xref: /linux/drivers/acpi/power.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *  acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or (at
12  *  your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful, but
15  *  WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  *  General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22  *
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  */
25 
26 /*
27  * ACPI power-managed devices may be controlled in two ways:
28  * 1. via "Device Specific (D-State) Control"
29  * 2. via "Power Resource Control".
30  * This module is used to manage devices relying on Power Resource Control.
31  *
32  * An ACPI "power resource object" describes a software controllable power
33  * plane, clock plane, or other resource used by a power managed device.
34  * A device may rely on multiple power resources, and a power resource
35  * may be shared by multiple devices.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <acpi/acpi_bus.h>
45 #include <acpi/acpi_drivers.h>
46 
47 #include "sleep.h"
48 
49 #define _COMPONENT			ACPI_POWER_COMPONENT
50 ACPI_MODULE_NAME("power");
51 #define ACPI_POWER_CLASS		"power_resource"
52 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
53 #define ACPI_POWER_FILE_INFO		"info"
54 #define ACPI_POWER_FILE_STATUS		"state"
55 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
56 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
57 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
58 
59 int acpi_power_nocheck;
60 module_param_named(power_nocheck, acpi_power_nocheck, bool, 000);
61 
62 static int acpi_power_add(struct acpi_device *device);
63 static int acpi_power_remove(struct acpi_device *device, int type);
64 static int acpi_power_resume(struct acpi_device *device);
65 static int acpi_power_open_fs(struct inode *inode, struct file *file);
66 
67 static struct acpi_device_id power_device_ids[] = {
68 	{ACPI_POWER_HID, 0},
69 	{"", 0},
70 };
71 MODULE_DEVICE_TABLE(acpi, power_device_ids);
72 
73 static struct acpi_driver acpi_power_driver = {
74 	.name = "power",
75 	.class = ACPI_POWER_CLASS,
76 	.ids = power_device_ids,
77 	.ops = {
78 		.add = acpi_power_add,
79 		.remove = acpi_power_remove,
80 		.resume = acpi_power_resume,
81 		},
82 };
83 
84 struct acpi_power_reference {
85 	struct list_head node;
86 	struct acpi_device *device;
87 };
88 
89 struct acpi_power_resource {
90 	struct acpi_device * device;
91 	acpi_bus_id name;
92 	u32 system_level;
93 	u32 order;
94 	struct mutex resource_lock;
95 	struct list_head reference;
96 };
97 
98 static struct list_head acpi_power_resource_list;
99 
100 static const struct file_operations acpi_power_fops = {
101 	.owner = THIS_MODULE,
102 	.open = acpi_power_open_fs,
103 	.read = seq_read,
104 	.llseek = seq_lseek,
105 	.release = single_release,
106 };
107 
108 /* --------------------------------------------------------------------------
109                              Power Resource Management
110    -------------------------------------------------------------------------- */
111 
112 static int
113 acpi_power_get_context(acpi_handle handle,
114 		       struct acpi_power_resource **resource)
115 {
116 	int result = 0;
117 	struct acpi_device *device = NULL;
118 
119 
120 	if (!resource)
121 		return -ENODEV;
122 
123 	result = acpi_bus_get_device(handle, &device);
124 	if (result) {
125 		printk(KERN_WARNING PREFIX "Getting context [%p]\n", handle);
126 		return result;
127 	}
128 
129 	*resource = acpi_driver_data(device);
130 	if (!*resource)
131 		return -ENODEV;
132 
133 	return 0;
134 }
135 
136 static int acpi_power_get_state(acpi_handle handle, int *state)
137 {
138 	acpi_status status = AE_OK;
139 	unsigned long long sta = 0;
140 	char node_name[5];
141 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
142 
143 
144 	if (!handle || !state)
145 		return -EINVAL;
146 
147 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
148 	if (ACPI_FAILURE(status))
149 		return -ENODEV;
150 
151 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
152 			      ACPI_POWER_RESOURCE_STATE_OFF;
153 
154 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
155 
156 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
157 			  node_name,
158 				*state ? "on" : "off"));
159 
160 	return 0;
161 }
162 
163 static int acpi_power_get_list_state(struct acpi_handle_list *list, int *state)
164 {
165 	int result = 0, state1;
166 	u32 i = 0;
167 
168 
169 	if (!list || !state)
170 		return -EINVAL;
171 
172 	/* The state of the list is 'on' IFF all resources are 'on'. */
173 	/* */
174 
175 	for (i = 0; i < list->count; i++) {
176 		/*
177 		 * The state of the power resource can be obtained by
178 		 * using the ACPI handle. In such case it is unnecessary to
179 		 * get the Power resource first and then get its state again.
180 		 */
181 		result = acpi_power_get_state(list->handles[i], &state1);
182 		if (result)
183 			return result;
184 
185 		*state = state1;
186 
187 		if (*state != ACPI_POWER_RESOURCE_STATE_ON)
188 			break;
189 	}
190 
191 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
192 			  *state ? "on" : "off"));
193 
194 	return result;
195 }
196 
197 static int acpi_power_on(acpi_handle handle, struct acpi_device *dev)
198 {
199 	int result = 0;
200 	int found = 0;
201 	acpi_status status = AE_OK;
202 	struct acpi_power_resource *resource = NULL;
203 	struct list_head *node, *next;
204 	struct acpi_power_reference *ref;
205 
206 
207 	result = acpi_power_get_context(handle, &resource);
208 	if (result)
209 		return result;
210 
211 	mutex_lock(&resource->resource_lock);
212 	list_for_each_safe(node, next, &resource->reference) {
213 		ref = container_of(node, struct acpi_power_reference, node);
214 		if (dev->handle == ref->device->handle) {
215 			ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already referenced by resource [%s]\n",
216 				  dev->pnp.bus_id, resource->name));
217 			found = 1;
218 			break;
219 		}
220 	}
221 
222 	if (!found) {
223 		ref = kmalloc(sizeof (struct acpi_power_reference),
224 		    irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL);
225 		if (!ref) {
226 			ACPI_DEBUG_PRINT((ACPI_DB_INFO, "kmalloc() failed\n"));
227 			mutex_unlock(&resource->resource_lock);
228 			return -ENOMEM;
229 		}
230 		list_add_tail(&ref->node, &resource->reference);
231 		ref->device = dev;
232 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] added to resource [%s] references\n",
233 			  dev->pnp.bus_id, resource->name));
234 	}
235 	mutex_unlock(&resource->resource_lock);
236 
237 	status = acpi_evaluate_object(resource->device->handle, "_ON", NULL, NULL);
238 	if (ACPI_FAILURE(status))
239 		return -ENODEV;
240 
241 	/* Update the power resource's _device_ power state */
242 	resource->device->power.state = ACPI_STATE_D0;
243 
244 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] turned on\n",
245 			  resource->name));
246 	return 0;
247 }
248 
249 static int acpi_power_off_device(acpi_handle handle, struct acpi_device *dev)
250 {
251 	int result = 0;
252 	acpi_status status = AE_OK;
253 	struct acpi_power_resource *resource = NULL;
254 	struct list_head *node, *next;
255 	struct acpi_power_reference *ref;
256 
257 
258 	result = acpi_power_get_context(handle, &resource);
259 	if (result)
260 		return result;
261 
262 	mutex_lock(&resource->resource_lock);
263 	list_for_each_safe(node, next, &resource->reference) {
264 		ref = container_of(node, struct acpi_power_reference, node);
265 		if (dev->handle == ref->device->handle) {
266 			list_del(&ref->node);
267 			kfree(ref);
268 			ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] removed from resource [%s] references\n",
269 			    dev->pnp.bus_id, resource->name));
270 			break;
271 		}
272 	}
273 
274 	if (!list_empty(&resource->reference)) {
275 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Cannot turn resource [%s] off - resource is in use\n",
276 		    resource->name));
277 		mutex_unlock(&resource->resource_lock);
278 		return 0;
279 	}
280 	mutex_unlock(&resource->resource_lock);
281 
282 	status = acpi_evaluate_object(resource->device->handle, "_OFF", NULL, NULL);
283 	if (ACPI_FAILURE(status))
284 		return -ENODEV;
285 
286 	/* Update the power resource's _device_ power state */
287 	resource->device->power.state = ACPI_STATE_D3;
288 
289 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] turned off\n",
290 			  resource->name));
291 
292 	return 0;
293 }
294 
295 /**
296  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
297  *                          ACPI 3.0) _PSW (Power State Wake)
298  * @dev: Device to handle.
299  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
300  * @sleep_state: Target sleep state of the system.
301  * @dev_state: Target power state of the device.
302  *
303  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
304  * State Wake) for the device, if present.  On failure reset the device's
305  * wakeup.flags.valid flag.
306  *
307  * RETURN VALUE:
308  * 0 if either _DSW or _PSW has been successfully executed
309  * 0 if neither _DSW nor _PSW has been found
310  * -ENODEV if the execution of either _DSW or _PSW has failed
311  */
312 int acpi_device_sleep_wake(struct acpi_device *dev,
313                            int enable, int sleep_state, int dev_state)
314 {
315 	union acpi_object in_arg[3];
316 	struct acpi_object_list arg_list = { 3, in_arg };
317 	acpi_status status = AE_OK;
318 
319 	/*
320 	 * Try to execute _DSW first.
321 	 *
322 	 * Three agruments are needed for the _DSW object:
323 	 * Argument 0: enable/disable the wake capabilities
324 	 * Argument 1: target system state
325 	 * Argument 2: target device state
326 	 * When _DSW object is called to disable the wake capabilities, maybe
327 	 * the first argument is filled. The values of the other two agruments
328 	 * are meaningless.
329 	 */
330 	in_arg[0].type = ACPI_TYPE_INTEGER;
331 	in_arg[0].integer.value = enable;
332 	in_arg[1].type = ACPI_TYPE_INTEGER;
333 	in_arg[1].integer.value = sleep_state;
334 	in_arg[2].type = ACPI_TYPE_INTEGER;
335 	in_arg[2].integer.value = dev_state;
336 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
337 	if (ACPI_SUCCESS(status)) {
338 		return 0;
339 	} else if (status != AE_NOT_FOUND) {
340 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
341 		dev->wakeup.flags.valid = 0;
342 		return -ENODEV;
343 	}
344 
345 	/* Execute _PSW */
346 	arg_list.count = 1;
347 	in_arg[0].integer.value = enable;
348 	status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL);
349 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
350 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
351 		dev->wakeup.flags.valid = 0;
352 		return -ENODEV;
353 	}
354 
355 	return 0;
356 }
357 
358 /*
359  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
360  * 1. Power on the power resources required for the wakeup device
361  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
362  *    State Wake) for the device, if present
363  */
364 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
365 {
366 	int i, err = 0;
367 
368 	if (!dev || !dev->wakeup.flags.valid)
369 		return -EINVAL;
370 
371 	mutex_lock(&acpi_device_lock);
372 
373 	if (dev->wakeup.prepare_count++)
374 		goto out;
375 
376 	/* Open power resource */
377 	for (i = 0; i < dev->wakeup.resources.count; i++) {
378 		int ret = acpi_power_on(dev->wakeup.resources.handles[i], dev);
379 		if (ret) {
380 			printk(KERN_ERR PREFIX "Transition power state\n");
381 			dev->wakeup.flags.valid = 0;
382 			err = -ENODEV;
383 			goto err_out;
384 		}
385 	}
386 
387 	/*
388 	 * Passing 3 as the third argument below means the device may be placed
389 	 * in arbitrary power state afterwards.
390 	 */
391 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
392 
393  err_out:
394 	if (err)
395 		dev->wakeup.prepare_count = 0;
396 
397  out:
398 	mutex_unlock(&acpi_device_lock);
399 	return err;
400 }
401 
402 /*
403  * Shutdown a wakeup device, counterpart of above method
404  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
405  *    State Wake) for the device, if present
406  * 2. Shutdown down the power resources
407  */
408 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
409 {
410 	int i, err = 0;
411 
412 	if (!dev || !dev->wakeup.flags.valid)
413 		return -EINVAL;
414 
415 	mutex_lock(&acpi_device_lock);
416 
417 	if (--dev->wakeup.prepare_count > 0)
418 		goto out;
419 
420 	/*
421 	 * Executing the code below even if prepare_count is already zero when
422 	 * the function is called may be useful, for example for initialisation.
423 	 */
424 	if (dev->wakeup.prepare_count < 0)
425 		dev->wakeup.prepare_count = 0;
426 
427 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
428 	if (err)
429 		goto out;
430 
431 	/* Close power resource */
432 	for (i = 0; i < dev->wakeup.resources.count; i++) {
433 		int ret = acpi_power_off_device(
434 				dev->wakeup.resources.handles[i], dev);
435 		if (ret) {
436 			printk(KERN_ERR PREFIX "Transition power state\n");
437 			dev->wakeup.flags.valid = 0;
438 			err = -ENODEV;
439 			goto out;
440 		}
441 	}
442 
443  out:
444 	mutex_unlock(&acpi_device_lock);
445 	return err;
446 }
447 
448 /* --------------------------------------------------------------------------
449                              Device Power Management
450    -------------------------------------------------------------------------- */
451 
452 int acpi_power_get_inferred_state(struct acpi_device *device)
453 {
454 	int result = 0;
455 	struct acpi_handle_list *list = NULL;
456 	int list_state = 0;
457 	int i = 0;
458 
459 
460 	if (!device)
461 		return -EINVAL;
462 
463 	device->power.state = ACPI_STATE_UNKNOWN;
464 
465 	/*
466 	 * We know a device's inferred power state when all the resources
467 	 * required for a given D-state are 'on'.
468 	 */
469 	for (i = ACPI_STATE_D0; i < ACPI_STATE_D3; i++) {
470 		list = &device->power.states[i].resources;
471 		if (list->count < 1)
472 			continue;
473 
474 		result = acpi_power_get_list_state(list, &list_state);
475 		if (result)
476 			return result;
477 
478 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
479 			device->power.state = i;
480 			return 0;
481 		}
482 	}
483 
484 	device->power.state = ACPI_STATE_D3;
485 
486 	return 0;
487 }
488 
489 int acpi_power_transition(struct acpi_device *device, int state)
490 {
491 	int result = 0;
492 	struct acpi_handle_list *cl = NULL;	/* Current Resources */
493 	struct acpi_handle_list *tl = NULL;	/* Target Resources */
494 	int i = 0;
495 
496 
497 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3))
498 		return -EINVAL;
499 
500 	if ((device->power.state < ACPI_STATE_D0)
501 	    || (device->power.state > ACPI_STATE_D3))
502 		return -ENODEV;
503 
504 	cl = &device->power.states[device->power.state].resources;
505 	tl = &device->power.states[state].resources;
506 
507 	/* TBD: Resources must be ordered. */
508 
509 	/*
510 	 * First we reference all power resources required in the target list
511 	 * (e.g. so the device doesn't lose power while transitioning).
512 	 */
513 	for (i = 0; i < tl->count; i++) {
514 		result = acpi_power_on(tl->handles[i], device);
515 		if (result)
516 			goto end;
517 	}
518 
519 	if (device->power.state == state) {
520 		goto end;
521 	}
522 
523 	/*
524 	 * Then we dereference all power resources used in the current list.
525 	 */
526 	for (i = 0; i < cl->count; i++) {
527 		result = acpi_power_off_device(cl->handles[i], device);
528 		if (result)
529 			goto end;
530 	}
531 
532      end:
533 	if (result)
534 		device->power.state = ACPI_STATE_UNKNOWN;
535 	else {
536 	/* We shouldn't change the state till all above operations succeed */
537 		device->power.state = state;
538 	}
539 
540 	return result;
541 }
542 
543 /* --------------------------------------------------------------------------
544                               FS Interface (/proc)
545    -------------------------------------------------------------------------- */
546 
547 static struct proc_dir_entry *acpi_power_dir;
548 
549 static int acpi_power_seq_show(struct seq_file *seq, void *offset)
550 {
551 	int count = 0;
552 	int result = 0, state;
553 	struct acpi_power_resource *resource = NULL;
554 	struct list_head *node, *next;
555 	struct acpi_power_reference *ref;
556 
557 
558 	resource = seq->private;
559 
560 	if (!resource)
561 		goto end;
562 
563 	result = acpi_power_get_state(resource->device->handle, &state);
564 	if (result)
565 		goto end;
566 
567 	seq_puts(seq, "state:                   ");
568 	switch (state) {
569 	case ACPI_POWER_RESOURCE_STATE_ON:
570 		seq_puts(seq, "on\n");
571 		break;
572 	case ACPI_POWER_RESOURCE_STATE_OFF:
573 		seq_puts(seq, "off\n");
574 		break;
575 	default:
576 		seq_puts(seq, "unknown\n");
577 		break;
578 	}
579 
580 	mutex_lock(&resource->resource_lock);
581 	list_for_each_safe(node, next, &resource->reference) {
582 		ref = container_of(node, struct acpi_power_reference, node);
583 		count++;
584 	}
585 	mutex_unlock(&resource->resource_lock);
586 
587 	seq_printf(seq, "system level:            S%d\n"
588 		   "order:                   %d\n"
589 		   "reference count:         %d\n",
590 		   resource->system_level,
591 		   resource->order, count);
592 
593       end:
594 	return 0;
595 }
596 
597 static int acpi_power_open_fs(struct inode *inode, struct file *file)
598 {
599 	return single_open(file, acpi_power_seq_show, PDE(inode)->data);
600 }
601 
602 static int acpi_power_add_fs(struct acpi_device *device)
603 {
604 	struct proc_dir_entry *entry = NULL;
605 
606 
607 	if (!device)
608 		return -EINVAL;
609 
610 	if (!acpi_device_dir(device)) {
611 		acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device),
612 						     acpi_power_dir);
613 		if (!acpi_device_dir(device))
614 			return -ENODEV;
615 	}
616 
617 	/* 'status' [R] */
618 	entry = proc_create_data(ACPI_POWER_FILE_STATUS,
619 				 S_IRUGO, acpi_device_dir(device),
620 				 &acpi_power_fops, acpi_driver_data(device));
621 	if (!entry)
622 		return -EIO;
623 	return 0;
624 }
625 
626 static int acpi_power_remove_fs(struct acpi_device *device)
627 {
628 
629 	if (acpi_device_dir(device)) {
630 		remove_proc_entry(ACPI_POWER_FILE_STATUS,
631 				  acpi_device_dir(device));
632 		remove_proc_entry(acpi_device_bid(device), acpi_power_dir);
633 		acpi_device_dir(device) = NULL;
634 	}
635 
636 	return 0;
637 }
638 
639 /* --------------------------------------------------------------------------
640                                 Driver Interface
641    -------------------------------------------------------------------------- */
642 
643 static int acpi_power_add(struct acpi_device *device)
644 {
645 	int result = 0, state;
646 	acpi_status status = AE_OK;
647 	struct acpi_power_resource *resource = NULL;
648 	union acpi_object acpi_object;
649 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
650 
651 
652 	if (!device)
653 		return -EINVAL;
654 
655 	resource = kzalloc(sizeof(struct acpi_power_resource), GFP_KERNEL);
656 	if (!resource)
657 		return -ENOMEM;
658 
659 	resource->device = device;
660 	mutex_init(&resource->resource_lock);
661 	INIT_LIST_HEAD(&resource->reference);
662 	strcpy(resource->name, device->pnp.bus_id);
663 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
664 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
665 	device->driver_data = resource;
666 
667 	/* Evalute the object to get the system level and resource order. */
668 	status = acpi_evaluate_object(device->handle, NULL, NULL, &buffer);
669 	if (ACPI_FAILURE(status)) {
670 		result = -ENODEV;
671 		goto end;
672 	}
673 	resource->system_level = acpi_object.power_resource.system_level;
674 	resource->order = acpi_object.power_resource.resource_order;
675 
676 	result = acpi_power_get_state(device->handle, &state);
677 	if (result)
678 		goto end;
679 
680 	switch (state) {
681 	case ACPI_POWER_RESOURCE_STATE_ON:
682 		device->power.state = ACPI_STATE_D0;
683 		break;
684 	case ACPI_POWER_RESOURCE_STATE_OFF:
685 		device->power.state = ACPI_STATE_D3;
686 		break;
687 	default:
688 		device->power.state = ACPI_STATE_UNKNOWN;
689 		break;
690 	}
691 
692 	result = acpi_power_add_fs(device);
693 	if (result)
694 		goto end;
695 
696 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
697 	       acpi_device_bid(device), state ? "on" : "off");
698 
699       end:
700 	if (result)
701 		kfree(resource);
702 
703 	return result;
704 }
705 
706 static int acpi_power_remove(struct acpi_device *device, int type)
707 {
708 	struct acpi_power_resource *resource = NULL;
709 	struct list_head *node, *next;
710 
711 
712 	if (!device || !acpi_driver_data(device))
713 		return -EINVAL;
714 
715 	resource = acpi_driver_data(device);
716 
717 	acpi_power_remove_fs(device);
718 
719 	mutex_lock(&resource->resource_lock);
720 	list_for_each_safe(node, next, &resource->reference) {
721 		struct acpi_power_reference *ref = container_of(node, struct acpi_power_reference, node);
722 		list_del(&ref->node);
723 		kfree(ref);
724 	}
725 	mutex_unlock(&resource->resource_lock);
726 
727 	kfree(resource);
728 
729 	return 0;
730 }
731 
732 static int acpi_power_resume(struct acpi_device *device)
733 {
734 	int result = 0, state;
735 	struct acpi_power_resource *resource = NULL;
736 	struct acpi_power_reference *ref;
737 
738 	if (!device || !acpi_driver_data(device))
739 		return -EINVAL;
740 
741 	resource = acpi_driver_data(device);
742 
743 	result = acpi_power_get_state(device->handle, &state);
744 	if (result)
745 		return result;
746 
747 	mutex_lock(&resource->resource_lock);
748 	if (state == ACPI_POWER_RESOURCE_STATE_OFF &&
749 	    !list_empty(&resource->reference)) {
750 		ref = container_of(resource->reference.next, struct acpi_power_reference, node);
751 		mutex_unlock(&resource->resource_lock);
752 		result = acpi_power_on(device->handle, ref->device);
753 		return result;
754 	}
755 
756 	mutex_unlock(&resource->resource_lock);
757 	return 0;
758 }
759 
760 int __init acpi_power_init(void)
761 {
762 	int result = 0;
763 
764 	INIT_LIST_HEAD(&acpi_power_resource_list);
765 
766 	acpi_power_dir = proc_mkdir(ACPI_POWER_CLASS, acpi_root_dir);
767 	if (!acpi_power_dir)
768 		return -ENODEV;
769 
770 	result = acpi_bus_register_driver(&acpi_power_driver);
771 	if (result < 0) {
772 		remove_proc_entry(ACPI_POWER_CLASS, acpi_root_dir);
773 		return -ENODEV;
774 	}
775 
776 	return 0;
777 }
778