1 /* 2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $) 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or (at 12 * your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write to the Free Software Foundation, Inc., 21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 22 * 23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 24 */ 25 26 /* 27 * ACPI power-managed devices may be controlled in two ways: 28 * 1. via "Device Specific (D-State) Control" 29 * 2. via "Power Resource Control". 30 * This module is used to manage devices relying on Power Resource Control. 31 * 32 * An ACPI "power resource object" describes a software controllable power 33 * plane, clock plane, or other resource used by a power managed device. 34 * A device may rely on multiple power resources, and a power resource 35 * may be shared by multiple devices. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/types.h> 42 #include <linux/proc_fs.h> 43 #include <linux/seq_file.h> 44 #include <acpi/acpi_bus.h> 45 #include <acpi/acpi_drivers.h> 46 47 #include "sleep.h" 48 49 #define _COMPONENT ACPI_POWER_COMPONENT 50 ACPI_MODULE_NAME("power"); 51 #define ACPI_POWER_CLASS "power_resource" 52 #define ACPI_POWER_DEVICE_NAME "Power Resource" 53 #define ACPI_POWER_FILE_INFO "info" 54 #define ACPI_POWER_FILE_STATUS "state" 55 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 56 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 57 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 58 59 int acpi_power_nocheck; 60 module_param_named(power_nocheck, acpi_power_nocheck, bool, 000); 61 62 static int acpi_power_add(struct acpi_device *device); 63 static int acpi_power_remove(struct acpi_device *device, int type); 64 static int acpi_power_resume(struct acpi_device *device); 65 static int acpi_power_open_fs(struct inode *inode, struct file *file); 66 67 static struct acpi_device_id power_device_ids[] = { 68 {ACPI_POWER_HID, 0}, 69 {"", 0}, 70 }; 71 MODULE_DEVICE_TABLE(acpi, power_device_ids); 72 73 static struct acpi_driver acpi_power_driver = { 74 .name = "power", 75 .class = ACPI_POWER_CLASS, 76 .ids = power_device_ids, 77 .ops = { 78 .add = acpi_power_add, 79 .remove = acpi_power_remove, 80 .resume = acpi_power_resume, 81 }, 82 }; 83 84 struct acpi_power_reference { 85 struct list_head node; 86 struct acpi_device *device; 87 }; 88 89 struct acpi_power_resource { 90 struct acpi_device * device; 91 acpi_bus_id name; 92 u32 system_level; 93 u32 order; 94 struct mutex resource_lock; 95 struct list_head reference; 96 }; 97 98 static struct list_head acpi_power_resource_list; 99 100 static const struct file_operations acpi_power_fops = { 101 .owner = THIS_MODULE, 102 .open = acpi_power_open_fs, 103 .read = seq_read, 104 .llseek = seq_lseek, 105 .release = single_release, 106 }; 107 108 /* -------------------------------------------------------------------------- 109 Power Resource Management 110 -------------------------------------------------------------------------- */ 111 112 static int 113 acpi_power_get_context(acpi_handle handle, 114 struct acpi_power_resource **resource) 115 { 116 int result = 0; 117 struct acpi_device *device = NULL; 118 119 120 if (!resource) 121 return -ENODEV; 122 123 result = acpi_bus_get_device(handle, &device); 124 if (result) { 125 printk(KERN_WARNING PREFIX "Getting context [%p]\n", handle); 126 return result; 127 } 128 129 *resource = acpi_driver_data(device); 130 if (!*resource) 131 return -ENODEV; 132 133 return 0; 134 } 135 136 static int acpi_power_get_state(acpi_handle handle, int *state) 137 { 138 acpi_status status = AE_OK; 139 unsigned long long sta = 0; 140 char node_name[5]; 141 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 142 143 144 if (!handle || !state) 145 return -EINVAL; 146 147 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 148 if (ACPI_FAILURE(status)) 149 return -ENODEV; 150 151 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: 152 ACPI_POWER_RESOURCE_STATE_OFF; 153 154 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 155 156 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", 157 node_name, 158 *state ? "on" : "off")); 159 160 return 0; 161 } 162 163 static int acpi_power_get_list_state(struct acpi_handle_list *list, int *state) 164 { 165 int result = 0, state1; 166 u32 i = 0; 167 168 169 if (!list || !state) 170 return -EINVAL; 171 172 /* The state of the list is 'on' IFF all resources are 'on'. */ 173 /* */ 174 175 for (i = 0; i < list->count; i++) { 176 /* 177 * The state of the power resource can be obtained by 178 * using the ACPI handle. In such case it is unnecessary to 179 * get the Power resource first and then get its state again. 180 */ 181 result = acpi_power_get_state(list->handles[i], &state1); 182 if (result) 183 return result; 184 185 *state = state1; 186 187 if (*state != ACPI_POWER_RESOURCE_STATE_ON) 188 break; 189 } 190 191 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", 192 *state ? "on" : "off")); 193 194 return result; 195 } 196 197 static int acpi_power_on(acpi_handle handle, struct acpi_device *dev) 198 { 199 int result = 0; 200 int found = 0; 201 acpi_status status = AE_OK; 202 struct acpi_power_resource *resource = NULL; 203 struct list_head *node, *next; 204 struct acpi_power_reference *ref; 205 206 207 result = acpi_power_get_context(handle, &resource); 208 if (result) 209 return result; 210 211 mutex_lock(&resource->resource_lock); 212 list_for_each_safe(node, next, &resource->reference) { 213 ref = container_of(node, struct acpi_power_reference, node); 214 if (dev->handle == ref->device->handle) { 215 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already referenced by resource [%s]\n", 216 dev->pnp.bus_id, resource->name)); 217 found = 1; 218 break; 219 } 220 } 221 222 if (!found) { 223 ref = kmalloc(sizeof (struct acpi_power_reference), 224 irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL); 225 if (!ref) { 226 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "kmalloc() failed\n")); 227 mutex_unlock(&resource->resource_lock); 228 return -ENOMEM; 229 } 230 list_add_tail(&ref->node, &resource->reference); 231 ref->device = dev; 232 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] added to resource [%s] references\n", 233 dev->pnp.bus_id, resource->name)); 234 } 235 mutex_unlock(&resource->resource_lock); 236 237 status = acpi_evaluate_object(resource->device->handle, "_ON", NULL, NULL); 238 if (ACPI_FAILURE(status)) 239 return -ENODEV; 240 241 /* Update the power resource's _device_ power state */ 242 resource->device->power.state = ACPI_STATE_D0; 243 244 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] turned on\n", 245 resource->name)); 246 return 0; 247 } 248 249 static int acpi_power_off_device(acpi_handle handle, struct acpi_device *dev) 250 { 251 int result = 0; 252 acpi_status status = AE_OK; 253 struct acpi_power_resource *resource = NULL; 254 struct list_head *node, *next; 255 struct acpi_power_reference *ref; 256 257 258 result = acpi_power_get_context(handle, &resource); 259 if (result) 260 return result; 261 262 mutex_lock(&resource->resource_lock); 263 list_for_each_safe(node, next, &resource->reference) { 264 ref = container_of(node, struct acpi_power_reference, node); 265 if (dev->handle == ref->device->handle) { 266 list_del(&ref->node); 267 kfree(ref); 268 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] removed from resource [%s] references\n", 269 dev->pnp.bus_id, resource->name)); 270 break; 271 } 272 } 273 274 if (!list_empty(&resource->reference)) { 275 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cannot turn resource [%s] off - resource is in use\n", 276 resource->name)); 277 mutex_unlock(&resource->resource_lock); 278 return 0; 279 } 280 mutex_unlock(&resource->resource_lock); 281 282 status = acpi_evaluate_object(resource->device->handle, "_OFF", NULL, NULL); 283 if (ACPI_FAILURE(status)) 284 return -ENODEV; 285 286 /* Update the power resource's _device_ power state */ 287 resource->device->power.state = ACPI_STATE_D3; 288 289 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] turned off\n", 290 resource->name)); 291 292 return 0; 293 } 294 295 /** 296 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 297 * ACPI 3.0) _PSW (Power State Wake) 298 * @dev: Device to handle. 299 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 300 * @sleep_state: Target sleep state of the system. 301 * @dev_state: Target power state of the device. 302 * 303 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 304 * State Wake) for the device, if present. On failure reset the device's 305 * wakeup.flags.valid flag. 306 * 307 * RETURN VALUE: 308 * 0 if either _DSW or _PSW has been successfully executed 309 * 0 if neither _DSW nor _PSW has been found 310 * -ENODEV if the execution of either _DSW or _PSW has failed 311 */ 312 int acpi_device_sleep_wake(struct acpi_device *dev, 313 int enable, int sleep_state, int dev_state) 314 { 315 union acpi_object in_arg[3]; 316 struct acpi_object_list arg_list = { 3, in_arg }; 317 acpi_status status = AE_OK; 318 319 /* 320 * Try to execute _DSW first. 321 * 322 * Three agruments are needed for the _DSW object: 323 * Argument 0: enable/disable the wake capabilities 324 * Argument 1: target system state 325 * Argument 2: target device state 326 * When _DSW object is called to disable the wake capabilities, maybe 327 * the first argument is filled. The values of the other two agruments 328 * are meaningless. 329 */ 330 in_arg[0].type = ACPI_TYPE_INTEGER; 331 in_arg[0].integer.value = enable; 332 in_arg[1].type = ACPI_TYPE_INTEGER; 333 in_arg[1].integer.value = sleep_state; 334 in_arg[2].type = ACPI_TYPE_INTEGER; 335 in_arg[2].integer.value = dev_state; 336 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 337 if (ACPI_SUCCESS(status)) { 338 return 0; 339 } else if (status != AE_NOT_FOUND) { 340 printk(KERN_ERR PREFIX "_DSW execution failed\n"); 341 dev->wakeup.flags.valid = 0; 342 return -ENODEV; 343 } 344 345 /* Execute _PSW */ 346 arg_list.count = 1; 347 in_arg[0].integer.value = enable; 348 status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL); 349 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 350 printk(KERN_ERR PREFIX "_PSW execution failed\n"); 351 dev->wakeup.flags.valid = 0; 352 return -ENODEV; 353 } 354 355 return 0; 356 } 357 358 /* 359 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 360 * 1. Power on the power resources required for the wakeup device 361 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 362 * State Wake) for the device, if present 363 */ 364 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 365 { 366 int i, err = 0; 367 368 if (!dev || !dev->wakeup.flags.valid) 369 return -EINVAL; 370 371 mutex_lock(&acpi_device_lock); 372 373 if (dev->wakeup.prepare_count++) 374 goto out; 375 376 /* Open power resource */ 377 for (i = 0; i < dev->wakeup.resources.count; i++) { 378 int ret = acpi_power_on(dev->wakeup.resources.handles[i], dev); 379 if (ret) { 380 printk(KERN_ERR PREFIX "Transition power state\n"); 381 dev->wakeup.flags.valid = 0; 382 err = -ENODEV; 383 goto err_out; 384 } 385 } 386 387 /* 388 * Passing 3 as the third argument below means the device may be placed 389 * in arbitrary power state afterwards. 390 */ 391 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 392 393 err_out: 394 if (err) 395 dev->wakeup.prepare_count = 0; 396 397 out: 398 mutex_unlock(&acpi_device_lock); 399 return err; 400 } 401 402 /* 403 * Shutdown a wakeup device, counterpart of above method 404 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 405 * State Wake) for the device, if present 406 * 2. Shutdown down the power resources 407 */ 408 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 409 { 410 int i, err = 0; 411 412 if (!dev || !dev->wakeup.flags.valid) 413 return -EINVAL; 414 415 mutex_lock(&acpi_device_lock); 416 417 if (--dev->wakeup.prepare_count > 0) 418 goto out; 419 420 /* 421 * Executing the code below even if prepare_count is already zero when 422 * the function is called may be useful, for example for initialisation. 423 */ 424 if (dev->wakeup.prepare_count < 0) 425 dev->wakeup.prepare_count = 0; 426 427 err = acpi_device_sleep_wake(dev, 0, 0, 0); 428 if (err) 429 goto out; 430 431 /* Close power resource */ 432 for (i = 0; i < dev->wakeup.resources.count; i++) { 433 int ret = acpi_power_off_device( 434 dev->wakeup.resources.handles[i], dev); 435 if (ret) { 436 printk(KERN_ERR PREFIX "Transition power state\n"); 437 dev->wakeup.flags.valid = 0; 438 err = -ENODEV; 439 goto out; 440 } 441 } 442 443 out: 444 mutex_unlock(&acpi_device_lock); 445 return err; 446 } 447 448 /* -------------------------------------------------------------------------- 449 Device Power Management 450 -------------------------------------------------------------------------- */ 451 452 int acpi_power_get_inferred_state(struct acpi_device *device) 453 { 454 int result = 0; 455 struct acpi_handle_list *list = NULL; 456 int list_state = 0; 457 int i = 0; 458 459 460 if (!device) 461 return -EINVAL; 462 463 device->power.state = ACPI_STATE_UNKNOWN; 464 465 /* 466 * We know a device's inferred power state when all the resources 467 * required for a given D-state are 'on'. 468 */ 469 for (i = ACPI_STATE_D0; i < ACPI_STATE_D3; i++) { 470 list = &device->power.states[i].resources; 471 if (list->count < 1) 472 continue; 473 474 result = acpi_power_get_list_state(list, &list_state); 475 if (result) 476 return result; 477 478 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 479 device->power.state = i; 480 return 0; 481 } 482 } 483 484 device->power.state = ACPI_STATE_D3; 485 486 return 0; 487 } 488 489 int acpi_power_transition(struct acpi_device *device, int state) 490 { 491 int result = 0; 492 struct acpi_handle_list *cl = NULL; /* Current Resources */ 493 struct acpi_handle_list *tl = NULL; /* Target Resources */ 494 int i = 0; 495 496 497 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3)) 498 return -EINVAL; 499 500 if ((device->power.state < ACPI_STATE_D0) 501 || (device->power.state > ACPI_STATE_D3)) 502 return -ENODEV; 503 504 cl = &device->power.states[device->power.state].resources; 505 tl = &device->power.states[state].resources; 506 507 /* TBD: Resources must be ordered. */ 508 509 /* 510 * First we reference all power resources required in the target list 511 * (e.g. so the device doesn't lose power while transitioning). 512 */ 513 for (i = 0; i < tl->count; i++) { 514 result = acpi_power_on(tl->handles[i], device); 515 if (result) 516 goto end; 517 } 518 519 if (device->power.state == state) { 520 goto end; 521 } 522 523 /* 524 * Then we dereference all power resources used in the current list. 525 */ 526 for (i = 0; i < cl->count; i++) { 527 result = acpi_power_off_device(cl->handles[i], device); 528 if (result) 529 goto end; 530 } 531 532 end: 533 if (result) 534 device->power.state = ACPI_STATE_UNKNOWN; 535 else { 536 /* We shouldn't change the state till all above operations succeed */ 537 device->power.state = state; 538 } 539 540 return result; 541 } 542 543 /* -------------------------------------------------------------------------- 544 FS Interface (/proc) 545 -------------------------------------------------------------------------- */ 546 547 static struct proc_dir_entry *acpi_power_dir; 548 549 static int acpi_power_seq_show(struct seq_file *seq, void *offset) 550 { 551 int count = 0; 552 int result = 0, state; 553 struct acpi_power_resource *resource = NULL; 554 struct list_head *node, *next; 555 struct acpi_power_reference *ref; 556 557 558 resource = seq->private; 559 560 if (!resource) 561 goto end; 562 563 result = acpi_power_get_state(resource->device->handle, &state); 564 if (result) 565 goto end; 566 567 seq_puts(seq, "state: "); 568 switch (state) { 569 case ACPI_POWER_RESOURCE_STATE_ON: 570 seq_puts(seq, "on\n"); 571 break; 572 case ACPI_POWER_RESOURCE_STATE_OFF: 573 seq_puts(seq, "off\n"); 574 break; 575 default: 576 seq_puts(seq, "unknown\n"); 577 break; 578 } 579 580 mutex_lock(&resource->resource_lock); 581 list_for_each_safe(node, next, &resource->reference) { 582 ref = container_of(node, struct acpi_power_reference, node); 583 count++; 584 } 585 mutex_unlock(&resource->resource_lock); 586 587 seq_printf(seq, "system level: S%d\n" 588 "order: %d\n" 589 "reference count: %d\n", 590 resource->system_level, 591 resource->order, count); 592 593 end: 594 return 0; 595 } 596 597 static int acpi_power_open_fs(struct inode *inode, struct file *file) 598 { 599 return single_open(file, acpi_power_seq_show, PDE(inode)->data); 600 } 601 602 static int acpi_power_add_fs(struct acpi_device *device) 603 { 604 struct proc_dir_entry *entry = NULL; 605 606 607 if (!device) 608 return -EINVAL; 609 610 if (!acpi_device_dir(device)) { 611 acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device), 612 acpi_power_dir); 613 if (!acpi_device_dir(device)) 614 return -ENODEV; 615 } 616 617 /* 'status' [R] */ 618 entry = proc_create_data(ACPI_POWER_FILE_STATUS, 619 S_IRUGO, acpi_device_dir(device), 620 &acpi_power_fops, acpi_driver_data(device)); 621 if (!entry) 622 return -EIO; 623 return 0; 624 } 625 626 static int acpi_power_remove_fs(struct acpi_device *device) 627 { 628 629 if (acpi_device_dir(device)) { 630 remove_proc_entry(ACPI_POWER_FILE_STATUS, 631 acpi_device_dir(device)); 632 remove_proc_entry(acpi_device_bid(device), acpi_power_dir); 633 acpi_device_dir(device) = NULL; 634 } 635 636 return 0; 637 } 638 639 /* -------------------------------------------------------------------------- 640 Driver Interface 641 -------------------------------------------------------------------------- */ 642 643 static int acpi_power_add(struct acpi_device *device) 644 { 645 int result = 0, state; 646 acpi_status status = AE_OK; 647 struct acpi_power_resource *resource = NULL; 648 union acpi_object acpi_object; 649 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 650 651 652 if (!device) 653 return -EINVAL; 654 655 resource = kzalloc(sizeof(struct acpi_power_resource), GFP_KERNEL); 656 if (!resource) 657 return -ENOMEM; 658 659 resource->device = device; 660 mutex_init(&resource->resource_lock); 661 INIT_LIST_HEAD(&resource->reference); 662 strcpy(resource->name, device->pnp.bus_id); 663 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 664 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 665 device->driver_data = resource; 666 667 /* Evalute the object to get the system level and resource order. */ 668 status = acpi_evaluate_object(device->handle, NULL, NULL, &buffer); 669 if (ACPI_FAILURE(status)) { 670 result = -ENODEV; 671 goto end; 672 } 673 resource->system_level = acpi_object.power_resource.system_level; 674 resource->order = acpi_object.power_resource.resource_order; 675 676 result = acpi_power_get_state(device->handle, &state); 677 if (result) 678 goto end; 679 680 switch (state) { 681 case ACPI_POWER_RESOURCE_STATE_ON: 682 device->power.state = ACPI_STATE_D0; 683 break; 684 case ACPI_POWER_RESOURCE_STATE_OFF: 685 device->power.state = ACPI_STATE_D3; 686 break; 687 default: 688 device->power.state = ACPI_STATE_UNKNOWN; 689 break; 690 } 691 692 result = acpi_power_add_fs(device); 693 if (result) 694 goto end; 695 696 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), 697 acpi_device_bid(device), state ? "on" : "off"); 698 699 end: 700 if (result) 701 kfree(resource); 702 703 return result; 704 } 705 706 static int acpi_power_remove(struct acpi_device *device, int type) 707 { 708 struct acpi_power_resource *resource = NULL; 709 struct list_head *node, *next; 710 711 712 if (!device || !acpi_driver_data(device)) 713 return -EINVAL; 714 715 resource = acpi_driver_data(device); 716 717 acpi_power_remove_fs(device); 718 719 mutex_lock(&resource->resource_lock); 720 list_for_each_safe(node, next, &resource->reference) { 721 struct acpi_power_reference *ref = container_of(node, struct acpi_power_reference, node); 722 list_del(&ref->node); 723 kfree(ref); 724 } 725 mutex_unlock(&resource->resource_lock); 726 727 kfree(resource); 728 729 return 0; 730 } 731 732 static int acpi_power_resume(struct acpi_device *device) 733 { 734 int result = 0, state; 735 struct acpi_power_resource *resource = NULL; 736 struct acpi_power_reference *ref; 737 738 if (!device || !acpi_driver_data(device)) 739 return -EINVAL; 740 741 resource = acpi_driver_data(device); 742 743 result = acpi_power_get_state(device->handle, &state); 744 if (result) 745 return result; 746 747 mutex_lock(&resource->resource_lock); 748 if (state == ACPI_POWER_RESOURCE_STATE_OFF && 749 !list_empty(&resource->reference)) { 750 ref = container_of(resource->reference.next, struct acpi_power_reference, node); 751 mutex_unlock(&resource->resource_lock); 752 result = acpi_power_on(device->handle, ref->device); 753 return result; 754 } 755 756 mutex_unlock(&resource->resource_lock); 757 return 0; 758 } 759 760 int __init acpi_power_init(void) 761 { 762 int result = 0; 763 764 INIT_LIST_HEAD(&acpi_power_resource_list); 765 766 acpi_power_dir = proc_mkdir(ACPI_POWER_CLASS, acpi_root_dir); 767 if (!acpi_power_dir) 768 return -ENODEV; 769 770 result = acpi_bus_register_driver(&acpi_power_driver); 771 if (result < 0) { 772 remove_proc_entry(ACPI_POWER_CLASS, acpi_root_dir); 773 return -ENODEV; 774 } 775 776 return 0; 777 } 778