xref: /linux/drivers/acpi/power.c (revision cf2d213e49fdf47e4c10dc629a3659e0026a54b8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sysfs.h>
31 #include <linux/acpi.h>
32 #include "sleep.h"
33 #include "internal.h"
34 
35 #define _COMPONENT			ACPI_POWER_COMPONENT
36 ACPI_MODULE_NAME("power");
37 #define ACPI_POWER_CLASS		"power_resource"
38 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
39 #define ACPI_POWER_FILE_INFO		"info"
40 #define ACPI_POWER_FILE_STATUS		"state"
41 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
42 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
43 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
44 
45 struct acpi_power_dependent_device {
46 	struct device *dev;
47 	struct list_head node;
48 };
49 
50 struct acpi_power_resource {
51 	struct acpi_device device;
52 	struct list_head list_node;
53 	char *name;
54 	u32 system_level;
55 	u32 order;
56 	unsigned int ref_count;
57 	bool wakeup_enabled;
58 	struct mutex resource_lock;
59 	struct list_head dependents;
60 };
61 
62 struct acpi_power_resource_entry {
63 	struct list_head node;
64 	struct acpi_power_resource *resource;
65 };
66 
67 static LIST_HEAD(acpi_power_resource_list);
68 static DEFINE_MUTEX(power_resource_list_lock);
69 
70 /* --------------------------------------------------------------------------
71                              Power Resource Management
72    -------------------------------------------------------------------------- */
73 
74 static inline
75 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
76 {
77 	return container_of(device, struct acpi_power_resource, device);
78 }
79 
80 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
81 {
82 	struct acpi_device *device;
83 
84 	if (acpi_bus_get_device(handle, &device))
85 		return NULL;
86 
87 	return to_power_resource(device);
88 }
89 
90 static int acpi_power_resources_list_add(acpi_handle handle,
91 					 struct list_head *list)
92 {
93 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
94 	struct acpi_power_resource_entry *entry;
95 
96 	if (!resource || !list)
97 		return -EINVAL;
98 
99 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
100 	if (!entry)
101 		return -ENOMEM;
102 
103 	entry->resource = resource;
104 	if (!list_empty(list)) {
105 		struct acpi_power_resource_entry *e;
106 
107 		list_for_each_entry(e, list, node)
108 			if (e->resource->order > resource->order) {
109 				list_add_tail(&entry->node, &e->node);
110 				return 0;
111 			}
112 	}
113 	list_add_tail(&entry->node, list);
114 	return 0;
115 }
116 
117 void acpi_power_resources_list_free(struct list_head *list)
118 {
119 	struct acpi_power_resource_entry *entry, *e;
120 
121 	list_for_each_entry_safe(entry, e, list, node) {
122 		list_del(&entry->node);
123 		kfree(entry);
124 	}
125 }
126 
127 static bool acpi_power_resource_is_dup(union acpi_object *package,
128 				       unsigned int start, unsigned int i)
129 {
130 	acpi_handle rhandle, dup;
131 	unsigned int j;
132 
133 	/* The caller is expected to check the package element types */
134 	rhandle = package->package.elements[i].reference.handle;
135 	for (j = start; j < i; j++) {
136 		dup = package->package.elements[j].reference.handle;
137 		if (dup == rhandle)
138 			return true;
139 	}
140 
141 	return false;
142 }
143 
144 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
145 				 struct list_head *list)
146 {
147 	unsigned int i;
148 	int err = 0;
149 
150 	for (i = start; i < package->package.count; i++) {
151 		union acpi_object *element = &package->package.elements[i];
152 		acpi_handle rhandle;
153 
154 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
155 			err = -ENODATA;
156 			break;
157 		}
158 		rhandle = element->reference.handle;
159 		if (!rhandle) {
160 			err = -ENODEV;
161 			break;
162 		}
163 
164 		/* Some ACPI tables contain duplicate power resource references */
165 		if (acpi_power_resource_is_dup(package, start, i))
166 			continue;
167 
168 		err = acpi_add_power_resource(rhandle);
169 		if (err)
170 			break;
171 
172 		err = acpi_power_resources_list_add(rhandle, list);
173 		if (err)
174 			break;
175 	}
176 	if (err)
177 		acpi_power_resources_list_free(list);
178 
179 	return err;
180 }
181 
182 static int acpi_power_get_state(acpi_handle handle, int *state)
183 {
184 	acpi_status status = AE_OK;
185 	unsigned long long sta = 0;
186 	char node_name[5];
187 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
188 
189 
190 	if (!handle || !state)
191 		return -EINVAL;
192 
193 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
194 	if (ACPI_FAILURE(status))
195 		return -ENODEV;
196 
197 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
198 			      ACPI_POWER_RESOURCE_STATE_OFF;
199 
200 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
201 
202 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
203 			  node_name,
204 				*state ? "on" : "off"));
205 
206 	return 0;
207 }
208 
209 static int acpi_power_get_list_state(struct list_head *list, int *state)
210 {
211 	struct acpi_power_resource_entry *entry;
212 	int cur_state;
213 
214 	if (!list || !state)
215 		return -EINVAL;
216 
217 	/* The state of the list is 'on' IFF all resources are 'on'. */
218 	cur_state = 0;
219 	list_for_each_entry(entry, list, node) {
220 		struct acpi_power_resource *resource = entry->resource;
221 		acpi_handle handle = resource->device.handle;
222 		int result;
223 
224 		mutex_lock(&resource->resource_lock);
225 		result = acpi_power_get_state(handle, &cur_state);
226 		mutex_unlock(&resource->resource_lock);
227 		if (result)
228 			return result;
229 
230 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
231 			break;
232 	}
233 
234 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
235 			  cur_state ? "on" : "off"));
236 
237 	*state = cur_state;
238 	return 0;
239 }
240 
241 static int
242 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
243 				  struct device *dev)
244 {
245 	struct acpi_power_dependent_device *dep;
246 	int ret = 0;
247 
248 	mutex_lock(&resource->resource_lock);
249 	list_for_each_entry(dep, &resource->dependents, node) {
250 		/* Only add it once */
251 		if (dep->dev == dev)
252 			goto unlock;
253 	}
254 
255 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
256 	if (!dep) {
257 		ret = -ENOMEM;
258 		goto unlock;
259 	}
260 
261 	dep->dev = dev;
262 	list_add_tail(&dep->node, &resource->dependents);
263 	dev_dbg(dev, "added power dependency to [%s]\n", resource->name);
264 
265 unlock:
266 	mutex_unlock(&resource->resource_lock);
267 	return ret;
268 }
269 
270 static void
271 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
272 				     struct device *dev)
273 {
274 	struct acpi_power_dependent_device *dep;
275 
276 	mutex_lock(&resource->resource_lock);
277 	list_for_each_entry(dep, &resource->dependents, node) {
278 		if (dep->dev == dev) {
279 			list_del(&dep->node);
280 			kfree(dep);
281 			dev_dbg(dev, "removed power dependency to [%s]\n",
282 				resource->name);
283 			break;
284 		}
285 	}
286 	mutex_unlock(&resource->resource_lock);
287 }
288 
289 /**
290  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
291  * @adev: ACPI device pointer
292  * @dev: Dependent device
293  *
294  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
295  * power resources returned by it. This means that whenever these power
296  * resources are turned _ON the dependent devices get runtime resumed. This
297  * is needed for devices such as PCI to allow its driver to re-initialize
298  * it after it went to D0uninitialized.
299  *
300  * If @adev does not have _PR0 this does nothing.
301  *
302  * Returns %0 in case of success and negative errno otherwise.
303  */
304 int acpi_device_power_add_dependent(struct acpi_device *adev,
305 				    struct device *dev)
306 {
307 	struct acpi_power_resource_entry *entry;
308 	struct list_head *resources;
309 	int ret;
310 
311 	if (!adev->flags.power_manageable)
312 		return 0;
313 
314 	resources = &adev->power.states[ACPI_STATE_D0].resources;
315 	list_for_each_entry(entry, resources, node) {
316 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
317 		if (ret)
318 			goto err;
319 	}
320 
321 	return 0;
322 
323 err:
324 	list_for_each_entry(entry, resources, node)
325 		acpi_power_resource_remove_dependent(entry->resource, dev);
326 
327 	return ret;
328 }
329 
330 /**
331  * acpi_device_power_remove_dependent - Remove dependent device
332  * @adev: ACPI device pointer
333  * @dev: Dependent device
334  *
335  * Does the opposite of acpi_device_power_add_dependent() and removes the
336  * dependent device if it is found. Can be called to @adev that does not
337  * have _PR0 as well.
338  */
339 void acpi_device_power_remove_dependent(struct acpi_device *adev,
340 					struct device *dev)
341 {
342 	struct acpi_power_resource_entry *entry;
343 	struct list_head *resources;
344 
345 	if (!adev->flags.power_manageable)
346 		return;
347 
348 	resources = &adev->power.states[ACPI_STATE_D0].resources;
349 	list_for_each_entry_reverse(entry, resources, node)
350 		acpi_power_resource_remove_dependent(entry->resource, dev);
351 }
352 
353 static int __acpi_power_on(struct acpi_power_resource *resource)
354 {
355 	struct acpi_power_dependent_device *dep;
356 	acpi_status status = AE_OK;
357 
358 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
359 	if (ACPI_FAILURE(status))
360 		return -ENODEV;
361 
362 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
363 			  resource->name));
364 
365 	/*
366 	 * If there are other dependents on this power resource we need to
367 	 * resume them now so that their drivers can re-initialize the
368 	 * hardware properly after it went back to D0.
369 	 */
370 	if (list_empty(&resource->dependents) ||
371 	    list_is_singular(&resource->dependents))
372 		return 0;
373 
374 	list_for_each_entry(dep, &resource->dependents, node) {
375 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
376 			resource->name);
377 		pm_request_resume(dep->dev);
378 	}
379 
380 	return 0;
381 }
382 
383 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
384 {
385 	int result = 0;
386 
387 	if (resource->ref_count++) {
388 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
389 				  "Power resource [%s] already on\n",
390 				  resource->name));
391 	} else {
392 		result = __acpi_power_on(resource);
393 		if (result)
394 			resource->ref_count--;
395 	}
396 	return result;
397 }
398 
399 static int acpi_power_on(struct acpi_power_resource *resource)
400 {
401 	int result;
402 
403 	mutex_lock(&resource->resource_lock);
404 	result = acpi_power_on_unlocked(resource);
405 	mutex_unlock(&resource->resource_lock);
406 	return result;
407 }
408 
409 static int __acpi_power_off(struct acpi_power_resource *resource)
410 {
411 	acpi_status status;
412 
413 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
414 				      NULL, NULL);
415 	if (ACPI_FAILURE(status))
416 		return -ENODEV;
417 
418 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
419 			  resource->name));
420 	return 0;
421 }
422 
423 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
424 {
425 	int result = 0;
426 
427 	if (!resource->ref_count) {
428 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
429 				  "Power resource [%s] already off\n",
430 				  resource->name));
431 		return 0;
432 	}
433 
434 	if (--resource->ref_count) {
435 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
436 				  "Power resource [%s] still in use\n",
437 				  resource->name));
438 	} else {
439 		result = __acpi_power_off(resource);
440 		if (result)
441 			resource->ref_count++;
442 	}
443 	return result;
444 }
445 
446 static int acpi_power_off(struct acpi_power_resource *resource)
447 {
448 	int result;
449 
450 	mutex_lock(&resource->resource_lock);
451 	result = acpi_power_off_unlocked(resource);
452 	mutex_unlock(&resource->resource_lock);
453 	return result;
454 }
455 
456 static int acpi_power_off_list(struct list_head *list)
457 {
458 	struct acpi_power_resource_entry *entry;
459 	int result = 0;
460 
461 	list_for_each_entry_reverse(entry, list, node) {
462 		result = acpi_power_off(entry->resource);
463 		if (result)
464 			goto err;
465 	}
466 	return 0;
467 
468  err:
469 	list_for_each_entry_continue(entry, list, node)
470 		acpi_power_on(entry->resource);
471 
472 	return result;
473 }
474 
475 static int acpi_power_on_list(struct list_head *list)
476 {
477 	struct acpi_power_resource_entry *entry;
478 	int result = 0;
479 
480 	list_for_each_entry(entry, list, node) {
481 		result = acpi_power_on(entry->resource);
482 		if (result)
483 			goto err;
484 	}
485 	return 0;
486 
487  err:
488 	list_for_each_entry_continue_reverse(entry, list, node)
489 		acpi_power_off(entry->resource);
490 
491 	return result;
492 }
493 
494 static struct attribute *attrs[] = {
495 	NULL,
496 };
497 
498 static const struct attribute_group attr_groups[] = {
499 	[ACPI_STATE_D0] = {
500 		.name = "power_resources_D0",
501 		.attrs = attrs,
502 	},
503 	[ACPI_STATE_D1] = {
504 		.name = "power_resources_D1",
505 		.attrs = attrs,
506 	},
507 	[ACPI_STATE_D2] = {
508 		.name = "power_resources_D2",
509 		.attrs = attrs,
510 	},
511 	[ACPI_STATE_D3_HOT] = {
512 		.name = "power_resources_D3hot",
513 		.attrs = attrs,
514 	},
515 };
516 
517 static const struct attribute_group wakeup_attr_group = {
518 	.name = "power_resources_wakeup",
519 	.attrs = attrs,
520 };
521 
522 static void acpi_power_hide_list(struct acpi_device *adev,
523 				 struct list_head *resources,
524 				 const struct attribute_group *attr_group)
525 {
526 	struct acpi_power_resource_entry *entry;
527 
528 	if (list_empty(resources))
529 		return;
530 
531 	list_for_each_entry_reverse(entry, resources, node) {
532 		struct acpi_device *res_dev = &entry->resource->device;
533 
534 		sysfs_remove_link_from_group(&adev->dev.kobj,
535 					     attr_group->name,
536 					     dev_name(&res_dev->dev));
537 	}
538 	sysfs_remove_group(&adev->dev.kobj, attr_group);
539 }
540 
541 static void acpi_power_expose_list(struct acpi_device *adev,
542 				   struct list_head *resources,
543 				   const struct attribute_group *attr_group)
544 {
545 	struct acpi_power_resource_entry *entry;
546 	int ret;
547 
548 	if (list_empty(resources))
549 		return;
550 
551 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
552 	if (ret)
553 		return;
554 
555 	list_for_each_entry(entry, resources, node) {
556 		struct acpi_device *res_dev = &entry->resource->device;
557 
558 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
559 					      attr_group->name,
560 					      &res_dev->dev.kobj,
561 					      dev_name(&res_dev->dev));
562 		if (ret) {
563 			acpi_power_hide_list(adev, resources, attr_group);
564 			break;
565 		}
566 	}
567 }
568 
569 static void acpi_power_expose_hide(struct acpi_device *adev,
570 				   struct list_head *resources,
571 				   const struct attribute_group *attr_group,
572 				   bool expose)
573 {
574 	if (expose)
575 		acpi_power_expose_list(adev, resources, attr_group);
576 	else
577 		acpi_power_hide_list(adev, resources, attr_group);
578 }
579 
580 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
581 {
582 	int state;
583 
584 	if (adev->wakeup.flags.valid)
585 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
586 				       &wakeup_attr_group, add);
587 
588 	if (!adev->power.flags.power_resources)
589 		return;
590 
591 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
592 		acpi_power_expose_hide(adev,
593 				       &adev->power.states[state].resources,
594 				       &attr_groups[state], add);
595 }
596 
597 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
598 {
599 	struct acpi_power_resource_entry *entry;
600 	int system_level = 5;
601 
602 	list_for_each_entry(entry, list, node) {
603 		struct acpi_power_resource *resource = entry->resource;
604 		acpi_handle handle = resource->device.handle;
605 		int result;
606 		int state;
607 
608 		mutex_lock(&resource->resource_lock);
609 
610 		result = acpi_power_get_state(handle, &state);
611 		if (result) {
612 			mutex_unlock(&resource->resource_lock);
613 			return result;
614 		}
615 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
616 			resource->ref_count++;
617 			resource->wakeup_enabled = true;
618 		}
619 		if (system_level > resource->system_level)
620 			system_level = resource->system_level;
621 
622 		mutex_unlock(&resource->resource_lock);
623 	}
624 	*system_level_p = system_level;
625 	return 0;
626 }
627 
628 /* --------------------------------------------------------------------------
629                              Device Power Management
630    -------------------------------------------------------------------------- */
631 
632 /**
633  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
634  *                          ACPI 3.0) _PSW (Power State Wake)
635  * @dev: Device to handle.
636  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
637  * @sleep_state: Target sleep state of the system.
638  * @dev_state: Target power state of the device.
639  *
640  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
641  * State Wake) for the device, if present.  On failure reset the device's
642  * wakeup.flags.valid flag.
643  *
644  * RETURN VALUE:
645  * 0 if either _DSW or _PSW has been successfully executed
646  * 0 if neither _DSW nor _PSW has been found
647  * -ENODEV if the execution of either _DSW or _PSW has failed
648  */
649 int acpi_device_sleep_wake(struct acpi_device *dev,
650                            int enable, int sleep_state, int dev_state)
651 {
652 	union acpi_object in_arg[3];
653 	struct acpi_object_list arg_list = { 3, in_arg };
654 	acpi_status status = AE_OK;
655 
656 	/*
657 	 * Try to execute _DSW first.
658 	 *
659 	 * Three arguments are needed for the _DSW object:
660 	 * Argument 0: enable/disable the wake capabilities
661 	 * Argument 1: target system state
662 	 * Argument 2: target device state
663 	 * When _DSW object is called to disable the wake capabilities, maybe
664 	 * the first argument is filled. The values of the other two arguments
665 	 * are meaningless.
666 	 */
667 	in_arg[0].type = ACPI_TYPE_INTEGER;
668 	in_arg[0].integer.value = enable;
669 	in_arg[1].type = ACPI_TYPE_INTEGER;
670 	in_arg[1].integer.value = sleep_state;
671 	in_arg[2].type = ACPI_TYPE_INTEGER;
672 	in_arg[2].integer.value = dev_state;
673 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
674 	if (ACPI_SUCCESS(status)) {
675 		return 0;
676 	} else if (status != AE_NOT_FOUND) {
677 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
678 		dev->wakeup.flags.valid = 0;
679 		return -ENODEV;
680 	}
681 
682 	/* Execute _PSW */
683 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
684 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
685 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
686 		dev->wakeup.flags.valid = 0;
687 		return -ENODEV;
688 	}
689 
690 	return 0;
691 }
692 
693 /*
694  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
695  * 1. Power on the power resources required for the wakeup device
696  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
697  *    State Wake) for the device, if present
698  */
699 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
700 {
701 	struct acpi_power_resource_entry *entry;
702 	int err = 0;
703 
704 	if (!dev || !dev->wakeup.flags.valid)
705 		return -EINVAL;
706 
707 	mutex_lock(&acpi_device_lock);
708 
709 	if (dev->wakeup.prepare_count++)
710 		goto out;
711 
712 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
713 		struct acpi_power_resource *resource = entry->resource;
714 
715 		mutex_lock(&resource->resource_lock);
716 
717 		if (!resource->wakeup_enabled) {
718 			err = acpi_power_on_unlocked(resource);
719 			if (!err)
720 				resource->wakeup_enabled = true;
721 		}
722 
723 		mutex_unlock(&resource->resource_lock);
724 
725 		if (err) {
726 			dev_err(&dev->dev,
727 				"Cannot turn wakeup power resources on\n");
728 			dev->wakeup.flags.valid = 0;
729 			goto out;
730 		}
731 	}
732 	/*
733 	 * Passing 3 as the third argument below means the device may be
734 	 * put into arbitrary power state afterward.
735 	 */
736 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
737 	if (err)
738 		dev->wakeup.prepare_count = 0;
739 
740  out:
741 	mutex_unlock(&acpi_device_lock);
742 	return err;
743 }
744 
745 /*
746  * Shutdown a wakeup device, counterpart of above method
747  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
748  *    State Wake) for the device, if present
749  * 2. Shutdown down the power resources
750  */
751 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
752 {
753 	struct acpi_power_resource_entry *entry;
754 	int err = 0;
755 
756 	if (!dev || !dev->wakeup.flags.valid)
757 		return -EINVAL;
758 
759 	mutex_lock(&acpi_device_lock);
760 
761 	if (--dev->wakeup.prepare_count > 0)
762 		goto out;
763 
764 	/*
765 	 * Executing the code below even if prepare_count is already zero when
766 	 * the function is called may be useful, for example for initialisation.
767 	 */
768 	if (dev->wakeup.prepare_count < 0)
769 		dev->wakeup.prepare_count = 0;
770 
771 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
772 	if (err)
773 		goto out;
774 
775 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
776 		struct acpi_power_resource *resource = entry->resource;
777 
778 		mutex_lock(&resource->resource_lock);
779 
780 		if (resource->wakeup_enabled) {
781 			err = acpi_power_off_unlocked(resource);
782 			if (!err)
783 				resource->wakeup_enabled = false;
784 		}
785 
786 		mutex_unlock(&resource->resource_lock);
787 
788 		if (err) {
789 			dev_err(&dev->dev,
790 				"Cannot turn wakeup power resources off\n");
791 			dev->wakeup.flags.valid = 0;
792 			break;
793 		}
794 	}
795 
796  out:
797 	mutex_unlock(&acpi_device_lock);
798 	return err;
799 }
800 
801 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
802 {
803 	int result = 0;
804 	int list_state = 0;
805 	int i = 0;
806 
807 	if (!device || !state)
808 		return -EINVAL;
809 
810 	/*
811 	 * We know a device's inferred power state when all the resources
812 	 * required for a given D-state are 'on'.
813 	 */
814 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
815 		struct list_head *list = &device->power.states[i].resources;
816 
817 		if (list_empty(list))
818 			continue;
819 
820 		result = acpi_power_get_list_state(list, &list_state);
821 		if (result)
822 			return result;
823 
824 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
825 			*state = i;
826 			return 0;
827 		}
828 	}
829 
830 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
831 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
832 	return 0;
833 }
834 
835 int acpi_power_on_resources(struct acpi_device *device, int state)
836 {
837 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
838 		return -EINVAL;
839 
840 	return acpi_power_on_list(&device->power.states[state].resources);
841 }
842 
843 int acpi_power_transition(struct acpi_device *device, int state)
844 {
845 	int result = 0;
846 
847 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
848 		return -EINVAL;
849 
850 	if (device->power.state == state || !device->flags.power_manageable)
851 		return 0;
852 
853 	if ((device->power.state < ACPI_STATE_D0)
854 	    || (device->power.state > ACPI_STATE_D3_COLD))
855 		return -ENODEV;
856 
857 	/*
858 	 * First we reference all power resources required in the target list
859 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
860 	 * we dereference all power resources used in the current list.
861 	 */
862 	if (state < ACPI_STATE_D3_COLD)
863 		result = acpi_power_on_list(
864 			&device->power.states[state].resources);
865 
866 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
867 		acpi_power_off_list(
868 			&device->power.states[device->power.state].resources);
869 
870 	/* We shouldn't change the state unless the above operations succeed. */
871 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
872 
873 	return result;
874 }
875 
876 static void acpi_release_power_resource(struct device *dev)
877 {
878 	struct acpi_device *device = to_acpi_device(dev);
879 	struct acpi_power_resource *resource;
880 
881 	resource = container_of(device, struct acpi_power_resource, device);
882 
883 	mutex_lock(&power_resource_list_lock);
884 	list_del(&resource->list_node);
885 	mutex_unlock(&power_resource_list_lock);
886 
887 	acpi_free_pnp_ids(&device->pnp);
888 	kfree(resource);
889 }
890 
891 static ssize_t acpi_power_in_use_show(struct device *dev,
892 				      struct device_attribute *attr,
893 				      char *buf) {
894 	struct acpi_power_resource *resource;
895 
896 	resource = to_power_resource(to_acpi_device(dev));
897 	return sprintf(buf, "%u\n", !!resource->ref_count);
898 }
899 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
900 
901 static void acpi_power_sysfs_remove(struct acpi_device *device)
902 {
903 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
904 }
905 
906 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
907 {
908 	mutex_lock(&power_resource_list_lock);
909 
910 	if (!list_empty(&acpi_power_resource_list)) {
911 		struct acpi_power_resource *r;
912 
913 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
914 			if (r->order > resource->order) {
915 				list_add_tail(&resource->list_node, &r->list_node);
916 				goto out;
917 			}
918 	}
919 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
920 
921  out:
922 	mutex_unlock(&power_resource_list_lock);
923 }
924 
925 int acpi_add_power_resource(acpi_handle handle)
926 {
927 	struct acpi_power_resource *resource;
928 	struct acpi_device *device = NULL;
929 	union acpi_object acpi_object;
930 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
931 	acpi_status status;
932 	int state, result = -ENODEV;
933 
934 	acpi_bus_get_device(handle, &device);
935 	if (device)
936 		return 0;
937 
938 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
939 	if (!resource)
940 		return -ENOMEM;
941 
942 	device = &resource->device;
943 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
944 				ACPI_STA_DEFAULT);
945 	mutex_init(&resource->resource_lock);
946 	INIT_LIST_HEAD(&resource->list_node);
947 	INIT_LIST_HEAD(&resource->dependents);
948 	resource->name = device->pnp.bus_id;
949 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
950 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
951 	device->power.state = ACPI_STATE_UNKNOWN;
952 
953 	/* Evalute the object to get the system level and resource order. */
954 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
955 	if (ACPI_FAILURE(status))
956 		goto err;
957 
958 	resource->system_level = acpi_object.power_resource.system_level;
959 	resource->order = acpi_object.power_resource.resource_order;
960 
961 	result = acpi_power_get_state(handle, &state);
962 	if (result)
963 		goto err;
964 
965 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
966 	       acpi_device_bid(device), state ? "on" : "off");
967 
968 	device->flags.match_driver = true;
969 	result = acpi_device_add(device, acpi_release_power_resource);
970 	if (result)
971 		goto err;
972 
973 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
974 		device->remove = acpi_power_sysfs_remove;
975 
976 	acpi_power_add_resource_to_list(resource);
977 	acpi_device_add_finalize(device);
978 	return 0;
979 
980  err:
981 	acpi_release_power_resource(&device->dev);
982 	return result;
983 }
984 
985 #ifdef CONFIG_ACPI_SLEEP
986 void acpi_resume_power_resources(void)
987 {
988 	struct acpi_power_resource *resource;
989 
990 	mutex_lock(&power_resource_list_lock);
991 
992 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
993 		int result, state;
994 
995 		mutex_lock(&resource->resource_lock);
996 
997 		result = acpi_power_get_state(resource->device.handle, &state);
998 		if (result) {
999 			mutex_unlock(&resource->resource_lock);
1000 			continue;
1001 		}
1002 
1003 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
1004 		    && resource->ref_count) {
1005 			dev_info(&resource->device.dev, "Turning ON\n");
1006 			__acpi_power_on(resource);
1007 		}
1008 
1009 		mutex_unlock(&resource->resource_lock);
1010 	}
1011 
1012 	mutex_unlock(&power_resource_list_lock);
1013 }
1014 
1015 void acpi_turn_off_unused_power_resources(void)
1016 {
1017 	struct acpi_power_resource *resource;
1018 
1019 	mutex_lock(&power_resource_list_lock);
1020 
1021 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1022 		int result, state;
1023 
1024 		mutex_lock(&resource->resource_lock);
1025 
1026 		result = acpi_power_get_state(resource->device.handle, &state);
1027 		if (result) {
1028 			mutex_unlock(&resource->resource_lock);
1029 			continue;
1030 		}
1031 
1032 		if (state == ACPI_POWER_RESOURCE_STATE_ON
1033 		    && !resource->ref_count) {
1034 			dev_info(&resource->device.dev, "Turning OFF\n");
1035 			__acpi_power_off(resource);
1036 		}
1037 
1038 		mutex_unlock(&resource->resource_lock);
1039 	}
1040 
1041 	mutex_unlock(&power_resource_list_lock);
1042 }
1043 #endif
1044