xref: /linux/drivers/acpi/osl.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 
31 #include <asm/io.h>
32 #include <linux/uaccess.h>
33 #include <linux/io-64-nonatomic-lo-hi.h>
34 
35 #include "acpica/accommon.h"
36 #include "acpica/acnamesp.h"
37 #include "internal.h"
38 
39 #define _COMPONENT		ACPI_OS_SERVICES
40 ACPI_MODULE_NAME("osl");
41 
42 struct acpi_os_dpc {
43 	acpi_osd_exec_callback function;
44 	void *context;
45 	struct work_struct work;
46 };
47 
48 #ifdef ENABLE_DEBUGGER
49 #include <linux/kdb.h>
50 
51 /* stuff for debugger support */
52 int acpi_in_debugger;
53 EXPORT_SYMBOL(acpi_in_debugger);
54 #endif				/*ENABLE_DEBUGGER */
55 
56 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
57 				      u32 pm1b_ctrl);
58 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
59 				      u32 val_b);
60 
61 static acpi_osd_handler acpi_irq_handler;
62 static void *acpi_irq_context;
63 static struct workqueue_struct *kacpid_wq;
64 static struct workqueue_struct *kacpi_notify_wq;
65 static struct workqueue_struct *kacpi_hotplug_wq;
66 static bool acpi_os_initialized;
67 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
68 bool acpi_permanent_mmap = false;
69 
70 /*
71  * This list of permanent mappings is for memory that may be accessed from
72  * interrupt context, where we can't do the ioremap().
73  */
74 struct acpi_ioremap {
75 	struct list_head list;
76 	void __iomem *virt;
77 	acpi_physical_address phys;
78 	acpi_size size;
79 	unsigned long refcount;
80 };
81 
82 static LIST_HEAD(acpi_ioremaps);
83 static DEFINE_MUTEX(acpi_ioremap_lock);
84 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
85 
86 static void __init acpi_request_region (struct acpi_generic_address *gas,
87 	unsigned int length, char *desc)
88 {
89 	u64 addr;
90 
91 	/* Handle possible alignment issues */
92 	memcpy(&addr, &gas->address, sizeof(addr));
93 	if (!addr || !length)
94 		return;
95 
96 	/* Resources are never freed */
97 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
98 		request_region(addr, length, desc);
99 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
100 		request_mem_region(addr, length, desc);
101 }
102 
103 static int __init acpi_reserve_resources(void)
104 {
105 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
106 		"ACPI PM1a_EVT_BLK");
107 
108 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
109 		"ACPI PM1b_EVT_BLK");
110 
111 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
112 		"ACPI PM1a_CNT_BLK");
113 
114 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
115 		"ACPI PM1b_CNT_BLK");
116 
117 	if (acpi_gbl_FADT.pm_timer_length == 4)
118 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
121 		"ACPI PM2_CNT_BLK");
122 
123 	/* Length of GPE blocks must be a non-negative multiple of 2 */
124 
125 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
126 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
127 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
128 
129 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
130 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
131 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
132 
133 	return 0;
134 }
135 fs_initcall_sync(acpi_reserve_resources);
136 
137 void acpi_os_printf(const char *fmt, ...)
138 {
139 	va_list args;
140 	va_start(args, fmt);
141 	acpi_os_vprintf(fmt, args);
142 	va_end(args);
143 }
144 EXPORT_SYMBOL(acpi_os_printf);
145 
146 void acpi_os_vprintf(const char *fmt, va_list args)
147 {
148 	static char buffer[512];
149 
150 	vsprintf(buffer, fmt, args);
151 
152 #ifdef ENABLE_DEBUGGER
153 	if (acpi_in_debugger) {
154 		kdb_printf("%s", buffer);
155 	} else {
156 		if (printk_get_level(buffer))
157 			printk("%s", buffer);
158 		else
159 			printk(KERN_CONT "%s", buffer);
160 	}
161 #else
162 	if (acpi_debugger_write_log(buffer) < 0) {
163 		if (printk_get_level(buffer))
164 			printk("%s", buffer);
165 		else
166 			printk(KERN_CONT "%s", buffer);
167 	}
168 #endif
169 }
170 
171 #ifdef CONFIG_KEXEC
172 static unsigned long acpi_rsdp;
173 static int __init setup_acpi_rsdp(char *arg)
174 {
175 	return kstrtoul(arg, 16, &acpi_rsdp);
176 }
177 early_param("acpi_rsdp", setup_acpi_rsdp);
178 #endif
179 
180 acpi_physical_address __init acpi_os_get_root_pointer(void)
181 {
182 	acpi_physical_address pa;
183 
184 #ifdef CONFIG_KEXEC
185 	if (acpi_rsdp)
186 		return acpi_rsdp;
187 #endif
188 	pa = acpi_arch_get_root_pointer();
189 	if (pa)
190 		return pa;
191 
192 	if (efi_enabled(EFI_CONFIG_TABLES)) {
193 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
194 			return efi.acpi20;
195 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
196 			return efi.acpi;
197 		pr_err(PREFIX "System description tables not found\n");
198 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
199 		acpi_find_root_pointer(&pa);
200 	}
201 
202 	return pa;
203 }
204 
205 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
206 static struct acpi_ioremap *
207 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
208 {
209 	struct acpi_ioremap *map;
210 
211 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
212 		if (map->phys <= phys &&
213 		    phys + size <= map->phys + map->size)
214 			return map;
215 
216 	return NULL;
217 }
218 
219 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
220 static void __iomem *
221 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
222 {
223 	struct acpi_ioremap *map;
224 
225 	map = acpi_map_lookup(phys, size);
226 	if (map)
227 		return map->virt + (phys - map->phys);
228 
229 	return NULL;
230 }
231 
232 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
233 {
234 	struct acpi_ioremap *map;
235 	void __iomem *virt = NULL;
236 
237 	mutex_lock(&acpi_ioremap_lock);
238 	map = acpi_map_lookup(phys, size);
239 	if (map) {
240 		virt = map->virt + (phys - map->phys);
241 		map->refcount++;
242 	}
243 	mutex_unlock(&acpi_ioremap_lock);
244 	return virt;
245 }
246 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
247 
248 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
249 static struct acpi_ioremap *
250 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
251 {
252 	struct acpi_ioremap *map;
253 
254 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
255 		if (map->virt <= virt &&
256 		    virt + size <= map->virt + map->size)
257 			return map;
258 
259 	return NULL;
260 }
261 
262 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
263 /* ioremap will take care of cache attributes */
264 #define should_use_kmap(pfn)   0
265 #else
266 #define should_use_kmap(pfn)   page_is_ram(pfn)
267 #endif
268 
269 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
270 {
271 	unsigned long pfn;
272 
273 	pfn = pg_off >> PAGE_SHIFT;
274 	if (should_use_kmap(pfn)) {
275 		if (pg_sz > PAGE_SIZE)
276 			return NULL;
277 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
278 	} else
279 		return acpi_os_ioremap(pg_off, pg_sz);
280 }
281 
282 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
283 {
284 	unsigned long pfn;
285 
286 	pfn = pg_off >> PAGE_SHIFT;
287 	if (should_use_kmap(pfn))
288 		kunmap(pfn_to_page(pfn));
289 	else
290 		iounmap(vaddr);
291 }
292 
293 /**
294  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
295  * @phys: Start of the physical address range to map.
296  * @size: Size of the physical address range to map.
297  *
298  * Look up the given physical address range in the list of existing ACPI memory
299  * mappings.  If found, get a reference to it and return a pointer to it (its
300  * virtual address).  If not found, map it, add it to that list and return a
301  * pointer to it.
302  *
303  * During early init (when acpi_permanent_mmap has not been set yet) this
304  * routine simply calls __acpi_map_table() to get the job done.
305  */
306 void __iomem __ref
307 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
308 {
309 	struct acpi_ioremap *map;
310 	void __iomem *virt;
311 	acpi_physical_address pg_off;
312 	acpi_size pg_sz;
313 
314 	if (phys > ULONG_MAX) {
315 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
316 		return NULL;
317 	}
318 
319 	if (!acpi_permanent_mmap)
320 		return __acpi_map_table((unsigned long)phys, size);
321 
322 	mutex_lock(&acpi_ioremap_lock);
323 	/* Check if there's a suitable mapping already. */
324 	map = acpi_map_lookup(phys, size);
325 	if (map) {
326 		map->refcount++;
327 		goto out;
328 	}
329 
330 	map = kzalloc(sizeof(*map), GFP_KERNEL);
331 	if (!map) {
332 		mutex_unlock(&acpi_ioremap_lock);
333 		return NULL;
334 	}
335 
336 	pg_off = round_down(phys, PAGE_SIZE);
337 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
338 	virt = acpi_map(pg_off, pg_sz);
339 	if (!virt) {
340 		mutex_unlock(&acpi_ioremap_lock);
341 		kfree(map);
342 		return NULL;
343 	}
344 
345 	INIT_LIST_HEAD(&map->list);
346 	map->virt = virt;
347 	map->phys = pg_off;
348 	map->size = pg_sz;
349 	map->refcount = 1;
350 
351 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
352 
353 out:
354 	mutex_unlock(&acpi_ioremap_lock);
355 	return map->virt + (phys - map->phys);
356 }
357 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
358 
359 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
360 {
361 	return (void *)acpi_os_map_iomem(phys, size);
362 }
363 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
364 
365 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
366 {
367 	if (!--map->refcount)
368 		list_del_rcu(&map->list);
369 }
370 
371 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
372 {
373 	if (!map->refcount) {
374 		synchronize_rcu_expedited();
375 		acpi_unmap(map->phys, map->virt);
376 		kfree(map);
377 	}
378 }
379 
380 /**
381  * acpi_os_unmap_iomem - Drop a memory mapping reference.
382  * @virt: Start of the address range to drop a reference to.
383  * @size: Size of the address range to drop a reference to.
384  *
385  * Look up the given virtual address range in the list of existing ACPI memory
386  * mappings, drop a reference to it and unmap it if there are no more active
387  * references to it.
388  *
389  * During early init (when acpi_permanent_mmap has not been set yet) this
390  * routine simply calls __acpi_unmap_table() to get the job done.  Since
391  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
392  * here.
393  */
394 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
395 {
396 	struct acpi_ioremap *map;
397 
398 	if (!acpi_permanent_mmap) {
399 		__acpi_unmap_table(virt, size);
400 		return;
401 	}
402 
403 	mutex_lock(&acpi_ioremap_lock);
404 	map = acpi_map_lookup_virt(virt, size);
405 	if (!map) {
406 		mutex_unlock(&acpi_ioremap_lock);
407 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
408 		return;
409 	}
410 	acpi_os_drop_map_ref(map);
411 	mutex_unlock(&acpi_ioremap_lock);
412 
413 	acpi_os_map_cleanup(map);
414 }
415 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
416 
417 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
418 {
419 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
420 }
421 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
422 
423 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
424 {
425 	u64 addr;
426 	void __iomem *virt;
427 
428 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
429 		return 0;
430 
431 	/* Handle possible alignment issues */
432 	memcpy(&addr, &gas->address, sizeof(addr));
433 	if (!addr || !gas->bit_width)
434 		return -EINVAL;
435 
436 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
437 	if (!virt)
438 		return -EIO;
439 
440 	return 0;
441 }
442 EXPORT_SYMBOL(acpi_os_map_generic_address);
443 
444 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
445 {
446 	u64 addr;
447 	struct acpi_ioremap *map;
448 
449 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
450 		return;
451 
452 	/* Handle possible alignment issues */
453 	memcpy(&addr, &gas->address, sizeof(addr));
454 	if (!addr || !gas->bit_width)
455 		return;
456 
457 	mutex_lock(&acpi_ioremap_lock);
458 	map = acpi_map_lookup(addr, gas->bit_width / 8);
459 	if (!map) {
460 		mutex_unlock(&acpi_ioremap_lock);
461 		return;
462 	}
463 	acpi_os_drop_map_ref(map);
464 	mutex_unlock(&acpi_ioremap_lock);
465 
466 	acpi_os_map_cleanup(map);
467 }
468 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
469 
470 #ifdef ACPI_FUTURE_USAGE
471 acpi_status
472 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
473 {
474 	if (!phys || !virt)
475 		return AE_BAD_PARAMETER;
476 
477 	*phys = virt_to_phys(virt);
478 
479 	return AE_OK;
480 }
481 #endif
482 
483 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
484 static bool acpi_rev_override;
485 
486 int __init acpi_rev_override_setup(char *str)
487 {
488 	acpi_rev_override = true;
489 	return 1;
490 }
491 __setup("acpi_rev_override", acpi_rev_override_setup);
492 #else
493 #define acpi_rev_override	false
494 #endif
495 
496 #define ACPI_MAX_OVERRIDE_LEN 100
497 
498 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
499 
500 acpi_status
501 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
502 			    acpi_string *new_val)
503 {
504 	if (!init_val || !new_val)
505 		return AE_BAD_PARAMETER;
506 
507 	*new_val = NULL;
508 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
509 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
510 		       acpi_os_name);
511 		*new_val = acpi_os_name;
512 	}
513 
514 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
515 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
516 		*new_val = (char *)5;
517 	}
518 
519 	return AE_OK;
520 }
521 
522 static irqreturn_t acpi_irq(int irq, void *dev_id)
523 {
524 	u32 handled;
525 
526 	handled = (*acpi_irq_handler) (acpi_irq_context);
527 
528 	if (handled) {
529 		acpi_irq_handled++;
530 		return IRQ_HANDLED;
531 	} else {
532 		acpi_irq_not_handled++;
533 		return IRQ_NONE;
534 	}
535 }
536 
537 acpi_status
538 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
539 				  void *context)
540 {
541 	unsigned int irq;
542 
543 	acpi_irq_stats_init();
544 
545 	/*
546 	 * ACPI interrupts different from the SCI in our copy of the FADT are
547 	 * not supported.
548 	 */
549 	if (gsi != acpi_gbl_FADT.sci_interrupt)
550 		return AE_BAD_PARAMETER;
551 
552 	if (acpi_irq_handler)
553 		return AE_ALREADY_ACQUIRED;
554 
555 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
556 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
557 		       gsi);
558 		return AE_OK;
559 	}
560 
561 	acpi_irq_handler = handler;
562 	acpi_irq_context = context;
563 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
564 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
565 		acpi_irq_handler = NULL;
566 		return AE_NOT_ACQUIRED;
567 	}
568 	acpi_sci_irq = irq;
569 
570 	return AE_OK;
571 }
572 
573 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
574 {
575 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
576 		return AE_BAD_PARAMETER;
577 
578 	free_irq(acpi_sci_irq, acpi_irq);
579 	acpi_irq_handler = NULL;
580 	acpi_sci_irq = INVALID_ACPI_IRQ;
581 
582 	return AE_OK;
583 }
584 
585 /*
586  * Running in interpreter thread context, safe to sleep
587  */
588 
589 void acpi_os_sleep(u64 ms)
590 {
591 	msleep(ms);
592 }
593 
594 void acpi_os_stall(u32 us)
595 {
596 	while (us) {
597 		u32 delay = 1000;
598 
599 		if (delay > us)
600 			delay = us;
601 		udelay(delay);
602 		touch_nmi_watchdog();
603 		us -= delay;
604 	}
605 }
606 
607 /*
608  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
609  * monotonically increasing timer with 100ns granularity. Do not use
610  * ktime_get() to implement this function because this function may get
611  * called after timekeeping has been suspended. Note: calling this function
612  * after timekeeping has been suspended may lead to unexpected results
613  * because when timekeeping is suspended the jiffies counter is not
614  * incremented. See also timekeeping_suspend().
615  */
616 u64 acpi_os_get_timer(void)
617 {
618 	return (get_jiffies_64() - INITIAL_JIFFIES) *
619 		(ACPI_100NSEC_PER_SEC / HZ);
620 }
621 
622 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
623 {
624 	u32 dummy;
625 
626 	if (!value)
627 		value = &dummy;
628 
629 	*value = 0;
630 	if (width <= 8) {
631 		*(u8 *) value = inb(port);
632 	} else if (width <= 16) {
633 		*(u16 *) value = inw(port);
634 	} else if (width <= 32) {
635 		*(u32 *) value = inl(port);
636 	} else {
637 		BUG();
638 	}
639 
640 	return AE_OK;
641 }
642 
643 EXPORT_SYMBOL(acpi_os_read_port);
644 
645 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
646 {
647 	if (width <= 8) {
648 		outb(value, port);
649 	} else if (width <= 16) {
650 		outw(value, port);
651 	} else if (width <= 32) {
652 		outl(value, port);
653 	} else {
654 		BUG();
655 	}
656 
657 	return AE_OK;
658 }
659 
660 EXPORT_SYMBOL(acpi_os_write_port);
661 
662 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
663 {
664 
665 	switch (width) {
666 	case 8:
667 		*(u8 *) value = readb(virt_addr);
668 		break;
669 	case 16:
670 		*(u16 *) value = readw(virt_addr);
671 		break;
672 	case 32:
673 		*(u32 *) value = readl(virt_addr);
674 		break;
675 	case 64:
676 		*(u64 *) value = readq(virt_addr);
677 		break;
678 	default:
679 		return -EINVAL;
680 	}
681 
682 	return 0;
683 }
684 
685 acpi_status
686 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
687 {
688 	void __iomem *virt_addr;
689 	unsigned int size = width / 8;
690 	bool unmap = false;
691 	u64 dummy;
692 	int error;
693 
694 	rcu_read_lock();
695 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
696 	if (!virt_addr) {
697 		rcu_read_unlock();
698 		virt_addr = acpi_os_ioremap(phys_addr, size);
699 		if (!virt_addr)
700 			return AE_BAD_ADDRESS;
701 		unmap = true;
702 	}
703 
704 	if (!value)
705 		value = &dummy;
706 
707 	error = acpi_os_read_iomem(virt_addr, value, width);
708 	BUG_ON(error);
709 
710 	if (unmap)
711 		iounmap(virt_addr);
712 	else
713 		rcu_read_unlock();
714 
715 	return AE_OK;
716 }
717 
718 acpi_status
719 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
720 {
721 	void __iomem *virt_addr;
722 	unsigned int size = width / 8;
723 	bool unmap = false;
724 
725 	rcu_read_lock();
726 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
727 	if (!virt_addr) {
728 		rcu_read_unlock();
729 		virt_addr = acpi_os_ioremap(phys_addr, size);
730 		if (!virt_addr)
731 			return AE_BAD_ADDRESS;
732 		unmap = true;
733 	}
734 
735 	switch (width) {
736 	case 8:
737 		writeb(value, virt_addr);
738 		break;
739 	case 16:
740 		writew(value, virt_addr);
741 		break;
742 	case 32:
743 		writel(value, virt_addr);
744 		break;
745 	case 64:
746 		writeq(value, virt_addr);
747 		break;
748 	default:
749 		BUG();
750 	}
751 
752 	if (unmap)
753 		iounmap(virt_addr);
754 	else
755 		rcu_read_unlock();
756 
757 	return AE_OK;
758 }
759 
760 #ifdef CONFIG_PCI
761 acpi_status
762 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
763 			       u64 *value, u32 width)
764 {
765 	int result, size;
766 	u32 value32;
767 
768 	if (!value)
769 		return AE_BAD_PARAMETER;
770 
771 	switch (width) {
772 	case 8:
773 		size = 1;
774 		break;
775 	case 16:
776 		size = 2;
777 		break;
778 	case 32:
779 		size = 4;
780 		break;
781 	default:
782 		return AE_ERROR;
783 	}
784 
785 	result = raw_pci_read(pci_id->segment, pci_id->bus,
786 				PCI_DEVFN(pci_id->device, pci_id->function),
787 				reg, size, &value32);
788 	*value = value32;
789 
790 	return (result ? AE_ERROR : AE_OK);
791 }
792 
793 acpi_status
794 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
795 				u64 value, u32 width)
796 {
797 	int result, size;
798 
799 	switch (width) {
800 	case 8:
801 		size = 1;
802 		break;
803 	case 16:
804 		size = 2;
805 		break;
806 	case 32:
807 		size = 4;
808 		break;
809 	default:
810 		return AE_ERROR;
811 	}
812 
813 	result = raw_pci_write(pci_id->segment, pci_id->bus,
814 				PCI_DEVFN(pci_id->device, pci_id->function),
815 				reg, size, value);
816 
817 	return (result ? AE_ERROR : AE_OK);
818 }
819 #endif
820 
821 static void acpi_os_execute_deferred(struct work_struct *work)
822 {
823 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
824 
825 	dpc->function(dpc->context);
826 	kfree(dpc);
827 }
828 
829 #ifdef CONFIG_ACPI_DEBUGGER
830 static struct acpi_debugger acpi_debugger;
831 static bool acpi_debugger_initialized;
832 
833 int acpi_register_debugger(struct module *owner,
834 			   const struct acpi_debugger_ops *ops)
835 {
836 	int ret = 0;
837 
838 	mutex_lock(&acpi_debugger.lock);
839 	if (acpi_debugger.ops) {
840 		ret = -EBUSY;
841 		goto err_lock;
842 	}
843 
844 	acpi_debugger.owner = owner;
845 	acpi_debugger.ops = ops;
846 
847 err_lock:
848 	mutex_unlock(&acpi_debugger.lock);
849 	return ret;
850 }
851 EXPORT_SYMBOL(acpi_register_debugger);
852 
853 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
854 {
855 	mutex_lock(&acpi_debugger.lock);
856 	if (ops == acpi_debugger.ops) {
857 		acpi_debugger.ops = NULL;
858 		acpi_debugger.owner = NULL;
859 	}
860 	mutex_unlock(&acpi_debugger.lock);
861 }
862 EXPORT_SYMBOL(acpi_unregister_debugger);
863 
864 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
865 {
866 	int ret;
867 	int (*func)(acpi_osd_exec_callback, void *);
868 	struct module *owner;
869 
870 	if (!acpi_debugger_initialized)
871 		return -ENODEV;
872 	mutex_lock(&acpi_debugger.lock);
873 	if (!acpi_debugger.ops) {
874 		ret = -ENODEV;
875 		goto err_lock;
876 	}
877 	if (!try_module_get(acpi_debugger.owner)) {
878 		ret = -ENODEV;
879 		goto err_lock;
880 	}
881 	func = acpi_debugger.ops->create_thread;
882 	owner = acpi_debugger.owner;
883 	mutex_unlock(&acpi_debugger.lock);
884 
885 	ret = func(function, context);
886 
887 	mutex_lock(&acpi_debugger.lock);
888 	module_put(owner);
889 err_lock:
890 	mutex_unlock(&acpi_debugger.lock);
891 	return ret;
892 }
893 
894 ssize_t acpi_debugger_write_log(const char *msg)
895 {
896 	ssize_t ret;
897 	ssize_t (*func)(const char *);
898 	struct module *owner;
899 
900 	if (!acpi_debugger_initialized)
901 		return -ENODEV;
902 	mutex_lock(&acpi_debugger.lock);
903 	if (!acpi_debugger.ops) {
904 		ret = -ENODEV;
905 		goto err_lock;
906 	}
907 	if (!try_module_get(acpi_debugger.owner)) {
908 		ret = -ENODEV;
909 		goto err_lock;
910 	}
911 	func = acpi_debugger.ops->write_log;
912 	owner = acpi_debugger.owner;
913 	mutex_unlock(&acpi_debugger.lock);
914 
915 	ret = func(msg);
916 
917 	mutex_lock(&acpi_debugger.lock);
918 	module_put(owner);
919 err_lock:
920 	mutex_unlock(&acpi_debugger.lock);
921 	return ret;
922 }
923 
924 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
925 {
926 	ssize_t ret;
927 	ssize_t (*func)(char *, size_t);
928 	struct module *owner;
929 
930 	if (!acpi_debugger_initialized)
931 		return -ENODEV;
932 	mutex_lock(&acpi_debugger.lock);
933 	if (!acpi_debugger.ops) {
934 		ret = -ENODEV;
935 		goto err_lock;
936 	}
937 	if (!try_module_get(acpi_debugger.owner)) {
938 		ret = -ENODEV;
939 		goto err_lock;
940 	}
941 	func = acpi_debugger.ops->read_cmd;
942 	owner = acpi_debugger.owner;
943 	mutex_unlock(&acpi_debugger.lock);
944 
945 	ret = func(buffer, buffer_length);
946 
947 	mutex_lock(&acpi_debugger.lock);
948 	module_put(owner);
949 err_lock:
950 	mutex_unlock(&acpi_debugger.lock);
951 	return ret;
952 }
953 
954 int acpi_debugger_wait_command_ready(void)
955 {
956 	int ret;
957 	int (*func)(bool, char *, size_t);
958 	struct module *owner;
959 
960 	if (!acpi_debugger_initialized)
961 		return -ENODEV;
962 	mutex_lock(&acpi_debugger.lock);
963 	if (!acpi_debugger.ops) {
964 		ret = -ENODEV;
965 		goto err_lock;
966 	}
967 	if (!try_module_get(acpi_debugger.owner)) {
968 		ret = -ENODEV;
969 		goto err_lock;
970 	}
971 	func = acpi_debugger.ops->wait_command_ready;
972 	owner = acpi_debugger.owner;
973 	mutex_unlock(&acpi_debugger.lock);
974 
975 	ret = func(acpi_gbl_method_executing,
976 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
977 
978 	mutex_lock(&acpi_debugger.lock);
979 	module_put(owner);
980 err_lock:
981 	mutex_unlock(&acpi_debugger.lock);
982 	return ret;
983 }
984 
985 int acpi_debugger_notify_command_complete(void)
986 {
987 	int ret;
988 	int (*func)(void);
989 	struct module *owner;
990 
991 	if (!acpi_debugger_initialized)
992 		return -ENODEV;
993 	mutex_lock(&acpi_debugger.lock);
994 	if (!acpi_debugger.ops) {
995 		ret = -ENODEV;
996 		goto err_lock;
997 	}
998 	if (!try_module_get(acpi_debugger.owner)) {
999 		ret = -ENODEV;
1000 		goto err_lock;
1001 	}
1002 	func = acpi_debugger.ops->notify_command_complete;
1003 	owner = acpi_debugger.owner;
1004 	mutex_unlock(&acpi_debugger.lock);
1005 
1006 	ret = func();
1007 
1008 	mutex_lock(&acpi_debugger.lock);
1009 	module_put(owner);
1010 err_lock:
1011 	mutex_unlock(&acpi_debugger.lock);
1012 	return ret;
1013 }
1014 
1015 int __init acpi_debugger_init(void)
1016 {
1017 	mutex_init(&acpi_debugger.lock);
1018 	acpi_debugger_initialized = true;
1019 	return 0;
1020 }
1021 #endif
1022 
1023 /*******************************************************************************
1024  *
1025  * FUNCTION:    acpi_os_execute
1026  *
1027  * PARAMETERS:  Type               - Type of the callback
1028  *              Function           - Function to be executed
1029  *              Context            - Function parameters
1030  *
1031  * RETURN:      Status
1032  *
1033  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1034  *              immediately executes function on a separate thread.
1035  *
1036  ******************************************************************************/
1037 
1038 acpi_status acpi_os_execute(acpi_execute_type type,
1039 			    acpi_osd_exec_callback function, void *context)
1040 {
1041 	acpi_status status = AE_OK;
1042 	struct acpi_os_dpc *dpc;
1043 	struct workqueue_struct *queue;
1044 	int ret;
1045 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1046 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1047 			  function, context));
1048 
1049 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1050 		ret = acpi_debugger_create_thread(function, context);
1051 		if (ret) {
1052 			pr_err("Call to kthread_create() failed.\n");
1053 			status = AE_ERROR;
1054 		}
1055 		goto out_thread;
1056 	}
1057 
1058 	/*
1059 	 * Allocate/initialize DPC structure.  Note that this memory will be
1060 	 * freed by the callee.  The kernel handles the work_struct list  in a
1061 	 * way that allows us to also free its memory inside the callee.
1062 	 * Because we may want to schedule several tasks with different
1063 	 * parameters we can't use the approach some kernel code uses of
1064 	 * having a static work_struct.
1065 	 */
1066 
1067 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1068 	if (!dpc)
1069 		return AE_NO_MEMORY;
1070 
1071 	dpc->function = function;
1072 	dpc->context = context;
1073 
1074 	/*
1075 	 * To prevent lockdep from complaining unnecessarily, make sure that
1076 	 * there is a different static lockdep key for each workqueue by using
1077 	 * INIT_WORK() for each of them separately.
1078 	 */
1079 	if (type == OSL_NOTIFY_HANDLER) {
1080 		queue = kacpi_notify_wq;
1081 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1082 	} else if (type == OSL_GPE_HANDLER) {
1083 		queue = kacpid_wq;
1084 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1085 	} else {
1086 		pr_err("Unsupported os_execute type %d.\n", type);
1087 		status = AE_ERROR;
1088 	}
1089 
1090 	if (ACPI_FAILURE(status))
1091 		goto err_workqueue;
1092 
1093 	/*
1094 	 * On some machines, a software-initiated SMI causes corruption unless
1095 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1096 	 * typically it's done in GPE-related methods that are run via
1097 	 * workqueues, so we can avoid the known corruption cases by always
1098 	 * queueing on CPU 0.
1099 	 */
1100 	ret = queue_work_on(0, queue, &dpc->work);
1101 	if (!ret) {
1102 		printk(KERN_ERR PREFIX
1103 			  "Call to queue_work() failed.\n");
1104 		status = AE_ERROR;
1105 	}
1106 err_workqueue:
1107 	if (ACPI_FAILURE(status))
1108 		kfree(dpc);
1109 out_thread:
1110 	return status;
1111 }
1112 EXPORT_SYMBOL(acpi_os_execute);
1113 
1114 void acpi_os_wait_events_complete(void)
1115 {
1116 	/*
1117 	 * Make sure the GPE handler or the fixed event handler is not used
1118 	 * on another CPU after removal.
1119 	 */
1120 	if (acpi_sci_irq_valid())
1121 		synchronize_hardirq(acpi_sci_irq);
1122 	flush_workqueue(kacpid_wq);
1123 	flush_workqueue(kacpi_notify_wq);
1124 }
1125 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1126 
1127 struct acpi_hp_work {
1128 	struct work_struct work;
1129 	struct acpi_device *adev;
1130 	u32 src;
1131 };
1132 
1133 static void acpi_hotplug_work_fn(struct work_struct *work)
1134 {
1135 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1136 
1137 	acpi_os_wait_events_complete();
1138 	acpi_device_hotplug(hpw->adev, hpw->src);
1139 	kfree(hpw);
1140 }
1141 
1142 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1143 {
1144 	struct acpi_hp_work *hpw;
1145 
1146 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1147 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1148 		  adev, src));
1149 
1150 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1151 	if (!hpw)
1152 		return AE_NO_MEMORY;
1153 
1154 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1155 	hpw->adev = adev;
1156 	hpw->src = src;
1157 	/*
1158 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1159 	 * the hotplug code may call driver .remove() functions, which may
1160 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1161 	 * these workqueues.
1162 	 */
1163 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1164 		kfree(hpw);
1165 		return AE_ERROR;
1166 	}
1167 	return AE_OK;
1168 }
1169 
1170 bool acpi_queue_hotplug_work(struct work_struct *work)
1171 {
1172 	return queue_work(kacpi_hotplug_wq, work);
1173 }
1174 
1175 acpi_status
1176 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1177 {
1178 	struct semaphore *sem = NULL;
1179 
1180 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1181 	if (!sem)
1182 		return AE_NO_MEMORY;
1183 
1184 	sema_init(sem, initial_units);
1185 
1186 	*handle = (acpi_handle *) sem;
1187 
1188 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1189 			  *handle, initial_units));
1190 
1191 	return AE_OK;
1192 }
1193 
1194 /*
1195  * TODO: A better way to delete semaphores?  Linux doesn't have a
1196  * 'delete_semaphore()' function -- may result in an invalid
1197  * pointer dereference for non-synchronized consumers.	Should
1198  * we at least check for blocked threads and signal/cancel them?
1199  */
1200 
1201 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1202 {
1203 	struct semaphore *sem = (struct semaphore *)handle;
1204 
1205 	if (!sem)
1206 		return AE_BAD_PARAMETER;
1207 
1208 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1209 
1210 	BUG_ON(!list_empty(&sem->wait_list));
1211 	kfree(sem);
1212 	sem = NULL;
1213 
1214 	return AE_OK;
1215 }
1216 
1217 /*
1218  * TODO: Support for units > 1?
1219  */
1220 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1221 {
1222 	acpi_status status = AE_OK;
1223 	struct semaphore *sem = (struct semaphore *)handle;
1224 	long jiffies;
1225 	int ret = 0;
1226 
1227 	if (!acpi_os_initialized)
1228 		return AE_OK;
1229 
1230 	if (!sem || (units < 1))
1231 		return AE_BAD_PARAMETER;
1232 
1233 	if (units > 1)
1234 		return AE_SUPPORT;
1235 
1236 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1237 			  handle, units, timeout));
1238 
1239 	if (timeout == ACPI_WAIT_FOREVER)
1240 		jiffies = MAX_SCHEDULE_TIMEOUT;
1241 	else
1242 		jiffies = msecs_to_jiffies(timeout);
1243 
1244 	ret = down_timeout(sem, jiffies);
1245 	if (ret)
1246 		status = AE_TIME;
1247 
1248 	if (ACPI_FAILURE(status)) {
1249 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1250 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1251 				  handle, units, timeout,
1252 				  acpi_format_exception(status)));
1253 	} else {
1254 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1255 				  "Acquired semaphore[%p|%d|%d]", handle,
1256 				  units, timeout));
1257 	}
1258 
1259 	return status;
1260 }
1261 
1262 /*
1263  * TODO: Support for units > 1?
1264  */
1265 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1266 {
1267 	struct semaphore *sem = (struct semaphore *)handle;
1268 
1269 	if (!acpi_os_initialized)
1270 		return AE_OK;
1271 
1272 	if (!sem || (units < 1))
1273 		return AE_BAD_PARAMETER;
1274 
1275 	if (units > 1)
1276 		return AE_SUPPORT;
1277 
1278 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1279 			  units));
1280 
1281 	up(sem);
1282 
1283 	return AE_OK;
1284 }
1285 
1286 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1287 {
1288 #ifdef ENABLE_DEBUGGER
1289 	if (acpi_in_debugger) {
1290 		u32 chars;
1291 
1292 		kdb_read(buffer, buffer_length);
1293 
1294 		/* remove the CR kdb includes */
1295 		chars = strlen(buffer) - 1;
1296 		buffer[chars] = '\0';
1297 	}
1298 #else
1299 	int ret;
1300 
1301 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1302 	if (ret < 0)
1303 		return AE_ERROR;
1304 	if (bytes_read)
1305 		*bytes_read = ret;
1306 #endif
1307 
1308 	return AE_OK;
1309 }
1310 EXPORT_SYMBOL(acpi_os_get_line);
1311 
1312 acpi_status acpi_os_wait_command_ready(void)
1313 {
1314 	int ret;
1315 
1316 	ret = acpi_debugger_wait_command_ready();
1317 	if (ret < 0)
1318 		return AE_ERROR;
1319 	return AE_OK;
1320 }
1321 
1322 acpi_status acpi_os_notify_command_complete(void)
1323 {
1324 	int ret;
1325 
1326 	ret = acpi_debugger_notify_command_complete();
1327 	if (ret < 0)
1328 		return AE_ERROR;
1329 	return AE_OK;
1330 }
1331 
1332 acpi_status acpi_os_signal(u32 function, void *info)
1333 {
1334 	switch (function) {
1335 	case ACPI_SIGNAL_FATAL:
1336 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1337 		break;
1338 	case ACPI_SIGNAL_BREAKPOINT:
1339 		/*
1340 		 * AML Breakpoint
1341 		 * ACPI spec. says to treat it as a NOP unless
1342 		 * you are debugging.  So if/when we integrate
1343 		 * AML debugger into the kernel debugger its
1344 		 * hook will go here.  But until then it is
1345 		 * not useful to print anything on breakpoints.
1346 		 */
1347 		break;
1348 	default:
1349 		break;
1350 	}
1351 
1352 	return AE_OK;
1353 }
1354 
1355 static int __init acpi_os_name_setup(char *str)
1356 {
1357 	char *p = acpi_os_name;
1358 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1359 
1360 	if (!str || !*str)
1361 		return 0;
1362 
1363 	for (; count-- && *str; str++) {
1364 		if (isalnum(*str) || *str == ' ' || *str == ':')
1365 			*p++ = *str;
1366 		else if (*str == '\'' || *str == '"')
1367 			continue;
1368 		else
1369 			break;
1370 	}
1371 	*p = 0;
1372 
1373 	return 1;
1374 
1375 }
1376 
1377 __setup("acpi_os_name=", acpi_os_name_setup);
1378 
1379 /*
1380  * Disable the auto-serialization of named objects creation methods.
1381  *
1382  * This feature is enabled by default.  It marks the AML control methods
1383  * that contain the opcodes to create named objects as "Serialized".
1384  */
1385 static int __init acpi_no_auto_serialize_setup(char *str)
1386 {
1387 	acpi_gbl_auto_serialize_methods = FALSE;
1388 	pr_info("ACPI: auto-serialization disabled\n");
1389 
1390 	return 1;
1391 }
1392 
1393 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1394 
1395 /* Check of resource interference between native drivers and ACPI
1396  * OperationRegions (SystemIO and System Memory only).
1397  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1398  * in arbitrary AML code and can interfere with legacy drivers.
1399  * acpi_enforce_resources= can be set to:
1400  *
1401  *   - strict (default) (2)
1402  *     -> further driver trying to access the resources will not load
1403  *   - lax              (1)
1404  *     -> further driver trying to access the resources will load, but you
1405  *     get a system message that something might go wrong...
1406  *
1407  *   - no               (0)
1408  *     -> ACPI Operation Region resources will not be registered
1409  *
1410  */
1411 #define ENFORCE_RESOURCES_STRICT 2
1412 #define ENFORCE_RESOURCES_LAX    1
1413 #define ENFORCE_RESOURCES_NO     0
1414 
1415 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1416 
1417 static int __init acpi_enforce_resources_setup(char *str)
1418 {
1419 	if (str == NULL || *str == '\0')
1420 		return 0;
1421 
1422 	if (!strcmp("strict", str))
1423 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1424 	else if (!strcmp("lax", str))
1425 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1426 	else if (!strcmp("no", str))
1427 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1428 
1429 	return 1;
1430 }
1431 
1432 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1433 
1434 /* Check for resource conflicts between ACPI OperationRegions and native
1435  * drivers */
1436 int acpi_check_resource_conflict(const struct resource *res)
1437 {
1438 	acpi_adr_space_type space_id;
1439 	acpi_size length;
1440 	u8 warn = 0;
1441 	int clash = 0;
1442 
1443 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1444 		return 0;
1445 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1446 		return 0;
1447 
1448 	if (res->flags & IORESOURCE_IO)
1449 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1450 	else
1451 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1452 
1453 	length = resource_size(res);
1454 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1455 		warn = 1;
1456 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1457 
1458 	if (clash) {
1459 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1460 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1461 				printk(KERN_NOTICE "ACPI: This conflict may"
1462 				       " cause random problems and system"
1463 				       " instability\n");
1464 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1465 			       " for this device, you should use it instead of"
1466 			       " the native driver\n");
1467 		}
1468 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1469 			return -EBUSY;
1470 	}
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL(acpi_check_resource_conflict);
1474 
1475 int acpi_check_region(resource_size_t start, resource_size_t n,
1476 		      const char *name)
1477 {
1478 	struct resource res = {
1479 		.start = start,
1480 		.end   = start + n - 1,
1481 		.name  = name,
1482 		.flags = IORESOURCE_IO,
1483 	};
1484 
1485 	return acpi_check_resource_conflict(&res);
1486 }
1487 EXPORT_SYMBOL(acpi_check_region);
1488 
1489 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1490 					      void *_res, void **return_value)
1491 {
1492 	struct acpi_mem_space_context **mem_ctx;
1493 	union acpi_operand_object *handler_obj;
1494 	union acpi_operand_object *region_obj2;
1495 	union acpi_operand_object *region_obj;
1496 	struct resource *res = _res;
1497 	acpi_status status;
1498 
1499 	region_obj = acpi_ns_get_attached_object(handle);
1500 	if (!region_obj)
1501 		return AE_OK;
1502 
1503 	handler_obj = region_obj->region.handler;
1504 	if (!handler_obj)
1505 		return AE_OK;
1506 
1507 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1508 		return AE_OK;
1509 
1510 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1511 		return AE_OK;
1512 
1513 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1514 	if (!region_obj2)
1515 		return AE_OK;
1516 
1517 	mem_ctx = (void *)&region_obj2->extra.region_context;
1518 
1519 	if (!(mem_ctx[0]->address >= res->start &&
1520 	      mem_ctx[0]->address < res->end))
1521 		return AE_OK;
1522 
1523 	status = handler_obj->address_space.setup(region_obj,
1524 						  ACPI_REGION_DEACTIVATE,
1525 						  NULL, (void **)mem_ctx);
1526 	if (ACPI_SUCCESS(status))
1527 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1528 
1529 	return status;
1530 }
1531 
1532 /**
1533  * acpi_release_memory - Release any mappings done to a memory region
1534  * @handle: Handle to namespace node
1535  * @res: Memory resource
1536  * @level: A level that terminates the search
1537  *
1538  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1539  * overlap with @res and that have already been activated (mapped).
1540  *
1541  * This is a helper that allows drivers to place special requirements on memory
1542  * region that may overlap with operation regions, primarily allowing them to
1543  * safely map the region as non-cached memory.
1544  *
1545  * The unmapped Operation Regions will be automatically remapped next time they
1546  * are called, so the drivers do not need to do anything else.
1547  */
1548 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1549 				u32 level)
1550 {
1551 	if (!(res->flags & IORESOURCE_MEM))
1552 		return AE_TYPE;
1553 
1554 	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1555 				   acpi_deactivate_mem_region, NULL, res, NULL);
1556 }
1557 EXPORT_SYMBOL_GPL(acpi_release_memory);
1558 
1559 /*
1560  * Let drivers know whether the resource checks are effective
1561  */
1562 int acpi_resources_are_enforced(void)
1563 {
1564 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1565 }
1566 EXPORT_SYMBOL(acpi_resources_are_enforced);
1567 
1568 /*
1569  * Deallocate the memory for a spinlock.
1570  */
1571 void acpi_os_delete_lock(acpi_spinlock handle)
1572 {
1573 	ACPI_FREE(handle);
1574 }
1575 
1576 /*
1577  * Acquire a spinlock.
1578  *
1579  * handle is a pointer to the spinlock_t.
1580  */
1581 
1582 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1583 {
1584 	acpi_cpu_flags flags;
1585 	spin_lock_irqsave(lockp, flags);
1586 	return flags;
1587 }
1588 
1589 /*
1590  * Release a spinlock. See above.
1591  */
1592 
1593 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1594 {
1595 	spin_unlock_irqrestore(lockp, flags);
1596 }
1597 
1598 #ifndef ACPI_USE_LOCAL_CACHE
1599 
1600 /*******************************************************************************
1601  *
1602  * FUNCTION:    acpi_os_create_cache
1603  *
1604  * PARAMETERS:  name      - Ascii name for the cache
1605  *              size      - Size of each cached object
1606  *              depth     - Maximum depth of the cache (in objects) <ignored>
1607  *              cache     - Where the new cache object is returned
1608  *
1609  * RETURN:      status
1610  *
1611  * DESCRIPTION: Create a cache object
1612  *
1613  ******************************************************************************/
1614 
1615 acpi_status
1616 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1617 {
1618 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1619 	if (*cache == NULL)
1620 		return AE_ERROR;
1621 	else
1622 		return AE_OK;
1623 }
1624 
1625 /*******************************************************************************
1626  *
1627  * FUNCTION:    acpi_os_purge_cache
1628  *
1629  * PARAMETERS:  Cache           - Handle to cache object
1630  *
1631  * RETURN:      Status
1632  *
1633  * DESCRIPTION: Free all objects within the requested cache.
1634  *
1635  ******************************************************************************/
1636 
1637 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1638 {
1639 	kmem_cache_shrink(cache);
1640 	return (AE_OK);
1641 }
1642 
1643 /*******************************************************************************
1644  *
1645  * FUNCTION:    acpi_os_delete_cache
1646  *
1647  * PARAMETERS:  Cache           - Handle to cache object
1648  *
1649  * RETURN:      Status
1650  *
1651  * DESCRIPTION: Free all objects within the requested cache and delete the
1652  *              cache object.
1653  *
1654  ******************************************************************************/
1655 
1656 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1657 {
1658 	kmem_cache_destroy(cache);
1659 	return (AE_OK);
1660 }
1661 
1662 /*******************************************************************************
1663  *
1664  * FUNCTION:    acpi_os_release_object
1665  *
1666  * PARAMETERS:  Cache       - Handle to cache object
1667  *              Object      - The object to be released
1668  *
1669  * RETURN:      None
1670  *
1671  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1672  *              the object is deleted.
1673  *
1674  ******************************************************************************/
1675 
1676 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1677 {
1678 	kmem_cache_free(cache, object);
1679 	return (AE_OK);
1680 }
1681 #endif
1682 
1683 static int __init acpi_no_static_ssdt_setup(char *s)
1684 {
1685 	acpi_gbl_disable_ssdt_table_install = TRUE;
1686 	pr_info("ACPI: static SSDT installation disabled\n");
1687 
1688 	return 0;
1689 }
1690 
1691 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1692 
1693 static int __init acpi_disable_return_repair(char *s)
1694 {
1695 	printk(KERN_NOTICE PREFIX
1696 	       "ACPI: Predefined validation mechanism disabled\n");
1697 	acpi_gbl_disable_auto_repair = TRUE;
1698 
1699 	return 1;
1700 }
1701 
1702 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1703 
1704 acpi_status __init acpi_os_initialize(void)
1705 {
1706 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1707 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1708 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1709 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1710 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1711 		/*
1712 		 * Use acpi_os_map_generic_address to pre-map the reset
1713 		 * register if it's in system memory.
1714 		 */
1715 		int rv;
1716 
1717 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1718 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1719 	}
1720 	acpi_os_initialized = true;
1721 
1722 	return AE_OK;
1723 }
1724 
1725 acpi_status __init acpi_os_initialize1(void)
1726 {
1727 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1728 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1729 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1730 	BUG_ON(!kacpid_wq);
1731 	BUG_ON(!kacpi_notify_wq);
1732 	BUG_ON(!kacpi_hotplug_wq);
1733 	acpi_osi_init();
1734 	return AE_OK;
1735 }
1736 
1737 acpi_status acpi_os_terminate(void)
1738 {
1739 	if (acpi_irq_handler) {
1740 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1741 						 acpi_irq_handler);
1742 	}
1743 
1744 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1745 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1746 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1747 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1748 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1749 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1750 
1751 	destroy_workqueue(kacpid_wq);
1752 	destroy_workqueue(kacpi_notify_wq);
1753 	destroy_workqueue(kacpi_hotplug_wq);
1754 
1755 	return AE_OK;
1756 }
1757 
1758 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1759 				  u32 pm1b_control)
1760 {
1761 	int rc = 0;
1762 	if (__acpi_os_prepare_sleep)
1763 		rc = __acpi_os_prepare_sleep(sleep_state,
1764 					     pm1a_control, pm1b_control);
1765 	if (rc < 0)
1766 		return AE_ERROR;
1767 	else if (rc > 0)
1768 		return AE_CTRL_TERMINATE;
1769 
1770 	return AE_OK;
1771 }
1772 
1773 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1774 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1775 {
1776 	__acpi_os_prepare_sleep = func;
1777 }
1778 
1779 #if (ACPI_REDUCED_HARDWARE)
1780 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1781 				  u32 val_b)
1782 {
1783 	int rc = 0;
1784 	if (__acpi_os_prepare_extended_sleep)
1785 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1786 					     val_a, val_b);
1787 	if (rc < 0)
1788 		return AE_ERROR;
1789 	else if (rc > 0)
1790 		return AE_CTRL_TERMINATE;
1791 
1792 	return AE_OK;
1793 }
1794 #else
1795 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1796 				  u32 val_b)
1797 {
1798 	return AE_OK;
1799 }
1800 #endif
1801 
1802 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1803 			       u32 val_a, u32 val_b))
1804 {
1805 	__acpi_os_prepare_extended_sleep = func;
1806 }
1807 
1808 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1809 				u32 reg_a_value, u32 reg_b_value)
1810 {
1811 	acpi_status status;
1812 
1813 	if (acpi_gbl_reduced_hardware)
1814 		status = acpi_os_prepare_extended_sleep(sleep_state,
1815 							reg_a_value,
1816 							reg_b_value);
1817 	else
1818 		status = acpi_os_prepare_sleep(sleep_state,
1819 					       reg_a_value, reg_b_value);
1820 	return status;
1821 }
1822