernel logical CPU number
723  *
724  * Determine a topology unique package ID for the given CPU.
725  * This ID can then be used to group peers, which will have matching ids.
726  *
727  * The search terminates when either a level is found with the PHYSICAL_PACKAGE
728  * flag set or we reach a root node.
729  *
730  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
731  * Otherwise returns a value which represents the package for this CPU.
732  */
733 int find_acpi_cpu_topology_package(unsigned int cpu)
734 {
735 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
736 					  ACPI_PPTT_PHYSICAL_PACKAGE);
737 }
738 
739 /**
740  * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
741  * @cpu: Kernel logical CPU number
742  *
743  * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
744  * implementation should have matching tags.
745  *
746  * The returned tag can be used to group peers with identical implementation.
747  *
748  * The search terminates when a level is found with the identical implementation
749  * flag set or we reach a root node.
750  *
751  * Due to limitations in the PPTT data structure, there may be rare situations
752  * where two cores in a heterogeneous machine may be identical, but won't have
753  * the same tag.
754  *
755  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
756  * Otherwise returns a value which represents a group of identical cores
757  * similar to this CPU.
758  */
759 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
760 {
761 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
762 					  ACPI_PPTT_ACPI_IDENTICAL);
763 }
764