xref: /linux/drivers/acpi/osl.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27 
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/smp_lock.h>
34 #include <linux/interrupt.h>
35 #include <linux/kmod.h>
36 #include <linux/delay.h>
37 #include <linux/workqueue.h>
38 #include <linux/nmi.h>
39 #include <linux/acpi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45 
46 #include <linux/efi.h>
47 
48 #define _COMPONENT		ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX		"ACPI: "
51 struct acpi_os_dpc {
52 	acpi_osd_exec_callback function;
53 	void *context;
54 	struct work_struct work;
55 };
56 
57 #ifdef CONFIG_ACPI_CUSTOM_DSDT
58 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
59 #endif
60 
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63 
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 
68 extern char line_buf[80];
69 #endif				/*ENABLE_DEBUGGER */
70 
71 int acpi_specific_hotkey_enabled = TRUE;
72 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
73 
74 static unsigned int acpi_irq_irq;
75 static acpi_osd_handler acpi_irq_handler;
76 static void *acpi_irq_context;
77 static struct workqueue_struct *kacpid_wq;
78 
79 static void __init acpi_request_region (struct acpi_generic_address *addr,
80 	unsigned int length, char *desc)
81 {
82 	struct resource *res;
83 
84 	if (!addr->address || !length)
85 		return;
86 
87 	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
88 		res = request_region(addr->address, length, desc);
89 	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
90 		res = request_mem_region(addr->address, length, desc);
91 }
92 
93 static int __init acpi_reserve_resources(void)
94 {
95 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
96 		"ACPI PM1a_EVT_BLK");
97 
98 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
99 		"ACPI PM1b_EVT_BLK");
100 
101 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
102 		"ACPI PM1a_CNT_BLK");
103 
104 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
105 		"ACPI PM1b_CNT_BLK");
106 
107 	if (acpi_gbl_FADT.pm_timer_length == 4)
108 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
109 
110 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
111 		"ACPI PM2_CNT_BLK");
112 
113 	/* Length of GPE blocks must be a non-negative multiple of 2 */
114 
115 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
116 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
117 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
118 
119 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
120 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
121 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
122 
123 	return 0;
124 }
125 device_initcall(acpi_reserve_resources);
126 
127 acpi_status acpi_os_initialize(void)
128 {
129 	return AE_OK;
130 }
131 
132 acpi_status acpi_os_initialize1(void)
133 {
134 	/*
135 	 * Initialize PCI configuration space access, as we'll need to access
136 	 * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
137 	 */
138 	if (!raw_pci_ops) {
139 		printk(KERN_ERR PREFIX
140 		       "Access to PCI configuration space unavailable\n");
141 		return AE_NULL_ENTRY;
142 	}
143 	kacpid_wq = create_singlethread_workqueue("kacpid");
144 	BUG_ON(!kacpid_wq);
145 
146 	return AE_OK;
147 }
148 
149 acpi_status acpi_os_terminate(void)
150 {
151 	if (acpi_irq_handler) {
152 		acpi_os_remove_interrupt_handler(acpi_irq_irq,
153 						 acpi_irq_handler);
154 	}
155 
156 	destroy_workqueue(kacpid_wq);
157 
158 	return AE_OK;
159 }
160 
161 void acpi_os_printf(const char *fmt, ...)
162 {
163 	va_list args;
164 	va_start(args, fmt);
165 	acpi_os_vprintf(fmt, args);
166 	va_end(args);
167 }
168 
169 EXPORT_SYMBOL(acpi_os_printf);
170 
171 void acpi_os_vprintf(const char *fmt, va_list args)
172 {
173 	static char buffer[512];
174 
175 	vsprintf(buffer, fmt, args);
176 
177 #ifdef ENABLE_DEBUGGER
178 	if (acpi_in_debugger) {
179 		kdb_printf("%s", buffer);
180 	} else {
181 		printk("%s", buffer);
182 	}
183 #else
184 	printk("%s", buffer);
185 #endif
186 }
187 
188 acpi_physical_address __init acpi_os_get_root_pointer(void)
189 {
190 	if (efi_enabled) {
191 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
192 			return efi.acpi20;
193 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
194 			return efi.acpi;
195 		else {
196 			printk(KERN_ERR PREFIX
197 			       "System description tables not found\n");
198 			return 0;
199 		}
200 	} else
201 		return acpi_find_rsdp();
202 }
203 
204 void __iomem *acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
205 {
206 	if (phys > ULONG_MAX) {
207 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
208 		return 0;
209 	}
210 	if (acpi_gbl_permanent_mmap)
211 		/*
212 		* ioremap checks to ensure this is in reserved space
213 		*/
214 		return ioremap((unsigned long)phys, size);
215 	else
216 		return __acpi_map_table((unsigned long)phys, size);
217 }
218 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
219 
220 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
221 {
222 	if (acpi_gbl_permanent_mmap) {
223 		iounmap(virt);
224 	}
225 }
226 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
227 
228 #ifdef ACPI_FUTURE_USAGE
229 acpi_status
230 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
231 {
232 	if (!phys || !virt)
233 		return AE_BAD_PARAMETER;
234 
235 	*phys = virt_to_phys(virt);
236 
237 	return AE_OK;
238 }
239 #endif
240 
241 #define ACPI_MAX_OVERRIDE_LEN 100
242 
243 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
244 
245 acpi_status
246 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
247 			    acpi_string * new_val)
248 {
249 	if (!init_val || !new_val)
250 		return AE_BAD_PARAMETER;
251 
252 	*new_val = NULL;
253 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
254 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
255 		       acpi_os_name);
256 		*new_val = acpi_os_name;
257 	}
258 
259 	return AE_OK;
260 }
261 
262 acpi_status
263 acpi_os_table_override(struct acpi_table_header * existing_table,
264 		       struct acpi_table_header ** new_table)
265 {
266 	if (!existing_table || !new_table)
267 		return AE_BAD_PARAMETER;
268 
269 #ifdef CONFIG_ACPI_CUSTOM_DSDT
270 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
271 		*new_table = (struct acpi_table_header *)AmlCode;
272 	else
273 		*new_table = NULL;
274 #else
275 	*new_table = NULL;
276 #endif
277 	return AE_OK;
278 }
279 
280 static irqreturn_t acpi_irq(int irq, void *dev_id)
281 {
282 	return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
283 }
284 
285 acpi_status
286 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
287 				  void *context)
288 {
289 	unsigned int irq;
290 
291 	/*
292 	 * Ignore the GSI from the core, and use the value in our copy of the
293 	 * FADT. It may not be the same if an interrupt source override exists
294 	 * for the SCI.
295 	 */
296 	gsi = acpi_gbl_FADT.sci_interrupt;
297 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
298 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
299 		       gsi);
300 		return AE_OK;
301 	}
302 
303 	acpi_irq_handler = handler;
304 	acpi_irq_context = context;
305 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
306 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
307 		return AE_NOT_ACQUIRED;
308 	}
309 	acpi_irq_irq = irq;
310 
311 	return AE_OK;
312 }
313 
314 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
315 {
316 	if (irq) {
317 		free_irq(irq, acpi_irq);
318 		acpi_irq_handler = NULL;
319 		acpi_irq_irq = 0;
320 	}
321 
322 	return AE_OK;
323 }
324 
325 /*
326  * Running in interpreter thread context, safe to sleep
327  */
328 
329 void acpi_os_sleep(acpi_integer ms)
330 {
331 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
332 }
333 
334 EXPORT_SYMBOL(acpi_os_sleep);
335 
336 void acpi_os_stall(u32 us)
337 {
338 	while (us) {
339 		u32 delay = 1000;
340 
341 		if (delay > us)
342 			delay = us;
343 		udelay(delay);
344 		touch_nmi_watchdog();
345 		us -= delay;
346 	}
347 }
348 
349 EXPORT_SYMBOL(acpi_os_stall);
350 
351 /*
352  * Support ACPI 3.0 AML Timer operand
353  * Returns 64-bit free-running, monotonically increasing timer
354  * with 100ns granularity
355  */
356 u64 acpi_os_get_timer(void)
357 {
358 	static u64 t;
359 
360 #ifdef	CONFIG_HPET
361 	/* TBD: use HPET if available */
362 #endif
363 
364 #ifdef	CONFIG_X86_PM_TIMER
365 	/* TBD: default to PM timer if HPET was not available */
366 #endif
367 	if (!t)
368 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
369 
370 	return ++t;
371 }
372 
373 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
374 {
375 	u32 dummy;
376 
377 	if (!value)
378 		value = &dummy;
379 
380 	switch (width) {
381 	case 8:
382 		*(u8 *) value = inb(port);
383 		break;
384 	case 16:
385 		*(u16 *) value = inw(port);
386 		break;
387 	case 32:
388 		*(u32 *) value = inl(port);
389 		break;
390 	default:
391 		BUG();
392 	}
393 
394 	return AE_OK;
395 }
396 
397 EXPORT_SYMBOL(acpi_os_read_port);
398 
399 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
400 {
401 	switch (width) {
402 	case 8:
403 		outb(value, port);
404 		break;
405 	case 16:
406 		outw(value, port);
407 		break;
408 	case 32:
409 		outl(value, port);
410 		break;
411 	default:
412 		BUG();
413 	}
414 
415 	return AE_OK;
416 }
417 
418 EXPORT_SYMBOL(acpi_os_write_port);
419 
420 acpi_status
421 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
422 {
423 	u32 dummy;
424 	void __iomem *virt_addr;
425 
426 	virt_addr = ioremap(phys_addr, width);
427 	if (!value)
428 		value = &dummy;
429 
430 	switch (width) {
431 	case 8:
432 		*(u8 *) value = readb(virt_addr);
433 		break;
434 	case 16:
435 		*(u16 *) value = readw(virt_addr);
436 		break;
437 	case 32:
438 		*(u32 *) value = readl(virt_addr);
439 		break;
440 	default:
441 		BUG();
442 	}
443 
444 	iounmap(virt_addr);
445 
446 	return AE_OK;
447 }
448 
449 acpi_status
450 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
451 {
452 	void __iomem *virt_addr;
453 
454 	virt_addr = ioremap(phys_addr, width);
455 
456 	switch (width) {
457 	case 8:
458 		writeb(value, virt_addr);
459 		break;
460 	case 16:
461 		writew(value, virt_addr);
462 		break;
463 	case 32:
464 		writel(value, virt_addr);
465 		break;
466 	default:
467 		BUG();
468 	}
469 
470 	iounmap(virt_addr);
471 
472 	return AE_OK;
473 }
474 
475 acpi_status
476 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
477 			       void *value, u32 width)
478 {
479 	int result, size;
480 
481 	if (!value)
482 		return AE_BAD_PARAMETER;
483 
484 	switch (width) {
485 	case 8:
486 		size = 1;
487 		break;
488 	case 16:
489 		size = 2;
490 		break;
491 	case 32:
492 		size = 4;
493 		break;
494 	default:
495 		return AE_ERROR;
496 	}
497 
498 	BUG_ON(!raw_pci_ops);
499 
500 	result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
501 				   PCI_DEVFN(pci_id->device, pci_id->function),
502 				   reg, size, value);
503 
504 	return (result ? AE_ERROR : AE_OK);
505 }
506 
507 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
508 
509 acpi_status
510 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
511 				acpi_integer value, u32 width)
512 {
513 	int result, size;
514 
515 	switch (width) {
516 	case 8:
517 		size = 1;
518 		break;
519 	case 16:
520 		size = 2;
521 		break;
522 	case 32:
523 		size = 4;
524 		break;
525 	default:
526 		return AE_ERROR;
527 	}
528 
529 	BUG_ON(!raw_pci_ops);
530 
531 	result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
532 				    PCI_DEVFN(pci_id->device, pci_id->function),
533 				    reg, size, value);
534 
535 	return (result ? AE_ERROR : AE_OK);
536 }
537 
538 /* TODO: Change code to take advantage of driver model more */
539 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,	/* upper bound  */
540 				    acpi_handle chandle,	/* current node */
541 				    struct acpi_pci_id **id,
542 				    int *is_bridge, u8 * bus_number)
543 {
544 	acpi_handle handle;
545 	struct acpi_pci_id *pci_id = *id;
546 	acpi_status status;
547 	unsigned long temp;
548 	acpi_object_type type;
549 	u8 tu8;
550 
551 	acpi_get_parent(chandle, &handle);
552 	if (handle != rhandle) {
553 		acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
554 					bus_number);
555 
556 		status = acpi_get_type(handle, &type);
557 		if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
558 			return;
559 
560 		status =
561 		    acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
562 					  &temp);
563 		if (ACPI_SUCCESS(status)) {
564 			pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
565 			pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
566 
567 			if (*is_bridge)
568 				pci_id->bus = *bus_number;
569 
570 			/* any nicer way to get bus number of bridge ? */
571 			status =
572 			    acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
573 							   8);
574 			if (ACPI_SUCCESS(status)
575 			    && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
576 				status =
577 				    acpi_os_read_pci_configuration(pci_id, 0x18,
578 								   &tu8, 8);
579 				if (!ACPI_SUCCESS(status)) {
580 					/* Certainly broken...  FIX ME */
581 					return;
582 				}
583 				*is_bridge = 1;
584 				pci_id->bus = tu8;
585 				status =
586 				    acpi_os_read_pci_configuration(pci_id, 0x19,
587 								   &tu8, 8);
588 				if (ACPI_SUCCESS(status)) {
589 					*bus_number = tu8;
590 				}
591 			} else
592 				*is_bridge = 0;
593 		}
594 	}
595 }
596 
597 void acpi_os_derive_pci_id(acpi_handle rhandle,	/* upper bound  */
598 			   acpi_handle chandle,	/* current node */
599 			   struct acpi_pci_id **id)
600 {
601 	int is_bridge = 1;
602 	u8 bus_number = (*id)->bus;
603 
604 	acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
605 }
606 
607 static void acpi_os_execute_deferred(struct work_struct *work)
608 {
609 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
610 
611 	if (!dpc) {
612 		printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
613 		return;
614 	}
615 
616 	dpc->function(dpc->context);
617 
618 	kfree(dpc);
619 
620 	return;
621 }
622 
623 /*******************************************************************************
624  *
625  * FUNCTION:    acpi_os_execute
626  *
627  * PARAMETERS:  Type               - Type of the callback
628  *              Function           - Function to be executed
629  *              Context            - Function parameters
630  *
631  * RETURN:      Status
632  *
633  * DESCRIPTION: Depending on type, either queues function for deferred execution or
634  *              immediately executes function on a separate thread.
635  *
636  ******************************************************************************/
637 
638 acpi_status acpi_os_execute(acpi_execute_type type,
639 			    acpi_osd_exec_callback function, void *context)
640 {
641 	acpi_status status = AE_OK;
642 	struct acpi_os_dpc *dpc;
643 
644 	ACPI_FUNCTION_TRACE("os_queue_for_execution");
645 
646 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
647 			  "Scheduling function [%p(%p)] for deferred execution.\n",
648 			  function, context));
649 
650 	if (!function)
651 		return_ACPI_STATUS(AE_BAD_PARAMETER);
652 
653 	/*
654 	 * Allocate/initialize DPC structure.  Note that this memory will be
655 	 * freed by the callee.  The kernel handles the work_struct list  in a
656 	 * way that allows us to also free its memory inside the callee.
657 	 * Because we may want to schedule several tasks with different
658 	 * parameters we can't use the approach some kernel code uses of
659 	 * having a static work_struct.
660 	 */
661 
662 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
663 	if (!dpc)
664 		return_ACPI_STATUS(AE_NO_MEMORY);
665 
666 	dpc->function = function;
667 	dpc->context = context;
668 
669 	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
670 	if (!queue_work(kacpid_wq, &dpc->work)) {
671 		ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
672 				  "Call to queue_work() failed.\n"));
673 		kfree(dpc);
674 		status = AE_ERROR;
675 	}
676 
677 	return_ACPI_STATUS(status);
678 }
679 
680 EXPORT_SYMBOL(acpi_os_execute);
681 
682 void acpi_os_wait_events_complete(void *context)
683 {
684 	flush_workqueue(kacpid_wq);
685 }
686 
687 EXPORT_SYMBOL(acpi_os_wait_events_complete);
688 
689 /*
690  * Allocate the memory for a spinlock and initialize it.
691  */
692 acpi_status acpi_os_create_lock(acpi_spinlock * handle)
693 {
694 	spin_lock_init(*handle);
695 
696 	return AE_OK;
697 }
698 
699 /*
700  * Deallocate the memory for a spinlock.
701  */
702 void acpi_os_delete_lock(acpi_spinlock handle)
703 {
704 	return;
705 }
706 
707 acpi_status
708 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
709 {
710 	struct semaphore *sem = NULL;
711 
712 
713 	sem = acpi_os_allocate(sizeof(struct semaphore));
714 	if (!sem)
715 		return AE_NO_MEMORY;
716 	memset(sem, 0, sizeof(struct semaphore));
717 
718 	sema_init(sem, initial_units);
719 
720 	*handle = (acpi_handle *) sem;
721 
722 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
723 			  *handle, initial_units));
724 
725 	return AE_OK;
726 }
727 
728 EXPORT_SYMBOL(acpi_os_create_semaphore);
729 
730 /*
731  * TODO: A better way to delete semaphores?  Linux doesn't have a
732  * 'delete_semaphore()' function -- may result in an invalid
733  * pointer dereference for non-synchronized consumers.	Should
734  * we at least check for blocked threads and signal/cancel them?
735  */
736 
737 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
738 {
739 	struct semaphore *sem = (struct semaphore *)handle;
740 
741 
742 	if (!sem)
743 		return AE_BAD_PARAMETER;
744 
745 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
746 
747 	kfree(sem);
748 	sem = NULL;
749 
750 	return AE_OK;
751 }
752 
753 EXPORT_SYMBOL(acpi_os_delete_semaphore);
754 
755 /*
756  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
757  * improvise.  The process is to sleep for one scheduler quantum
758  * until the semaphore becomes available.  Downside is that this
759  * may result in starvation for timeout-based waits when there's
760  * lots of semaphore activity.
761  *
762  * TODO: Support for units > 1?
763  */
764 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
765 {
766 	acpi_status status = AE_OK;
767 	struct semaphore *sem = (struct semaphore *)handle;
768 	int ret = 0;
769 
770 
771 	if (!sem || (units < 1))
772 		return AE_BAD_PARAMETER;
773 
774 	if (units > 1)
775 		return AE_SUPPORT;
776 
777 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
778 			  handle, units, timeout));
779 
780 	/*
781 	 * This can be called during resume with interrupts off.
782 	 * Like boot-time, we should be single threaded and will
783 	 * always get the lock if we try -- timeout or not.
784 	 * If this doesn't succeed, then we will oops courtesy of
785 	 * might_sleep() in down().
786 	 */
787 	if (!down_trylock(sem))
788 		return AE_OK;
789 
790 	switch (timeout) {
791 		/*
792 		 * No Wait:
793 		 * --------
794 		 * A zero timeout value indicates that we shouldn't wait - just
795 		 * acquire the semaphore if available otherwise return AE_TIME
796 		 * (a.k.a. 'would block').
797 		 */
798 	case 0:
799 		if (down_trylock(sem))
800 			status = AE_TIME;
801 		break;
802 
803 		/*
804 		 * Wait Indefinitely:
805 		 * ------------------
806 		 */
807 	case ACPI_WAIT_FOREVER:
808 		down(sem);
809 		break;
810 
811 		/*
812 		 * Wait w/ Timeout:
813 		 * ----------------
814 		 */
815 	default:
816 		// TODO: A better timeout algorithm?
817 		{
818 			int i = 0;
819 			static const int quantum_ms = 1000 / HZ;
820 
821 			ret = down_trylock(sem);
822 			for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
823 				schedule_timeout_interruptible(1);
824 				ret = down_trylock(sem);
825 			}
826 
827 			if (ret != 0)
828 				status = AE_TIME;
829 		}
830 		break;
831 	}
832 
833 	if (ACPI_FAILURE(status)) {
834 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
835 				  "Failed to acquire semaphore[%p|%d|%d], %s",
836 				  handle, units, timeout,
837 				  acpi_format_exception(status)));
838 	} else {
839 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
840 				  "Acquired semaphore[%p|%d|%d]", handle,
841 				  units, timeout));
842 	}
843 
844 	return status;
845 }
846 
847 EXPORT_SYMBOL(acpi_os_wait_semaphore);
848 
849 /*
850  * TODO: Support for units > 1?
851  */
852 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
853 {
854 	struct semaphore *sem = (struct semaphore *)handle;
855 
856 
857 	if (!sem || (units < 1))
858 		return AE_BAD_PARAMETER;
859 
860 	if (units > 1)
861 		return AE_SUPPORT;
862 
863 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
864 			  units));
865 
866 	up(sem);
867 
868 	return AE_OK;
869 }
870 
871 EXPORT_SYMBOL(acpi_os_signal_semaphore);
872 
873 #ifdef ACPI_FUTURE_USAGE
874 u32 acpi_os_get_line(char *buffer)
875 {
876 
877 #ifdef ENABLE_DEBUGGER
878 	if (acpi_in_debugger) {
879 		u32 chars;
880 
881 		kdb_read(buffer, sizeof(line_buf));
882 
883 		/* remove the CR kdb includes */
884 		chars = strlen(buffer) - 1;
885 		buffer[chars] = '\0';
886 	}
887 #endif
888 
889 	return 0;
890 }
891 #endif				/*  ACPI_FUTURE_USAGE  */
892 
893 /* Assumes no unreadable holes inbetween */
894 u8 acpi_os_readable(void *ptr, acpi_size len)
895 {
896 #if defined(__i386__) || defined(__x86_64__)
897 	char tmp;
898 	return !__get_user(tmp, (char __user *)ptr)
899 	    && !__get_user(tmp, (char __user *)ptr + len - 1);
900 #endif
901 	return 1;
902 }
903 
904 #ifdef ACPI_FUTURE_USAGE
905 u8 acpi_os_writable(void *ptr, acpi_size len)
906 {
907 	/* could do dummy write (racy) or a kernel page table lookup.
908 	   The later may be difficult at early boot when kmap doesn't work yet. */
909 	return 1;
910 }
911 #endif
912 
913 acpi_status acpi_os_signal(u32 function, void *info)
914 {
915 	switch (function) {
916 	case ACPI_SIGNAL_FATAL:
917 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
918 		break;
919 	case ACPI_SIGNAL_BREAKPOINT:
920 		/*
921 		 * AML Breakpoint
922 		 * ACPI spec. says to treat it as a NOP unless
923 		 * you are debugging.  So if/when we integrate
924 		 * AML debugger into the kernel debugger its
925 		 * hook will go here.  But until then it is
926 		 * not useful to print anything on breakpoints.
927 		 */
928 		break;
929 	default:
930 		break;
931 	}
932 
933 	return AE_OK;
934 }
935 
936 EXPORT_SYMBOL(acpi_os_signal);
937 
938 static int __init acpi_os_name_setup(char *str)
939 {
940 	char *p = acpi_os_name;
941 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
942 
943 	if (!str || !*str)
944 		return 0;
945 
946 	for (; count-- && str && *str; str++) {
947 		if (isalnum(*str) || *str == ' ' || *str == ':')
948 			*p++ = *str;
949 		else if (*str == '\'' || *str == '"')
950 			continue;
951 		else
952 			break;
953 	}
954 	*p = 0;
955 
956 	return 1;
957 
958 }
959 
960 __setup("acpi_os_name=", acpi_os_name_setup);
961 
962 /*
963  * _OSI control
964  * empty string disables _OSI
965  * TBD additional string adds to _OSI
966  */
967 static int __init acpi_osi_setup(char *str)
968 {
969 	if (str == NULL || *str == '\0') {
970 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
971 		acpi_gbl_create_osi_method = FALSE;
972 	} else {
973 		/* TBD */
974 		printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
975 		       str);
976 	}
977 
978 	return 1;
979 }
980 
981 __setup("acpi_osi=", acpi_osi_setup);
982 
983 /* enable serialization to combat AE_ALREADY_EXISTS errors */
984 static int __init acpi_serialize_setup(char *str)
985 {
986 	printk(KERN_INFO PREFIX "serialize enabled\n");
987 
988 	acpi_gbl_all_methods_serialized = TRUE;
989 
990 	return 1;
991 }
992 
993 __setup("acpi_serialize", acpi_serialize_setup);
994 
995 /*
996  * Wake and Run-Time GPES are expected to be separate.
997  * We disable wake-GPEs at run-time to prevent spurious
998  * interrupts.
999  *
1000  * However, if a system exists that shares Wake and
1001  * Run-time events on the same GPE this flag is available
1002  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1003  */
1004 static int __init acpi_wake_gpes_always_on_setup(char *str)
1005 {
1006 	printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1007 
1008 	acpi_gbl_leave_wake_gpes_disabled = FALSE;
1009 
1010 	return 1;
1011 }
1012 
1013 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1014 
1015 static int __init acpi_hotkey_setup(char *str)
1016 {
1017 	acpi_specific_hotkey_enabled = FALSE;
1018 	return 1;
1019 }
1020 
1021 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1022 
1023 /*
1024  * max_cstate is defined in the base kernel so modules can
1025  * change it w/o depending on the state of the processor module.
1026  */
1027 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1028 
1029 EXPORT_SYMBOL(max_cstate);
1030 
1031 /*
1032  * Acquire a spinlock.
1033  *
1034  * handle is a pointer to the spinlock_t.
1035  */
1036 
1037 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1038 {
1039 	acpi_cpu_flags flags;
1040 	spin_lock_irqsave(lockp, flags);
1041 	return flags;
1042 }
1043 
1044 /*
1045  * Release a spinlock. See above.
1046  */
1047 
1048 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1049 {
1050 	spin_unlock_irqrestore(lockp, flags);
1051 }
1052 
1053 #ifndef ACPI_USE_LOCAL_CACHE
1054 
1055 /*******************************************************************************
1056  *
1057  * FUNCTION:    acpi_os_create_cache
1058  *
1059  * PARAMETERS:  name      - Ascii name for the cache
1060  *              size      - Size of each cached object
1061  *              depth     - Maximum depth of the cache (in objects) <ignored>
1062  *              cache     - Where the new cache object is returned
1063  *
1064  * RETURN:      status
1065  *
1066  * DESCRIPTION: Create a cache object
1067  *
1068  ******************************************************************************/
1069 
1070 acpi_status
1071 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1072 {
1073 	*cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1074 	if (*cache == NULL)
1075 		return AE_ERROR;
1076 	else
1077 		return AE_OK;
1078 }
1079 
1080 /*******************************************************************************
1081  *
1082  * FUNCTION:    acpi_os_purge_cache
1083  *
1084  * PARAMETERS:  Cache           - Handle to cache object
1085  *
1086  * RETURN:      Status
1087  *
1088  * DESCRIPTION: Free all objects within the requested cache.
1089  *
1090  ******************************************************************************/
1091 
1092 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1093 {
1094 	kmem_cache_shrink(cache);
1095 	return (AE_OK);
1096 }
1097 
1098 /*******************************************************************************
1099  *
1100  * FUNCTION:    acpi_os_delete_cache
1101  *
1102  * PARAMETERS:  Cache           - Handle to cache object
1103  *
1104  * RETURN:      Status
1105  *
1106  * DESCRIPTION: Free all objects within the requested cache and delete the
1107  *              cache object.
1108  *
1109  ******************************************************************************/
1110 
1111 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1112 {
1113 	kmem_cache_destroy(cache);
1114 	return (AE_OK);
1115 }
1116 
1117 /*******************************************************************************
1118  *
1119  * FUNCTION:    acpi_os_release_object
1120  *
1121  * PARAMETERS:  Cache       - Handle to cache object
1122  *              Object      - The object to be released
1123  *
1124  * RETURN:      None
1125  *
1126  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1127  *              the object is deleted.
1128  *
1129  ******************************************************************************/
1130 
1131 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1132 {
1133 	kmem_cache_free(cache, object);
1134 	return (AE_OK);
1135 }
1136 
1137 /******************************************************************************
1138  *
1139  * FUNCTION:    acpi_os_validate_interface
1140  *
1141  * PARAMETERS:  interface           - Requested interface to be validated
1142  *
1143  * RETURN:      AE_OK if interface is supported, AE_SUPPORT otherwise
1144  *
1145  * DESCRIPTION: Match an interface string to the interfaces supported by the
1146  *              host. Strings originate from an AML call to the _OSI method.
1147  *
1148  *****************************************************************************/
1149 
1150 acpi_status
1151 acpi_os_validate_interface (char *interface)
1152 {
1153 
1154     return AE_SUPPORT;
1155 }
1156 
1157 
1158 /******************************************************************************
1159  *
1160  * FUNCTION:    acpi_os_validate_address
1161  *
1162  * PARAMETERS:  space_id             - ACPI space ID
1163  *              address             - Physical address
1164  *              length              - Address length
1165  *
1166  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1167  *              should return AE_AML_ILLEGAL_ADDRESS.
1168  *
1169  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1170  *              the addresses accessed by AML operation regions.
1171  *
1172  *****************************************************************************/
1173 
1174 acpi_status
1175 acpi_os_validate_address (
1176     u8                   space_id,
1177     acpi_physical_address   address,
1178     acpi_size               length)
1179 {
1180 
1181     return AE_OK;
1182 }
1183 
1184 
1185 #endif
1186