xref: /linux/drivers/acpi/power.c (revision 9fb29c734f9e98adc1f2f3c4629fe487cb93f2dd)
1 /*
2  * drivers/acpi/power.c - ACPI Power Resources management.
3  *
4  * Copyright (C) 2001 - 2015 Intel Corp.
5  * Author: Andy Grover <andrew.grover@intel.com>
6  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22  */
23 
24 /*
25  * ACPI power-managed devices may be controlled in two ways:
26  * 1. via "Device Specific (D-State) Control"
27  * 2. via "Power Resource Control".
28  * The code below deals with ACPI Power Resources control.
29  *
30  * An ACPI "power resource object" represents a software controllable power
31  * plane, clock plane, or other resource depended on by a device.
32  *
33  * A device may rely on multiple power resources, and a power resource
34  * may be shared by multiple devices.
35  */
36 
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/init.h>
40 #include <linux/types.h>
41 #include <linux/slab.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/sysfs.h>
44 #include <linux/acpi.h>
45 #include "sleep.h"
46 #include "internal.h"
47 
48 #define _COMPONENT			ACPI_POWER_COMPONENT
49 ACPI_MODULE_NAME("power");
50 #define ACPI_POWER_CLASS		"power_resource"
51 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
52 #define ACPI_POWER_FILE_INFO		"info"
53 #define ACPI_POWER_FILE_STATUS		"state"
54 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
55 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
56 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
57 
58 struct acpi_power_resource {
59 	struct acpi_device device;
60 	struct list_head list_node;
61 	char *name;
62 	u32 system_level;
63 	u32 order;
64 	unsigned int ref_count;
65 	bool wakeup_enabled;
66 	struct mutex resource_lock;
67 };
68 
69 struct acpi_power_resource_entry {
70 	struct list_head node;
71 	struct acpi_power_resource *resource;
72 };
73 
74 static LIST_HEAD(acpi_power_resource_list);
75 static DEFINE_MUTEX(power_resource_list_lock);
76 
77 /* --------------------------------------------------------------------------
78                              Power Resource Management
79    -------------------------------------------------------------------------- */
80 
81 static inline
82 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
83 {
84 	return container_of(device, struct acpi_power_resource, device);
85 }
86 
87 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
88 {
89 	struct acpi_device *device;
90 
91 	if (acpi_bus_get_device(handle, &device))
92 		return NULL;
93 
94 	return to_power_resource(device);
95 }
96 
97 static int acpi_power_resources_list_add(acpi_handle handle,
98 					 struct list_head *list)
99 {
100 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
101 	struct acpi_power_resource_entry *entry;
102 
103 	if (!resource || !list)
104 		return -EINVAL;
105 
106 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
107 	if (!entry)
108 		return -ENOMEM;
109 
110 	entry->resource = resource;
111 	if (!list_empty(list)) {
112 		struct acpi_power_resource_entry *e;
113 
114 		list_for_each_entry(e, list, node)
115 			if (e->resource->order > resource->order) {
116 				list_add_tail(&entry->node, &e->node);
117 				return 0;
118 			}
119 	}
120 	list_add_tail(&entry->node, list);
121 	return 0;
122 }
123 
124 void acpi_power_resources_list_free(struct list_head *list)
125 {
126 	struct acpi_power_resource_entry *entry, *e;
127 
128 	list_for_each_entry_safe(entry, e, list, node) {
129 		list_del(&entry->node);
130 		kfree(entry);
131 	}
132 }
133 
134 static bool acpi_power_resource_is_dup(union acpi_object *package,
135 				       unsigned int start, unsigned int i)
136 {
137 	acpi_handle rhandle, dup;
138 	unsigned int j;
139 
140 	/* The caller is expected to check the package element types */
141 	rhandle = package->package.elements[i].reference.handle;
142 	for (j = start; j < i; j++) {
143 		dup = package->package.elements[j].reference.handle;
144 		if (dup == rhandle)
145 			return true;
146 	}
147 
148 	return false;
149 }
150 
151 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
152 				 struct list_head *list)
153 {
154 	unsigned int i;
155 	int err = 0;
156 
157 	for (i = start; i < package->package.count; i++) {
158 		union acpi_object *element = &package->package.elements[i];
159 		acpi_handle rhandle;
160 
161 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
162 			err = -ENODATA;
163 			break;
164 		}
165 		rhandle = element->reference.handle;
166 		if (!rhandle) {
167 			err = -ENODEV;
168 			break;
169 		}
170 
171 		/* Some ACPI tables contain duplicate power resource references */
172 		if (acpi_power_resource_is_dup(package, start, i))
173 			continue;
174 
175 		err = acpi_add_power_resource(rhandle);
176 		if (err)
177 			break;
178 
179 		err = acpi_power_resources_list_add(rhandle, list);
180 		if (err)
181 			break;
182 	}
183 	if (err)
184 		acpi_power_resources_list_free(list);
185 
186 	return err;
187 }
188 
189 static int acpi_power_get_state(acpi_handle handle, int *state)
190 {
191 	acpi_status status = AE_OK;
192 	unsigned long long sta = 0;
193 	char node_name[5];
194 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
195 
196 
197 	if (!handle || !state)
198 		return -EINVAL;
199 
200 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
201 	if (ACPI_FAILURE(status))
202 		return -ENODEV;
203 
204 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
205 			      ACPI_POWER_RESOURCE_STATE_OFF;
206 
207 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
208 
209 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
210 			  node_name,
211 				*state ? "on" : "off"));
212 
213 	return 0;
214 }
215 
216 static int acpi_power_get_list_state(struct list_head *list, int *state)
217 {
218 	struct acpi_power_resource_entry *entry;
219 	int cur_state;
220 
221 	if (!list || !state)
222 		return -EINVAL;
223 
224 	/* The state of the list is 'on' IFF all resources are 'on'. */
225 	cur_state = 0;
226 	list_for_each_entry(entry, list, node) {
227 		struct acpi_power_resource *resource = entry->resource;
228 		acpi_handle handle = resource->device.handle;
229 		int result;
230 
231 		mutex_lock(&resource->resource_lock);
232 		result = acpi_power_get_state(handle, &cur_state);
233 		mutex_unlock(&resource->resource_lock);
234 		if (result)
235 			return result;
236 
237 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
238 			break;
239 	}
240 
241 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
242 			  cur_state ? "on" : "off"));
243 
244 	*state = cur_state;
245 	return 0;
246 }
247 
248 static int __acpi_power_on(struct acpi_power_resource *resource)
249 {
250 	acpi_status status = AE_OK;
251 
252 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
253 	if (ACPI_FAILURE(status))
254 		return -ENODEV;
255 
256 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
257 			  resource->name));
258 
259 	return 0;
260 }
261 
262 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
263 {
264 	int result = 0;
265 
266 	if (resource->ref_count++) {
267 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 				  "Power resource [%s] already on\n",
269 				  resource->name));
270 	} else {
271 		result = __acpi_power_on(resource);
272 		if (result)
273 			resource->ref_count--;
274 	}
275 	return result;
276 }
277 
278 static int acpi_power_on(struct acpi_power_resource *resource)
279 {
280 	int result;
281 
282 	mutex_lock(&resource->resource_lock);
283 	result = acpi_power_on_unlocked(resource);
284 	mutex_unlock(&resource->resource_lock);
285 	return result;
286 }
287 
288 static int __acpi_power_off(struct acpi_power_resource *resource)
289 {
290 	acpi_status status;
291 
292 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
293 				      NULL, NULL);
294 	if (ACPI_FAILURE(status))
295 		return -ENODEV;
296 
297 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
298 			  resource->name));
299 	return 0;
300 }
301 
302 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
303 {
304 	int result = 0;
305 
306 	if (!resource->ref_count) {
307 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
308 				  "Power resource [%s] already off\n",
309 				  resource->name));
310 		return 0;
311 	}
312 
313 	if (--resource->ref_count) {
314 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
315 				  "Power resource [%s] still in use\n",
316 				  resource->name));
317 	} else {
318 		result = __acpi_power_off(resource);
319 		if (result)
320 			resource->ref_count++;
321 	}
322 	return result;
323 }
324 
325 static int acpi_power_off(struct acpi_power_resource *resource)
326 {
327 	int result;
328 
329 	mutex_lock(&resource->resource_lock);
330 	result = acpi_power_off_unlocked(resource);
331 	mutex_unlock(&resource->resource_lock);
332 	return result;
333 }
334 
335 static int acpi_power_off_list(struct list_head *list)
336 {
337 	struct acpi_power_resource_entry *entry;
338 	int result = 0;
339 
340 	list_for_each_entry_reverse(entry, list, node) {
341 		result = acpi_power_off(entry->resource);
342 		if (result)
343 			goto err;
344 	}
345 	return 0;
346 
347  err:
348 	list_for_each_entry_continue(entry, list, node)
349 		acpi_power_on(entry->resource);
350 
351 	return result;
352 }
353 
354 static int acpi_power_on_list(struct list_head *list)
355 {
356 	struct acpi_power_resource_entry *entry;
357 	int result = 0;
358 
359 	list_for_each_entry(entry, list, node) {
360 		result = acpi_power_on(entry->resource);
361 		if (result)
362 			goto err;
363 	}
364 	return 0;
365 
366  err:
367 	list_for_each_entry_continue_reverse(entry, list, node)
368 		acpi_power_off(entry->resource);
369 
370 	return result;
371 }
372 
373 static struct attribute *attrs[] = {
374 	NULL,
375 };
376 
377 static const struct attribute_group attr_groups[] = {
378 	[ACPI_STATE_D0] = {
379 		.name = "power_resources_D0",
380 		.attrs = attrs,
381 	},
382 	[ACPI_STATE_D1] = {
383 		.name = "power_resources_D1",
384 		.attrs = attrs,
385 	},
386 	[ACPI_STATE_D2] = {
387 		.name = "power_resources_D2",
388 		.attrs = attrs,
389 	},
390 	[ACPI_STATE_D3_HOT] = {
391 		.name = "power_resources_D3hot",
392 		.attrs = attrs,
393 	},
394 };
395 
396 static const struct attribute_group wakeup_attr_group = {
397 	.name = "power_resources_wakeup",
398 	.attrs = attrs,
399 };
400 
401 static void acpi_power_hide_list(struct acpi_device *adev,
402 				 struct list_head *resources,
403 				 const struct attribute_group *attr_group)
404 {
405 	struct acpi_power_resource_entry *entry;
406 
407 	if (list_empty(resources))
408 		return;
409 
410 	list_for_each_entry_reverse(entry, resources, node) {
411 		struct acpi_device *res_dev = &entry->resource->device;
412 
413 		sysfs_remove_link_from_group(&adev->dev.kobj,
414 					     attr_group->name,
415 					     dev_name(&res_dev->dev));
416 	}
417 	sysfs_remove_group(&adev->dev.kobj, attr_group);
418 }
419 
420 static void acpi_power_expose_list(struct acpi_device *adev,
421 				   struct list_head *resources,
422 				   const struct attribute_group *attr_group)
423 {
424 	struct acpi_power_resource_entry *entry;
425 	int ret;
426 
427 	if (list_empty(resources))
428 		return;
429 
430 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
431 	if (ret)
432 		return;
433 
434 	list_for_each_entry(entry, resources, node) {
435 		struct acpi_device *res_dev = &entry->resource->device;
436 
437 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
438 					      attr_group->name,
439 					      &res_dev->dev.kobj,
440 					      dev_name(&res_dev->dev));
441 		if (ret) {
442 			acpi_power_hide_list(adev, resources, attr_group);
443 			break;
444 		}
445 	}
446 }
447 
448 static void acpi_power_expose_hide(struct acpi_device *adev,
449 				   struct list_head *resources,
450 				   const struct attribute_group *attr_group,
451 				   bool expose)
452 {
453 	if (expose)
454 		acpi_power_expose_list(adev, resources, attr_group);
455 	else
456 		acpi_power_hide_list(adev, resources, attr_group);
457 }
458 
459 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
460 {
461 	int state;
462 
463 	if (adev->wakeup.flags.valid)
464 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
465 				       &wakeup_attr_group, add);
466 
467 	if (!adev->power.flags.power_resources)
468 		return;
469 
470 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
471 		acpi_power_expose_hide(adev,
472 				       &adev->power.states[state].resources,
473 				       &attr_groups[state], add);
474 }
475 
476 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
477 {
478 	struct acpi_power_resource_entry *entry;
479 	int system_level = 5;
480 
481 	list_for_each_entry(entry, list, node) {
482 		struct acpi_power_resource *resource = entry->resource;
483 		acpi_handle handle = resource->device.handle;
484 		int result;
485 		int state;
486 
487 		mutex_lock(&resource->resource_lock);
488 
489 		result = acpi_power_get_state(handle, &state);
490 		if (result) {
491 			mutex_unlock(&resource->resource_lock);
492 			return result;
493 		}
494 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
495 			resource->ref_count++;
496 			resource->wakeup_enabled = true;
497 		}
498 		if (system_level > resource->system_level)
499 			system_level = resource->system_level;
500 
501 		mutex_unlock(&resource->resource_lock);
502 	}
503 	*system_level_p = system_level;
504 	return 0;
505 }
506 
507 /* --------------------------------------------------------------------------
508                              Device Power Management
509    -------------------------------------------------------------------------- */
510 
511 /**
512  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
513  *                          ACPI 3.0) _PSW (Power State Wake)
514  * @dev: Device to handle.
515  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
516  * @sleep_state: Target sleep state of the system.
517  * @dev_state: Target power state of the device.
518  *
519  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
520  * State Wake) for the device, if present.  On failure reset the device's
521  * wakeup.flags.valid flag.
522  *
523  * RETURN VALUE:
524  * 0 if either _DSW or _PSW has been successfully executed
525  * 0 if neither _DSW nor _PSW has been found
526  * -ENODEV if the execution of either _DSW or _PSW has failed
527  */
528 int acpi_device_sleep_wake(struct acpi_device *dev,
529                            int enable, int sleep_state, int dev_state)
530 {
531 	union acpi_object in_arg[3];
532 	struct acpi_object_list arg_list = { 3, in_arg };
533 	acpi_status status = AE_OK;
534 
535 	/*
536 	 * Try to execute _DSW first.
537 	 *
538 	 * Three agruments are needed for the _DSW object:
539 	 * Argument 0: enable/disable the wake capabilities
540 	 * Argument 1: target system state
541 	 * Argument 2: target device state
542 	 * When _DSW object is called to disable the wake capabilities, maybe
543 	 * the first argument is filled. The values of the other two agruments
544 	 * are meaningless.
545 	 */
546 	in_arg[0].type = ACPI_TYPE_INTEGER;
547 	in_arg[0].integer.value = enable;
548 	in_arg[1].type = ACPI_TYPE_INTEGER;
549 	in_arg[1].integer.value = sleep_state;
550 	in_arg[2].type = ACPI_TYPE_INTEGER;
551 	in_arg[2].integer.value = dev_state;
552 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
553 	if (ACPI_SUCCESS(status)) {
554 		return 0;
555 	} else if (status != AE_NOT_FOUND) {
556 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
557 		dev->wakeup.flags.valid = 0;
558 		return -ENODEV;
559 	}
560 
561 	/* Execute _PSW */
562 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
563 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
564 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
565 		dev->wakeup.flags.valid = 0;
566 		return -ENODEV;
567 	}
568 
569 	return 0;
570 }
571 
572 /*
573  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
574  * 1. Power on the power resources required for the wakeup device
575  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
576  *    State Wake) for the device, if present
577  */
578 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
579 {
580 	struct acpi_power_resource_entry *entry;
581 	int err = 0;
582 
583 	if (!dev || !dev->wakeup.flags.valid)
584 		return -EINVAL;
585 
586 	mutex_lock(&acpi_device_lock);
587 
588 	if (dev->wakeup.prepare_count++)
589 		goto out;
590 
591 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
592 		struct acpi_power_resource *resource = entry->resource;
593 
594 		mutex_lock(&resource->resource_lock);
595 
596 		if (!resource->wakeup_enabled) {
597 			err = acpi_power_on_unlocked(resource);
598 			if (!err)
599 				resource->wakeup_enabled = true;
600 		}
601 
602 		mutex_unlock(&resource->resource_lock);
603 
604 		if (err) {
605 			dev_err(&dev->dev,
606 				"Cannot turn wakeup power resources on\n");
607 			dev->wakeup.flags.valid = 0;
608 			goto out;
609 		}
610 	}
611 	/*
612 	 * Passing 3 as the third argument below means the device may be
613 	 * put into arbitrary power state afterward.
614 	 */
615 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
616 	if (err)
617 		dev->wakeup.prepare_count = 0;
618 
619  out:
620 	mutex_unlock(&acpi_device_lock);
621 	return err;
622 }
623 
624 /*
625  * Shutdown a wakeup device, counterpart of above method
626  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
627  *    State Wake) for the device, if present
628  * 2. Shutdown down the power resources
629  */
630 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
631 {
632 	struct acpi_power_resource_entry *entry;
633 	int err = 0;
634 
635 	if (!dev || !dev->wakeup.flags.valid)
636 		return -EINVAL;
637 
638 	mutex_lock(&acpi_device_lock);
639 
640 	if (--dev->wakeup.prepare_count > 0)
641 		goto out;
642 
643 	/*
644 	 * Executing the code below even if prepare_count is already zero when
645 	 * the function is called may be useful, for example for initialisation.
646 	 */
647 	if (dev->wakeup.prepare_count < 0)
648 		dev->wakeup.prepare_count = 0;
649 
650 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
651 	if (err)
652 		goto out;
653 
654 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
655 		struct acpi_power_resource *resource = entry->resource;
656 
657 		mutex_lock(&resource->resource_lock);
658 
659 		if (resource->wakeup_enabled) {
660 			err = acpi_power_off_unlocked(resource);
661 			if (!err)
662 				resource->wakeup_enabled = false;
663 		}
664 
665 		mutex_unlock(&resource->resource_lock);
666 
667 		if (err) {
668 			dev_err(&dev->dev,
669 				"Cannot turn wakeup power resources off\n");
670 			dev->wakeup.flags.valid = 0;
671 			break;
672 		}
673 	}
674 
675  out:
676 	mutex_unlock(&acpi_device_lock);
677 	return err;
678 }
679 
680 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
681 {
682 	int result = 0;
683 	int list_state = 0;
684 	int i = 0;
685 
686 	if (!device || !state)
687 		return -EINVAL;
688 
689 	/*
690 	 * We know a device's inferred power state when all the resources
691 	 * required for a given D-state are 'on'.
692 	 */
693 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
694 		struct list_head *list = &device->power.states[i].resources;
695 
696 		if (list_empty(list))
697 			continue;
698 
699 		result = acpi_power_get_list_state(list, &list_state);
700 		if (result)
701 			return result;
702 
703 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
704 			*state = i;
705 			return 0;
706 		}
707 	}
708 
709 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
710 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
711 	return 0;
712 }
713 
714 int acpi_power_on_resources(struct acpi_device *device, int state)
715 {
716 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
717 		return -EINVAL;
718 
719 	return acpi_power_on_list(&device->power.states[state].resources);
720 }
721 
722 int acpi_power_transition(struct acpi_device *device, int state)
723 {
724 	int result = 0;
725 
726 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
727 		return -EINVAL;
728 
729 	if (device->power.state == state || !device->flags.power_manageable)
730 		return 0;
731 
732 	if ((device->power.state < ACPI_STATE_D0)
733 	    || (device->power.state > ACPI_STATE_D3_COLD))
734 		return -ENODEV;
735 
736 	/*
737 	 * First we reference all power resources required in the target list
738 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
739 	 * we dereference all power resources used in the current list.
740 	 */
741 	if (state < ACPI_STATE_D3_COLD)
742 		result = acpi_power_on_list(
743 			&device->power.states[state].resources);
744 
745 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
746 		acpi_power_off_list(
747 			&device->power.states[device->power.state].resources);
748 
749 	/* We shouldn't change the state unless the above operations succeed. */
750 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
751 
752 	return result;
753 }
754 
755 static void acpi_release_power_resource(struct device *dev)
756 {
757 	struct acpi_device *device = to_acpi_device(dev);
758 	struct acpi_power_resource *resource;
759 
760 	resource = container_of(device, struct acpi_power_resource, device);
761 
762 	mutex_lock(&power_resource_list_lock);
763 	list_del(&resource->list_node);
764 	mutex_unlock(&power_resource_list_lock);
765 
766 	acpi_free_pnp_ids(&device->pnp);
767 	kfree(resource);
768 }
769 
770 static ssize_t acpi_power_in_use_show(struct device *dev,
771 				      struct device_attribute *attr,
772 				      char *buf) {
773 	struct acpi_power_resource *resource;
774 
775 	resource = to_power_resource(to_acpi_device(dev));
776 	return sprintf(buf, "%u\n", !!resource->ref_count);
777 }
778 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
779 
780 static void acpi_power_sysfs_remove(struct acpi_device *device)
781 {
782 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
783 }
784 
785 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
786 {
787 	mutex_lock(&power_resource_list_lock);
788 
789 	if (!list_empty(&acpi_power_resource_list)) {
790 		struct acpi_power_resource *r;
791 
792 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
793 			if (r->order > resource->order) {
794 				list_add_tail(&resource->list_node, &r->list_node);
795 				goto out;
796 			}
797 	}
798 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
799 
800  out:
801 	mutex_unlock(&power_resource_list_lock);
802 }
803 
804 int acpi_add_power_resource(acpi_handle handle)
805 {
806 	struct acpi_power_resource *resource;
807 	struct acpi_device *device = NULL;
808 	union acpi_object acpi_object;
809 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
810 	acpi_status status;
811 	int state, result = -ENODEV;
812 
813 	acpi_bus_get_device(handle, &device);
814 	if (device)
815 		return 0;
816 
817 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
818 	if (!resource)
819 		return -ENOMEM;
820 
821 	device = &resource->device;
822 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
823 				ACPI_STA_DEFAULT);
824 	mutex_init(&resource->resource_lock);
825 	INIT_LIST_HEAD(&resource->list_node);
826 	resource->name = device->pnp.bus_id;
827 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
828 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
829 	device->power.state = ACPI_STATE_UNKNOWN;
830 
831 	/* Evalute the object to get the system level and resource order. */
832 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
833 	if (ACPI_FAILURE(status))
834 		goto err;
835 
836 	resource->system_level = acpi_object.power_resource.system_level;
837 	resource->order = acpi_object.power_resource.resource_order;
838 
839 	result = acpi_power_get_state(handle, &state);
840 	if (result)
841 		goto err;
842 
843 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
844 	       acpi_device_bid(device), state ? "on" : "off");
845 
846 	device->flags.match_driver = true;
847 	result = acpi_device_add(device, acpi_release_power_resource);
848 	if (result)
849 		goto err;
850 
851 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
852 		device->remove = acpi_power_sysfs_remove;
853 
854 	acpi_power_add_resource_to_list(resource);
855 	acpi_device_add_finalize(device);
856 	return 0;
857 
858  err:
859 	acpi_release_power_resource(&device->dev);
860 	return result;
861 }
862 
863 #ifdef CONFIG_ACPI_SLEEP
864 void acpi_resume_power_resources(void)
865 {
866 	struct acpi_power_resource *resource;
867 
868 	mutex_lock(&power_resource_list_lock);
869 
870 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
871 		int result, state;
872 
873 		mutex_lock(&resource->resource_lock);
874 
875 		result = acpi_power_get_state(resource->device.handle, &state);
876 		if (result) {
877 			mutex_unlock(&resource->resource_lock);
878 			continue;
879 		}
880 
881 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
882 		    && resource->ref_count) {
883 			dev_info(&resource->device.dev, "Turning ON\n");
884 			__acpi_power_on(resource);
885 		}
886 
887 		mutex_unlock(&resource->resource_lock);
888 	}
889 
890 	mutex_unlock(&power_resource_list_lock);
891 }
892 
893 void acpi_turn_off_unused_power_resources(void)
894 {
895 	struct acpi_power_resource *resource;
896 
897 	mutex_lock(&power_resource_list_lock);
898 
899 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
900 		int result, state;
901 
902 		mutex_lock(&resource->resource_lock);
903 
904 		result = acpi_power_get_state(resource->device.handle, &state);
905 		if (result) {
906 			mutex_unlock(&resource->resource_lock);
907 			continue;
908 		}
909 
910 		if (state == ACPI_POWER_RESOURCE_STATE_ON
911 		    && !resource->ref_count) {
912 			dev_info(&resource->device.dev, "Turning OFF\n");
913 			__acpi_power_off(resource);
914 		}
915 
916 		mutex_unlock(&resource->resource_lock);
917 	}
918 
919 	mutex_unlock(&power_resource_list_lock);
920 }
921 #endif
922