1 /* 2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $) 3 * 4 * Copyright (C) 2000 Andrew Henroid 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (c) 2008 Intel Corporation 8 * Author: Matthew Wilcox <willy@linux.intel.com> 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 23 * 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/highmem.h> 31 #include <linux/pci.h> 32 #include <linux/interrupt.h> 33 #include <linux/kmod.h> 34 #include <linux/delay.h> 35 #include <linux/workqueue.h> 36 #include <linux/nmi.h> 37 #include <linux/acpi.h> 38 #include <linux/efi.h> 39 #include <linux/ioport.h> 40 #include <linux/list.h> 41 #include <linux/jiffies.h> 42 #include <linux/semaphore.h> 43 44 #include <asm/io.h> 45 #include <asm/uaccess.h> 46 #include <linux/io-64-nonatomic-lo-hi.h> 47 48 #include "internal.h" 49 50 #define _COMPONENT ACPI_OS_SERVICES 51 ACPI_MODULE_NAME("osl"); 52 53 struct acpi_os_dpc { 54 acpi_osd_exec_callback function; 55 void *context; 56 struct work_struct work; 57 }; 58 59 #ifdef CONFIG_ACPI_CUSTOM_DSDT 60 #include CONFIG_ACPI_CUSTOM_DSDT_FILE 61 #endif 62 63 #ifdef ENABLE_DEBUGGER 64 #include <linux/kdb.h> 65 66 /* stuff for debugger support */ 67 int acpi_in_debugger; 68 EXPORT_SYMBOL(acpi_in_debugger); 69 #endif /*ENABLE_DEBUGGER */ 70 71 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, 72 u32 pm1b_ctrl); 73 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, 74 u32 val_b); 75 76 static acpi_osd_handler acpi_irq_handler; 77 static void *acpi_irq_context; 78 static struct workqueue_struct *kacpid_wq; 79 static struct workqueue_struct *kacpi_notify_wq; 80 static struct workqueue_struct *kacpi_hotplug_wq; 81 static bool acpi_os_initialized; 82 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ; 83 84 /* 85 * This list of permanent mappings is for memory that may be accessed from 86 * interrupt context, where we can't do the ioremap(). 87 */ 88 struct acpi_ioremap { 89 struct list_head list; 90 void __iomem *virt; 91 acpi_physical_address phys; 92 acpi_size size; 93 unsigned long refcount; 94 }; 95 96 static LIST_HEAD(acpi_ioremaps); 97 static DEFINE_MUTEX(acpi_ioremap_lock); 98 99 static void __init acpi_osi_setup_late(void); 100 101 /* 102 * The story of _OSI(Linux) 103 * 104 * From pre-history through Linux-2.6.22, 105 * Linux responded TRUE upon a BIOS OSI(Linux) query. 106 * 107 * Unfortunately, reference BIOS writers got wind of this 108 * and put OSI(Linux) in their example code, quickly exposing 109 * this string as ill-conceived and opening the door to 110 * an un-bounded number of BIOS incompatibilities. 111 * 112 * For example, OSI(Linux) was used on resume to re-POST a 113 * video card on one system, because Linux at that time 114 * could not do a speedy restore in its native driver. 115 * But then upon gaining quick native restore capability, 116 * Linux has no way to tell the BIOS to skip the time-consuming 117 * POST -- putting Linux at a permanent performance disadvantage. 118 * On another system, the BIOS writer used OSI(Linux) 119 * to infer native OS support for IPMI! On other systems, 120 * OSI(Linux) simply got in the way of Linux claiming to 121 * be compatible with other operating systems, exposing 122 * BIOS issues such as skipped device initialization. 123 * 124 * So "Linux" turned out to be a really poor chose of 125 * OSI string, and from Linux-2.6.23 onward we respond FALSE. 126 * 127 * BIOS writers should NOT query _OSI(Linux) on future systems. 128 * Linux will complain on the console when it sees it, and return FALSE. 129 * To get Linux to return TRUE for your system will require 130 * a kernel source update to add a DMI entry, 131 * or boot with "acpi_osi=Linux" 132 */ 133 134 static struct osi_linux { 135 unsigned int enable:1; 136 unsigned int dmi:1; 137 unsigned int cmdline:1; 138 unsigned int default_disabling:1; 139 } osi_linux = {0, 0, 0, 0}; 140 141 static u32 acpi_osi_handler(acpi_string interface, u32 supported) 142 { 143 if (!strcmp("Linux", interface)) { 144 145 printk_once(KERN_NOTICE FW_BUG PREFIX 146 "BIOS _OSI(Linux) query %s%s\n", 147 osi_linux.enable ? "honored" : "ignored", 148 osi_linux.cmdline ? " via cmdline" : 149 osi_linux.dmi ? " via DMI" : ""); 150 } 151 152 if (!strcmp("Darwin", interface)) { 153 /* 154 * Apple firmware will behave poorly if it receives positive 155 * answers to "Darwin" and any other OS. Respond positively 156 * to Darwin and then disable all other vendor strings. 157 */ 158 acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS); 159 supported = ACPI_UINT32_MAX; 160 } 161 162 return supported; 163 } 164 165 static void __init acpi_request_region (struct acpi_generic_address *gas, 166 unsigned int length, char *desc) 167 { 168 u64 addr; 169 170 /* Handle possible alignment issues */ 171 memcpy(&addr, &gas->address, sizeof(addr)); 172 if (!addr || !length) 173 return; 174 175 /* Resources are never freed */ 176 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) 177 request_region(addr, length, desc); 178 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 179 request_mem_region(addr, length, desc); 180 } 181 182 static int __init acpi_reserve_resources(void) 183 { 184 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, 185 "ACPI PM1a_EVT_BLK"); 186 187 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, 188 "ACPI PM1b_EVT_BLK"); 189 190 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, 191 "ACPI PM1a_CNT_BLK"); 192 193 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, 194 "ACPI PM1b_CNT_BLK"); 195 196 if (acpi_gbl_FADT.pm_timer_length == 4) 197 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); 198 199 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, 200 "ACPI PM2_CNT_BLK"); 201 202 /* Length of GPE blocks must be a non-negative multiple of 2 */ 203 204 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) 205 acpi_request_region(&acpi_gbl_FADT.xgpe0_block, 206 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); 207 208 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) 209 acpi_request_region(&acpi_gbl_FADT.xgpe1_block, 210 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); 211 212 return 0; 213 } 214 fs_initcall_sync(acpi_reserve_resources); 215 216 void acpi_os_printf(const char *fmt, ...) 217 { 218 va_list args; 219 va_start(args, fmt); 220 acpi_os_vprintf(fmt, args); 221 va_end(args); 222 } 223 EXPORT_SYMBOL(acpi_os_printf); 224 225 void acpi_os_vprintf(const char *fmt, va_list args) 226 { 227 static char buffer[512]; 228 229 vsprintf(buffer, fmt, args); 230 231 #ifdef ENABLE_DEBUGGER 232 if (acpi_in_debugger) { 233 kdb_printf("%s", buffer); 234 } else { 235 printk(KERN_CONT "%s", buffer); 236 } 237 #else 238 if (acpi_debugger_write_log(buffer) < 0) 239 printk(KERN_CONT "%s", buffer); 240 #endif 241 } 242 243 #ifdef CONFIG_KEXEC 244 static unsigned long acpi_rsdp; 245 static int __init setup_acpi_rsdp(char *arg) 246 { 247 if (kstrtoul(arg, 16, &acpi_rsdp)) 248 return -EINVAL; 249 return 0; 250 } 251 early_param("acpi_rsdp", setup_acpi_rsdp); 252 #endif 253 254 acpi_physical_address __init acpi_os_get_root_pointer(void) 255 { 256 #ifdef CONFIG_KEXEC 257 if (acpi_rsdp) 258 return acpi_rsdp; 259 #endif 260 261 if (efi_enabled(EFI_CONFIG_TABLES)) { 262 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 263 return efi.acpi20; 264 else if (efi.acpi != EFI_INVALID_TABLE_ADDR) 265 return efi.acpi; 266 else { 267 printk(KERN_ERR PREFIX 268 "System description tables not found\n"); 269 return 0; 270 } 271 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) { 272 acpi_physical_address pa = 0; 273 274 acpi_find_root_pointer(&pa); 275 return pa; 276 } 277 278 return 0; 279 } 280 281 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 282 static struct acpi_ioremap * 283 acpi_map_lookup(acpi_physical_address phys, acpi_size size) 284 { 285 struct acpi_ioremap *map; 286 287 list_for_each_entry_rcu(map, &acpi_ioremaps, list) 288 if (map->phys <= phys && 289 phys + size <= map->phys + map->size) 290 return map; 291 292 return NULL; 293 } 294 295 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 296 static void __iomem * 297 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) 298 { 299 struct acpi_ioremap *map; 300 301 map = acpi_map_lookup(phys, size); 302 if (map) 303 return map->virt + (phys - map->phys); 304 305 return NULL; 306 } 307 308 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) 309 { 310 struct acpi_ioremap *map; 311 void __iomem *virt = NULL; 312 313 mutex_lock(&acpi_ioremap_lock); 314 map = acpi_map_lookup(phys, size); 315 if (map) { 316 virt = map->virt + (phys - map->phys); 317 map->refcount++; 318 } 319 mutex_unlock(&acpi_ioremap_lock); 320 return virt; 321 } 322 EXPORT_SYMBOL_GPL(acpi_os_get_iomem); 323 324 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 325 static struct acpi_ioremap * 326 acpi_map_lookup_virt(void __iomem *virt, acpi_size size) 327 { 328 struct acpi_ioremap *map; 329 330 list_for_each_entry_rcu(map, &acpi_ioremaps, list) 331 if (map->virt <= virt && 332 virt + size <= map->virt + map->size) 333 return map; 334 335 return NULL; 336 } 337 338 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64) 339 /* ioremap will take care of cache attributes */ 340 #define should_use_kmap(pfn) 0 341 #else 342 #define should_use_kmap(pfn) page_is_ram(pfn) 343 #endif 344 345 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) 346 { 347 unsigned long pfn; 348 349 pfn = pg_off >> PAGE_SHIFT; 350 if (should_use_kmap(pfn)) { 351 if (pg_sz > PAGE_SIZE) 352 return NULL; 353 return (void __iomem __force *)kmap(pfn_to_page(pfn)); 354 } else 355 return acpi_os_ioremap(pg_off, pg_sz); 356 } 357 358 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) 359 { 360 unsigned long pfn; 361 362 pfn = pg_off >> PAGE_SHIFT; 363 if (should_use_kmap(pfn)) 364 kunmap(pfn_to_page(pfn)); 365 else 366 iounmap(vaddr); 367 } 368 369 /** 370 * acpi_os_map_iomem - Get a virtual address for a given physical address range. 371 * @phys: Start of the physical address range to map. 372 * @size: Size of the physical address range to map. 373 * 374 * Look up the given physical address range in the list of existing ACPI memory 375 * mappings. If found, get a reference to it and return a pointer to it (its 376 * virtual address). If not found, map it, add it to that list and return a 377 * pointer to it. 378 * 379 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this 380 * routine simply calls __acpi_map_table() to get the job done. 381 */ 382 void __iomem *__init_refok 383 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) 384 { 385 struct acpi_ioremap *map; 386 void __iomem *virt; 387 acpi_physical_address pg_off; 388 acpi_size pg_sz; 389 390 if (phys > ULONG_MAX) { 391 printk(KERN_ERR PREFIX "Cannot map memory that high\n"); 392 return NULL; 393 } 394 395 if (!acpi_gbl_permanent_mmap) 396 return __acpi_map_table((unsigned long)phys, size); 397 398 mutex_lock(&acpi_ioremap_lock); 399 /* Check if there's a suitable mapping already. */ 400 map = acpi_map_lookup(phys, size); 401 if (map) { 402 map->refcount++; 403 goto out; 404 } 405 406 map = kzalloc(sizeof(*map), GFP_KERNEL); 407 if (!map) { 408 mutex_unlock(&acpi_ioremap_lock); 409 return NULL; 410 } 411 412 pg_off = round_down(phys, PAGE_SIZE); 413 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; 414 virt = acpi_map(pg_off, pg_sz); 415 if (!virt) { 416 mutex_unlock(&acpi_ioremap_lock); 417 kfree(map); 418 return NULL; 419 } 420 421 INIT_LIST_HEAD(&map->list); 422 map->virt = virt; 423 map->phys = pg_off; 424 map->size = pg_sz; 425 map->refcount = 1; 426 427 list_add_tail_rcu(&map->list, &acpi_ioremaps); 428 429 out: 430 mutex_unlock(&acpi_ioremap_lock); 431 return map->virt + (phys - map->phys); 432 } 433 EXPORT_SYMBOL_GPL(acpi_os_map_iomem); 434 435 void *__init_refok 436 acpi_os_map_memory(acpi_physical_address phys, acpi_size size) 437 { 438 return (void *)acpi_os_map_iomem(phys, size); 439 } 440 EXPORT_SYMBOL_GPL(acpi_os_map_memory); 441 442 static void acpi_os_drop_map_ref(struct acpi_ioremap *map) 443 { 444 if (!--map->refcount) 445 list_del_rcu(&map->list); 446 } 447 448 static void acpi_os_map_cleanup(struct acpi_ioremap *map) 449 { 450 if (!map->refcount) { 451 synchronize_rcu_expedited(); 452 acpi_unmap(map->phys, map->virt); 453 kfree(map); 454 } 455 } 456 457 /** 458 * acpi_os_unmap_iomem - Drop a memory mapping reference. 459 * @virt: Start of the address range to drop a reference to. 460 * @size: Size of the address range to drop a reference to. 461 * 462 * Look up the given virtual address range in the list of existing ACPI memory 463 * mappings, drop a reference to it and unmap it if there are no more active 464 * references to it. 465 * 466 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this 467 * routine simply calls __acpi_unmap_table() to get the job done. Since 468 * __acpi_unmap_table() is an __init function, the __ref annotation is needed 469 * here. 470 */ 471 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) 472 { 473 struct acpi_ioremap *map; 474 475 if (!acpi_gbl_permanent_mmap) { 476 __acpi_unmap_table(virt, size); 477 return; 478 } 479 480 mutex_lock(&acpi_ioremap_lock); 481 map = acpi_map_lookup_virt(virt, size); 482 if (!map) { 483 mutex_unlock(&acpi_ioremap_lock); 484 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt); 485 return; 486 } 487 acpi_os_drop_map_ref(map); 488 mutex_unlock(&acpi_ioremap_lock); 489 490 acpi_os_map_cleanup(map); 491 } 492 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); 493 494 void __ref acpi_os_unmap_memory(void *virt, acpi_size size) 495 { 496 return acpi_os_unmap_iomem((void __iomem *)virt, size); 497 } 498 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); 499 500 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size) 501 { 502 if (!acpi_gbl_permanent_mmap) 503 __acpi_unmap_table(virt, size); 504 } 505 506 int acpi_os_map_generic_address(struct acpi_generic_address *gas) 507 { 508 u64 addr; 509 void __iomem *virt; 510 511 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 512 return 0; 513 514 /* Handle possible alignment issues */ 515 memcpy(&addr, &gas->address, sizeof(addr)); 516 if (!addr || !gas->bit_width) 517 return -EINVAL; 518 519 virt = acpi_os_map_iomem(addr, gas->bit_width / 8); 520 if (!virt) 521 return -EIO; 522 523 return 0; 524 } 525 EXPORT_SYMBOL(acpi_os_map_generic_address); 526 527 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) 528 { 529 u64 addr; 530 struct acpi_ioremap *map; 531 532 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 533 return; 534 535 /* Handle possible alignment issues */ 536 memcpy(&addr, &gas->address, sizeof(addr)); 537 if (!addr || !gas->bit_width) 538 return; 539 540 mutex_lock(&acpi_ioremap_lock); 541 map = acpi_map_lookup(addr, gas->bit_width / 8); 542 if (!map) { 543 mutex_unlock(&acpi_ioremap_lock); 544 return; 545 } 546 acpi_os_drop_map_ref(map); 547 mutex_unlock(&acpi_ioremap_lock); 548 549 acpi_os_map_cleanup(map); 550 } 551 EXPORT_SYMBOL(acpi_os_unmap_generic_address); 552 553 #ifdef ACPI_FUTURE_USAGE 554 acpi_status 555 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys) 556 { 557 if (!phys || !virt) 558 return AE_BAD_PARAMETER; 559 560 *phys = virt_to_phys(virt); 561 562 return AE_OK; 563 } 564 #endif 565 566 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE 567 static bool acpi_rev_override; 568 569 int __init acpi_rev_override_setup(char *str) 570 { 571 acpi_rev_override = true; 572 return 1; 573 } 574 __setup("acpi_rev_override", acpi_rev_override_setup); 575 #else 576 #define acpi_rev_override false 577 #endif 578 579 #define ACPI_MAX_OVERRIDE_LEN 100 580 581 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; 582 583 acpi_status 584 acpi_os_predefined_override(const struct acpi_predefined_names *init_val, 585 char **new_val) 586 { 587 if (!init_val || !new_val) 588 return AE_BAD_PARAMETER; 589 590 *new_val = NULL; 591 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { 592 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n", 593 acpi_os_name); 594 *new_val = acpi_os_name; 595 } 596 597 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) { 598 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n"); 599 *new_val = (char *)5; 600 } 601 602 return AE_OK; 603 } 604 605 #ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE 606 #include <linux/earlycpio.h> 607 #include <linux/memblock.h> 608 609 static u64 acpi_tables_addr; 610 static int all_tables_size; 611 612 /* Copied from acpica/tbutils.c:acpi_tb_checksum() */ 613 static u8 __init acpi_table_checksum(u8 *buffer, u32 length) 614 { 615 u8 sum = 0; 616 u8 *end = buffer + length; 617 618 while (buffer < end) 619 sum = (u8) (sum + *(buffer++)); 620 return sum; 621 } 622 623 /* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */ 624 static const char * const table_sigs[] = { 625 ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ, 626 ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT, 627 ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF, 628 ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET, 629 ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI, 630 ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA, 631 ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT, 632 ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT, 633 ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL }; 634 635 #define ACPI_HEADER_SIZE sizeof(struct acpi_table_header) 636 637 #define ACPI_OVERRIDE_TABLES 64 638 static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES]; 639 640 #define MAP_CHUNK_SIZE (NR_FIX_BTMAPS << PAGE_SHIFT) 641 642 void __init acpi_initrd_override(void *data, size_t size) 643 { 644 int sig, no, table_nr = 0, total_offset = 0; 645 long offset = 0; 646 struct acpi_table_header *table; 647 char cpio_path[32] = "kernel/firmware/acpi/"; 648 struct cpio_data file; 649 650 if (data == NULL || size == 0) 651 return; 652 653 for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) { 654 file = find_cpio_data(cpio_path, data, size, &offset); 655 if (!file.data) 656 break; 657 658 data += offset; 659 size -= offset; 660 661 if (file.size < sizeof(struct acpi_table_header)) { 662 pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n", 663 cpio_path, file.name); 664 continue; 665 } 666 667 table = file.data; 668 669 for (sig = 0; table_sigs[sig]; sig++) 670 if (!memcmp(table->signature, table_sigs[sig], 4)) 671 break; 672 673 if (!table_sigs[sig]) { 674 pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n", 675 cpio_path, file.name); 676 continue; 677 } 678 if (file.size != table->length) { 679 pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n", 680 cpio_path, file.name); 681 continue; 682 } 683 if (acpi_table_checksum(file.data, table->length)) { 684 pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n", 685 cpio_path, file.name); 686 continue; 687 } 688 689 pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n", 690 table->signature, cpio_path, file.name, table->length); 691 692 all_tables_size += table->length; 693 acpi_initrd_files[table_nr].data = file.data; 694 acpi_initrd_files[table_nr].size = file.size; 695 table_nr++; 696 } 697 if (table_nr == 0) 698 return; 699 700 acpi_tables_addr = 701 memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT, 702 all_tables_size, PAGE_SIZE); 703 if (!acpi_tables_addr) { 704 WARN_ON(1); 705 return; 706 } 707 /* 708 * Only calling e820_add_reserve does not work and the 709 * tables are invalid (memory got used) later. 710 * memblock_reserve works as expected and the tables won't get modified. 711 * But it's not enough on X86 because ioremap will 712 * complain later (used by acpi_os_map_memory) that the pages 713 * that should get mapped are not marked "reserved". 714 * Both memblock_reserve and e820_add_region (via arch_reserve_mem_area) 715 * works fine. 716 */ 717 memblock_reserve(acpi_tables_addr, all_tables_size); 718 arch_reserve_mem_area(acpi_tables_addr, all_tables_size); 719 720 /* 721 * early_ioremap only can remap 256k one time. If we map all 722 * tables one time, we will hit the limit. Need to map chunks 723 * one by one during copying the same as that in relocate_initrd(). 724 */ 725 for (no = 0; no < table_nr; no++) { 726 unsigned char *src_p = acpi_initrd_files[no].data; 727 phys_addr_t size = acpi_initrd_files[no].size; 728 phys_addr_t dest_addr = acpi_tables_addr + total_offset; 729 phys_addr_t slop, clen; 730 char *dest_p; 731 732 total_offset += size; 733 734 while (size) { 735 slop = dest_addr & ~PAGE_MASK; 736 clen = size; 737 if (clen > MAP_CHUNK_SIZE - slop) 738 clen = MAP_CHUNK_SIZE - slop; 739 dest_p = early_ioremap(dest_addr & PAGE_MASK, 740 clen + slop); 741 memcpy(dest_p + slop, src_p, clen); 742 early_iounmap(dest_p, clen + slop); 743 src_p += clen; 744 dest_addr += clen; 745 size -= clen; 746 } 747 } 748 } 749 #endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */ 750 751 static void acpi_table_taint(struct acpi_table_header *table) 752 { 753 pr_warn(PREFIX 754 "Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n", 755 table->signature, table->oem_table_id); 756 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE); 757 } 758 759 760 acpi_status 761 acpi_os_table_override(struct acpi_table_header * existing_table, 762 struct acpi_table_header ** new_table) 763 { 764 if (!existing_table || !new_table) 765 return AE_BAD_PARAMETER; 766 767 *new_table = NULL; 768 769 #ifdef CONFIG_ACPI_CUSTOM_DSDT 770 if (strncmp(existing_table->signature, "DSDT", 4) == 0) 771 *new_table = (struct acpi_table_header *)AmlCode; 772 #endif 773 if (*new_table != NULL) 774 acpi_table_taint(existing_table); 775 return AE_OK; 776 } 777 778 acpi_status 779 acpi_os_physical_table_override(struct acpi_table_header *existing_table, 780 acpi_physical_address *address, 781 u32 *table_length) 782 { 783 #ifndef CONFIG_ACPI_INITRD_TABLE_OVERRIDE 784 *table_length = 0; 785 *address = 0; 786 return AE_OK; 787 #else 788 int table_offset = 0; 789 struct acpi_table_header *table; 790 791 *table_length = 0; 792 *address = 0; 793 794 if (!acpi_tables_addr) 795 return AE_OK; 796 797 do { 798 if (table_offset + ACPI_HEADER_SIZE > all_tables_size) { 799 WARN_ON(1); 800 return AE_OK; 801 } 802 803 table = acpi_os_map_memory(acpi_tables_addr + table_offset, 804 ACPI_HEADER_SIZE); 805 806 if (table_offset + table->length > all_tables_size) { 807 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE); 808 WARN_ON(1); 809 return AE_OK; 810 } 811 812 table_offset += table->length; 813 814 if (memcmp(existing_table->signature, table->signature, 4)) { 815 acpi_os_unmap_memory(table, 816 ACPI_HEADER_SIZE); 817 continue; 818 } 819 820 /* Only override tables with matching oem id */ 821 if (memcmp(table->oem_table_id, existing_table->oem_table_id, 822 ACPI_OEM_TABLE_ID_SIZE)) { 823 acpi_os_unmap_memory(table, 824 ACPI_HEADER_SIZE); 825 continue; 826 } 827 828 table_offset -= table->length; 829 *table_length = table->length; 830 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE); 831 *address = acpi_tables_addr + table_offset; 832 break; 833 } while (table_offset + ACPI_HEADER_SIZE < all_tables_size); 834 835 if (*address != 0) 836 acpi_table_taint(existing_table); 837 return AE_OK; 838 #endif 839 } 840 841 static irqreturn_t acpi_irq(int irq, void *dev_id) 842 { 843 u32 handled; 844 845 handled = (*acpi_irq_handler) (acpi_irq_context); 846 847 if (handled) { 848 acpi_irq_handled++; 849 return IRQ_HANDLED; 850 } else { 851 acpi_irq_not_handled++; 852 return IRQ_NONE; 853 } 854 } 855 856 acpi_status 857 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, 858 void *context) 859 { 860 unsigned int irq; 861 862 acpi_irq_stats_init(); 863 864 /* 865 * ACPI interrupts different from the SCI in our copy of the FADT are 866 * not supported. 867 */ 868 if (gsi != acpi_gbl_FADT.sci_interrupt) 869 return AE_BAD_PARAMETER; 870 871 if (acpi_irq_handler) 872 return AE_ALREADY_ACQUIRED; 873 874 if (acpi_gsi_to_irq(gsi, &irq) < 0) { 875 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n", 876 gsi); 877 return AE_OK; 878 } 879 880 acpi_irq_handler = handler; 881 acpi_irq_context = context; 882 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) { 883 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq); 884 acpi_irq_handler = NULL; 885 return AE_NOT_ACQUIRED; 886 } 887 acpi_sci_irq = irq; 888 889 return AE_OK; 890 } 891 892 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler) 893 { 894 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid()) 895 return AE_BAD_PARAMETER; 896 897 free_irq(acpi_sci_irq, acpi_irq); 898 acpi_irq_handler = NULL; 899 acpi_sci_irq = INVALID_ACPI_IRQ; 900 901 return AE_OK; 902 } 903 904 /* 905 * Running in interpreter thread context, safe to sleep 906 */ 907 908 void acpi_os_sleep(u64 ms) 909 { 910 msleep(ms); 911 } 912 913 void acpi_os_stall(u32 us) 914 { 915 while (us) { 916 u32 delay = 1000; 917 918 if (delay > us) 919 delay = us; 920 udelay(delay); 921 touch_nmi_watchdog(); 922 us -= delay; 923 } 924 } 925 926 /* 927 * Support ACPI 3.0 AML Timer operand 928 * Returns 64-bit free-running, monotonically increasing timer 929 * with 100ns granularity 930 */ 931 u64 acpi_os_get_timer(void) 932 { 933 u64 time_ns = ktime_to_ns(ktime_get()); 934 do_div(time_ns, 100); 935 return time_ns; 936 } 937 938 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width) 939 { 940 u32 dummy; 941 942 if (!value) 943 value = &dummy; 944 945 *value = 0; 946 if (width <= 8) { 947 *(u8 *) value = inb(port); 948 } else if (width <= 16) { 949 *(u16 *) value = inw(port); 950 } else if (width <= 32) { 951 *(u32 *) value = inl(port); 952 } else { 953 BUG(); 954 } 955 956 return AE_OK; 957 } 958 959 EXPORT_SYMBOL(acpi_os_read_port); 960 961 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) 962 { 963 if (width <= 8) { 964 outb(value, port); 965 } else if (width <= 16) { 966 outw(value, port); 967 } else if (width <= 32) { 968 outl(value, port); 969 } else { 970 BUG(); 971 } 972 973 return AE_OK; 974 } 975 976 EXPORT_SYMBOL(acpi_os_write_port); 977 978 acpi_status 979 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) 980 { 981 void __iomem *virt_addr; 982 unsigned int size = width / 8; 983 bool unmap = false; 984 u64 dummy; 985 986 rcu_read_lock(); 987 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 988 if (!virt_addr) { 989 rcu_read_unlock(); 990 virt_addr = acpi_os_ioremap(phys_addr, size); 991 if (!virt_addr) 992 return AE_BAD_ADDRESS; 993 unmap = true; 994 } 995 996 if (!value) 997 value = &dummy; 998 999 switch (width) { 1000 case 8: 1001 *(u8 *) value = readb(virt_addr); 1002 break; 1003 case 16: 1004 *(u16 *) value = readw(virt_addr); 1005 break; 1006 case 32: 1007 *(u32 *) value = readl(virt_addr); 1008 break; 1009 case 64: 1010 *(u64 *) value = readq(virt_addr); 1011 break; 1012 default: 1013 BUG(); 1014 } 1015 1016 if (unmap) 1017 iounmap(virt_addr); 1018 else 1019 rcu_read_unlock(); 1020 1021 return AE_OK; 1022 } 1023 1024 acpi_status 1025 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) 1026 { 1027 void __iomem *virt_addr; 1028 unsigned int size = width / 8; 1029 bool unmap = false; 1030 1031 rcu_read_lock(); 1032 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 1033 if (!virt_addr) { 1034 rcu_read_unlock(); 1035 virt_addr = acpi_os_ioremap(phys_addr, size); 1036 if (!virt_addr) 1037 return AE_BAD_ADDRESS; 1038 unmap = true; 1039 } 1040 1041 switch (width) { 1042 case 8: 1043 writeb(value, virt_addr); 1044 break; 1045 case 16: 1046 writew(value, virt_addr); 1047 break; 1048 case 32: 1049 writel(value, virt_addr); 1050 break; 1051 case 64: 1052 writeq(value, virt_addr); 1053 break; 1054 default: 1055 BUG(); 1056 } 1057 1058 if (unmap) 1059 iounmap(virt_addr); 1060 else 1061 rcu_read_unlock(); 1062 1063 return AE_OK; 1064 } 1065 1066 acpi_status 1067 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 1068 u64 *value, u32 width) 1069 { 1070 int result, size; 1071 u32 value32; 1072 1073 if (!value) 1074 return AE_BAD_PARAMETER; 1075 1076 switch (width) { 1077 case 8: 1078 size = 1; 1079 break; 1080 case 16: 1081 size = 2; 1082 break; 1083 case 32: 1084 size = 4; 1085 break; 1086 default: 1087 return AE_ERROR; 1088 } 1089 1090 result = raw_pci_read(pci_id->segment, pci_id->bus, 1091 PCI_DEVFN(pci_id->device, pci_id->function), 1092 reg, size, &value32); 1093 *value = value32; 1094 1095 return (result ? AE_ERROR : AE_OK); 1096 } 1097 1098 acpi_status 1099 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 1100 u64 value, u32 width) 1101 { 1102 int result, size; 1103 1104 switch (width) { 1105 case 8: 1106 size = 1; 1107 break; 1108 case 16: 1109 size = 2; 1110 break; 1111 case 32: 1112 size = 4; 1113 break; 1114 default: 1115 return AE_ERROR; 1116 } 1117 1118 result = raw_pci_write(pci_id->segment, pci_id->bus, 1119 PCI_DEVFN(pci_id->device, pci_id->function), 1120 reg, size, value); 1121 1122 return (result ? AE_ERROR : AE_OK); 1123 } 1124 1125 static void acpi_os_execute_deferred(struct work_struct *work) 1126 { 1127 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); 1128 1129 dpc->function(dpc->context); 1130 kfree(dpc); 1131 } 1132 1133 #ifdef CONFIG_ACPI_DEBUGGER 1134 static struct acpi_debugger acpi_debugger; 1135 static bool acpi_debugger_initialized; 1136 1137 int acpi_register_debugger(struct module *owner, 1138 const struct acpi_debugger_ops *ops) 1139 { 1140 int ret = 0; 1141 1142 mutex_lock(&acpi_debugger.lock); 1143 if (acpi_debugger.ops) { 1144 ret = -EBUSY; 1145 goto err_lock; 1146 } 1147 1148 acpi_debugger.owner = owner; 1149 acpi_debugger.ops = ops; 1150 1151 err_lock: 1152 mutex_unlock(&acpi_debugger.lock); 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(acpi_register_debugger); 1156 1157 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) 1158 { 1159 mutex_lock(&acpi_debugger.lock); 1160 if (ops == acpi_debugger.ops) { 1161 acpi_debugger.ops = NULL; 1162 acpi_debugger.owner = NULL; 1163 } 1164 mutex_unlock(&acpi_debugger.lock); 1165 } 1166 EXPORT_SYMBOL(acpi_unregister_debugger); 1167 1168 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) 1169 { 1170 int ret; 1171 int (*func)(acpi_osd_exec_callback, void *); 1172 struct module *owner; 1173 1174 if (!acpi_debugger_initialized) 1175 return -ENODEV; 1176 mutex_lock(&acpi_debugger.lock); 1177 if (!acpi_debugger.ops) { 1178 ret = -ENODEV; 1179 goto err_lock; 1180 } 1181 if (!try_module_get(acpi_debugger.owner)) { 1182 ret = -ENODEV; 1183 goto err_lock; 1184 } 1185 func = acpi_debugger.ops->create_thread; 1186 owner = acpi_debugger.owner; 1187 mutex_unlock(&acpi_debugger.lock); 1188 1189 ret = func(function, context); 1190 1191 mutex_lock(&acpi_debugger.lock); 1192 module_put(owner); 1193 err_lock: 1194 mutex_unlock(&acpi_debugger.lock); 1195 return ret; 1196 } 1197 1198 ssize_t acpi_debugger_write_log(const char *msg) 1199 { 1200 ssize_t ret; 1201 ssize_t (*func)(const char *); 1202 struct module *owner; 1203 1204 if (!acpi_debugger_initialized) 1205 return -ENODEV; 1206 mutex_lock(&acpi_debugger.lock); 1207 if (!acpi_debugger.ops) { 1208 ret = -ENODEV; 1209 goto err_lock; 1210 } 1211 if (!try_module_get(acpi_debugger.owner)) { 1212 ret = -ENODEV; 1213 goto err_lock; 1214 } 1215 func = acpi_debugger.ops->write_log; 1216 owner = acpi_debugger.owner; 1217 mutex_unlock(&acpi_debugger.lock); 1218 1219 ret = func(msg); 1220 1221 mutex_lock(&acpi_debugger.lock); 1222 module_put(owner); 1223 err_lock: 1224 mutex_unlock(&acpi_debugger.lock); 1225 return ret; 1226 } 1227 1228 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length) 1229 { 1230 ssize_t ret; 1231 ssize_t (*func)(char *, size_t); 1232 struct module *owner; 1233 1234 if (!acpi_debugger_initialized) 1235 return -ENODEV; 1236 mutex_lock(&acpi_debugger.lock); 1237 if (!acpi_debugger.ops) { 1238 ret = -ENODEV; 1239 goto err_lock; 1240 } 1241 if (!try_module_get(acpi_debugger.owner)) { 1242 ret = -ENODEV; 1243 goto err_lock; 1244 } 1245 func = acpi_debugger.ops->read_cmd; 1246 owner = acpi_debugger.owner; 1247 mutex_unlock(&acpi_debugger.lock); 1248 1249 ret = func(buffer, buffer_length); 1250 1251 mutex_lock(&acpi_debugger.lock); 1252 module_put(owner); 1253 err_lock: 1254 mutex_unlock(&acpi_debugger.lock); 1255 return ret; 1256 } 1257 1258 int acpi_debugger_wait_command_ready(void) 1259 { 1260 int ret; 1261 int (*func)(bool, char *, size_t); 1262 struct module *owner; 1263 1264 if (!acpi_debugger_initialized) 1265 return -ENODEV; 1266 mutex_lock(&acpi_debugger.lock); 1267 if (!acpi_debugger.ops) { 1268 ret = -ENODEV; 1269 goto err_lock; 1270 } 1271 if (!try_module_get(acpi_debugger.owner)) { 1272 ret = -ENODEV; 1273 goto err_lock; 1274 } 1275 func = acpi_debugger.ops->wait_command_ready; 1276 owner = acpi_debugger.owner; 1277 mutex_unlock(&acpi_debugger.lock); 1278 1279 ret = func(acpi_gbl_method_executing, 1280 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE); 1281 1282 mutex_lock(&acpi_debugger.lock); 1283 module_put(owner); 1284 err_lock: 1285 mutex_unlock(&acpi_debugger.lock); 1286 return ret; 1287 } 1288 1289 int acpi_debugger_notify_command_complete(void) 1290 { 1291 int ret; 1292 int (*func)(void); 1293 struct module *owner; 1294 1295 if (!acpi_debugger_initialized) 1296 return -ENODEV; 1297 mutex_lock(&acpi_debugger.lock); 1298 if (!acpi_debugger.ops) { 1299 ret = -ENODEV; 1300 goto err_lock; 1301 } 1302 if (!try_module_get(acpi_debugger.owner)) { 1303 ret = -ENODEV; 1304 goto err_lock; 1305 } 1306 func = acpi_debugger.ops->notify_command_complete; 1307 owner = acpi_debugger.owner; 1308 mutex_unlock(&acpi_debugger.lock); 1309 1310 ret = func(); 1311 1312 mutex_lock(&acpi_debugger.lock); 1313 module_put(owner); 1314 err_lock: 1315 mutex_unlock(&acpi_debugger.lock); 1316 return ret; 1317 } 1318 1319 int __init acpi_debugger_init(void) 1320 { 1321 mutex_init(&acpi_debugger.lock); 1322 acpi_debugger_initialized = true; 1323 return 0; 1324 } 1325 #endif 1326 1327 /******************************************************************************* 1328 * 1329 * FUNCTION: acpi_os_execute 1330 * 1331 * PARAMETERS: Type - Type of the callback 1332 * Function - Function to be executed 1333 * Context - Function parameters 1334 * 1335 * RETURN: Status 1336 * 1337 * DESCRIPTION: Depending on type, either queues function for deferred execution or 1338 * immediately executes function on a separate thread. 1339 * 1340 ******************************************************************************/ 1341 1342 acpi_status acpi_os_execute(acpi_execute_type type, 1343 acpi_osd_exec_callback function, void *context) 1344 { 1345 acpi_status status = AE_OK; 1346 struct acpi_os_dpc *dpc; 1347 struct workqueue_struct *queue; 1348 int ret; 1349 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1350 "Scheduling function [%p(%p)] for deferred execution.\n", 1351 function, context)); 1352 1353 if (type == OSL_DEBUGGER_MAIN_THREAD) { 1354 ret = acpi_debugger_create_thread(function, context); 1355 if (ret) { 1356 pr_err("Call to kthread_create() failed.\n"); 1357 status = AE_ERROR; 1358 } 1359 goto out_thread; 1360 } 1361 1362 /* 1363 * Allocate/initialize DPC structure. Note that this memory will be 1364 * freed by the callee. The kernel handles the work_struct list in a 1365 * way that allows us to also free its memory inside the callee. 1366 * Because we may want to schedule several tasks with different 1367 * parameters we can't use the approach some kernel code uses of 1368 * having a static work_struct. 1369 */ 1370 1371 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); 1372 if (!dpc) 1373 return AE_NO_MEMORY; 1374 1375 dpc->function = function; 1376 dpc->context = context; 1377 1378 /* 1379 * To prevent lockdep from complaining unnecessarily, make sure that 1380 * there is a different static lockdep key for each workqueue by using 1381 * INIT_WORK() for each of them separately. 1382 */ 1383 if (type == OSL_NOTIFY_HANDLER) { 1384 queue = kacpi_notify_wq; 1385 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1386 } else if (type == OSL_GPE_HANDLER) { 1387 queue = kacpid_wq; 1388 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1389 } else { 1390 pr_err("Unsupported os_execute type %d.\n", type); 1391 status = AE_ERROR; 1392 } 1393 1394 if (ACPI_FAILURE(status)) 1395 goto err_workqueue; 1396 1397 /* 1398 * On some machines, a software-initiated SMI causes corruption unless 1399 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but 1400 * typically it's done in GPE-related methods that are run via 1401 * workqueues, so we can avoid the known corruption cases by always 1402 * queueing on CPU 0. 1403 */ 1404 ret = queue_work_on(0, queue, &dpc->work); 1405 if (!ret) { 1406 printk(KERN_ERR PREFIX 1407 "Call to queue_work() failed.\n"); 1408 status = AE_ERROR; 1409 } 1410 err_workqueue: 1411 if (ACPI_FAILURE(status)) 1412 kfree(dpc); 1413 out_thread: 1414 return status; 1415 } 1416 EXPORT_SYMBOL(acpi_os_execute); 1417 1418 void acpi_os_wait_events_complete(void) 1419 { 1420 /* 1421 * Make sure the GPE handler or the fixed event handler is not used 1422 * on another CPU after removal. 1423 */ 1424 if (acpi_sci_irq_valid()) 1425 synchronize_hardirq(acpi_sci_irq); 1426 flush_workqueue(kacpid_wq); 1427 flush_workqueue(kacpi_notify_wq); 1428 } 1429 1430 struct acpi_hp_work { 1431 struct work_struct work; 1432 struct acpi_device *adev; 1433 u32 src; 1434 }; 1435 1436 static void acpi_hotplug_work_fn(struct work_struct *work) 1437 { 1438 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); 1439 1440 acpi_os_wait_events_complete(); 1441 acpi_device_hotplug(hpw->adev, hpw->src); 1442 kfree(hpw); 1443 } 1444 1445 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) 1446 { 1447 struct acpi_hp_work *hpw; 1448 1449 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1450 "Scheduling hotplug event (%p, %u) for deferred execution.\n", 1451 adev, src)); 1452 1453 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); 1454 if (!hpw) 1455 return AE_NO_MEMORY; 1456 1457 INIT_WORK(&hpw->work, acpi_hotplug_work_fn); 1458 hpw->adev = adev; 1459 hpw->src = src; 1460 /* 1461 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because 1462 * the hotplug code may call driver .remove() functions, which may 1463 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush 1464 * these workqueues. 1465 */ 1466 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { 1467 kfree(hpw); 1468 return AE_ERROR; 1469 } 1470 return AE_OK; 1471 } 1472 1473 bool acpi_queue_hotplug_work(struct work_struct *work) 1474 { 1475 return queue_work(kacpi_hotplug_wq, work); 1476 } 1477 1478 acpi_status 1479 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle) 1480 { 1481 struct semaphore *sem = NULL; 1482 1483 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); 1484 if (!sem) 1485 return AE_NO_MEMORY; 1486 1487 sema_init(sem, initial_units); 1488 1489 *handle = (acpi_handle *) sem; 1490 1491 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", 1492 *handle, initial_units)); 1493 1494 return AE_OK; 1495 } 1496 1497 /* 1498 * TODO: A better way to delete semaphores? Linux doesn't have a 1499 * 'delete_semaphore()' function -- may result in an invalid 1500 * pointer dereference for non-synchronized consumers. Should 1501 * we at least check for blocked threads and signal/cancel them? 1502 */ 1503 1504 acpi_status acpi_os_delete_semaphore(acpi_handle handle) 1505 { 1506 struct semaphore *sem = (struct semaphore *)handle; 1507 1508 if (!sem) 1509 return AE_BAD_PARAMETER; 1510 1511 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); 1512 1513 BUG_ON(!list_empty(&sem->wait_list)); 1514 kfree(sem); 1515 sem = NULL; 1516 1517 return AE_OK; 1518 } 1519 1520 /* 1521 * TODO: Support for units > 1? 1522 */ 1523 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) 1524 { 1525 acpi_status status = AE_OK; 1526 struct semaphore *sem = (struct semaphore *)handle; 1527 long jiffies; 1528 int ret = 0; 1529 1530 if (!acpi_os_initialized) 1531 return AE_OK; 1532 1533 if (!sem || (units < 1)) 1534 return AE_BAD_PARAMETER; 1535 1536 if (units > 1) 1537 return AE_SUPPORT; 1538 1539 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", 1540 handle, units, timeout)); 1541 1542 if (timeout == ACPI_WAIT_FOREVER) 1543 jiffies = MAX_SCHEDULE_TIMEOUT; 1544 else 1545 jiffies = msecs_to_jiffies(timeout); 1546 1547 ret = down_timeout(sem, jiffies); 1548 if (ret) 1549 status = AE_TIME; 1550 1551 if (ACPI_FAILURE(status)) { 1552 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1553 "Failed to acquire semaphore[%p|%d|%d], %s", 1554 handle, units, timeout, 1555 acpi_format_exception(status))); 1556 } else { 1557 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1558 "Acquired semaphore[%p|%d|%d]", handle, 1559 units, timeout)); 1560 } 1561 1562 return status; 1563 } 1564 1565 /* 1566 * TODO: Support for units > 1? 1567 */ 1568 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) 1569 { 1570 struct semaphore *sem = (struct semaphore *)handle; 1571 1572 if (!acpi_os_initialized) 1573 return AE_OK; 1574 1575 if (!sem || (units < 1)) 1576 return AE_BAD_PARAMETER; 1577 1578 if (units > 1) 1579 return AE_SUPPORT; 1580 1581 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, 1582 units)); 1583 1584 up(sem); 1585 1586 return AE_OK; 1587 } 1588 1589 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read) 1590 { 1591 #ifdef ENABLE_DEBUGGER 1592 if (acpi_in_debugger) { 1593 u32 chars; 1594 1595 kdb_read(buffer, buffer_length); 1596 1597 /* remove the CR kdb includes */ 1598 chars = strlen(buffer) - 1; 1599 buffer[chars] = '\0'; 1600 } 1601 #else 1602 int ret; 1603 1604 ret = acpi_debugger_read_cmd(buffer, buffer_length); 1605 if (ret < 0) 1606 return AE_ERROR; 1607 if (bytes_read) 1608 *bytes_read = ret; 1609 #endif 1610 1611 return AE_OK; 1612 } 1613 EXPORT_SYMBOL(acpi_os_get_line); 1614 1615 acpi_status acpi_os_wait_command_ready(void) 1616 { 1617 int ret; 1618 1619 ret = acpi_debugger_wait_command_ready(); 1620 if (ret < 0) 1621 return AE_ERROR; 1622 return AE_OK; 1623 } 1624 1625 acpi_status acpi_os_notify_command_complete(void) 1626 { 1627 int ret; 1628 1629 ret = acpi_debugger_notify_command_complete(); 1630 if (ret < 0) 1631 return AE_ERROR; 1632 return AE_OK; 1633 } 1634 1635 acpi_status acpi_os_signal(u32 function, void *info) 1636 { 1637 switch (function) { 1638 case ACPI_SIGNAL_FATAL: 1639 printk(KERN_ERR PREFIX "Fatal opcode executed\n"); 1640 break; 1641 case ACPI_SIGNAL_BREAKPOINT: 1642 /* 1643 * AML Breakpoint 1644 * ACPI spec. says to treat it as a NOP unless 1645 * you are debugging. So if/when we integrate 1646 * AML debugger into the kernel debugger its 1647 * hook will go here. But until then it is 1648 * not useful to print anything on breakpoints. 1649 */ 1650 break; 1651 default: 1652 break; 1653 } 1654 1655 return AE_OK; 1656 } 1657 1658 static int __init acpi_os_name_setup(char *str) 1659 { 1660 char *p = acpi_os_name; 1661 int count = ACPI_MAX_OVERRIDE_LEN - 1; 1662 1663 if (!str || !*str) 1664 return 0; 1665 1666 for (; count-- && *str; str++) { 1667 if (isalnum(*str) || *str == ' ' || *str == ':') 1668 *p++ = *str; 1669 else if (*str == '\'' || *str == '"') 1670 continue; 1671 else 1672 break; 1673 } 1674 *p = 0; 1675 1676 return 1; 1677 1678 } 1679 1680 __setup("acpi_os_name=", acpi_os_name_setup); 1681 1682 #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */ 1683 #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */ 1684 1685 struct osi_setup_entry { 1686 char string[OSI_STRING_LENGTH_MAX]; 1687 bool enable; 1688 }; 1689 1690 static struct osi_setup_entry 1691 osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = { 1692 {"Module Device", true}, 1693 {"Processor Device", true}, 1694 {"3.0 _SCP Extensions", true}, 1695 {"Processor Aggregator Device", true}, 1696 }; 1697 1698 void __init acpi_osi_setup(char *str) 1699 { 1700 struct osi_setup_entry *osi; 1701 bool enable = true; 1702 int i; 1703 1704 if (!acpi_gbl_create_osi_method) 1705 return; 1706 1707 if (str == NULL || *str == '\0') { 1708 printk(KERN_INFO PREFIX "_OSI method disabled\n"); 1709 acpi_gbl_create_osi_method = FALSE; 1710 return; 1711 } 1712 1713 if (*str == '!') { 1714 str++; 1715 if (*str == '\0') { 1716 osi_linux.default_disabling = 1; 1717 return; 1718 } else if (*str == '*') { 1719 acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS); 1720 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1721 osi = &osi_setup_entries[i]; 1722 osi->enable = false; 1723 } 1724 return; 1725 } 1726 enable = false; 1727 } 1728 1729 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1730 osi = &osi_setup_entries[i]; 1731 if (!strcmp(osi->string, str)) { 1732 osi->enable = enable; 1733 break; 1734 } else if (osi->string[0] == '\0') { 1735 osi->enable = enable; 1736 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX); 1737 break; 1738 } 1739 } 1740 } 1741 1742 static void __init set_osi_linux(unsigned int enable) 1743 { 1744 if (osi_linux.enable != enable) 1745 osi_linux.enable = enable; 1746 1747 if (osi_linux.enable) 1748 acpi_osi_setup("Linux"); 1749 else 1750 acpi_osi_setup("!Linux"); 1751 1752 return; 1753 } 1754 1755 static void __init acpi_cmdline_osi_linux(unsigned int enable) 1756 { 1757 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */ 1758 osi_linux.dmi = 0; 1759 set_osi_linux(enable); 1760 1761 return; 1762 } 1763 1764 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d) 1765 { 1766 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident); 1767 1768 if (enable == -1) 1769 return; 1770 1771 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */ 1772 set_osi_linux(enable); 1773 1774 return; 1775 } 1776 1777 /* 1778 * Modify the list of "OS Interfaces" reported to BIOS via _OSI 1779 * 1780 * empty string disables _OSI 1781 * string starting with '!' disables that string 1782 * otherwise string is added to list, augmenting built-in strings 1783 */ 1784 static void __init acpi_osi_setup_late(void) 1785 { 1786 struct osi_setup_entry *osi; 1787 char *str; 1788 int i; 1789 acpi_status status; 1790 1791 if (osi_linux.default_disabling) { 1792 status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS); 1793 1794 if (ACPI_SUCCESS(status)) 1795 printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n"); 1796 } 1797 1798 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1799 osi = &osi_setup_entries[i]; 1800 str = osi->string; 1801 1802 if (*str == '\0') 1803 break; 1804 if (osi->enable) { 1805 status = acpi_install_interface(str); 1806 1807 if (ACPI_SUCCESS(status)) 1808 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str); 1809 } else { 1810 status = acpi_remove_interface(str); 1811 1812 if (ACPI_SUCCESS(status)) 1813 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str); 1814 } 1815 } 1816 } 1817 1818 static int __init osi_setup(char *str) 1819 { 1820 if (str && !strcmp("Linux", str)) 1821 acpi_cmdline_osi_linux(1); 1822 else if (str && !strcmp("!Linux", str)) 1823 acpi_cmdline_osi_linux(0); 1824 else 1825 acpi_osi_setup(str); 1826 1827 return 1; 1828 } 1829 1830 __setup("acpi_osi=", osi_setup); 1831 1832 /* 1833 * Disable the auto-serialization of named objects creation methods. 1834 * 1835 * This feature is enabled by default. It marks the AML control methods 1836 * that contain the opcodes to create named objects as "Serialized". 1837 */ 1838 static int __init acpi_no_auto_serialize_setup(char *str) 1839 { 1840 acpi_gbl_auto_serialize_methods = FALSE; 1841 pr_info("ACPI: auto-serialization disabled\n"); 1842 1843 return 1; 1844 } 1845 1846 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); 1847 1848 /* Check of resource interference between native drivers and ACPI 1849 * OperationRegions (SystemIO and System Memory only). 1850 * IO ports and memory declared in ACPI might be used by the ACPI subsystem 1851 * in arbitrary AML code and can interfere with legacy drivers. 1852 * acpi_enforce_resources= can be set to: 1853 * 1854 * - strict (default) (2) 1855 * -> further driver trying to access the resources will not load 1856 * - lax (1) 1857 * -> further driver trying to access the resources will load, but you 1858 * get a system message that something might go wrong... 1859 * 1860 * - no (0) 1861 * -> ACPI Operation Region resources will not be registered 1862 * 1863 */ 1864 #define ENFORCE_RESOURCES_STRICT 2 1865 #define ENFORCE_RESOURCES_LAX 1 1866 #define ENFORCE_RESOURCES_NO 0 1867 1868 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1869 1870 static int __init acpi_enforce_resources_setup(char *str) 1871 { 1872 if (str == NULL || *str == '\0') 1873 return 0; 1874 1875 if (!strcmp("strict", str)) 1876 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1877 else if (!strcmp("lax", str)) 1878 acpi_enforce_resources = ENFORCE_RESOURCES_LAX; 1879 else if (!strcmp("no", str)) 1880 acpi_enforce_resources = ENFORCE_RESOURCES_NO; 1881 1882 return 1; 1883 } 1884 1885 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); 1886 1887 /* Check for resource conflicts between ACPI OperationRegions and native 1888 * drivers */ 1889 int acpi_check_resource_conflict(const struct resource *res) 1890 { 1891 acpi_adr_space_type space_id; 1892 acpi_size length; 1893 u8 warn = 0; 1894 int clash = 0; 1895 1896 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) 1897 return 0; 1898 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM)) 1899 return 0; 1900 1901 if (res->flags & IORESOURCE_IO) 1902 space_id = ACPI_ADR_SPACE_SYSTEM_IO; 1903 else 1904 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; 1905 1906 length = resource_size(res); 1907 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) 1908 warn = 1; 1909 clash = acpi_check_address_range(space_id, res->start, length, warn); 1910 1911 if (clash) { 1912 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) { 1913 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) 1914 printk(KERN_NOTICE "ACPI: This conflict may" 1915 " cause random problems and system" 1916 " instability\n"); 1917 printk(KERN_INFO "ACPI: If an ACPI driver is available" 1918 " for this device, you should use it instead of" 1919 " the native driver\n"); 1920 } 1921 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) 1922 return -EBUSY; 1923 } 1924 return 0; 1925 } 1926 EXPORT_SYMBOL(acpi_check_resource_conflict); 1927 1928 int acpi_check_region(resource_size_t start, resource_size_t n, 1929 const char *name) 1930 { 1931 struct resource res = { 1932 .start = start, 1933 .end = start + n - 1, 1934 .name = name, 1935 .flags = IORESOURCE_IO, 1936 }; 1937 1938 return acpi_check_resource_conflict(&res); 1939 } 1940 EXPORT_SYMBOL(acpi_check_region); 1941 1942 /* 1943 * Let drivers know whether the resource checks are effective 1944 */ 1945 int acpi_resources_are_enforced(void) 1946 { 1947 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; 1948 } 1949 EXPORT_SYMBOL(acpi_resources_are_enforced); 1950 1951 bool acpi_osi_is_win8(void) 1952 { 1953 return acpi_gbl_osi_data >= ACPI_OSI_WIN_8; 1954 } 1955 EXPORT_SYMBOL(acpi_osi_is_win8); 1956 1957 /* 1958 * Deallocate the memory for a spinlock. 1959 */ 1960 void acpi_os_delete_lock(acpi_spinlock handle) 1961 { 1962 ACPI_FREE(handle); 1963 } 1964 1965 /* 1966 * Acquire a spinlock. 1967 * 1968 * handle is a pointer to the spinlock_t. 1969 */ 1970 1971 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) 1972 { 1973 acpi_cpu_flags flags; 1974 spin_lock_irqsave(lockp, flags); 1975 return flags; 1976 } 1977 1978 /* 1979 * Release a spinlock. See above. 1980 */ 1981 1982 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags) 1983 { 1984 spin_unlock_irqrestore(lockp, flags); 1985 } 1986 1987 #ifndef ACPI_USE_LOCAL_CACHE 1988 1989 /******************************************************************************* 1990 * 1991 * FUNCTION: acpi_os_create_cache 1992 * 1993 * PARAMETERS: name - Ascii name for the cache 1994 * size - Size of each cached object 1995 * depth - Maximum depth of the cache (in objects) <ignored> 1996 * cache - Where the new cache object is returned 1997 * 1998 * RETURN: status 1999 * 2000 * DESCRIPTION: Create a cache object 2001 * 2002 ******************************************************************************/ 2003 2004 acpi_status 2005 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache) 2006 { 2007 *cache = kmem_cache_create(name, size, 0, 0, NULL); 2008 if (*cache == NULL) 2009 return AE_ERROR; 2010 else 2011 return AE_OK; 2012 } 2013 2014 /******************************************************************************* 2015 * 2016 * FUNCTION: acpi_os_purge_cache 2017 * 2018 * PARAMETERS: Cache - Handle to cache object 2019 * 2020 * RETURN: Status 2021 * 2022 * DESCRIPTION: Free all objects within the requested cache. 2023 * 2024 ******************************************************************************/ 2025 2026 acpi_status acpi_os_purge_cache(acpi_cache_t * cache) 2027 { 2028 kmem_cache_shrink(cache); 2029 return (AE_OK); 2030 } 2031 2032 /******************************************************************************* 2033 * 2034 * FUNCTION: acpi_os_delete_cache 2035 * 2036 * PARAMETERS: Cache - Handle to cache object 2037 * 2038 * RETURN: Status 2039 * 2040 * DESCRIPTION: Free all objects within the requested cache and delete the 2041 * cache object. 2042 * 2043 ******************************************************************************/ 2044 2045 acpi_status acpi_os_delete_cache(acpi_cache_t * cache) 2046 { 2047 kmem_cache_destroy(cache); 2048 return (AE_OK); 2049 } 2050 2051 /******************************************************************************* 2052 * 2053 * FUNCTION: acpi_os_release_object 2054 * 2055 * PARAMETERS: Cache - Handle to cache object 2056 * Object - The object to be released 2057 * 2058 * RETURN: None 2059 * 2060 * DESCRIPTION: Release an object to the specified cache. If cache is full, 2061 * the object is deleted. 2062 * 2063 ******************************************************************************/ 2064 2065 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object) 2066 { 2067 kmem_cache_free(cache, object); 2068 return (AE_OK); 2069 } 2070 #endif 2071 2072 static int __init acpi_no_static_ssdt_setup(char *s) 2073 { 2074 acpi_gbl_disable_ssdt_table_install = TRUE; 2075 pr_info("ACPI: static SSDT installation disabled\n"); 2076 2077 return 0; 2078 } 2079 2080 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); 2081 2082 static int __init acpi_disable_return_repair(char *s) 2083 { 2084 printk(KERN_NOTICE PREFIX 2085 "ACPI: Predefined validation mechanism disabled\n"); 2086 acpi_gbl_disable_auto_repair = TRUE; 2087 2088 return 1; 2089 } 2090 2091 __setup("acpica_no_return_repair", acpi_disable_return_repair); 2092 2093 acpi_status __init acpi_os_initialize(void) 2094 { 2095 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 2096 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 2097 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); 2098 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); 2099 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { 2100 /* 2101 * Use acpi_os_map_generic_address to pre-map the reset 2102 * register if it's in system memory. 2103 */ 2104 int rv; 2105 2106 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); 2107 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv); 2108 } 2109 acpi_os_initialized = true; 2110 2111 return AE_OK; 2112 } 2113 2114 acpi_status __init acpi_os_initialize1(void) 2115 { 2116 kacpid_wq = alloc_workqueue("kacpid", 0, 1); 2117 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1); 2118 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); 2119 BUG_ON(!kacpid_wq); 2120 BUG_ON(!kacpi_notify_wq); 2121 BUG_ON(!kacpi_hotplug_wq); 2122 acpi_install_interface_handler(acpi_osi_handler); 2123 acpi_osi_setup_late(); 2124 return AE_OK; 2125 } 2126 2127 acpi_status acpi_os_terminate(void) 2128 { 2129 if (acpi_irq_handler) { 2130 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, 2131 acpi_irq_handler); 2132 } 2133 2134 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); 2135 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); 2136 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 2137 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 2138 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) 2139 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); 2140 2141 destroy_workqueue(kacpid_wq); 2142 destroy_workqueue(kacpi_notify_wq); 2143 destroy_workqueue(kacpi_hotplug_wq); 2144 2145 return AE_OK; 2146 } 2147 2148 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, 2149 u32 pm1b_control) 2150 { 2151 int rc = 0; 2152 if (__acpi_os_prepare_sleep) 2153 rc = __acpi_os_prepare_sleep(sleep_state, 2154 pm1a_control, pm1b_control); 2155 if (rc < 0) 2156 return AE_ERROR; 2157 else if (rc > 0) 2158 return AE_CTRL_SKIP; 2159 2160 return AE_OK; 2161 } 2162 2163 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, 2164 u32 pm1a_ctrl, u32 pm1b_ctrl)) 2165 { 2166 __acpi_os_prepare_sleep = func; 2167 } 2168 2169 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 2170 u32 val_b) 2171 { 2172 int rc = 0; 2173 if (__acpi_os_prepare_extended_sleep) 2174 rc = __acpi_os_prepare_extended_sleep(sleep_state, 2175 val_a, val_b); 2176 if (rc < 0) 2177 return AE_ERROR; 2178 else if (rc > 0) 2179 return AE_CTRL_SKIP; 2180 2181 return AE_OK; 2182 } 2183 2184 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, 2185 u32 val_a, u32 val_b)) 2186 { 2187 __acpi_os_prepare_extended_sleep = func; 2188 } 2189