1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * drivers/acpi/power.c - ACPI Power Resources management. 4 * 5 * Copyright (C) 2001 - 2015 Intel Corp. 6 * Author: Andy Grover <andrew.grover@intel.com> 7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 9 */ 10 11 /* 12 * ACPI power-managed devices may be controlled in two ways: 13 * 1. via "Device Specific (D-State) Control" 14 * 2. via "Power Resource Control". 15 * The code below deals with ACPI Power Resources control. 16 * 17 * An ACPI "power resource object" represents a software controllable power 18 * plane, clock plane, or other resource depended on by a device. 19 * 20 * A device may rely on multiple power resources, and a power resource 21 * may be shared by multiple devices. 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/init.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/sysfs.h> 31 #include <linux/acpi.h> 32 #include "sleep.h" 33 #include "internal.h" 34 35 #define _COMPONENT ACPI_POWER_COMPONENT 36 ACPI_MODULE_NAME("power"); 37 #define ACPI_POWER_CLASS "power_resource" 38 #define ACPI_POWER_DEVICE_NAME "Power Resource" 39 #define ACPI_POWER_FILE_INFO "info" 40 #define ACPI_POWER_FILE_STATUS "state" 41 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 42 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 43 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 44 45 struct acpi_power_resource { 46 struct acpi_device device; 47 struct list_head list_node; 48 char *name; 49 u32 system_level; 50 u32 order; 51 unsigned int ref_count; 52 bool wakeup_enabled; 53 struct mutex resource_lock; 54 }; 55 56 struct acpi_power_resource_entry { 57 struct list_head node; 58 struct acpi_power_resource *resource; 59 }; 60 61 static LIST_HEAD(acpi_power_resource_list); 62 static DEFINE_MUTEX(power_resource_list_lock); 63 64 /* -------------------------------------------------------------------------- 65 Power Resource Management 66 -------------------------------------------------------------------------- */ 67 68 static inline 69 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 70 { 71 return container_of(device, struct acpi_power_resource, device); 72 } 73 74 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 75 { 76 struct acpi_device *device; 77 78 if (acpi_bus_get_device(handle, &device)) 79 return NULL; 80 81 return to_power_resource(device); 82 } 83 84 static int acpi_power_resources_list_add(acpi_handle handle, 85 struct list_head *list) 86 { 87 struct acpi_power_resource *resource = acpi_power_get_context(handle); 88 struct acpi_power_resource_entry *entry; 89 90 if (!resource || !list) 91 return -EINVAL; 92 93 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 94 if (!entry) 95 return -ENOMEM; 96 97 entry->resource = resource; 98 if (!list_empty(list)) { 99 struct acpi_power_resource_entry *e; 100 101 list_for_each_entry(e, list, node) 102 if (e->resource->order > resource->order) { 103 list_add_tail(&entry->node, &e->node); 104 return 0; 105 } 106 } 107 list_add_tail(&entry->node, list); 108 return 0; 109 } 110 111 void acpi_power_resources_list_free(struct list_head *list) 112 { 113 struct acpi_power_resource_entry *entry, *e; 114 115 list_for_each_entry_safe(entry, e, list, node) { 116 list_del(&entry->node); 117 kfree(entry); 118 } 119 } 120 121 static bool acpi_power_resource_is_dup(union acpi_object *package, 122 unsigned int start, unsigned int i) 123 { 124 acpi_handle rhandle, dup; 125 unsigned int j; 126 127 /* The caller is expected to check the package element types */ 128 rhandle = package->package.elements[i].reference.handle; 129 for (j = start; j < i; j++) { 130 dup = package->package.elements[j].reference.handle; 131 if (dup == rhandle) 132 return true; 133 } 134 135 return false; 136 } 137 138 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 139 struct list_head *list) 140 { 141 unsigned int i; 142 int err = 0; 143 144 for (i = start; i < package->package.count; i++) { 145 union acpi_object *element = &package->package.elements[i]; 146 acpi_handle rhandle; 147 148 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 149 err = -ENODATA; 150 break; 151 } 152 rhandle = element->reference.handle; 153 if (!rhandle) { 154 err = -ENODEV; 155 break; 156 } 157 158 /* Some ACPI tables contain duplicate power resource references */ 159 if (acpi_power_resource_is_dup(package, start, i)) 160 continue; 161 162 err = acpi_add_power_resource(rhandle); 163 if (err) 164 break; 165 166 err = acpi_power_resources_list_add(rhandle, list); 167 if (err) 168 break; 169 } 170 if (err) 171 acpi_power_resources_list_free(list); 172 173 return err; 174 } 175 176 static int acpi_power_get_state(acpi_handle handle, int *state) 177 { 178 acpi_status status = AE_OK; 179 unsigned long long sta = 0; 180 char node_name[5]; 181 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 182 183 184 if (!handle || !state) 185 return -EINVAL; 186 187 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 188 if (ACPI_FAILURE(status)) 189 return -ENODEV; 190 191 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: 192 ACPI_POWER_RESOURCE_STATE_OFF; 193 194 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 195 196 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", 197 node_name, 198 *state ? "on" : "off")); 199 200 return 0; 201 } 202 203 static int acpi_power_get_list_state(struct list_head *list, int *state) 204 { 205 struct acpi_power_resource_entry *entry; 206 int cur_state; 207 208 if (!list || !state) 209 return -EINVAL; 210 211 /* The state of the list is 'on' IFF all resources are 'on'. */ 212 cur_state = 0; 213 list_for_each_entry(entry, list, node) { 214 struct acpi_power_resource *resource = entry->resource; 215 acpi_handle handle = resource->device.handle; 216 int result; 217 218 mutex_lock(&resource->resource_lock); 219 result = acpi_power_get_state(handle, &cur_state); 220 mutex_unlock(&resource->resource_lock); 221 if (result) 222 return result; 223 224 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 225 break; 226 } 227 228 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", 229 cur_state ? "on" : "off")); 230 231 *state = cur_state; 232 return 0; 233 } 234 235 static int __acpi_power_on(struct acpi_power_resource *resource) 236 { 237 acpi_status status = AE_OK; 238 239 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); 240 if (ACPI_FAILURE(status)) 241 return -ENODEV; 242 243 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", 244 resource->name)); 245 246 return 0; 247 } 248 249 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 250 { 251 int result = 0; 252 253 if (resource->ref_count++) { 254 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 255 "Power resource [%s] already on\n", 256 resource->name)); 257 } else { 258 result = __acpi_power_on(resource); 259 if (result) 260 resource->ref_count--; 261 } 262 return result; 263 } 264 265 static int acpi_power_on(struct acpi_power_resource *resource) 266 { 267 int result; 268 269 mutex_lock(&resource->resource_lock); 270 result = acpi_power_on_unlocked(resource); 271 mutex_unlock(&resource->resource_lock); 272 return result; 273 } 274 275 static int __acpi_power_off(struct acpi_power_resource *resource) 276 { 277 acpi_status status; 278 279 status = acpi_evaluate_object(resource->device.handle, "_OFF", 280 NULL, NULL); 281 if (ACPI_FAILURE(status)) 282 return -ENODEV; 283 284 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", 285 resource->name)); 286 return 0; 287 } 288 289 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 290 { 291 int result = 0; 292 293 if (!resource->ref_count) { 294 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 295 "Power resource [%s] already off\n", 296 resource->name)); 297 return 0; 298 } 299 300 if (--resource->ref_count) { 301 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 302 "Power resource [%s] still in use\n", 303 resource->name)); 304 } else { 305 result = __acpi_power_off(resource); 306 if (result) 307 resource->ref_count++; 308 } 309 return result; 310 } 311 312 static int acpi_power_off(struct acpi_power_resource *resource) 313 { 314 int result; 315 316 mutex_lock(&resource->resource_lock); 317 result = acpi_power_off_unlocked(resource); 318 mutex_unlock(&resource->resource_lock); 319 return result; 320 } 321 322 static int acpi_power_off_list(struct list_head *list) 323 { 324 struct acpi_power_resource_entry *entry; 325 int result = 0; 326 327 list_for_each_entry_reverse(entry, list, node) { 328 result = acpi_power_off(entry->resource); 329 if (result) 330 goto err; 331 } 332 return 0; 333 334 err: 335 list_for_each_entry_continue(entry, list, node) 336 acpi_power_on(entry->resource); 337 338 return result; 339 } 340 341 static int acpi_power_on_list(struct list_head *list) 342 { 343 struct acpi_power_resource_entry *entry; 344 int result = 0; 345 346 list_for_each_entry(entry, list, node) { 347 result = acpi_power_on(entry->resource); 348 if (result) 349 goto err; 350 } 351 return 0; 352 353 err: 354 list_for_each_entry_continue_reverse(entry, list, node) 355 acpi_power_off(entry->resource); 356 357 return result; 358 } 359 360 static struct attribute *attrs[] = { 361 NULL, 362 }; 363 364 static const struct attribute_group attr_groups[] = { 365 [ACPI_STATE_D0] = { 366 .name = "power_resources_D0", 367 .attrs = attrs, 368 }, 369 [ACPI_STATE_D1] = { 370 .name = "power_resources_D1", 371 .attrs = attrs, 372 }, 373 [ACPI_STATE_D2] = { 374 .name = "power_resources_D2", 375 .attrs = attrs, 376 }, 377 [ACPI_STATE_D3_HOT] = { 378 .name = "power_resources_D3hot", 379 .attrs = attrs, 380 }, 381 }; 382 383 static const struct attribute_group wakeup_attr_group = { 384 .name = "power_resources_wakeup", 385 .attrs = attrs, 386 }; 387 388 static void acpi_power_hide_list(struct acpi_device *adev, 389 struct list_head *resources, 390 const struct attribute_group *attr_group) 391 { 392 struct acpi_power_resource_entry *entry; 393 394 if (list_empty(resources)) 395 return; 396 397 list_for_each_entry_reverse(entry, resources, node) { 398 struct acpi_device *res_dev = &entry->resource->device; 399 400 sysfs_remove_link_from_group(&adev->dev.kobj, 401 attr_group->name, 402 dev_name(&res_dev->dev)); 403 } 404 sysfs_remove_group(&adev->dev.kobj, attr_group); 405 } 406 407 static void acpi_power_expose_list(struct acpi_device *adev, 408 struct list_head *resources, 409 const struct attribute_group *attr_group) 410 { 411 struct acpi_power_resource_entry *entry; 412 int ret; 413 414 if (list_empty(resources)) 415 return; 416 417 ret = sysfs_create_group(&adev->dev.kobj, attr_group); 418 if (ret) 419 return; 420 421 list_for_each_entry(entry, resources, node) { 422 struct acpi_device *res_dev = &entry->resource->device; 423 424 ret = sysfs_add_link_to_group(&adev->dev.kobj, 425 attr_group->name, 426 &res_dev->dev.kobj, 427 dev_name(&res_dev->dev)); 428 if (ret) { 429 acpi_power_hide_list(adev, resources, attr_group); 430 break; 431 } 432 } 433 } 434 435 static void acpi_power_expose_hide(struct acpi_device *adev, 436 struct list_head *resources, 437 const struct attribute_group *attr_group, 438 bool expose) 439 { 440 if (expose) 441 acpi_power_expose_list(adev, resources, attr_group); 442 else 443 acpi_power_hide_list(adev, resources, attr_group); 444 } 445 446 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 447 { 448 int state; 449 450 if (adev->wakeup.flags.valid) 451 acpi_power_expose_hide(adev, &adev->wakeup.resources, 452 &wakeup_attr_group, add); 453 454 if (!adev->power.flags.power_resources) 455 return; 456 457 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) 458 acpi_power_expose_hide(adev, 459 &adev->power.states[state].resources, 460 &attr_groups[state], add); 461 } 462 463 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 464 { 465 struct acpi_power_resource_entry *entry; 466 int system_level = 5; 467 468 list_for_each_entry(entry, list, node) { 469 struct acpi_power_resource *resource = entry->resource; 470 acpi_handle handle = resource->device.handle; 471 int result; 472 int state; 473 474 mutex_lock(&resource->resource_lock); 475 476 result = acpi_power_get_state(handle, &state); 477 if (result) { 478 mutex_unlock(&resource->resource_lock); 479 return result; 480 } 481 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 482 resource->ref_count++; 483 resource->wakeup_enabled = true; 484 } 485 if (system_level > resource->system_level) 486 system_level = resource->system_level; 487 488 mutex_unlock(&resource->resource_lock); 489 } 490 *system_level_p = system_level; 491 return 0; 492 } 493 494 /* -------------------------------------------------------------------------- 495 Device Power Management 496 -------------------------------------------------------------------------- */ 497 498 /** 499 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 500 * ACPI 3.0) _PSW (Power State Wake) 501 * @dev: Device to handle. 502 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 503 * @sleep_state: Target sleep state of the system. 504 * @dev_state: Target power state of the device. 505 * 506 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 507 * State Wake) for the device, if present. On failure reset the device's 508 * wakeup.flags.valid flag. 509 * 510 * RETURN VALUE: 511 * 0 if either _DSW or _PSW has been successfully executed 512 * 0 if neither _DSW nor _PSW has been found 513 * -ENODEV if the execution of either _DSW or _PSW has failed 514 */ 515 int acpi_device_sleep_wake(struct acpi_device *dev, 516 int enable, int sleep_state, int dev_state) 517 { 518 union acpi_object in_arg[3]; 519 struct acpi_object_list arg_list = { 3, in_arg }; 520 acpi_status status = AE_OK; 521 522 /* 523 * Try to execute _DSW first. 524 * 525 * Three arguments are needed for the _DSW object: 526 * Argument 0: enable/disable the wake capabilities 527 * Argument 1: target system state 528 * Argument 2: target device state 529 * When _DSW object is called to disable the wake capabilities, maybe 530 * the first argument is filled. The values of the other two arguments 531 * are meaningless. 532 */ 533 in_arg[0].type = ACPI_TYPE_INTEGER; 534 in_arg[0].integer.value = enable; 535 in_arg[1].type = ACPI_TYPE_INTEGER; 536 in_arg[1].integer.value = sleep_state; 537 in_arg[2].type = ACPI_TYPE_INTEGER; 538 in_arg[2].integer.value = dev_state; 539 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 540 if (ACPI_SUCCESS(status)) { 541 return 0; 542 } else if (status != AE_NOT_FOUND) { 543 printk(KERN_ERR PREFIX "_DSW execution failed\n"); 544 dev->wakeup.flags.valid = 0; 545 return -ENODEV; 546 } 547 548 /* Execute _PSW */ 549 status = acpi_execute_simple_method(dev->handle, "_PSW", enable); 550 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 551 printk(KERN_ERR PREFIX "_PSW execution failed\n"); 552 dev->wakeup.flags.valid = 0; 553 return -ENODEV; 554 } 555 556 return 0; 557 } 558 559 /* 560 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 561 * 1. Power on the power resources required for the wakeup device 562 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 563 * State Wake) for the device, if present 564 */ 565 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 566 { 567 struct acpi_power_resource_entry *entry; 568 int err = 0; 569 570 if (!dev || !dev->wakeup.flags.valid) 571 return -EINVAL; 572 573 mutex_lock(&acpi_device_lock); 574 575 if (dev->wakeup.prepare_count++) 576 goto out; 577 578 list_for_each_entry(entry, &dev->wakeup.resources, node) { 579 struct acpi_power_resource *resource = entry->resource; 580 581 mutex_lock(&resource->resource_lock); 582 583 if (!resource->wakeup_enabled) { 584 err = acpi_power_on_unlocked(resource); 585 if (!err) 586 resource->wakeup_enabled = true; 587 } 588 589 mutex_unlock(&resource->resource_lock); 590 591 if (err) { 592 dev_err(&dev->dev, 593 "Cannot turn wakeup power resources on\n"); 594 dev->wakeup.flags.valid = 0; 595 goto out; 596 } 597 } 598 /* 599 * Passing 3 as the third argument below means the device may be 600 * put into arbitrary power state afterward. 601 */ 602 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 603 if (err) 604 dev->wakeup.prepare_count = 0; 605 606 out: 607 mutex_unlock(&acpi_device_lock); 608 return err; 609 } 610 611 /* 612 * Shutdown a wakeup device, counterpart of above method 613 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 614 * State Wake) for the device, if present 615 * 2. Shutdown down the power resources 616 */ 617 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 618 { 619 struct acpi_power_resource_entry *entry; 620 int err = 0; 621 622 if (!dev || !dev->wakeup.flags.valid) 623 return -EINVAL; 624 625 mutex_lock(&acpi_device_lock); 626 627 if (--dev->wakeup.prepare_count > 0) 628 goto out; 629 630 /* 631 * Executing the code below even if prepare_count is already zero when 632 * the function is called may be useful, for example for initialisation. 633 */ 634 if (dev->wakeup.prepare_count < 0) 635 dev->wakeup.prepare_count = 0; 636 637 err = acpi_device_sleep_wake(dev, 0, 0, 0); 638 if (err) 639 goto out; 640 641 list_for_each_entry(entry, &dev->wakeup.resources, node) { 642 struct acpi_power_resource *resource = entry->resource; 643 644 mutex_lock(&resource->resource_lock); 645 646 if (resource->wakeup_enabled) { 647 err = acpi_power_off_unlocked(resource); 648 if (!err) 649 resource->wakeup_enabled = false; 650 } 651 652 mutex_unlock(&resource->resource_lock); 653 654 if (err) { 655 dev_err(&dev->dev, 656 "Cannot turn wakeup power resources off\n"); 657 dev->wakeup.flags.valid = 0; 658 break; 659 } 660 } 661 662 out: 663 mutex_unlock(&acpi_device_lock); 664 return err; 665 } 666 667 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 668 { 669 int result = 0; 670 int list_state = 0; 671 int i = 0; 672 673 if (!device || !state) 674 return -EINVAL; 675 676 /* 677 * We know a device's inferred power state when all the resources 678 * required for a given D-state are 'on'. 679 */ 680 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 681 struct list_head *list = &device->power.states[i].resources; 682 683 if (list_empty(list)) 684 continue; 685 686 result = acpi_power_get_list_state(list, &list_state); 687 if (result) 688 return result; 689 690 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 691 *state = i; 692 return 0; 693 } 694 } 695 696 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? 697 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; 698 return 0; 699 } 700 701 int acpi_power_on_resources(struct acpi_device *device, int state) 702 { 703 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 704 return -EINVAL; 705 706 return acpi_power_on_list(&device->power.states[state].resources); 707 } 708 709 int acpi_power_transition(struct acpi_device *device, int state) 710 { 711 int result = 0; 712 713 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 714 return -EINVAL; 715 716 if (device->power.state == state || !device->flags.power_manageable) 717 return 0; 718 719 if ((device->power.state < ACPI_STATE_D0) 720 || (device->power.state > ACPI_STATE_D3_COLD)) 721 return -ENODEV; 722 723 /* 724 * First we reference all power resources required in the target list 725 * (e.g. so the device doesn't lose power while transitioning). Then, 726 * we dereference all power resources used in the current list. 727 */ 728 if (state < ACPI_STATE_D3_COLD) 729 result = acpi_power_on_list( 730 &device->power.states[state].resources); 731 732 if (!result && device->power.state < ACPI_STATE_D3_COLD) 733 acpi_power_off_list( 734 &device->power.states[device->power.state].resources); 735 736 /* We shouldn't change the state unless the above operations succeed. */ 737 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 738 739 return result; 740 } 741 742 static void acpi_release_power_resource(struct device *dev) 743 { 744 struct acpi_device *device = to_acpi_device(dev); 745 struct acpi_power_resource *resource; 746 747 resource = container_of(device, struct acpi_power_resource, device); 748 749 mutex_lock(&power_resource_list_lock); 750 list_del(&resource->list_node); 751 mutex_unlock(&power_resource_list_lock); 752 753 acpi_free_pnp_ids(&device->pnp); 754 kfree(resource); 755 } 756 757 static ssize_t acpi_power_in_use_show(struct device *dev, 758 struct device_attribute *attr, 759 char *buf) { 760 struct acpi_power_resource *resource; 761 762 resource = to_power_resource(to_acpi_device(dev)); 763 return sprintf(buf, "%u\n", !!resource->ref_count); 764 } 765 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL); 766 767 static void acpi_power_sysfs_remove(struct acpi_device *device) 768 { 769 device_remove_file(&device->dev, &dev_attr_resource_in_use); 770 } 771 772 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) 773 { 774 mutex_lock(&power_resource_list_lock); 775 776 if (!list_empty(&acpi_power_resource_list)) { 777 struct acpi_power_resource *r; 778 779 list_for_each_entry(r, &acpi_power_resource_list, list_node) 780 if (r->order > resource->order) { 781 list_add_tail(&resource->list_node, &r->list_node); 782 goto out; 783 } 784 } 785 list_add_tail(&resource->list_node, &acpi_power_resource_list); 786 787 out: 788 mutex_unlock(&power_resource_list_lock); 789 } 790 791 int acpi_add_power_resource(acpi_handle handle) 792 { 793 struct acpi_power_resource *resource; 794 struct acpi_device *device = NULL; 795 union acpi_object acpi_object; 796 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 797 acpi_status status; 798 int state, result = -ENODEV; 799 800 acpi_bus_get_device(handle, &device); 801 if (device) 802 return 0; 803 804 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 805 if (!resource) 806 return -ENOMEM; 807 808 device = &resource->device; 809 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, 810 ACPI_STA_DEFAULT); 811 mutex_init(&resource->resource_lock); 812 INIT_LIST_HEAD(&resource->list_node); 813 resource->name = device->pnp.bus_id; 814 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 815 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 816 device->power.state = ACPI_STATE_UNKNOWN; 817 818 /* Evalute the object to get the system level and resource order. */ 819 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 820 if (ACPI_FAILURE(status)) 821 goto err; 822 823 resource->system_level = acpi_object.power_resource.system_level; 824 resource->order = acpi_object.power_resource.resource_order; 825 826 result = acpi_power_get_state(handle, &state); 827 if (result) 828 goto err; 829 830 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), 831 acpi_device_bid(device), state ? "on" : "off"); 832 833 device->flags.match_driver = true; 834 result = acpi_device_add(device, acpi_release_power_resource); 835 if (result) 836 goto err; 837 838 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 839 device->remove = acpi_power_sysfs_remove; 840 841 acpi_power_add_resource_to_list(resource); 842 acpi_device_add_finalize(device); 843 return 0; 844 845 err: 846 acpi_release_power_resource(&device->dev); 847 return result; 848 } 849 850 #ifdef CONFIG_ACPI_SLEEP 851 void acpi_resume_power_resources(void) 852 { 853 struct acpi_power_resource *resource; 854 855 mutex_lock(&power_resource_list_lock); 856 857 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 858 int result, state; 859 860 mutex_lock(&resource->resource_lock); 861 862 result = acpi_power_get_state(resource->device.handle, &state); 863 if (result) { 864 mutex_unlock(&resource->resource_lock); 865 continue; 866 } 867 868 if (state == ACPI_POWER_RESOURCE_STATE_OFF 869 && resource->ref_count) { 870 dev_info(&resource->device.dev, "Turning ON\n"); 871 __acpi_power_on(resource); 872 } 873 874 mutex_unlock(&resource->resource_lock); 875 } 876 877 mutex_unlock(&power_resource_list_lock); 878 } 879 880 void acpi_turn_off_unused_power_resources(void) 881 { 882 struct acpi_power_resource *resource; 883 884 mutex_lock(&power_resource_list_lock); 885 886 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { 887 int result, state; 888 889 mutex_lock(&resource->resource_lock); 890 891 result = acpi_power_get_state(resource->device.handle, &state); 892 if (result) { 893 mutex_unlock(&resource->resource_lock); 894 continue; 895 } 896 897 if (state == ACPI_POWER_RESOURCE_STATE_ON 898 && !resource->ref_count) { 899 dev_info(&resource->device.dev, "Turning OFF\n"); 900 __acpi_power_off(resource); 901 } 902 903 mutex_unlock(&resource->resource_lock); 904 } 905 906 mutex_unlock(&power_resource_list_lock); 907 } 908 #endif 909