1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * drivers/acpi/power.c - ACPI Power Resources management. 4 * 5 * Copyright (C) 2001 - 2015 Intel Corp. 6 * Author: Andy Grover <andrew.grover@intel.com> 7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 9 */ 10 11 /* 12 * ACPI power-managed devices may be controlled in two ways: 13 * 1. via "Device Specific (D-State) Control" 14 * 2. via "Power Resource Control". 15 * The code below deals with ACPI Power Resources control. 16 * 17 * An ACPI "power resource object" represents a software controllable power 18 * plane, clock plane, or other resource depended on by a device. 19 * 20 * A device may rely on multiple power resources, and a power resource 21 * may be shared by multiple devices. 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/init.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/sysfs.h> 31 #include <linux/acpi.h> 32 #include "sleep.h" 33 #include "internal.h" 34 35 #define _COMPONENT ACPI_POWER_COMPONENT 36 ACPI_MODULE_NAME("power"); 37 #define ACPI_POWER_CLASS "power_resource" 38 #define ACPI_POWER_DEVICE_NAME "Power Resource" 39 #define ACPI_POWER_FILE_INFO "info" 40 #define ACPI_POWER_FILE_STATUS "state" 41 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 42 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 43 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 44 45 struct acpi_power_dependent_device { 46 struct device *dev; 47 struct list_head node; 48 }; 49 50 struct acpi_power_resource { 51 struct acpi_device device; 52 struct list_head list_node; 53 char *name; 54 u32 system_level; 55 u32 order; 56 unsigned int ref_count; 57 bool wakeup_enabled; 58 struct mutex resource_lock; 59 struct list_head dependents; 60 }; 61 62 struct acpi_power_resource_entry { 63 struct list_head node; 64 struct acpi_power_resource *resource; 65 }; 66 67 static LIST_HEAD(acpi_power_resource_list); 68 static DEFINE_MUTEX(power_resource_list_lock); 69 70 /* -------------------------------------------------------------------------- 71 Power Resource Management 72 -------------------------------------------------------------------------- */ 73 74 static inline 75 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 76 { 77 return container_of(device, struct acpi_power_resource, device); 78 } 79 80 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 81 { 82 struct acpi_device *device; 83 84 if (acpi_bus_get_device(handle, &device)) 85 return NULL; 86 87 return to_power_resource(device); 88 } 89 90 static int acpi_power_resources_list_add(acpi_handle handle, 91 struct list_head *list) 92 { 93 struct acpi_power_resource *resource = acpi_power_get_context(handle); 94 struct acpi_power_resource_entry *entry; 95 96 if (!resource || !list) 97 return -EINVAL; 98 99 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 100 if (!entry) 101 return -ENOMEM; 102 103 entry->resource = resource; 104 if (!list_empty(list)) { 105 struct acpi_power_resource_entry *e; 106 107 list_for_each_entry(e, list, node) 108 if (e->resource->order > resource->order) { 109 list_add_tail(&entry->node, &e->node); 110 return 0; 111 } 112 } 113 list_add_tail(&entry->node, list); 114 return 0; 115 } 116 117 void acpi_power_resources_list_free(struct list_head *list) 118 { 119 struct acpi_power_resource_entry *entry, *e; 120 121 list_for_each_entry_safe(entry, e, list, node) { 122 list_del(&entry->node); 123 kfree(entry); 124 } 125 } 126 127 static bool acpi_power_resource_is_dup(union acpi_object *package, 128 unsigned int start, unsigned int i) 129 { 130 acpi_handle rhandle, dup; 131 unsigned int j; 132 133 /* The caller is expected to check the package element types */ 134 rhandle = package->package.elements[i].reference.handle; 135 for (j = start; j < i; j++) { 136 dup = package->package.elements[j].reference.handle; 137 if (dup == rhandle) 138 return true; 139 } 140 141 return false; 142 } 143 144 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 145 struct list_head *list) 146 { 147 unsigned int i; 148 int err = 0; 149 150 for (i = start; i < package->package.count; i++) { 151 union acpi_object *element = &package->package.elements[i]; 152 acpi_handle rhandle; 153 154 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 155 err = -ENODATA; 156 break; 157 } 158 rhandle = element->reference.handle; 159 if (!rhandle) { 160 err = -ENODEV; 161 break; 162 } 163 164 /* Some ACPI tables contain duplicate power resource references */ 165 if (acpi_power_resource_is_dup(package, start, i)) 166 continue; 167 168 err = acpi_add_power_resource(rhandle); 169 if (err) 170 break; 171 172 err = acpi_power_resources_list_add(rhandle, list); 173 if (err) 174 break; 175 } 176 if (err) 177 acpi_power_resources_list_free(list); 178 179 return err; 180 } 181 182 static int acpi_power_get_state(acpi_handle handle, int *state) 183 { 184 acpi_status status = AE_OK; 185 unsigned long long sta = 0; 186 char node_name[5]; 187 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 188 189 190 if (!handle || !state) 191 return -EINVAL; 192 193 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 194 if (ACPI_FAILURE(status)) 195 return -ENODEV; 196 197 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: 198 ACPI_POWER_RESOURCE_STATE_OFF; 199 200 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 201 202 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", 203 node_name, 204 *state ? "on" : "off")); 205 206 return 0; 207 } 208 209 static int acpi_power_get_list_state(struct list_head *list, int *state) 210 { 211 struct acpi_power_resource_entry *entry; 212 int cur_state; 213 214 if (!list || !state) 215 return -EINVAL; 216 217 /* The state of the list is 'on' IFF all resources are 'on'. */ 218 cur_state = 0; 219 list_for_each_entry(entry, list, node) { 220 struct acpi_power_resource *resource = entry->resource; 221 acpi_handle handle = resource->device.handle; 222 int result; 223 224 mutex_lock(&resource->resource_lock); 225 result = acpi_power_get_state(handle, &cur_state); 226 mutex_unlock(&resource->resource_lock); 227 if (result) 228 return result; 229 230 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 231 break; 232 } 233 234 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", 235 cur_state ? "on" : "off")); 236 237 *state = cur_state; 238 return 0; 239 } 240 241 static int 242 acpi_power_resource_add_dependent(struct acpi_power_resource *resource, 243 struct device *dev) 244 { 245 struct acpi_power_dependent_device *dep; 246 int ret = 0; 247 248 mutex_lock(&resource->resource_lock); 249 list_for_each_entry(dep, &resource->dependents, node) { 250 /* Only add it once */ 251 if (dep->dev == dev) 252 goto unlock; 253 } 254 255 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 256 if (!dep) { 257 ret = -ENOMEM; 258 goto unlock; 259 } 260 261 dep->dev = dev; 262 list_add_tail(&dep->node, &resource->dependents); 263 dev_dbg(dev, "added power dependency to [%s]\n", resource->name); 264 265 unlock: 266 mutex_unlock(&resource->resource_lock); 267 return ret; 268 } 269 270 static void 271 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource, 272 struct device *dev) 273 { 274 struct acpi_power_dependent_device *dep; 275 276 mutex_lock(&resource->resource_lock); 277 list_for_each_entry(dep, &resource->dependents, node) { 278 if (dep->dev == dev) { 279 list_del(&dep->node); 280 kfree(dep); 281 dev_dbg(dev, "removed power dependency to [%s]\n", 282 resource->name); 283 break; 284 } 285 } 286 mutex_unlock(&resource->resource_lock); 287 } 288 289 /** 290 * acpi_device_power_add_dependent - Add dependent device of this ACPI device 291 * @adev: ACPI device pointer 292 * @dev: Dependent device 293 * 294 * If @adev has non-empty _PR0 the @dev is added as dependent device to all 295 * power resources returned by it. This means that whenever these power 296 * resources are turned _ON the dependent devices get runtime resumed. This 297 * is needed for devices such as PCI to allow its driver to re-initialize 298 * it after it went to D0uninitialized. 299 * 300 * If @adev does not have _PR0 this does nothing. 301 * 302 * Returns %0 in case of success and negative errno otherwise. 303 */ 304 int acpi_device_power_add_dependent(struct acpi_device *adev, 305 struct device *dev) 306 { 307 struct acpi_power_resource_entry *entry; 308 struct list_head *resources; 309 int ret; 310 311 if (!adev->flags.power_manageable) 312 return 0; 313 314 resources = &adev->power.states[ACPI_STATE_D0].resources; 315 list_for_each_entry(entry, resources, node) { 316 ret = acpi_power_resource_add_dependent(entry->resource, dev); 317 if (ret) 318 goto err; 319 } 320 321 return 0; 322 323 err: 324 list_for_each_entry(entry, resources, node) 325 acpi_power_resource_remove_dependent(entry->resource, dev); 326 327 return ret; 328 } 329 330 /** 331 * acpi_device_power_remove_dependent - Remove dependent device 332 * @adev: ACPI device pointer 333 * @dev: Dependent device 334 * 335 * Does the opposite of acpi_device_power_add_dependent() and removes the 336 * dependent device if it is found. Can be called to @adev that does not 337 * have _PR0 as well. 338 */ 339 void acpi_device_power_remove_dependent(struct acpi_device *adev, 340 struct device *dev) 341 { 342 struct acpi_power_resource_entry *entry; 343 struct list_head *resources; 344 345 if (!adev->flags.power_manageable) 346 return; 347 348 resources = &adev->power.states[ACPI_STATE_D0].resources; 349 list_for_each_entry_reverse(entry, resources, node) 350 acpi_power_resource_remove_dependent(entry->resource, dev); 351 } 352 353 static int __acpi_power_on(struct acpi_power_resource *resource) 354 { 355 struct acpi_power_dependent_device *dep; 356 acpi_status status = AE_OK; 357 358 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); 359 if (ACPI_FAILURE(status)) 360 return -ENODEV; 361 362 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", 363 resource->name)); 364 365 /* 366 * If there are other dependents on this power resource we need to 367 * resume them now so that their drivers can re-initialize the 368 * hardware properly after it went back to D0. 369 */ 370 if (list_empty(&resource->dependents) || 371 list_is_singular(&resource->dependents)) 372 return 0; 373 374 list_for_each_entry(dep, &resource->dependents, node) { 375 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n", 376 resource->name); 377 pm_request_resume(dep->dev); 378 } 379 380 return 0; 381 } 382 383 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 384 { 385 int result = 0; 386 387 if (resource->ref_count++) { 388 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 389 "Power resource [%s] already on\n", 390 resource->name)); 391 } else { 392 result = __acpi_power_on(resource); 393 if (result) 394 resource->ref_count--; 395 } 396 return result; 397 } 398 399 static int acpi_power_on(struct acpi_power_resource *resource) 400 { 401 int result; 402 403 mutex_lock(&resource->resource_lock); 404 result = acpi_power_on_unlocked(resource); 405 mutex_unlock(&resource->resource_lock); 406 return result; 407 } 408 409 static int __acpi_power_off(struct acpi_power_resource *resource) 410 { 411 acpi_status status; 412 413 status = acpi_evaluate_object(resource->device.handle, "_OFF", 414 NULL, NULL); 415 if (ACPI_FAILURE(status)) 416 return -ENODEV; 417 418 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", 419 resource->name)); 420 return 0; 421 } 422 423 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 424 { 425 int result = 0; 426 427 if (!resource->ref_count) { 428 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 429 "Power resource [%s] already off\n", 430 resource->name)); 431 return 0; 432 } 433 434 if (--resource->ref_count) { 435 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 436 "Power resource [%s] still in use\n", 437 resource->name)); 438 } else { 439 result = __acpi_power_off(resource); 440 if (result) 441 resource->ref_count++; 442 } 443 return result; 444 } 445 446 static int acpi_power_off(struct acpi_power_resource *resource) 447 { 448 int result; 449 450 mutex_lock(&resource->resource_lock); 451 result = acpi_power_off_unlocked(resource); 452 mutex_unlock(&resource->resource_lock); 453 return result; 454 } 455 456 static int acpi_power_off_list(struct list_head *list) 457 { 458 struct acpi_power_resource_entry *entry; 459 int result = 0; 460 461 list_for_each_entry_reverse(entry, list, node) { 462 result = acpi_power_off(entry->resource); 463 if (result) 464 goto err; 465 } 466 return 0; 467 468 err: 469 list_for_each_entry_continue(entry, list, node) 470 acpi_power_on(entry->resource); 471 472 return result; 473 } 474 475 static int acpi_power_on_list(struct list_head *list) 476 { 477 struct acpi_power_resource_entry *entry; 478 int result = 0; 479 480 list_for_each_entry(entry, list, node) { 481 result = acpi_power_on(entry->resource); 482 if (result) 483 goto err; 484 } 485 return 0; 486 487 err: 488 list_for_each_entry_continue_reverse(entry, list, node) 489 acpi_power_off(entry->resource); 490 491 return result; 492 } 493 494 static struct attribute *attrs[] = { 495 NULL, 496 }; 497 498 static const struct attribute_group attr_groups[] = { 499 [ACPI_STATE_D0] = { 500 .name = "power_resources_D0", 501 .attrs = attrs, 502 }, 503 [ACPI_STATE_D1] = { 504 .name = "power_resources_D1", 505 .attrs = attrs, 506 }, 507 [ACPI_STATE_D2] = { 508 .name = "power_resources_D2", 509 .attrs = attrs, 510 }, 511 [ACPI_STATE_D3_HOT] = { 512 .name = "power_resources_D3hot", 513 .attrs = attrs, 514 }, 515 }; 516 517 static const struct attribute_group wakeup_attr_group = { 518 .name = "power_resources_wakeup", 519 .attrs = attrs, 520 }; 521 522 static void acpi_power_hide_list(struct acpi_device *adev, 523 struct list_head *resources, 524 const struct attribute_group *attr_group) 525 { 526 struct acpi_power_resource_entry *entry; 527 528 if (list_empty(resources)) 529 return; 530 531 list_for_each_entry_reverse(entry, resources, node) { 532 struct acpi_device *res_dev = &entry->resource->device; 533 534 sysfs_remove_link_from_group(&adev->dev.kobj, 535 attr_group->name, 536 dev_name(&res_dev->dev)); 537 } 538 sysfs_remove_group(&adev->dev.kobj, attr_group); 539 } 540 541 static void acpi_power_expose_list(struct acpi_device *adev, 542 struct list_head *resources, 543 const struct attribute_group *attr_group) 544 { 545 struct acpi_power_resource_entry *entry; 546 int ret; 547 548 if (list_empty(resources)) 549 return; 550 551 ret = sysfs_create_group(&adev->dev.kobj, attr_group); 552 if (ret) 553 return; 554 555 list_for_each_entry(entry, resources, node) { 556 struct acpi_device *res_dev = &entry->resource->device; 557 558 ret = sysfs_add_link_to_group(&adev->dev.kobj, 559 attr_group->name, 560 &res_dev->dev.kobj, 561 dev_name(&res_dev->dev)); 562 if (ret) { 563 acpi_power_hide_list(adev, resources, attr_group); 564 break; 565 } 566 } 567 } 568 569 static void acpi_power_expose_hide(struct acpi_device *adev, 570 struct list_head *resources, 571 const struct attribute_group *attr_group, 572 bool expose) 573 { 574 if (expose) 575 acpi_power_expose_list(adev, resources, attr_group); 576 else 577 acpi_power_hide_list(adev, resources, attr_group); 578 } 579 580 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 581 { 582 int state; 583 584 if (adev->wakeup.flags.valid) 585 acpi_power_expose_hide(adev, &adev->wakeup.resources, 586 &wakeup_attr_group, add); 587 588 if (!adev->power.flags.power_resources) 589 return; 590 591 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) 592 acpi_power_expose_hide(adev, 593 &adev->power.states[state].resources, 594 &attr_groups[state], add); 595 } 596 597 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 598 { 599 struct acpi_power_resource_entry *entry; 600 int system_level = 5; 601 602 list_for_each_entry(entry, list, node) { 603 struct acpi_power_resource *resource = entry->resource; 604 acpi_handle handle = resource->device.handle; 605 int result; 606 int state; 607 608 mutex_lock(&resource->resource_lock); 609 610 result = acpi_power_get_state(handle, &state); 611 if (result) { 612 mutex_unlock(&resource->resource_lock); 613 return result; 614 } 615 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 616 resource->ref_count++; 617 resource->wakeup_enabled = true; 618 } 619 if (system_level > resource->system_level) 620 system_level = resource->system_level; 621 622 mutex_unlock(&resource->resource_lock); 623 } 624 *system_level_p = system_level; 625 return 0; 626 } 627 628 /* -------------------------------------------------------------------------- 629 Device Power Management 630 -------------------------------------------------------------------------- */ 631 632 /** 633 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 634 * ACPI 3.0) _PSW (Power State Wake) 635 * @dev: Device to handle. 636 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 637 * @sleep_state: Target sleep state of the system. 638 * @dev_state: Target power state of the device. 639 * 640 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 641 * State Wake) for the device, if present. On failure reset the device's 642 * wakeup.flags.valid flag. 643 * 644 * RETURN VALUE: 645 * 0 if either _DSW or _PSW has been successfully executed 646 * 0 if neither _DSW nor _PSW has been found 647 * -ENODEV if the execution of either _DSW or _PSW has failed 648 */ 649 int acpi_device_sleep_wake(struct acpi_device *dev, 650 int enable, int sleep_state, int dev_state) 651 { 652 union acpi_object in_arg[3]; 653 struct acpi_object_list arg_list = { 3, in_arg }; 654 acpi_status status = AE_OK; 655 656 /* 657 * Try to execute _DSW first. 658 * 659 * Three arguments are needed for the _DSW object: 660 * Argument 0: enable/disable the wake capabilities 661 * Argument 1: target system state 662 * Argument 2: target device state 663 * When _DSW object is called to disable the wake capabilities, maybe 664 * the first argument is filled. The values of the other two arguments 665 * are meaningless. 666 */ 667 in_arg[0].type = ACPI_TYPE_INTEGER; 668 in_arg[0].integer.value = enable; 669 in_arg[1].type = ACPI_TYPE_INTEGER; 670 in_arg[1].integer.value = sleep_state; 671 in_arg[2].type = ACPI_TYPE_INTEGER; 672 in_arg[2].integer.value = dev_state; 673 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 674 if (ACPI_SUCCESS(status)) { 675 return 0; 676 } else if (status != AE_NOT_FOUND) { 677 printk(KERN_ERR PREFIX "_DSW execution failed\n"); 678 dev->wakeup.flags.valid = 0; 679 return -ENODEV; 680 } 681 682 /* Execute _PSW */ 683 status = acpi_execute_simple_method(dev->handle, "_PSW", enable); 684 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 685 printk(KERN_ERR PREFIX "_PSW execution failed\n"); 686 dev->wakeup.flags.valid = 0; 687 return -ENODEV; 688 } 689 690 return 0; 691 } 692 693 /* 694 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 695 * 1. Power on the power resources required for the wakeup device 696 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 697 * State Wake) for the device, if present 698 */ 699 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 700 { 701 struct acpi_power_resource_entry *entry; 702 int err = 0; 703 704 if (!dev || !dev->wakeup.flags.valid) 705 return -EINVAL; 706 707 mutex_lock(&acpi_device_lock); 708 709 if (dev->wakeup.prepare_count++) 710 goto out; 711 712 list_for_each_entry(entry, &dev->wakeup.resources, node) { 713 struct acpi_power_resource *resource = entry->resource; 714 715 mutex_lock(&resource->resource_lock); 716 717 if (!resource->wakeup_enabled) { 718 err = acpi_power_on_unlocked(resource); 719 if (!err) 720 resource->wakeup_enabled = true; 721 } 722 723 mutex_unlock(&resource->resource_lock); 724 725 if (err) { 726 dev_err(&dev->dev, 727 "Cannot turn wakeup power resources on\n"); 728 dev->wakeup.flags.valid = 0; 729 goto out; 730 } 731 } 732 /* 733 * Passing 3 as the third argument below means the device may be 734 * put into arbitrary power state afterward. 735 */ 736 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 737 if (err) 738 dev->wakeup.prepare_count = 0; 739 740 out: 741 mutex_unlock(&acpi_device_lock); 742 return err; 743 } 744 745 /* 746 * Shutdown a wakeup device, counterpart of above method 747 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 748 * State Wake) for the device, if present 749 * 2. Shutdown down the power resources 750 */ 751 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 752 { 753 struct acpi_power_resource_entry *entry; 754 int err = 0; 755 756 if (!dev || !dev->wakeup.flags.valid) 757 return -EINVAL; 758 759 mutex_lock(&acpi_device_lock); 760 761 if (--dev->wakeup.prepare_count > 0) 762 goto out; 763 764 /* 765 * Executing the code below even if prepare_count is already zero when 766 * the function is called may be useful, for example for initialisation. 767 */ 768 if (dev->wakeup.prepare_count < 0) 769 dev->wakeup.prepare_count = 0; 770 771 err = acpi_device_sleep_wake(dev, 0, 0, 0); 772 if (err) 773 goto out; 774 775 list_for_each_entry(entry, &dev->wakeup.resources, node) { 776 struct acpi_power_resource *resource = entry->resource; 777 778 mutex_lock(&resource->resource_lock); 779 780 if (resource->wakeup_enabled) { 781 err = acpi_power_off_unlocked(resource); 782 if (!err) 783 resource->wakeup_enabled = false; 784 } 785 786 mutex_unlock(&resource->resource_lock); 787 788 if (err) { 789 dev_err(&dev->dev, 790 "Cannot turn wakeup power resources off\n"); 791 dev->wakeup.flags.valid = 0; 792 break; 793 } 794 } 795 796 out: 797 mutex_unlock(&acpi_device_lock); 798 return err; 799 } 800 801 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 802 { 803 int result = 0; 804 int list_state = 0; 805 int i = 0; 806 807 if (!device || !state) 808 return -EINVAL; 809 810 /* 811 * We know a device's inferred power state when all the resources 812 * required for a given D-state are 'on'. 813 */ 814 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 815 struct list_head *list = &device->power.states[i].resources; 816 817 if (list_empty(list)) 818 continue; 819 820 result = acpi_power_get_list_state(list, &list_state); 821 if (result) 822 return result; 823 824 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 825 *state = i; 826 return 0; 827 } 828 } 829 830 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? 831 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; 832 return 0; 833 } 834 835 int acpi_power_on_resources(struct acpi_device *device, int state) 836 { 837 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 838 return -EINVAL; 839 840 return acpi_power_on_list(&device->power.states[state].resources); 841 } 842 843 int acpi_power_transition(struct acpi_device *device, int state) 844 { 845 int result = 0; 846 847 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 848 return -EINVAL; 849 850 if (device->power.state == state || !device->flags.power_manageable) 851 return 0; 852 853 if ((device->power.state < ACPI_STATE_D0) 854 || (device->power.state > ACPI_STATE_D3_COLD)) 855 return -ENODEV; 856 857 /* 858 * First we reference all power resources required in the target list 859 * (e.g. so the device doesn't lose power while transitioning). Then, 860 * we dereference all power resources used in the current list. 861 */ 862 if (state < ACPI_STATE_D3_COLD) 863 result = acpi_power_on_list( 864 &device->power.states[state].resources); 865 866 if (!result && device->power.state < ACPI_STATE_D3_COLD) 867 acpi_power_off_list( 868 &device->power.states[device->power.state].resources); 869 870 /* We shouldn't change the state unless the above operations succeed. */ 871 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 872 873 return result; 874 } 875 876 static void acpi_release_power_resource(struct device *dev) 877 { 878 struct acpi_device *device = to_acpi_device(dev); 879 struct acpi_power_resource *resource; 880 881 resource = container_of(device, struct acpi_power_resource, device); 882 883 mutex_lock(&power_resource_list_lock); 884 list_del(&resource->list_node); 885 mutex_unlock(&power_resource_list_lock); 886 887 acpi_free_pnp_ids(&device->pnp); 888 kfree(resource); 889 } 890 891 static ssize_t acpi_power_in_use_show(struct device *dev, 892 struct device_attribute *attr, 893 char *buf) { 894 struct acpi_power_resource *resource; 895 896 resource = to_power_resource(to_acpi_device(dev)); 897 return sprintf(buf, "%u\n", !!resource->ref_count); 898 } 899 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL); 900 901 static void acpi_power_sysfs_remove(struct acpi_device *device) 902 { 903 device_remove_file(&device->dev, &dev_attr_resource_in_use); 904 } 905 906 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) 907 { 908 mutex_lock(&power_resource_list_lock); 909 910 if (!list_empty(&acpi_power_resource_list)) { 911 struct acpi_power_resource *r; 912 913 list_for_each_entry(r, &acpi_power_resource_list, list_node) 914 if (r->order > resource->order) { 915 list_add_tail(&resource->list_node, &r->list_node); 916 goto out; 917 } 918 } 919 list_add_tail(&resource->list_node, &acpi_power_resource_list); 920 921 out: 922 mutex_unlock(&power_resource_list_lock); 923 } 924 925 int acpi_add_power_resource(acpi_handle handle) 926 { 927 struct acpi_power_resource *resource; 928 struct acpi_device *device = NULL; 929 union acpi_object acpi_object; 930 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 931 acpi_status status; 932 int state, result = -ENODEV; 933 934 acpi_bus_get_device(handle, &device); 935 if (device) 936 return 0; 937 938 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 939 if (!resource) 940 return -ENOMEM; 941 942 device = &resource->device; 943 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, 944 ACPI_STA_DEFAULT); 945 mutex_init(&resource->resource_lock); 946 INIT_LIST_HEAD(&resource->list_node); 947 INIT_LIST_HEAD(&resource->dependents); 948 resource->name = device->pnp.bus_id; 949 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 950 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 951 device->power.state = ACPI_STATE_UNKNOWN; 952 953 /* Evalute the object to get the system level and resource order. */ 954 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 955 if (ACPI_FAILURE(status)) 956 goto err; 957 958 resource->system_level = acpi_object.power_resource.system_level; 959 resource->order = acpi_object.power_resource.resource_order; 960 961 result = acpi_power_get_state(handle, &state); 962 if (result) 963 goto err; 964 965 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), 966 acpi_device_bid(device), state ? "on" : "off"); 967 968 device->flags.match_driver = true; 969 result = acpi_device_add(device, acpi_release_power_resource); 970 if (result) 971 goto err; 972 973 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 974 device->remove = acpi_power_sysfs_remove; 975 976 acpi_power_add_resource_to_list(resource); 977 acpi_device_add_finalize(device); 978 return 0; 979 980 err: 981 acpi_release_power_resource(&device->dev); 982 return result; 983 } 984 985 #ifdef CONFIG_ACPI_SLEEP 986 void acpi_resume_power_resources(void) 987 { 988 struct acpi_power_resource *resource; 989 990 mutex_lock(&power_resource_list_lock); 991 992 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 993 int result, state; 994 995 mutex_lock(&resource->resource_lock); 996 997 result = acpi_power_get_state(resource->device.handle, &state); 998 if (result) { 999 mutex_unlock(&resource->resource_lock); 1000 continue; 1001 } 1002 1003 if (state == ACPI_POWER_RESOURCE_STATE_OFF 1004 && resource->ref_count) { 1005 dev_info(&resource->device.dev, "Turning ON\n"); 1006 __acpi_power_on(resource); 1007 } 1008 1009 mutex_unlock(&resource->resource_lock); 1010 } 1011 1012 mutex_unlock(&power_resource_list_lock); 1013 } 1014 1015 void acpi_turn_off_unused_power_resources(void) 1016 { 1017 struct acpi_power_resource *resource; 1018 1019 mutex_lock(&power_resource_list_lock); 1020 1021 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { 1022 int result, state; 1023 1024 mutex_lock(&resource->resource_lock); 1025 1026 result = acpi_power_get_state(resource->device.handle, &state); 1027 if (result) { 1028 mutex_unlock(&resource->resource_lock); 1029 continue; 1030 } 1031 1032 if (state == ACPI_POWER_RESOURCE_STATE_ON 1033 && !resource->ref_count) { 1034 dev_info(&resource->device.dev, "Turning OFF\n"); 1035 __acpi_power_off(resource); 1036 } 1037 1038 mutex_unlock(&resource->resource_lock); 1039 } 1040 1041 mutex_unlock(&power_resource_list_lock); 1042 } 1043 #endif 1044