xref: /linux/drivers/acpi/osl.c (revision 9d8a2b033db179bef9b6b5bad492f611a0fe89b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33 
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37 
38 #include "acpica/accommon.h"
39 #include "internal.h"
40 
41 /* Definitions for ACPI_DEBUG_PRINT() */
42 #define _COMPONENT		ACPI_OS_SERVICES
43 ACPI_MODULE_NAME("osl");
44 
45 struct acpi_os_dpc {
46 	acpi_osd_exec_callback function;
47 	void *context;
48 	struct work_struct work;
49 };
50 
51 #ifdef ENABLE_DEBUGGER
52 #include <linux/kdb.h>
53 
54 /* stuff for debugger support */
55 int acpi_in_debugger;
56 EXPORT_SYMBOL(acpi_in_debugger);
57 #endif				/*ENABLE_DEBUGGER */
58 
59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 				      u32 pm1b_ctrl);
61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 				      u32 val_b);
63 
64 static acpi_osd_handler acpi_irq_handler;
65 static void *acpi_irq_context;
66 static struct workqueue_struct *kacpid_wq;
67 static struct workqueue_struct *kacpi_notify_wq;
68 static struct workqueue_struct *kacpi_hotplug_wq;
69 static bool acpi_os_initialized;
70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71 bool acpi_permanent_mmap = false;
72 
73 /*
74  * This list of permanent mappings is for memory that may be accessed from
75  * interrupt context, where we can't do the ioremap().
76  */
77 struct acpi_ioremap {
78 	struct list_head list;
79 	void __iomem *virt;
80 	acpi_physical_address phys;
81 	acpi_size size;
82 	union {
83 		unsigned long refcount;
84 		struct rcu_work rwork;
85 	} track;
86 };
87 
88 static LIST_HEAD(acpi_ioremaps);
89 static DEFINE_MUTEX(acpi_ioremap_lock);
90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91 
92 static void __init acpi_request_region (struct acpi_generic_address *gas,
93 	unsigned int length, char *desc)
94 {
95 	u64 addr;
96 
97 	/* Handle possible alignment issues */
98 	memcpy(&addr, &gas->address, sizeof(addr));
99 	if (!addr || !length)
100 		return;
101 
102 	/* Resources are never freed */
103 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 		request_region(addr, length, desc);
105 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 		request_mem_region(addr, length, desc);
107 }
108 
109 static int __init acpi_reserve_resources(void)
110 {
111 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 		"ACPI PM1a_EVT_BLK");
113 
114 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 		"ACPI PM1b_EVT_BLK");
116 
117 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 		"ACPI PM1a_CNT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 		"ACPI PM1b_CNT_BLK");
122 
123 	if (acpi_gbl_FADT.pm_timer_length == 4)
124 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125 
126 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 		"ACPI PM2_CNT_BLK");
128 
129 	/* Length of GPE blocks must be a non-negative multiple of 2 */
130 
131 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134 
135 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138 
139 	return 0;
140 }
141 fs_initcall_sync(acpi_reserve_resources);
142 
143 void acpi_os_printf(const char *fmt, ...)
144 {
145 	va_list args;
146 	va_start(args, fmt);
147 	acpi_os_vprintf(fmt, args);
148 	va_end(args);
149 }
150 EXPORT_SYMBOL(acpi_os_printf);
151 
152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153 {
154 	static char buffer[512];
155 
156 	vsprintf(buffer, fmt, args);
157 
158 #ifdef ENABLE_DEBUGGER
159 	if (acpi_in_debugger) {
160 		kdb_printf("%s", buffer);
161 	} else {
162 		if (printk_get_level(buffer))
163 			printk("%s", buffer);
164 		else
165 			printk(KERN_CONT "%s", buffer);
166 	}
167 #else
168 	if (acpi_debugger_write_log(buffer) < 0) {
169 		if (printk_get_level(buffer))
170 			printk("%s", buffer);
171 		else
172 			printk(KERN_CONT "%s", buffer);
173 	}
174 #endif
175 }
176 
177 #ifdef CONFIG_KEXEC
178 static unsigned long acpi_rsdp;
179 static int __init setup_acpi_rsdp(char *arg)
180 {
181 	return kstrtoul(arg, 16, &acpi_rsdp);
182 }
183 early_param("acpi_rsdp", setup_acpi_rsdp);
184 #endif
185 
186 acpi_physical_address __init acpi_os_get_root_pointer(void)
187 {
188 	acpi_physical_address pa;
189 
190 #ifdef CONFIG_KEXEC
191 	/*
192 	 * We may have been provided with an RSDP on the command line,
193 	 * but if a malicious user has done so they may be pointing us
194 	 * at modified ACPI tables that could alter kernel behaviour -
195 	 * so, we check the lockdown status before making use of
196 	 * it. If we trust it then also stash it in an architecture
197 	 * specific location (if appropriate) so it can be carried
198 	 * over further kexec()s.
199 	 */
200 	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 		acpi_arch_set_root_pointer(acpi_rsdp);
202 		return acpi_rsdp;
203 	}
204 #endif
205 	pa = acpi_arch_get_root_pointer();
206 	if (pa)
207 		return pa;
208 
209 	if (efi_enabled(EFI_CONFIG_TABLES)) {
210 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 			return efi.acpi20;
212 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 			return efi.acpi;
214 		pr_err("System description tables not found\n");
215 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 		acpi_find_root_pointer(&pa);
217 	}
218 
219 	return pa;
220 }
221 
222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223 static struct acpi_ioremap *
224 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225 {
226 	struct acpi_ioremap *map;
227 
228 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 		if (map->phys <= phys &&
230 		    phys + size <= map->phys + map->size)
231 			return map;
232 
233 	return NULL;
234 }
235 
236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237 static void __iomem *
238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239 {
240 	struct acpi_ioremap *map;
241 
242 	map = acpi_map_lookup(phys, size);
243 	if (map)
244 		return map->virt + (phys - map->phys);
245 
246 	return NULL;
247 }
248 
249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250 {
251 	struct acpi_ioremap *map;
252 	void __iomem *virt = NULL;
253 
254 	mutex_lock(&acpi_ioremap_lock);
255 	map = acpi_map_lookup(phys, size);
256 	if (map) {
257 		virt = map->virt + (phys - map->phys);
258 		map->track.refcount++;
259 	}
260 	mutex_unlock(&acpi_ioremap_lock);
261 	return virt;
262 }
263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264 
265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266 static struct acpi_ioremap *
267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268 {
269 	struct acpi_ioremap *map;
270 
271 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 		if (map->virt <= virt &&
273 		    virt + size <= map->virt + map->size)
274 			return map;
275 
276 	return NULL;
277 }
278 
279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280 /* ioremap will take care of cache attributes */
281 #define should_use_kmap(pfn)   0
282 #else
283 #define should_use_kmap(pfn)   page_is_ram(pfn)
284 #endif
285 
286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287 {
288 	unsigned long pfn;
289 
290 	pfn = pg_off >> PAGE_SHIFT;
291 	if (should_use_kmap(pfn)) {
292 		if (pg_sz > PAGE_SIZE)
293 			return NULL;
294 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 	} else
296 		return acpi_os_ioremap(pg_off, pg_sz);
297 }
298 
299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300 {
301 	unsigned long pfn;
302 
303 	pfn = pg_off >> PAGE_SHIFT;
304 	if (should_use_kmap(pfn))
305 		kunmap(pfn_to_page(pfn));
306 	else
307 		iounmap(vaddr);
308 }
309 
310 /**
311  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312  * @phys: Start of the physical address range to map.
313  * @size: Size of the physical address range to map.
314  *
315  * Look up the given physical address range in the list of existing ACPI memory
316  * mappings.  If found, get a reference to it and return a pointer to it (its
317  * virtual address).  If not found, map it, add it to that list and return a
318  * pointer to it.
319  *
320  * During early init (when acpi_permanent_mmap has not been set yet) this
321  * routine simply calls __acpi_map_table() to get the job done.
322  */
323 void __iomem __ref
324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325 {
326 	struct acpi_ioremap *map;
327 	void __iomem *virt;
328 	acpi_physical_address pg_off;
329 	acpi_size pg_sz;
330 
331 	if (phys > ULONG_MAX) {
332 		pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 		return NULL;
334 	}
335 
336 	if (!acpi_permanent_mmap)
337 		return __acpi_map_table((unsigned long)phys, size);
338 
339 	mutex_lock(&acpi_ioremap_lock);
340 	/* Check if there's a suitable mapping already. */
341 	map = acpi_map_lookup(phys, size);
342 	if (map) {
343 		map->track.refcount++;
344 		goto out;
345 	}
346 
347 	map = kzalloc(sizeof(*map), GFP_KERNEL);
348 	if (!map) {
349 		mutex_unlock(&acpi_ioremap_lock);
350 		return NULL;
351 	}
352 
353 	pg_off = round_down(phys, PAGE_SIZE);
354 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 	virt = acpi_map(phys, size);
356 	if (!virt) {
357 		mutex_unlock(&acpi_ioremap_lock);
358 		kfree(map);
359 		return NULL;
360 	}
361 
362 	INIT_LIST_HEAD(&map->list);
363 	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 	map->phys = pg_off;
365 	map->size = pg_sz;
366 	map->track.refcount = 1;
367 
368 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
369 
370 out:
371 	mutex_unlock(&acpi_ioremap_lock);
372 	return map->virt + (phys - map->phys);
373 }
374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375 
376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377 {
378 	return (void *)acpi_os_map_iomem(phys, size);
379 }
380 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381 
382 static void acpi_os_map_remove(struct work_struct *work)
383 {
384 	struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 						struct acpi_ioremap,
386 						track.rwork);
387 
388 	acpi_unmap(map->phys, map->virt);
389 	kfree(map);
390 }
391 
392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394 {
395 	if (--map->track.refcount)
396 		return;
397 
398 	list_del_rcu(&map->list);
399 
400 	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 	queue_rcu_work(system_wq, &map->track.rwork);
402 }
403 
404 /**
405  * acpi_os_unmap_iomem - Drop a memory mapping reference.
406  * @virt: Start of the address range to drop a reference to.
407  * @size: Size of the address range to drop a reference to.
408  *
409  * Look up the given virtual address range in the list of existing ACPI memory
410  * mappings, drop a reference to it and if there are no more active references
411  * to it, queue it up for later removal.
412  *
413  * During early init (when acpi_permanent_mmap has not been set yet) this
414  * routine simply calls __acpi_unmap_table() to get the job done.  Since
415  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416  * here.
417  */
418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419 {
420 	struct acpi_ioremap *map;
421 
422 	if (!acpi_permanent_mmap) {
423 		__acpi_unmap_table(virt, size);
424 		return;
425 	}
426 
427 	mutex_lock(&acpi_ioremap_lock);
428 
429 	map = acpi_map_lookup_virt(virt, size);
430 	if (!map) {
431 		mutex_unlock(&acpi_ioremap_lock);
432 		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 		return;
434 	}
435 	acpi_os_drop_map_ref(map);
436 
437 	mutex_unlock(&acpi_ioremap_lock);
438 }
439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440 
441 /**
442  * acpi_os_unmap_memory - Drop a memory mapping reference.
443  * @virt: Start of the address range to drop a reference to.
444  * @size: Size of the address range to drop a reference to.
445  */
446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447 {
448 	acpi_os_unmap_iomem((void __iomem *)virt, size);
449 }
450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451 
452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453 {
454 	u64 addr;
455 
456 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 		return NULL;
458 
459 	/* Handle possible alignment issues */
460 	memcpy(&addr, &gas->address, sizeof(addr));
461 	if (!addr || !gas->bit_width)
462 		return NULL;
463 
464 	return acpi_os_map_iomem(addr, gas->bit_width / 8);
465 }
466 EXPORT_SYMBOL(acpi_os_map_generic_address);
467 
468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469 {
470 	u64 addr;
471 	struct acpi_ioremap *map;
472 
473 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 		return;
475 
476 	/* Handle possible alignment issues */
477 	memcpy(&addr, &gas->address, sizeof(addr));
478 	if (!addr || !gas->bit_width)
479 		return;
480 
481 	mutex_lock(&acpi_ioremap_lock);
482 
483 	map = acpi_map_lookup(addr, gas->bit_width / 8);
484 	if (!map) {
485 		mutex_unlock(&acpi_ioremap_lock);
486 		return;
487 	}
488 	acpi_os_drop_map_ref(map);
489 
490 	mutex_unlock(&acpi_ioremap_lock);
491 }
492 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493 
494 #ifdef ACPI_FUTURE_USAGE
495 acpi_status
496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497 {
498 	if (!phys || !virt)
499 		return AE_BAD_PARAMETER;
500 
501 	*phys = virt_to_phys(virt);
502 
503 	return AE_OK;
504 }
505 #endif
506 
507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508 static bool acpi_rev_override;
509 
510 int __init acpi_rev_override_setup(char *str)
511 {
512 	acpi_rev_override = true;
513 	return 1;
514 }
515 __setup("acpi_rev_override", acpi_rev_override_setup);
516 #else
517 #define acpi_rev_override	false
518 #endif
519 
520 #define ACPI_MAX_OVERRIDE_LEN 100
521 
522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523 
524 acpi_status
525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 			    acpi_string *new_val)
527 {
528 	if (!init_val || !new_val)
529 		return AE_BAD_PARAMETER;
530 
531 	*new_val = NULL;
532 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 		*new_val = acpi_os_name;
535 	}
536 
537 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 		pr_info("Overriding _REV return value to 5\n");
539 		*new_val = (char *)5;
540 	}
541 
542 	return AE_OK;
543 }
544 
545 static irqreturn_t acpi_irq(int irq, void *dev_id)
546 {
547 	if ((*acpi_irq_handler)(acpi_irq_context)) {
548 		acpi_irq_handled++;
549 		return IRQ_HANDLED;
550 	} else {
551 		acpi_irq_not_handled++;
552 		return IRQ_NONE;
553 	}
554 }
555 
556 acpi_status
557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 				  void *context)
559 {
560 	unsigned int irq;
561 
562 	acpi_irq_stats_init();
563 
564 	/*
565 	 * ACPI interrupts different from the SCI in our copy of the FADT are
566 	 * not supported.
567 	 */
568 	if (gsi != acpi_gbl_FADT.sci_interrupt)
569 		return AE_BAD_PARAMETER;
570 
571 	if (acpi_irq_handler)
572 		return AE_ALREADY_ACQUIRED;
573 
574 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 		return AE_OK;
577 	}
578 
579 	acpi_irq_handler = handler;
580 	acpi_irq_context = context;
581 	if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 			         "acpi", acpi_irq)) {
583 		pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 		acpi_irq_handler = NULL;
585 		return AE_NOT_ACQUIRED;
586 	}
587 	acpi_sci_irq = irq;
588 
589 	return AE_OK;
590 }
591 
592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 		return AE_BAD_PARAMETER;
596 
597 	free_irq(acpi_sci_irq, acpi_irq);
598 	acpi_irq_handler = NULL;
599 	acpi_sci_irq = INVALID_ACPI_IRQ;
600 
601 	return AE_OK;
602 }
603 
604 /*
605  * Running in interpreter thread context, safe to sleep
606  */
607 
608 void acpi_os_sleep(u64 ms)
609 {
610 	msleep(ms);
611 }
612 
613 void acpi_os_stall(u32 us)
614 {
615 	while (us) {
616 		u32 delay = 1000;
617 
618 		if (delay > us)
619 			delay = us;
620 		udelay(delay);
621 		touch_nmi_watchdog();
622 		us -= delay;
623 	}
624 }
625 
626 /*
627  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628  * monotonically increasing timer with 100ns granularity. Do not use
629  * ktime_get() to implement this function because this function may get
630  * called after timekeeping has been suspended. Note: calling this function
631  * after timekeeping has been suspended may lead to unexpected results
632  * because when timekeeping is suspended the jiffies counter is not
633  * incremented. See also timekeeping_suspend().
634  */
635 u64 acpi_os_get_timer(void)
636 {
637 	return (get_jiffies_64() - INITIAL_JIFFIES) *
638 		(ACPI_100NSEC_PER_SEC / HZ);
639 }
640 
641 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642 {
643 	u32 dummy;
644 
645 	if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
646 		/*
647 		 * set all-1 result as if reading from non-existing
648 		 * I/O port
649 		 */
650 		*value = GENMASK(width, 0);
651 		return AE_NOT_IMPLEMENTED;
652 	}
653 
654 	if (value)
655 		*value = 0;
656 	else
657 		value = &dummy;
658 
659 	if (width <= 8) {
660 		*value = inb(port);
661 	} else if (width <= 16) {
662 		*value = inw(port);
663 	} else if (width <= 32) {
664 		*value = inl(port);
665 	} else {
666 		pr_debug("%s: Access width %d not supported\n", __func__, width);
667 		return AE_BAD_PARAMETER;
668 	}
669 
670 	return AE_OK;
671 }
672 
673 EXPORT_SYMBOL(acpi_os_read_port);
674 
675 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
676 {
677 	if (!IS_ENABLED(CONFIG_HAS_IOPORT))
678 		return AE_NOT_IMPLEMENTED;
679 
680 	if (width <= 8) {
681 		outb(value, port);
682 	} else if (width <= 16) {
683 		outw(value, port);
684 	} else if (width <= 32) {
685 		outl(value, port);
686 	} else {
687 		pr_debug("%s: Access width %d not supported\n", __func__, width);
688 		return AE_BAD_PARAMETER;
689 	}
690 
691 	return AE_OK;
692 }
693 
694 EXPORT_SYMBOL(acpi_os_write_port);
695 
696 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
697 {
698 
699 	switch (width) {
700 	case 8:
701 		*(u8 *) value = readb(virt_addr);
702 		break;
703 	case 16:
704 		*(u16 *) value = readw(virt_addr);
705 		break;
706 	case 32:
707 		*(u32 *) value = readl(virt_addr);
708 		break;
709 	case 64:
710 		*(u64 *) value = readq(virt_addr);
711 		break;
712 	default:
713 		return -EINVAL;
714 	}
715 
716 	return 0;
717 }
718 
719 acpi_status
720 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
721 {
722 	void __iomem *virt_addr;
723 	unsigned int size = width / 8;
724 	bool unmap = false;
725 	u64 dummy;
726 	int error;
727 
728 	rcu_read_lock();
729 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
730 	if (!virt_addr) {
731 		rcu_read_unlock();
732 		virt_addr = acpi_os_ioremap(phys_addr, size);
733 		if (!virt_addr)
734 			return AE_BAD_ADDRESS;
735 		unmap = true;
736 	}
737 
738 	if (!value)
739 		value = &dummy;
740 
741 	error = acpi_os_read_iomem(virt_addr, value, width);
742 	BUG_ON(error);
743 
744 	if (unmap)
745 		iounmap(virt_addr);
746 	else
747 		rcu_read_unlock();
748 
749 	return AE_OK;
750 }
751 
752 acpi_status
753 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
754 {
755 	void __iomem *virt_addr;
756 	unsigned int size = width / 8;
757 	bool unmap = false;
758 
759 	rcu_read_lock();
760 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
761 	if (!virt_addr) {
762 		rcu_read_unlock();
763 		virt_addr = acpi_os_ioremap(phys_addr, size);
764 		if (!virt_addr)
765 			return AE_BAD_ADDRESS;
766 		unmap = true;
767 	}
768 
769 	switch (width) {
770 	case 8:
771 		writeb(value, virt_addr);
772 		break;
773 	case 16:
774 		writew(value, virt_addr);
775 		break;
776 	case 32:
777 		writel(value, virt_addr);
778 		break;
779 	case 64:
780 		writeq(value, virt_addr);
781 		break;
782 	default:
783 		BUG();
784 	}
785 
786 	if (unmap)
787 		iounmap(virt_addr);
788 	else
789 		rcu_read_unlock();
790 
791 	return AE_OK;
792 }
793 
794 #ifdef CONFIG_PCI
795 acpi_status
796 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
797 			       u64 *value, u32 width)
798 {
799 	int result, size;
800 	u32 value32;
801 
802 	if (!value)
803 		return AE_BAD_PARAMETER;
804 
805 	switch (width) {
806 	case 8:
807 		size = 1;
808 		break;
809 	case 16:
810 		size = 2;
811 		break;
812 	case 32:
813 		size = 4;
814 		break;
815 	default:
816 		return AE_ERROR;
817 	}
818 
819 	result = raw_pci_read(pci_id->segment, pci_id->bus,
820 				PCI_DEVFN(pci_id->device, pci_id->function),
821 				reg, size, &value32);
822 	*value = value32;
823 
824 	return (result ? AE_ERROR : AE_OK);
825 }
826 
827 acpi_status
828 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
829 				u64 value, u32 width)
830 {
831 	int result, size;
832 
833 	switch (width) {
834 	case 8:
835 		size = 1;
836 		break;
837 	case 16:
838 		size = 2;
839 		break;
840 	case 32:
841 		size = 4;
842 		break;
843 	default:
844 		return AE_ERROR;
845 	}
846 
847 	result = raw_pci_write(pci_id->segment, pci_id->bus,
848 				PCI_DEVFN(pci_id->device, pci_id->function),
849 				reg, size, value);
850 
851 	return (result ? AE_ERROR : AE_OK);
852 }
853 #endif
854 
855 static void acpi_os_execute_deferred(struct work_struct *work)
856 {
857 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
858 
859 	dpc->function(dpc->context);
860 	kfree(dpc);
861 }
862 
863 #ifdef CONFIG_ACPI_DEBUGGER
864 static struct acpi_debugger acpi_debugger;
865 static bool acpi_debugger_initialized;
866 
867 int acpi_register_debugger(struct module *owner,
868 			   const struct acpi_debugger_ops *ops)
869 {
870 	int ret = 0;
871 
872 	mutex_lock(&acpi_debugger.lock);
873 	if (acpi_debugger.ops) {
874 		ret = -EBUSY;
875 		goto err_lock;
876 	}
877 
878 	acpi_debugger.owner = owner;
879 	acpi_debugger.ops = ops;
880 
881 err_lock:
882 	mutex_unlock(&acpi_debugger.lock);
883 	return ret;
884 }
885 EXPORT_SYMBOL(acpi_register_debugger);
886 
887 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
888 {
889 	mutex_lock(&acpi_debugger.lock);
890 	if (ops == acpi_debugger.ops) {
891 		acpi_debugger.ops = NULL;
892 		acpi_debugger.owner = NULL;
893 	}
894 	mutex_unlock(&acpi_debugger.lock);
895 }
896 EXPORT_SYMBOL(acpi_unregister_debugger);
897 
898 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
899 {
900 	int ret;
901 	int (*func)(acpi_osd_exec_callback, void *);
902 	struct module *owner;
903 
904 	if (!acpi_debugger_initialized)
905 		return -ENODEV;
906 	mutex_lock(&acpi_debugger.lock);
907 	if (!acpi_debugger.ops) {
908 		ret = -ENODEV;
909 		goto err_lock;
910 	}
911 	if (!try_module_get(acpi_debugger.owner)) {
912 		ret = -ENODEV;
913 		goto err_lock;
914 	}
915 	func = acpi_debugger.ops->create_thread;
916 	owner = acpi_debugger.owner;
917 	mutex_unlock(&acpi_debugger.lock);
918 
919 	ret = func(function, context);
920 
921 	mutex_lock(&acpi_debugger.lock);
922 	module_put(owner);
923 err_lock:
924 	mutex_unlock(&acpi_debugger.lock);
925 	return ret;
926 }
927 
928 ssize_t acpi_debugger_write_log(const char *msg)
929 {
930 	ssize_t ret;
931 	ssize_t (*func)(const char *);
932 	struct module *owner;
933 
934 	if (!acpi_debugger_initialized)
935 		return -ENODEV;
936 	mutex_lock(&acpi_debugger.lock);
937 	if (!acpi_debugger.ops) {
938 		ret = -ENODEV;
939 		goto err_lock;
940 	}
941 	if (!try_module_get(acpi_debugger.owner)) {
942 		ret = -ENODEV;
943 		goto err_lock;
944 	}
945 	func = acpi_debugger.ops->write_log;
946 	owner = acpi_debugger.owner;
947 	mutex_unlock(&acpi_debugger.lock);
948 
949 	ret = func(msg);
950 
951 	mutex_lock(&acpi_debugger.lock);
952 	module_put(owner);
953 err_lock:
954 	mutex_unlock(&acpi_debugger.lock);
955 	return ret;
956 }
957 
958 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
959 {
960 	ssize_t ret;
961 	ssize_t (*func)(char *, size_t);
962 	struct module *owner;
963 
964 	if (!acpi_debugger_initialized)
965 		return -ENODEV;
966 	mutex_lock(&acpi_debugger.lock);
967 	if (!acpi_debugger.ops) {
968 		ret = -ENODEV;
969 		goto err_lock;
970 	}
971 	if (!try_module_get(acpi_debugger.owner)) {
972 		ret = -ENODEV;
973 		goto err_lock;
974 	}
975 	func = acpi_debugger.ops->read_cmd;
976 	owner = acpi_debugger.owner;
977 	mutex_unlock(&acpi_debugger.lock);
978 
979 	ret = func(buffer, buffer_length);
980 
981 	mutex_lock(&acpi_debugger.lock);
982 	module_put(owner);
983 err_lock:
984 	mutex_unlock(&acpi_debugger.lock);
985 	return ret;
986 }
987 
988 int acpi_debugger_wait_command_ready(void)
989 {
990 	int ret;
991 	int (*func)(bool, char *, size_t);
992 	struct module *owner;
993 
994 	if (!acpi_debugger_initialized)
995 		return -ENODEV;
996 	mutex_lock(&acpi_debugger.lock);
997 	if (!acpi_debugger.ops) {
998 		ret = -ENODEV;
999 		goto err_lock;
1000 	}
1001 	if (!try_module_get(acpi_debugger.owner)) {
1002 		ret = -ENODEV;
1003 		goto err_lock;
1004 	}
1005 	func = acpi_debugger.ops->wait_command_ready;
1006 	owner = acpi_debugger.owner;
1007 	mutex_unlock(&acpi_debugger.lock);
1008 
1009 	ret = func(acpi_gbl_method_executing,
1010 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1011 
1012 	mutex_lock(&acpi_debugger.lock);
1013 	module_put(owner);
1014 err_lock:
1015 	mutex_unlock(&acpi_debugger.lock);
1016 	return ret;
1017 }
1018 
1019 int acpi_debugger_notify_command_complete(void)
1020 {
1021 	int ret;
1022 	int (*func)(void);
1023 	struct module *owner;
1024 
1025 	if (!acpi_debugger_initialized)
1026 		return -ENODEV;
1027 	mutex_lock(&acpi_debugger.lock);
1028 	if (!acpi_debugger.ops) {
1029 		ret = -ENODEV;
1030 		goto err_lock;
1031 	}
1032 	if (!try_module_get(acpi_debugger.owner)) {
1033 		ret = -ENODEV;
1034 		goto err_lock;
1035 	}
1036 	func = acpi_debugger.ops->notify_command_complete;
1037 	owner = acpi_debugger.owner;
1038 	mutex_unlock(&acpi_debugger.lock);
1039 
1040 	ret = func();
1041 
1042 	mutex_lock(&acpi_debugger.lock);
1043 	module_put(owner);
1044 err_lock:
1045 	mutex_unlock(&acpi_debugger.lock);
1046 	return ret;
1047 }
1048 
1049 int __init acpi_debugger_init(void)
1050 {
1051 	mutex_init(&acpi_debugger.lock);
1052 	acpi_debugger_initialized = true;
1053 	return 0;
1054 }
1055 #endif
1056 
1057 /*******************************************************************************
1058  *
1059  * FUNCTION:    acpi_os_execute
1060  *
1061  * PARAMETERS:  Type               - Type of the callback
1062  *              Function           - Function to be executed
1063  *              Context            - Function parameters
1064  *
1065  * RETURN:      Status
1066  *
1067  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1068  *              immediately executes function on a separate thread.
1069  *
1070  ******************************************************************************/
1071 
1072 acpi_status acpi_os_execute(acpi_execute_type type,
1073 			    acpi_osd_exec_callback function, void *context)
1074 {
1075 	struct acpi_os_dpc *dpc;
1076 	int ret;
1077 
1078 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1079 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1080 			  function, context));
1081 
1082 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1083 		ret = acpi_debugger_create_thread(function, context);
1084 		if (ret) {
1085 			pr_err("Kernel thread creation failed\n");
1086 			return AE_ERROR;
1087 		}
1088 		return AE_OK;
1089 	}
1090 
1091 	/*
1092 	 * Allocate/initialize DPC structure.  Note that this memory will be
1093 	 * freed by the callee.  The kernel handles the work_struct list  in a
1094 	 * way that allows us to also free its memory inside the callee.
1095 	 * Because we may want to schedule several tasks with different
1096 	 * parameters we can't use the approach some kernel code uses of
1097 	 * having a static work_struct.
1098 	 */
1099 
1100 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1101 	if (!dpc)
1102 		return AE_NO_MEMORY;
1103 
1104 	dpc->function = function;
1105 	dpc->context = context;
1106 	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107 
1108 	/*
1109 	 * To prevent lockdep from complaining unnecessarily, make sure that
1110 	 * there is a different static lockdep key for each workqueue by using
1111 	 * INIT_WORK() for each of them separately.
1112 	 */
1113 	switch (type) {
1114 	case OSL_NOTIFY_HANDLER:
1115 		ret = queue_work(kacpi_notify_wq, &dpc->work);
1116 		break;
1117 	case OSL_GPE_HANDLER:
1118 		/*
1119 		 * On some machines, a software-initiated SMI causes corruption
1120 		 * unless the SMI runs on CPU 0.  An SMI can be initiated by
1121 		 * any AML, but typically it's done in GPE-related methods that
1122 		 * are run via workqueues, so we can avoid the known corruption
1123 		 * cases by always queueing on CPU 0.
1124 		 */
1125 		ret = queue_work_on(0, kacpid_wq, &dpc->work);
1126 		break;
1127 	default:
1128 		pr_err("Unsupported os_execute type %d.\n", type);
1129 		goto err;
1130 	}
1131 	if (!ret) {
1132 		pr_err("Unable to queue work\n");
1133 		goto err;
1134 	}
1135 
1136 	return AE_OK;
1137 
1138 err:
1139 	kfree(dpc);
1140 	return AE_ERROR;
1141 }
1142 EXPORT_SYMBOL(acpi_os_execute);
1143 
1144 void acpi_os_wait_events_complete(void)
1145 {
1146 	/*
1147 	 * Make sure the GPE handler or the fixed event handler is not used
1148 	 * on another CPU after removal.
1149 	 */
1150 	if (acpi_sci_irq_valid())
1151 		synchronize_hardirq(acpi_sci_irq);
1152 	flush_workqueue(kacpid_wq);
1153 	flush_workqueue(kacpi_notify_wq);
1154 }
1155 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1156 
1157 struct acpi_hp_work {
1158 	struct work_struct work;
1159 	struct acpi_device *adev;
1160 	u32 src;
1161 };
1162 
1163 static void acpi_hotplug_work_fn(struct work_struct *work)
1164 {
1165 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1166 
1167 	acpi_os_wait_events_complete();
1168 	acpi_device_hotplug(hpw->adev, hpw->src);
1169 	kfree(hpw);
1170 }
1171 
1172 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1173 {
1174 	struct acpi_hp_work *hpw;
1175 
1176 	acpi_handle_debug(adev->handle,
1177 			  "Scheduling hotplug event %u for deferred handling\n",
1178 			   src);
1179 
1180 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1181 	if (!hpw)
1182 		return AE_NO_MEMORY;
1183 
1184 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1185 	hpw->adev = adev;
1186 	hpw->src = src;
1187 	/*
1188 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1189 	 * the hotplug code may call driver .remove() functions, which may
1190 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1191 	 * these workqueues.
1192 	 */
1193 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1194 		kfree(hpw);
1195 		return AE_ERROR;
1196 	}
1197 	return AE_OK;
1198 }
1199 
1200 bool acpi_queue_hotplug_work(struct work_struct *work)
1201 {
1202 	return queue_work(kacpi_hotplug_wq, work);
1203 }
1204 
1205 acpi_status
1206 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1207 {
1208 	struct semaphore *sem = NULL;
1209 
1210 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1211 	if (!sem)
1212 		return AE_NO_MEMORY;
1213 
1214 	sema_init(sem, initial_units);
1215 
1216 	*handle = (acpi_handle *) sem;
1217 
1218 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1219 			  *handle, initial_units));
1220 
1221 	return AE_OK;
1222 }
1223 
1224 /*
1225  * TODO: A better way to delete semaphores?  Linux doesn't have a
1226  * 'delete_semaphore()' function -- may result in an invalid
1227  * pointer dereference for non-synchronized consumers.	Should
1228  * we at least check for blocked threads and signal/cancel them?
1229  */
1230 
1231 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1232 {
1233 	struct semaphore *sem = (struct semaphore *)handle;
1234 
1235 	if (!sem)
1236 		return AE_BAD_PARAMETER;
1237 
1238 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1239 
1240 	BUG_ON(!list_empty(&sem->wait_list));
1241 	kfree(sem);
1242 	sem = NULL;
1243 
1244 	return AE_OK;
1245 }
1246 
1247 /*
1248  * TODO: Support for units > 1?
1249  */
1250 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1251 {
1252 	acpi_status status = AE_OK;
1253 	struct semaphore *sem = (struct semaphore *)handle;
1254 	long jiffies;
1255 	int ret = 0;
1256 
1257 	if (!acpi_os_initialized)
1258 		return AE_OK;
1259 
1260 	if (!sem || (units < 1))
1261 		return AE_BAD_PARAMETER;
1262 
1263 	if (units > 1)
1264 		return AE_SUPPORT;
1265 
1266 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1267 			  handle, units, timeout));
1268 
1269 	if (timeout == ACPI_WAIT_FOREVER)
1270 		jiffies = MAX_SCHEDULE_TIMEOUT;
1271 	else
1272 		jiffies = msecs_to_jiffies(timeout);
1273 
1274 	ret = down_timeout(sem, jiffies);
1275 	if (ret)
1276 		status = AE_TIME;
1277 
1278 	if (ACPI_FAILURE(status)) {
1279 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1281 				  handle, units, timeout,
1282 				  acpi_format_exception(status)));
1283 	} else {
1284 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1285 				  "Acquired semaphore[%p|%d|%d]", handle,
1286 				  units, timeout));
1287 	}
1288 
1289 	return status;
1290 }
1291 
1292 /*
1293  * TODO: Support for units > 1?
1294  */
1295 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1296 {
1297 	struct semaphore *sem = (struct semaphore *)handle;
1298 
1299 	if (!acpi_os_initialized)
1300 		return AE_OK;
1301 
1302 	if (!sem || (units < 1))
1303 		return AE_BAD_PARAMETER;
1304 
1305 	if (units > 1)
1306 		return AE_SUPPORT;
1307 
1308 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1309 			  units));
1310 
1311 	up(sem);
1312 
1313 	return AE_OK;
1314 }
1315 
1316 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1317 {
1318 #ifdef ENABLE_DEBUGGER
1319 	if (acpi_in_debugger) {
1320 		u32 chars;
1321 
1322 		kdb_read(buffer, buffer_length);
1323 
1324 		/* remove the CR kdb includes */
1325 		chars = strlen(buffer) - 1;
1326 		buffer[chars] = '\0';
1327 	}
1328 #else
1329 	int ret;
1330 
1331 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332 	if (ret < 0)
1333 		return AE_ERROR;
1334 	if (bytes_read)
1335 		*bytes_read = ret;
1336 #endif
1337 
1338 	return AE_OK;
1339 }
1340 EXPORT_SYMBOL(acpi_os_get_line);
1341 
1342 acpi_status acpi_os_wait_command_ready(void)
1343 {
1344 	int ret;
1345 
1346 	ret = acpi_debugger_wait_command_ready();
1347 	if (ret < 0)
1348 		return AE_ERROR;
1349 	return AE_OK;
1350 }
1351 
1352 acpi_status acpi_os_notify_command_complete(void)
1353 {
1354 	int ret;
1355 
1356 	ret = acpi_debugger_notify_command_complete();
1357 	if (ret < 0)
1358 		return AE_ERROR;
1359 	return AE_OK;
1360 }
1361 
1362 acpi_status acpi_os_signal(u32 function, void *info)
1363 {
1364 	switch (function) {
1365 	case ACPI_SIGNAL_FATAL:
1366 		pr_err("Fatal opcode executed\n");
1367 		break;
1368 	case ACPI_SIGNAL_BREAKPOINT:
1369 		/*
1370 		 * AML Breakpoint
1371 		 * ACPI spec. says to treat it as a NOP unless
1372 		 * you are debugging.  So if/when we integrate
1373 		 * AML debugger into the kernel debugger its
1374 		 * hook will go here.  But until then it is
1375 		 * not useful to print anything on breakpoints.
1376 		 */
1377 		break;
1378 	default:
1379 		break;
1380 	}
1381 
1382 	return AE_OK;
1383 }
1384 
1385 static int __init acpi_os_name_setup(char *str)
1386 {
1387 	char *p = acpi_os_name;
1388 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1389 
1390 	if (!str || !*str)
1391 		return 0;
1392 
1393 	for (; count-- && *str; str++) {
1394 		if (isalnum(*str) || *str == ' ' || *str == ':')
1395 			*p++ = *str;
1396 		else if (*str == '\'' || *str == '"')
1397 			continue;
1398 		else
1399 			break;
1400 	}
1401 	*p = 0;
1402 
1403 	return 1;
1404 
1405 }
1406 
1407 __setup("acpi_os_name=", acpi_os_name_setup);
1408 
1409 /*
1410  * Disable the auto-serialization of named objects creation methods.
1411  *
1412  * This feature is enabled by default.  It marks the AML control methods
1413  * that contain the opcodes to create named objects as "Serialized".
1414  */
1415 static int __init acpi_no_auto_serialize_setup(char *str)
1416 {
1417 	acpi_gbl_auto_serialize_methods = FALSE;
1418 	pr_info("Auto-serialization disabled\n");
1419 
1420 	return 1;
1421 }
1422 
1423 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1424 
1425 /* Check of resource interference between native drivers and ACPI
1426  * OperationRegions (SystemIO and System Memory only).
1427  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1428  * in arbitrary AML code and can interfere with legacy drivers.
1429  * acpi_enforce_resources= can be set to:
1430  *
1431  *   - strict (default) (2)
1432  *     -> further driver trying to access the resources will not load
1433  *   - lax              (1)
1434  *     -> further driver trying to access the resources will load, but you
1435  *     get a system message that something might go wrong...
1436  *
1437  *   - no               (0)
1438  *     -> ACPI Operation Region resources will not be registered
1439  *
1440  */
1441 #define ENFORCE_RESOURCES_STRICT 2
1442 #define ENFORCE_RESOURCES_LAX    1
1443 #define ENFORCE_RESOURCES_NO     0
1444 
1445 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446 
1447 static int __init acpi_enforce_resources_setup(char *str)
1448 {
1449 	if (str == NULL || *str == '\0')
1450 		return 0;
1451 
1452 	if (!strcmp("strict", str))
1453 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1454 	else if (!strcmp("lax", str))
1455 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1456 	else if (!strcmp("no", str))
1457 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1458 
1459 	return 1;
1460 }
1461 
1462 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1463 
1464 /* Check for resource conflicts between ACPI OperationRegions and native
1465  * drivers */
1466 int acpi_check_resource_conflict(const struct resource *res)
1467 {
1468 	acpi_adr_space_type space_id;
1469 
1470 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 		return 0;
1472 
1473 	if (res->flags & IORESOURCE_IO)
1474 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1475 	else if (res->flags & IORESOURCE_MEM)
1476 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1477 	else
1478 		return 0;
1479 
1480 	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1481 		return 0;
1482 
1483 	pr_info("Resource conflict; ACPI support missing from driver?\n");
1484 
1485 	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1486 		return -EBUSY;
1487 
1488 	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1489 		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1490 
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL(acpi_check_resource_conflict);
1494 
1495 int acpi_check_region(resource_size_t start, resource_size_t n,
1496 		      const char *name)
1497 {
1498 	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1499 
1500 	return acpi_check_resource_conflict(&res);
1501 }
1502 EXPORT_SYMBOL(acpi_check_region);
1503 
1504 /*
1505  * Let drivers know whether the resource checks are effective
1506  */
1507 int acpi_resources_are_enforced(void)
1508 {
1509 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1510 }
1511 EXPORT_SYMBOL(acpi_resources_are_enforced);
1512 
1513 /*
1514  * Deallocate the memory for a spinlock.
1515  */
1516 void acpi_os_delete_lock(acpi_spinlock handle)
1517 {
1518 	ACPI_FREE(handle);
1519 }
1520 
1521 /*
1522  * Acquire a spinlock.
1523  *
1524  * handle is a pointer to the spinlock_t.
1525  */
1526 
1527 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1528 	__acquires(lockp)
1529 {
1530 	spin_lock(lockp);
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Release a spinlock. See above.
1536  */
1537 
1538 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1539 	__releases(lockp)
1540 {
1541 	spin_unlock(lockp);
1542 }
1543 
1544 #ifndef ACPI_USE_LOCAL_CACHE
1545 
1546 /*******************************************************************************
1547  *
1548  * FUNCTION:    acpi_os_create_cache
1549  *
1550  * PARAMETERS:  name      - Ascii name for the cache
1551  *              size      - Size of each cached object
1552  *              depth     - Maximum depth of the cache (in objects) <ignored>
1553  *              cache     - Where the new cache object is returned
1554  *
1555  * RETURN:      status
1556  *
1557  * DESCRIPTION: Create a cache object
1558  *
1559  ******************************************************************************/
1560 
1561 acpi_status
1562 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1563 {
1564 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1565 	if (*cache == NULL)
1566 		return AE_ERROR;
1567 	else
1568 		return AE_OK;
1569 }
1570 
1571 /*******************************************************************************
1572  *
1573  * FUNCTION:    acpi_os_purge_cache
1574  *
1575  * PARAMETERS:  Cache           - Handle to cache object
1576  *
1577  * RETURN:      Status
1578  *
1579  * DESCRIPTION: Free all objects within the requested cache.
1580  *
1581  ******************************************************************************/
1582 
1583 acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1584 {
1585 	kmem_cache_shrink(cache);
1586 	return AE_OK;
1587 }
1588 
1589 /*******************************************************************************
1590  *
1591  * FUNCTION:    acpi_os_delete_cache
1592  *
1593  * PARAMETERS:  Cache           - Handle to cache object
1594  *
1595  * RETURN:      Status
1596  *
1597  * DESCRIPTION: Free all objects within the requested cache and delete the
1598  *              cache object.
1599  *
1600  ******************************************************************************/
1601 
1602 acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1603 {
1604 	kmem_cache_destroy(cache);
1605 	return AE_OK;
1606 }
1607 
1608 /*******************************************************************************
1609  *
1610  * FUNCTION:    acpi_os_release_object
1611  *
1612  * PARAMETERS:  Cache       - Handle to cache object
1613  *              Object      - The object to be released
1614  *
1615  * RETURN:      None
1616  *
1617  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1618  *              the object is deleted.
1619  *
1620  ******************************************************************************/
1621 
1622 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1623 {
1624 	kmem_cache_free(cache, object);
1625 	return AE_OK;
1626 }
1627 #endif
1628 
1629 static int __init acpi_no_static_ssdt_setup(char *s)
1630 {
1631 	acpi_gbl_disable_ssdt_table_install = TRUE;
1632 	pr_info("Static SSDT installation disabled\n");
1633 
1634 	return 0;
1635 }
1636 
1637 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1638 
1639 static int __init acpi_disable_return_repair(char *s)
1640 {
1641 	pr_notice("Predefined validation mechanism disabled\n");
1642 	acpi_gbl_disable_auto_repair = TRUE;
1643 
1644 	return 1;
1645 }
1646 
1647 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1648 
1649 acpi_status __init acpi_os_initialize(void)
1650 {
1651 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1652 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653 
1654 	acpi_gbl_xgpe0_block_logical_address =
1655 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1656 	acpi_gbl_xgpe1_block_logical_address =
1657 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1658 
1659 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1660 		/*
1661 		 * Use acpi_os_map_generic_address to pre-map the reset
1662 		 * register if it's in system memory.
1663 		 */
1664 		void *rv;
1665 
1666 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1667 		pr_debug("%s: Reset register mapping %s\n", __func__,
1668 			 rv ? "successful" : "failed");
1669 	}
1670 	acpi_os_initialized = true;
1671 
1672 	return AE_OK;
1673 }
1674 
1675 acpi_status __init acpi_os_initialize1(void)
1676 {
1677 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1678 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1679 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1680 	BUG_ON(!kacpid_wq);
1681 	BUG_ON(!kacpi_notify_wq);
1682 	BUG_ON(!kacpi_hotplug_wq);
1683 	acpi_osi_init();
1684 	return AE_OK;
1685 }
1686 
1687 acpi_status acpi_os_terminate(void)
1688 {
1689 	if (acpi_irq_handler) {
1690 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1691 						 acpi_irq_handler);
1692 	}
1693 
1694 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1695 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1696 	acpi_gbl_xgpe0_block_logical_address = 0UL;
1697 	acpi_gbl_xgpe1_block_logical_address = 0UL;
1698 
1699 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1700 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1701 
1702 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1703 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1704 
1705 	destroy_workqueue(kacpid_wq);
1706 	destroy_workqueue(kacpi_notify_wq);
1707 	destroy_workqueue(kacpi_hotplug_wq);
1708 
1709 	return AE_OK;
1710 }
1711 
1712 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1713 				  u32 pm1b_control)
1714 {
1715 	int rc = 0;
1716 
1717 	if (__acpi_os_prepare_sleep)
1718 		rc = __acpi_os_prepare_sleep(sleep_state,
1719 					     pm1a_control, pm1b_control);
1720 	if (rc < 0)
1721 		return AE_ERROR;
1722 	else if (rc > 0)
1723 		return AE_CTRL_TERMINATE;
1724 
1725 	return AE_OK;
1726 }
1727 
1728 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1729 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1730 {
1731 	__acpi_os_prepare_sleep = func;
1732 }
1733 
1734 #if (ACPI_REDUCED_HARDWARE)
1735 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1736 				  u32 val_b)
1737 {
1738 	int rc = 0;
1739 
1740 	if (__acpi_os_prepare_extended_sleep)
1741 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1742 					     val_a, val_b);
1743 	if (rc < 0)
1744 		return AE_ERROR;
1745 	else if (rc > 0)
1746 		return AE_CTRL_TERMINATE;
1747 
1748 	return AE_OK;
1749 }
1750 #else
1751 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1752 				  u32 val_b)
1753 {
1754 	return AE_OK;
1755 }
1756 #endif
1757 
1758 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1759 			       u32 val_a, u32 val_b))
1760 {
1761 	__acpi_os_prepare_extended_sleep = func;
1762 }
1763 
1764 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1765 				u32 reg_a_value, u32 reg_b_value)
1766 {
1767 	acpi_status status;
1768 
1769 	if (acpi_gbl_reduced_hardware)
1770 		status = acpi_os_prepare_extended_sleep(sleep_state,
1771 							reg_a_value,
1772 							reg_b_value);
1773 	else
1774 		status = acpi_os_prepare_sleep(sleep_state,
1775 					       reg_a_value, reg_b_value);
1776 	return status;
1777 }
1778