xref: /linux/drivers/acpi/power.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25 
26 #include <linux/delay.h>
27 #include <linux/dmi.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/string_choices.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/sysfs.h>
36 #include <linux/acpi.h>
37 #include "sleep.h"
38 #include "internal.h"
39 
40 #define ACPI_POWER_CLASS		"power_resource"
41 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
42 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
43 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
44 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
45 
46 struct acpi_power_dependent_device {
47 	struct device *dev;
48 	struct list_head node;
49 };
50 
51 struct acpi_power_resource {
52 	struct acpi_device device;
53 	struct list_head list_node;
54 	u32 system_level;
55 	u32 order;
56 	unsigned int ref_count;
57 	u8 state;
58 	struct mutex resource_lock;
59 	struct list_head dependents;
60 };
61 
62 struct acpi_power_resource_entry {
63 	struct list_head node;
64 	struct acpi_power_resource *resource;
65 };
66 
67 static bool hp_eb_gp12pxp_quirk;
68 static bool unused_power_resources_quirk;
69 
70 static LIST_HEAD(acpi_power_resource_list);
71 static DEFINE_MUTEX(power_resource_list_lock);
72 
73 /* --------------------------------------------------------------------------
74                              Power Resource Management
75    -------------------------------------------------------------------------- */
76 
77 static inline const char *resource_dev_name(struct acpi_power_resource *pr)
78 {
79 	return dev_name(&pr->device.dev);
80 }
81 
82 static inline
83 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
84 {
85 	return container_of(device, struct acpi_power_resource, device);
86 }
87 
88 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
89 {
90 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
91 
92 	if (!device)
93 		return NULL;
94 
95 	return to_power_resource(device);
96 }
97 
98 static int acpi_power_resources_list_add(acpi_handle handle,
99 					 struct list_head *list)
100 {
101 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
102 	struct acpi_power_resource_entry *entry;
103 
104 	if (!resource || !list)
105 		return -EINVAL;
106 
107 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
108 	if (!entry)
109 		return -ENOMEM;
110 
111 	entry->resource = resource;
112 	if (!list_empty(list)) {
113 		struct acpi_power_resource_entry *e;
114 
115 		list_for_each_entry(e, list, node)
116 			if (e->resource->order > resource->order) {
117 				list_add_tail(&entry->node, &e->node);
118 				return 0;
119 			}
120 	}
121 	list_add_tail(&entry->node, list);
122 	return 0;
123 }
124 
125 void acpi_power_resources_list_free(struct list_head *list)
126 {
127 	struct acpi_power_resource_entry *entry, *e;
128 
129 	list_for_each_entry_safe(entry, e, list, node) {
130 		list_del(&entry->node);
131 		kfree(entry);
132 	}
133 }
134 
135 static bool acpi_power_resource_is_dup(union acpi_object *package,
136 				       unsigned int start, unsigned int i)
137 {
138 	acpi_handle rhandle, dup;
139 	unsigned int j;
140 
141 	/* The caller is expected to check the package element types */
142 	rhandle = package->package.elements[i].reference.handle;
143 	for (j = start; j < i; j++) {
144 		dup = package->package.elements[j].reference.handle;
145 		if (dup == rhandle)
146 			return true;
147 	}
148 
149 	return false;
150 }
151 
152 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
153 				 struct list_head *list)
154 {
155 	unsigned int i;
156 	int err = 0;
157 
158 	for (i = start; i < package->package.count; i++) {
159 		union acpi_object *element = &package->package.elements[i];
160 		struct acpi_device *rdev;
161 		acpi_handle rhandle;
162 
163 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
164 			err = -ENODATA;
165 			break;
166 		}
167 		rhandle = element->reference.handle;
168 		if (!rhandle) {
169 			err = -ENODEV;
170 			break;
171 		}
172 
173 		/* Some ACPI tables contain duplicate power resource references */
174 		if (acpi_power_resource_is_dup(package, start, i))
175 			continue;
176 
177 		rdev = acpi_add_power_resource(rhandle);
178 		if (!rdev) {
179 			err = -ENODEV;
180 			break;
181 		}
182 		err = acpi_power_resources_list_add(rhandle, list);
183 		if (err)
184 			break;
185 	}
186 	if (err)
187 		acpi_power_resources_list_free(list);
188 
189 	return err;
190 }
191 
192 static int __get_state(acpi_handle handle, u8 *state)
193 {
194 	acpi_status status = AE_OK;
195 	unsigned long long sta = 0;
196 	u8 cur_state;
197 
198 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
199 	if (ACPI_FAILURE(status))
200 		return -ENODEV;
201 
202 	cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
203 
204 	acpi_handle_debug(handle, "Power resource is %s\n",
205 			  str_on_off(cur_state));
206 
207 	*state = cur_state;
208 	return 0;
209 }
210 
211 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
212 {
213 	if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
214 		int ret;
215 
216 		ret = __get_state(resource->device.handle, &resource->state);
217 		if (ret)
218 			return ret;
219 	}
220 
221 	*state = resource->state;
222 	return 0;
223 }
224 
225 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
226 {
227 	struct acpi_power_resource_entry *entry;
228 	u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
229 
230 	if (!list || !state)
231 		return -EINVAL;
232 
233 	/* The state of the list is 'on' IFF all resources are 'on'. */
234 	list_for_each_entry(entry, list, node) {
235 		struct acpi_power_resource *resource = entry->resource;
236 		int result;
237 
238 		mutex_lock(&resource->resource_lock);
239 		result = acpi_power_get_state(resource, &cur_state);
240 		mutex_unlock(&resource->resource_lock);
241 		if (result)
242 			return result;
243 
244 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
245 			break;
246 	}
247 
248 	pr_debug("Power resource list is %s\n", str_on_off(cur_state));
249 
250 	*state = cur_state;
251 	return 0;
252 }
253 
254 static int
255 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
256 				  struct device *dev)
257 {
258 	struct acpi_power_dependent_device *dep;
259 	int ret = 0;
260 
261 	mutex_lock(&resource->resource_lock);
262 	list_for_each_entry(dep, &resource->dependents, node) {
263 		/* Only add it once */
264 		if (dep->dev == dev)
265 			goto unlock;
266 	}
267 
268 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
269 	if (!dep) {
270 		ret = -ENOMEM;
271 		goto unlock;
272 	}
273 
274 	dep->dev = dev;
275 	list_add_tail(&dep->node, &resource->dependents);
276 	dev_dbg(dev, "added power dependency to [%s]\n",
277 		resource_dev_name(resource));
278 
279 unlock:
280 	mutex_unlock(&resource->resource_lock);
281 	return ret;
282 }
283 
284 static void
285 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
286 				     struct device *dev)
287 {
288 	struct acpi_power_dependent_device *dep;
289 
290 	mutex_lock(&resource->resource_lock);
291 	list_for_each_entry(dep, &resource->dependents, node) {
292 		if (dep->dev == dev) {
293 			list_del(&dep->node);
294 			kfree(dep);
295 			dev_dbg(dev, "removed power dependency to [%s]\n",
296 				resource_dev_name(resource));
297 			break;
298 		}
299 	}
300 	mutex_unlock(&resource->resource_lock);
301 }
302 
303 /**
304  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
305  * @adev: ACPI device pointer
306  * @dev: Dependent device
307  *
308  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
309  * power resources returned by it. This means that whenever these power
310  * resources are turned _ON the dependent devices get runtime resumed. This
311  * is needed for devices such as PCI to allow its driver to re-initialize
312  * it after it went to D0uninitialized.
313  *
314  * If @adev does not have _PR0 this does nothing.
315  *
316  * Returns %0 in case of success and negative errno otherwise.
317  */
318 int acpi_device_power_add_dependent(struct acpi_device *adev,
319 				    struct device *dev)
320 {
321 	struct acpi_power_resource_entry *entry;
322 	struct list_head *resources;
323 	int ret;
324 
325 	if (!adev->flags.power_manageable)
326 		return 0;
327 
328 	resources = &adev->power.states[ACPI_STATE_D0].resources;
329 	list_for_each_entry(entry, resources, node) {
330 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
331 		if (ret)
332 			goto err;
333 	}
334 
335 	return 0;
336 
337 err:
338 	list_for_each_entry(entry, resources, node)
339 		acpi_power_resource_remove_dependent(entry->resource, dev);
340 
341 	return ret;
342 }
343 
344 /**
345  * acpi_device_power_remove_dependent - Remove dependent device
346  * @adev: ACPI device pointer
347  * @dev: Dependent device
348  *
349  * Does the opposite of acpi_device_power_add_dependent() and removes the
350  * dependent device if it is found. Can be called to @adev that does not
351  * have _PR0 as well.
352  */
353 void acpi_device_power_remove_dependent(struct acpi_device *adev,
354 					struct device *dev)
355 {
356 	struct acpi_power_resource_entry *entry;
357 	struct list_head *resources;
358 
359 	if (!adev->flags.power_manageable)
360 		return;
361 
362 	resources = &adev->power.states[ACPI_STATE_D0].resources;
363 	list_for_each_entry_reverse(entry, resources, node)
364 		acpi_power_resource_remove_dependent(entry->resource, dev);
365 }
366 
367 static int __acpi_power_on(struct acpi_power_resource *resource)
368 {
369 	acpi_handle handle = resource->device.handle;
370 	struct acpi_power_dependent_device *dep;
371 	acpi_status status = AE_OK;
372 
373 	status = acpi_evaluate_object(handle, "_ON", NULL, NULL);
374 	if (ACPI_FAILURE(status)) {
375 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
376 		return -ENODEV;
377 	}
378 
379 	resource->state = ACPI_POWER_RESOURCE_STATE_ON;
380 
381 	acpi_handle_debug(handle, "Power resource turned on\n");
382 
383 	/*
384 	 * If there are other dependents on this power resource we need to
385 	 * resume them now so that their drivers can re-initialize the
386 	 * hardware properly after it went back to D0.
387 	 */
388 	if (list_empty(&resource->dependents) ||
389 	    list_is_singular(&resource->dependents))
390 		return 0;
391 
392 	list_for_each_entry(dep, &resource->dependents, node) {
393 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
394 			resource_dev_name(resource));
395 		pm_request_resume(dep->dev);
396 	}
397 
398 	return 0;
399 }
400 
401 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
402 {
403 	int result = 0;
404 
405 	if (resource->ref_count++) {
406 		acpi_handle_debug(resource->device.handle,
407 				  "Power resource already on\n");
408 	} else {
409 		result = __acpi_power_on(resource);
410 		if (result)
411 			resource->ref_count--;
412 	}
413 	return result;
414 }
415 
416 static int acpi_power_on(struct acpi_power_resource *resource)
417 {
418 	int result;
419 
420 	mutex_lock(&resource->resource_lock);
421 	result = acpi_power_on_unlocked(resource);
422 	mutex_unlock(&resource->resource_lock);
423 	return result;
424 }
425 
426 static int __acpi_power_off(struct acpi_power_resource *resource)
427 {
428 	acpi_handle handle = resource->device.handle;
429 	acpi_status status;
430 
431 	status = acpi_evaluate_object(handle, "_OFF", NULL, NULL);
432 	if (ACPI_FAILURE(status)) {
433 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
434 		return -ENODEV;
435 	}
436 
437 	resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
438 
439 	acpi_handle_debug(handle, "Power resource turned off\n");
440 
441 	return 0;
442 }
443 
444 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
445 {
446 	int result = 0;
447 
448 	if (!resource->ref_count) {
449 		acpi_handle_debug(resource->device.handle,
450 				  "Power resource already off\n");
451 		return 0;
452 	}
453 
454 	if (--resource->ref_count) {
455 		acpi_handle_debug(resource->device.handle,
456 				  "Power resource still in use\n");
457 	} else {
458 		result = __acpi_power_off(resource);
459 		if (result)
460 			resource->ref_count++;
461 	}
462 	return result;
463 }
464 
465 static int acpi_power_off(struct acpi_power_resource *resource)
466 {
467 	int result;
468 
469 	mutex_lock(&resource->resource_lock);
470 	result = acpi_power_off_unlocked(resource);
471 	mutex_unlock(&resource->resource_lock);
472 	return result;
473 }
474 
475 static int acpi_power_off_list(struct list_head *list)
476 {
477 	struct acpi_power_resource_entry *entry;
478 	int result = 0;
479 
480 	list_for_each_entry_reverse(entry, list, node) {
481 		result = acpi_power_off(entry->resource);
482 		if (result)
483 			goto err;
484 	}
485 	return 0;
486 
487  err:
488 	list_for_each_entry_continue(entry, list, node)
489 		acpi_power_on(entry->resource);
490 
491 	return result;
492 }
493 
494 static int acpi_power_on_list(struct list_head *list)
495 {
496 	struct acpi_power_resource_entry *entry;
497 	int result = 0;
498 
499 	list_for_each_entry(entry, list, node) {
500 		result = acpi_power_on(entry->resource);
501 		if (result)
502 			goto err;
503 	}
504 	return 0;
505 
506  err:
507 	list_for_each_entry_continue_reverse(entry, list, node)
508 		acpi_power_off(entry->resource);
509 
510 	return result;
511 }
512 
513 static struct attribute *attrs[] = {
514 	NULL,
515 };
516 
517 static const struct attribute_group attr_groups[] = {
518 	[ACPI_STATE_D0] = {
519 		.name = "power_resources_D0",
520 		.attrs = attrs,
521 	},
522 	[ACPI_STATE_D1] = {
523 		.name = "power_resources_D1",
524 		.attrs = attrs,
525 	},
526 	[ACPI_STATE_D2] = {
527 		.name = "power_resources_D2",
528 		.attrs = attrs,
529 	},
530 	[ACPI_STATE_D3_HOT] = {
531 		.name = "power_resources_D3hot",
532 		.attrs = attrs,
533 	},
534 };
535 
536 static const struct attribute_group wakeup_attr_group = {
537 	.name = "power_resources_wakeup",
538 	.attrs = attrs,
539 };
540 
541 static void acpi_power_hide_list(struct acpi_device *adev,
542 				 struct list_head *resources,
543 				 const struct attribute_group *attr_group)
544 {
545 	struct acpi_power_resource_entry *entry;
546 
547 	if (list_empty(resources))
548 		return;
549 
550 	list_for_each_entry_reverse(entry, resources, node) {
551 		struct acpi_device *res_dev = &entry->resource->device;
552 
553 		sysfs_remove_link_from_group(&adev->dev.kobj,
554 					     attr_group->name,
555 					     dev_name(&res_dev->dev));
556 	}
557 	sysfs_remove_group(&adev->dev.kobj, attr_group);
558 }
559 
560 static void acpi_power_expose_list(struct acpi_device *adev,
561 				   struct list_head *resources,
562 				   const struct attribute_group *attr_group)
563 {
564 	struct acpi_power_resource_entry *entry;
565 	int ret;
566 
567 	if (list_empty(resources))
568 		return;
569 
570 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
571 	if (ret)
572 		return;
573 
574 	list_for_each_entry(entry, resources, node) {
575 		struct acpi_device *res_dev = &entry->resource->device;
576 
577 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
578 					      attr_group->name,
579 					      &res_dev->dev.kobj,
580 					      dev_name(&res_dev->dev));
581 		if (ret) {
582 			acpi_power_hide_list(adev, resources, attr_group);
583 			break;
584 		}
585 	}
586 }
587 
588 static void acpi_power_expose_hide(struct acpi_device *adev,
589 				   struct list_head *resources,
590 				   const struct attribute_group *attr_group,
591 				   bool expose)
592 {
593 	if (expose)
594 		acpi_power_expose_list(adev, resources, attr_group);
595 	else
596 		acpi_power_hide_list(adev, resources, attr_group);
597 }
598 
599 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
600 {
601 	int state;
602 
603 	if (adev->wakeup.flags.valid)
604 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
605 				       &wakeup_attr_group, add);
606 
607 	if (!adev->power.flags.power_resources)
608 		return;
609 
610 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
611 		acpi_power_expose_hide(adev,
612 				       &adev->power.states[state].resources,
613 				       &attr_groups[state], add);
614 }
615 
616 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
617 {
618 	struct acpi_power_resource_entry *entry;
619 	int system_level = 5;
620 
621 	list_for_each_entry(entry, list, node) {
622 		struct acpi_power_resource *resource = entry->resource;
623 		u8 state;
624 
625 		mutex_lock(&resource->resource_lock);
626 
627 		/*
628 		 * Make sure that the power resource state and its reference
629 		 * counter value are consistent with each other.
630 		 */
631 		if (!resource->ref_count &&
632 		    !acpi_power_get_state(resource, &state) &&
633 		    state == ACPI_POWER_RESOURCE_STATE_ON)
634 			__acpi_power_off(resource);
635 
636 		if (system_level > resource->system_level)
637 			system_level = resource->system_level;
638 
639 		mutex_unlock(&resource->resource_lock);
640 	}
641 	*system_level_p = system_level;
642 	return 0;
643 }
644 
645 /* --------------------------------------------------------------------------
646                              Device Power Management
647    -------------------------------------------------------------------------- */
648 
649 /**
650  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
651  *                          ACPI 3.0) _PSW (Power State Wake)
652  * @dev: Device to handle.
653  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
654  * @sleep_state: Target sleep state of the system.
655  * @dev_state: Target power state of the device.
656  *
657  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
658  * State Wake) for the device, if present.  On failure reset the device's
659  * wakeup.flags.valid flag.
660  *
661  * RETURN VALUE:
662  * 0 if either _DSW or _PSW has been successfully executed
663  * 0 if neither _DSW nor _PSW has been found
664  * -ENODEV if the execution of either _DSW or _PSW has failed
665  */
666 int acpi_device_sleep_wake(struct acpi_device *dev,
667 			   int enable, int sleep_state, int dev_state)
668 {
669 	union acpi_object in_arg[3];
670 	struct acpi_object_list arg_list = { 3, in_arg };
671 	acpi_status status = AE_OK;
672 
673 	/*
674 	 * Try to execute _DSW first.
675 	 *
676 	 * Three arguments are needed for the _DSW object:
677 	 * Argument 0: enable/disable the wake capabilities
678 	 * Argument 1: target system state
679 	 * Argument 2: target device state
680 	 * When _DSW object is called to disable the wake capabilities, maybe
681 	 * the first argument is filled. The values of the other two arguments
682 	 * are meaningless.
683 	 */
684 	in_arg[0].type = ACPI_TYPE_INTEGER;
685 	in_arg[0].integer.value = enable;
686 	in_arg[1].type = ACPI_TYPE_INTEGER;
687 	in_arg[1].integer.value = sleep_state;
688 	in_arg[2].type = ACPI_TYPE_INTEGER;
689 	in_arg[2].integer.value = dev_state;
690 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
691 	if (ACPI_SUCCESS(status)) {
692 		return 0;
693 	} else if (status != AE_NOT_FOUND) {
694 		acpi_handle_info(dev->handle, "_DSW execution failed\n");
695 		dev->wakeup.flags.valid = 0;
696 		return -ENODEV;
697 	}
698 
699 	/* Execute _PSW */
700 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
701 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
702 		acpi_handle_info(dev->handle, "_PSW execution failed\n");
703 		dev->wakeup.flags.valid = 0;
704 		return -ENODEV;
705 	}
706 
707 	return 0;
708 }
709 
710 /*
711  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
712  * 1. Power on the power resources required for the wakeup device
713  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
714  *    State Wake) for the device, if present
715  */
716 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
717 {
718 	int err = 0;
719 
720 	if (!dev || !dev->wakeup.flags.valid)
721 		return -EINVAL;
722 
723 	mutex_lock(&acpi_device_lock);
724 
725 	dev_dbg(&dev->dev, "Enabling wakeup power (count %d)\n",
726 		dev->wakeup.prepare_count);
727 
728 	if (dev->wakeup.prepare_count++)
729 		goto out;
730 
731 	err = acpi_power_on_list(&dev->wakeup.resources);
732 	if (err) {
733 		dev_err(&dev->dev, "Cannot turn on wakeup power resources\n");
734 		dev->wakeup.flags.valid = 0;
735 		goto out;
736 	}
737 
738 	/*
739 	 * Passing 3 as the third argument below means the device may be
740 	 * put into arbitrary power state afterward.
741 	 */
742 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
743 	if (err) {
744 		acpi_power_off_list(&dev->wakeup.resources);
745 		dev->wakeup.prepare_count = 0;
746 		goto out;
747 	}
748 
749 	dev_dbg(&dev->dev, "Wakeup power enabled\n");
750 
751  out:
752 	mutex_unlock(&acpi_device_lock);
753 	return err;
754 }
755 
756 /*
757  * Shutdown a wakeup device, counterpart of above method
758  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
759  *    State Wake) for the device, if present
760  * 2. Shutdown down the power resources
761  */
762 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
763 {
764 	struct acpi_power_resource_entry *entry;
765 	int err = 0;
766 
767 	if (!dev || !dev->wakeup.flags.valid)
768 		return -EINVAL;
769 
770 	mutex_lock(&acpi_device_lock);
771 
772 	dev_dbg(&dev->dev, "Disabling wakeup power (count %d)\n",
773 		dev->wakeup.prepare_count);
774 
775 	/* Do nothing if wakeup power has not been enabled for this device. */
776 	if (dev->wakeup.prepare_count <= 0)
777 		goto out;
778 
779 	if (--dev->wakeup.prepare_count > 0)
780 		goto out;
781 
782 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
783 	if (err)
784 		goto out;
785 
786 	/*
787 	 * All of the power resources in the list need to be turned off even if
788 	 * there are errors.
789 	 */
790 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
791 		int ret;
792 
793 		ret = acpi_power_off(entry->resource);
794 		if (ret && !err)
795 			err = ret;
796 	}
797 	if (err) {
798 		dev_err(&dev->dev, "Cannot turn off wakeup power resources\n");
799 		dev->wakeup.flags.valid = 0;
800 		goto out;
801 	}
802 
803 	dev_dbg(&dev->dev, "Wakeup power disabled\n");
804 
805  out:
806 	mutex_unlock(&acpi_device_lock);
807 	return err;
808 }
809 
810 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
811 {
812 	u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
813 	int result = 0;
814 	int i = 0;
815 
816 	if (!device || !state)
817 		return -EINVAL;
818 
819 	/*
820 	 * We know a device's inferred power state when all the resources
821 	 * required for a given D-state are 'on'.
822 	 */
823 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
824 		struct list_head *list = &device->power.states[i].resources;
825 
826 		if (list_empty(list))
827 			continue;
828 
829 		result = acpi_power_get_list_state(list, &list_state);
830 		if (result)
831 			return result;
832 
833 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
834 			*state = i;
835 			return 0;
836 		}
837 	}
838 
839 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
840 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
841 	return 0;
842 }
843 
844 int acpi_power_on_resources(struct acpi_device *device, int state)
845 {
846 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
847 		return -EINVAL;
848 
849 	return acpi_power_on_list(&device->power.states[state].resources);
850 }
851 
852 int acpi_power_transition(struct acpi_device *device, int state)
853 {
854 	int result = 0;
855 
856 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
857 		return -EINVAL;
858 
859 	if (device->power.state == state || !device->flags.power_manageable)
860 		return 0;
861 
862 	if ((device->power.state < ACPI_STATE_D0)
863 	    || (device->power.state > ACPI_STATE_D3_COLD))
864 		return -ENODEV;
865 
866 	/*
867 	 * First we reference all power resources required in the target list
868 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
869 	 * we dereference all power resources used in the current list.
870 	 */
871 	if (state < ACPI_STATE_D3_COLD)
872 		result = acpi_power_on_list(
873 			&device->power.states[state].resources);
874 
875 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
876 		acpi_power_off_list(
877 			&device->power.states[device->power.state].resources);
878 
879 	/* We shouldn't change the state unless the above operations succeed. */
880 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
881 
882 	return result;
883 }
884 
885 static void acpi_release_power_resource(struct device *dev)
886 {
887 	struct acpi_device *device = to_acpi_device(dev);
888 	struct acpi_power_resource *resource;
889 
890 	resource = container_of(device, struct acpi_power_resource, device);
891 
892 	mutex_lock(&power_resource_list_lock);
893 	list_del(&resource->list_node);
894 	mutex_unlock(&power_resource_list_lock);
895 
896 	acpi_free_pnp_ids(&device->pnp);
897 	kfree(resource);
898 }
899 
900 static ssize_t resource_in_use_show(struct device *dev,
901 				    struct device_attribute *attr,
902 				    char *buf)
903 {
904 	struct acpi_power_resource *resource;
905 
906 	resource = to_power_resource(to_acpi_device(dev));
907 	return sprintf(buf, "%u\n", !!resource->ref_count);
908 }
909 static DEVICE_ATTR_RO(resource_in_use);
910 
911 static void acpi_power_sysfs_remove(struct acpi_device *device)
912 {
913 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
914 }
915 
916 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
917 {
918 	mutex_lock(&power_resource_list_lock);
919 
920 	if (!list_empty(&acpi_power_resource_list)) {
921 		struct acpi_power_resource *r;
922 
923 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
924 			if (r->order > resource->order) {
925 				list_add_tail(&resource->list_node, &r->list_node);
926 				goto out;
927 			}
928 	}
929 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
930 
931  out:
932 	mutex_unlock(&power_resource_list_lock);
933 }
934 
935 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
936 {
937 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
938 	struct acpi_power_resource *resource;
939 	union acpi_object acpi_object;
940 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
941 	acpi_status status;
942 	u8 state_dummy;
943 	int result;
944 
945 	if (device)
946 		return device;
947 
948 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
949 	if (!resource)
950 		return NULL;
951 
952 	device = &resource->device;
953 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
954 				acpi_release_power_resource);
955 	mutex_init(&resource->resource_lock);
956 	INIT_LIST_HEAD(&resource->list_node);
957 	INIT_LIST_HEAD(&resource->dependents);
958 	strscpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
959 	strscpy(acpi_device_class(device), ACPI_POWER_CLASS);
960 	device->power.state = ACPI_STATE_UNKNOWN;
961 	device->flags.match_driver = true;
962 
963 	/* Evaluate the object to get the system level and resource order. */
964 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
965 	if (ACPI_FAILURE(status))
966 		goto err;
967 
968 	resource->system_level = acpi_object.power_resource.system_level;
969 	resource->order = acpi_object.power_resource.resource_order;
970 	resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
971 
972 	/* Get the initial state or just flip it on if that fails. */
973 	if (acpi_power_get_state(resource, &state_dummy))
974 		__acpi_power_on(resource);
975 
976 	acpi_handle_info(handle, "New power resource\n");
977 
978 	result = acpi_tie_acpi_dev(device);
979 	if (result)
980 		goto err;
981 
982 	result = acpi_device_add(device);
983 	if (result)
984 		goto err;
985 
986 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
987 		device->remove = acpi_power_sysfs_remove;
988 
989 	acpi_power_add_resource_to_list(resource);
990 	acpi_device_add_finalize(device);
991 	return device;
992 
993  err:
994 	acpi_release_power_resource(&device->dev);
995 	return NULL;
996 }
997 
998 #ifdef CONFIG_ACPI_SLEEP
999 static bool resource_is_gp12pxp(acpi_handle handle)
1000 {
1001 	const char *path;
1002 	bool ret;
1003 
1004 	path = acpi_handle_path(handle);
1005 	ret = path && strcmp(path, "\\_SB_.PCI0.GP12.PXP_") == 0;
1006 	kfree(path);
1007 
1008 	return ret;
1009 }
1010 
1011 static void acpi_resume_on_eb_gp12pxp(struct acpi_power_resource *resource)
1012 {
1013 	acpi_handle_notice(resource->device.handle,
1014 			   "HP EB quirk - turning OFF then ON\n");
1015 
1016 	__acpi_power_off(resource);
1017 	__acpi_power_on(resource);
1018 
1019 	/*
1020 	 * Use the same delay as DSDT uses in modem _RST method.
1021 	 *
1022 	 * Otherwise we get "Unable to change power state from unknown to D0,
1023 	 * device inaccessible" error for the modem PCI device after thaw.
1024 	 *
1025 	 * This power resource is normally being enabled only during thaw (once)
1026 	 * so this wait is not a performance issue.
1027 	 */
1028 	msleep(200);
1029 }
1030 
1031 void acpi_resume_power_resources(void)
1032 {
1033 	struct acpi_power_resource *resource;
1034 
1035 	mutex_lock(&power_resource_list_lock);
1036 
1037 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
1038 		int result;
1039 		u8 state;
1040 
1041 		mutex_lock(&resource->resource_lock);
1042 
1043 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
1044 		result = acpi_power_get_state(resource, &state);
1045 		if (result) {
1046 			mutex_unlock(&resource->resource_lock);
1047 			continue;
1048 		}
1049 
1050 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
1051 		    && resource->ref_count) {
1052 			if (hp_eb_gp12pxp_quirk &&
1053 			    resource_is_gp12pxp(resource->device.handle)) {
1054 				acpi_resume_on_eb_gp12pxp(resource);
1055 			} else {
1056 				acpi_handle_debug(resource->device.handle,
1057 						  "Turning ON\n");
1058 				__acpi_power_on(resource);
1059 			}
1060 		}
1061 
1062 		mutex_unlock(&resource->resource_lock);
1063 	}
1064 
1065 	mutex_unlock(&power_resource_list_lock);
1066 }
1067 #endif
1068 
1069 static const struct dmi_system_id dmi_hp_elitebook_gp12pxp_quirk[] = {
1070 /*
1071  * This laptop (and possibly similar models too) has power resource called
1072  * "GP12.PXP_" for its WWAN modem.
1073  *
1074  * For this power resource to turn ON power for the modem it needs certain
1075  * internal flag called "ONEN" to be set.
1076  * This flag only gets set from this power resource "_OFF" method, while the
1077  * actual modem power gets turned off during suspend by "GP12.PTS" method
1078  * called from the global "_PTS" (Prepare To Sleep) method.
1079  * On the other hand, this power resource "_OFF" method implementation just
1080  * sets the aforementioned flag without actually doing anything else (it
1081  * doesn't contain any code to actually turn off power).
1082  *
1083  * The above means that when upon hibernation finish we try to set this
1084  * power resource back ON since its "_STA" method returns 0 (while the resource
1085  * is still considered in use) its "_ON" method won't do anything since
1086  * that "ONEN" flag is not set.
1087  * Overall, this means the modem is dead until laptop is rebooted since its
1088  * power has been cut by "_PTS" and its PCI configuration was lost and not able
1089  * to be restored.
1090  *
1091  * The easiest way to workaround the issue is to call this power resource
1092  * "_OFF" method before calling the "_ON" method to make sure the "ONEN"
1093  * flag gets properly set.
1094  */
1095 	{
1096 		.matches = {
1097 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1098 			DMI_MATCH(DMI_PRODUCT_NAME, "HP EliteBook 855 G7 Notebook PC"),
1099 		},
1100 	},
1101 	{}
1102 };
1103 
1104 static const struct dmi_system_id dmi_leave_unused_power_resources_on[] = {
1105 	{
1106 		/*
1107 		 * The Toshiba Click Mini has a CPR3 power-resource which must
1108 		 * be on for the touchscreen to work, but which is not in any
1109 		 * _PR? lists. The other 2 affected power-resources are no-ops.
1110 		 */
1111 		.matches = {
1112 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
1113 			DMI_MATCH(DMI_PRODUCT_NAME, "SATELLITE Click Mini L9W-B"),
1114 		},
1115 	},
1116 	{}
1117 };
1118 
1119 /**
1120  * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1121  */
1122 void acpi_turn_off_unused_power_resources(void)
1123 {
1124 	struct acpi_power_resource *resource;
1125 
1126 	if (unused_power_resources_quirk)
1127 		return;
1128 
1129 	mutex_lock(&power_resource_list_lock);
1130 
1131 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1132 		mutex_lock(&resource->resource_lock);
1133 
1134 		if (!resource->ref_count &&
1135 		    resource->state == ACPI_POWER_RESOURCE_STATE_ON) {
1136 			acpi_handle_debug(resource->device.handle, "Turning OFF\n");
1137 			__acpi_power_off(resource);
1138 		}
1139 
1140 		mutex_unlock(&resource->resource_lock);
1141 	}
1142 
1143 	mutex_unlock(&power_resource_list_lock);
1144 }
1145 
1146 void __init acpi_power_resources_init(void)
1147 {
1148 	hp_eb_gp12pxp_quirk = dmi_check_system(dmi_hp_elitebook_gp12pxp_quirk);
1149 	unused_power_resources_quirk =
1150 		dmi_check_system(dmi_leave_unused_power_resources_on);
1151 }
1152