1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $) 4 * 5 * Copyright (C) 2000 Andrew Henroid 6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Copyright (c) 2008 Intel Corporation 9 * Author: Matthew Wilcox <willy@linux.intel.com> 10 */ 11 12 #define pr_fmt(fmt) "ACPI: OSL: " fmt 13 14 #include <linux/module.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/mm.h> 18 #include <linux/highmem.h> 19 #include <linux/lockdep.h> 20 #include <linux/pci.h> 21 #include <linux/interrupt.h> 22 #include <linux/kmod.h> 23 #include <linux/delay.h> 24 #include <linux/workqueue.h> 25 #include <linux/nmi.h> 26 #include <linux/acpi.h> 27 #include <linux/efi.h> 28 #include <linux/ioport.h> 29 #include <linux/list.h> 30 #include <linux/jiffies.h> 31 #include <linux/semaphore.h> 32 #include <linux/security.h> 33 34 #include <asm/io.h> 35 #include <linux/uaccess.h> 36 #include <linux/io-64-nonatomic-lo-hi.h> 37 38 #include "acpica/accommon.h" 39 #include "internal.h" 40 41 /* Definitions for ACPI_DEBUG_PRINT() */ 42 #define _COMPONENT ACPI_OS_SERVICES 43 ACPI_MODULE_NAME("osl"); 44 45 struct acpi_os_dpc { 46 acpi_osd_exec_callback function; 47 void *context; 48 struct work_struct work; 49 }; 50 51 #ifdef ENABLE_DEBUGGER 52 #include <linux/kdb.h> 53 54 /* stuff for debugger support */ 55 int acpi_in_debugger; 56 EXPORT_SYMBOL(acpi_in_debugger); 57 #endif /*ENABLE_DEBUGGER */ 58 59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, 60 u32 pm1b_ctrl); 61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, 62 u32 val_b); 63 64 static acpi_osd_handler acpi_irq_handler; 65 static void *acpi_irq_context; 66 static struct workqueue_struct *kacpid_wq; 67 static struct workqueue_struct *kacpi_notify_wq; 68 static struct workqueue_struct *kacpi_hotplug_wq; 69 static bool acpi_os_initialized; 70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ; 71 bool acpi_permanent_mmap = false; 72 73 /* 74 * This list of permanent mappings is for memory that may be accessed from 75 * interrupt context, where we can't do the ioremap(). 76 */ 77 struct acpi_ioremap { 78 struct list_head list; 79 void __iomem *virt; 80 acpi_physical_address phys; 81 acpi_size size; 82 union { 83 unsigned long refcount; 84 struct rcu_work rwork; 85 } track; 86 }; 87 88 static LIST_HEAD(acpi_ioremaps); 89 static DEFINE_MUTEX(acpi_ioremap_lock); 90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map) 91 92 static void __init acpi_request_region (struct acpi_generic_address *gas, 93 unsigned int length, char *desc) 94 { 95 u64 addr; 96 97 /* Handle possible alignment issues */ 98 memcpy(&addr, &gas->address, sizeof(addr)); 99 if (!addr || !length) 100 return; 101 102 /* Resources are never freed */ 103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) 104 request_region(addr, length, desc); 105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 106 request_mem_region(addr, length, desc); 107 } 108 109 static int __init acpi_reserve_resources(void) 110 { 111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, 112 "ACPI PM1a_EVT_BLK"); 113 114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, 115 "ACPI PM1b_EVT_BLK"); 116 117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, 118 "ACPI PM1a_CNT_BLK"); 119 120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, 121 "ACPI PM1b_CNT_BLK"); 122 123 if (acpi_gbl_FADT.pm_timer_length == 4) 124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); 125 126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, 127 "ACPI PM2_CNT_BLK"); 128 129 /* Length of GPE blocks must be a non-negative multiple of 2 */ 130 131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) 132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block, 133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); 134 135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) 136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block, 137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); 138 139 return 0; 140 } 141 fs_initcall_sync(acpi_reserve_resources); 142 143 void acpi_os_printf(const char *fmt, ...) 144 { 145 va_list args; 146 va_start(args, fmt); 147 acpi_os_vprintf(fmt, args); 148 va_end(args); 149 } 150 EXPORT_SYMBOL(acpi_os_printf); 151 152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args) 153 { 154 static char buffer[512]; 155 156 vsprintf(buffer, fmt, args); 157 158 #ifdef ENABLE_DEBUGGER 159 if (acpi_in_debugger) { 160 kdb_printf("%s", buffer); 161 } else { 162 if (printk_get_level(buffer)) 163 printk("%s", buffer); 164 else 165 printk(KERN_CONT "%s", buffer); 166 } 167 #else 168 if (acpi_debugger_write_log(buffer) < 0) { 169 if (printk_get_level(buffer)) 170 printk("%s", buffer); 171 else 172 printk(KERN_CONT "%s", buffer); 173 } 174 #endif 175 } 176 177 #ifdef CONFIG_KEXEC 178 static unsigned long acpi_rsdp; 179 static int __init setup_acpi_rsdp(char *arg) 180 { 181 return kstrtoul(arg, 16, &acpi_rsdp); 182 } 183 early_param("acpi_rsdp", setup_acpi_rsdp); 184 #endif 185 186 acpi_physical_address __init acpi_os_get_root_pointer(void) 187 { 188 acpi_physical_address pa; 189 190 #ifdef CONFIG_KEXEC 191 /* 192 * We may have been provided with an RSDP on the command line, 193 * but if a malicious user has done so they may be pointing us 194 * at modified ACPI tables that could alter kernel behaviour - 195 * so, we check the lockdown status before making use of 196 * it. If we trust it then also stash it in an architecture 197 * specific location (if appropriate) so it can be carried 198 * over further kexec()s. 199 */ 200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) { 201 acpi_arch_set_root_pointer(acpi_rsdp); 202 return acpi_rsdp; 203 } 204 #endif 205 pa = acpi_arch_get_root_pointer(); 206 if (pa) 207 return pa; 208 209 if (efi_enabled(EFI_CONFIG_TABLES)) { 210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 211 return efi.acpi20; 212 if (efi.acpi != EFI_INVALID_TABLE_ADDR) 213 return efi.acpi; 214 pr_err("System description tables not found\n"); 215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) { 216 acpi_find_root_pointer(&pa); 217 } 218 219 return pa; 220 } 221 222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 223 static struct acpi_ioremap * 224 acpi_map_lookup(acpi_physical_address phys, acpi_size size) 225 { 226 struct acpi_ioremap *map; 227 228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) 229 if (map->phys <= phys && 230 phys + size <= map->phys + map->size) 231 return map; 232 233 return NULL; 234 } 235 236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 237 static void __iomem * 238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) 239 { 240 struct acpi_ioremap *map; 241 242 map = acpi_map_lookup(phys, size); 243 if (map) 244 return map->virt + (phys - map->phys); 245 246 return NULL; 247 } 248 249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) 250 { 251 struct acpi_ioremap *map; 252 void __iomem *virt = NULL; 253 254 mutex_lock(&acpi_ioremap_lock); 255 map = acpi_map_lookup(phys, size); 256 if (map) { 257 virt = map->virt + (phys - map->phys); 258 map->track.refcount++; 259 } 260 mutex_unlock(&acpi_ioremap_lock); 261 return virt; 262 } 263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem); 264 265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 266 static struct acpi_ioremap * 267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size) 268 { 269 struct acpi_ioremap *map; 270 271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) 272 if (map->virt <= virt && 273 virt + size <= map->virt + map->size) 274 return map; 275 276 return NULL; 277 } 278 279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 280 /* ioremap will take care of cache attributes */ 281 #define should_use_kmap(pfn) 0 282 #else 283 #define should_use_kmap(pfn) page_is_ram(pfn) 284 #endif 285 286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) 287 { 288 unsigned long pfn; 289 290 pfn = pg_off >> PAGE_SHIFT; 291 if (should_use_kmap(pfn)) { 292 if (pg_sz > PAGE_SIZE) 293 return NULL; 294 return (void __iomem __force *)kmap(pfn_to_page(pfn)); 295 } else 296 return acpi_os_ioremap(pg_off, pg_sz); 297 } 298 299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) 300 { 301 unsigned long pfn; 302 303 pfn = pg_off >> PAGE_SHIFT; 304 if (should_use_kmap(pfn)) 305 kunmap(pfn_to_page(pfn)); 306 else 307 iounmap(vaddr); 308 } 309 310 /** 311 * acpi_os_map_iomem - Get a virtual address for a given physical address range. 312 * @phys: Start of the physical address range to map. 313 * @size: Size of the physical address range to map. 314 * 315 * Look up the given physical address range in the list of existing ACPI memory 316 * mappings. If found, get a reference to it and return a pointer to it (its 317 * virtual address). If not found, map it, add it to that list and return a 318 * pointer to it. 319 * 320 * During early init (when acpi_permanent_mmap has not been set yet) this 321 * routine simply calls __acpi_map_table() to get the job done. 322 */ 323 void __iomem __ref 324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) 325 { 326 struct acpi_ioremap *map; 327 void __iomem *virt; 328 acpi_physical_address pg_off; 329 acpi_size pg_sz; 330 331 if (phys > ULONG_MAX) { 332 pr_err("Cannot map memory that high: 0x%llx\n", phys); 333 return NULL; 334 } 335 336 if (!acpi_permanent_mmap) 337 return __acpi_map_table((unsigned long)phys, size); 338 339 mutex_lock(&acpi_ioremap_lock); 340 /* Check if there's a suitable mapping already. */ 341 map = acpi_map_lookup(phys, size); 342 if (map) { 343 map->track.refcount++; 344 goto out; 345 } 346 347 map = kzalloc(sizeof(*map), GFP_KERNEL); 348 if (!map) { 349 mutex_unlock(&acpi_ioremap_lock); 350 return NULL; 351 } 352 353 pg_off = round_down(phys, PAGE_SIZE); 354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; 355 virt = acpi_map(phys, size); 356 if (!virt) { 357 mutex_unlock(&acpi_ioremap_lock); 358 kfree(map); 359 return NULL; 360 } 361 362 INIT_LIST_HEAD(&map->list); 363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK); 364 map->phys = pg_off; 365 map->size = pg_sz; 366 map->track.refcount = 1; 367 368 list_add_tail_rcu(&map->list, &acpi_ioremaps); 369 370 out: 371 mutex_unlock(&acpi_ioremap_lock); 372 return map->virt + (phys - map->phys); 373 } 374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem); 375 376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size) 377 { 378 return (void *)acpi_os_map_iomem(phys, size); 379 } 380 EXPORT_SYMBOL_GPL(acpi_os_map_memory); 381 382 static void acpi_os_map_remove(struct work_struct *work) 383 { 384 struct acpi_ioremap *map = container_of(to_rcu_work(work), 385 struct acpi_ioremap, 386 track.rwork); 387 388 acpi_unmap(map->phys, map->virt); 389 kfree(map); 390 } 391 392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */ 393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map) 394 { 395 if (--map->track.refcount) 396 return; 397 398 list_del_rcu(&map->list); 399 400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove); 401 queue_rcu_work(system_wq, &map->track.rwork); 402 } 403 404 /** 405 * acpi_os_unmap_iomem - Drop a memory mapping reference. 406 * @virt: Start of the address range to drop a reference to. 407 * @size: Size of the address range to drop a reference to. 408 * 409 * Look up the given virtual address range in the list of existing ACPI memory 410 * mappings, drop a reference to it and if there are no more active references 411 * to it, queue it up for later removal. 412 * 413 * During early init (when acpi_permanent_mmap has not been set yet) this 414 * routine simply calls __acpi_unmap_table() to get the job done. Since 415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed 416 * here. 417 */ 418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) 419 { 420 struct acpi_ioremap *map; 421 422 if (!acpi_permanent_mmap) { 423 __acpi_unmap_table(virt, size); 424 return; 425 } 426 427 mutex_lock(&acpi_ioremap_lock); 428 429 map = acpi_map_lookup_virt(virt, size); 430 if (!map) { 431 mutex_unlock(&acpi_ioremap_lock); 432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt); 433 return; 434 } 435 acpi_os_drop_map_ref(map); 436 437 mutex_unlock(&acpi_ioremap_lock); 438 } 439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); 440 441 /** 442 * acpi_os_unmap_memory - Drop a memory mapping reference. 443 * @virt: Start of the address range to drop a reference to. 444 * @size: Size of the address range to drop a reference to. 445 */ 446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size) 447 { 448 acpi_os_unmap_iomem((void __iomem *)virt, size); 449 } 450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); 451 452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas) 453 { 454 u64 addr; 455 456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 457 return NULL; 458 459 /* Handle possible alignment issues */ 460 memcpy(&addr, &gas->address, sizeof(addr)); 461 if (!addr || !gas->bit_width) 462 return NULL; 463 464 return acpi_os_map_iomem(addr, gas->bit_width / 8); 465 } 466 EXPORT_SYMBOL(acpi_os_map_generic_address); 467 468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) 469 { 470 u64 addr; 471 struct acpi_ioremap *map; 472 473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 474 return; 475 476 /* Handle possible alignment issues */ 477 memcpy(&addr, &gas->address, sizeof(addr)); 478 if (!addr || !gas->bit_width) 479 return; 480 481 mutex_lock(&acpi_ioremap_lock); 482 483 map = acpi_map_lookup(addr, gas->bit_width / 8); 484 if (!map) { 485 mutex_unlock(&acpi_ioremap_lock); 486 return; 487 } 488 acpi_os_drop_map_ref(map); 489 490 mutex_unlock(&acpi_ioremap_lock); 491 } 492 EXPORT_SYMBOL(acpi_os_unmap_generic_address); 493 494 #ifdef ACPI_FUTURE_USAGE 495 acpi_status 496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys) 497 { 498 if (!phys || !virt) 499 return AE_BAD_PARAMETER; 500 501 *phys = virt_to_phys(virt); 502 503 return AE_OK; 504 } 505 #endif 506 507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE 508 static bool acpi_rev_override; 509 510 int __init acpi_rev_override_setup(char *str) 511 { 512 acpi_rev_override = true; 513 return 1; 514 } 515 __setup("acpi_rev_override", acpi_rev_override_setup); 516 #else 517 #define acpi_rev_override false 518 #endif 519 520 #define ACPI_MAX_OVERRIDE_LEN 100 521 522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; 523 524 acpi_status 525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val, 526 acpi_string *new_val) 527 { 528 if (!init_val || !new_val) 529 return AE_BAD_PARAMETER; 530 531 *new_val = NULL; 532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { 533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name); 534 *new_val = acpi_os_name; 535 } 536 537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) { 538 pr_info("Overriding _REV return value to 5\n"); 539 *new_val = (char *)5; 540 } 541 542 return AE_OK; 543 } 544 545 static irqreturn_t acpi_irq(int irq, void *dev_id) 546 { 547 if ((*acpi_irq_handler)(acpi_irq_context)) { 548 acpi_irq_handled++; 549 return IRQ_HANDLED; 550 } else { 551 acpi_irq_not_handled++; 552 return IRQ_NONE; 553 } 554 } 555 556 acpi_status 557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, 558 void *context) 559 { 560 unsigned int irq; 561 562 acpi_irq_stats_init(); 563 564 /* 565 * ACPI interrupts different from the SCI in our copy of the FADT are 566 * not supported. 567 */ 568 if (gsi != acpi_gbl_FADT.sci_interrupt) 569 return AE_BAD_PARAMETER; 570 571 if (acpi_irq_handler) 572 return AE_ALREADY_ACQUIRED; 573 574 if (acpi_gsi_to_irq(gsi, &irq) < 0) { 575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi); 576 return AE_OK; 577 } 578 579 acpi_irq_handler = handler; 580 acpi_irq_context = context; 581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT, 582 "acpi", acpi_irq)) { 583 pr_err("SCI (IRQ%d) allocation failed\n", irq); 584 acpi_irq_handler = NULL; 585 return AE_NOT_ACQUIRED; 586 } 587 acpi_sci_irq = irq; 588 589 return AE_OK; 590 } 591 592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler) 593 { 594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid()) 595 return AE_BAD_PARAMETER; 596 597 free_irq(acpi_sci_irq, acpi_irq); 598 acpi_irq_handler = NULL; 599 acpi_sci_irq = INVALID_ACPI_IRQ; 600 601 return AE_OK; 602 } 603 604 /* 605 * Running in interpreter thread context, safe to sleep 606 */ 607 608 void acpi_os_sleep(u64 ms) 609 { 610 msleep(ms); 611 } 612 613 void acpi_os_stall(u32 us) 614 { 615 while (us) { 616 u32 delay = 1000; 617 618 if (delay > us) 619 delay = us; 620 udelay(delay); 621 touch_nmi_watchdog(); 622 us -= delay; 623 } 624 } 625 626 /* 627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running, 628 * monotonically increasing timer with 100ns granularity. Do not use 629 * ktime_get() to implement this function because this function may get 630 * called after timekeeping has been suspended. Note: calling this function 631 * after timekeeping has been suspended may lead to unexpected results 632 * because when timekeeping is suspended the jiffies counter is not 633 * incremented. See also timekeeping_suspend(). 634 */ 635 u64 acpi_os_get_timer(void) 636 { 637 return (get_jiffies_64() - INITIAL_JIFFIES) * 638 (ACPI_100NSEC_PER_SEC / HZ); 639 } 640 641 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width) 642 { 643 u32 dummy; 644 645 if (!IS_ENABLED(CONFIG_HAS_IOPORT)) { 646 /* 647 * set all-1 result as if reading from non-existing 648 * I/O port 649 */ 650 *value = GENMASK(width, 0); 651 return AE_NOT_IMPLEMENTED; 652 } 653 654 if (value) 655 *value = 0; 656 else 657 value = &dummy; 658 659 if (width <= 8) { 660 *value = inb(port); 661 } else if (width <= 16) { 662 *value = inw(port); 663 } else if (width <= 32) { 664 *value = inl(port); 665 } else { 666 pr_debug("%s: Access width %d not supported\n", __func__, width); 667 return AE_BAD_PARAMETER; 668 } 669 670 return AE_OK; 671 } 672 673 EXPORT_SYMBOL(acpi_os_read_port); 674 675 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) 676 { 677 if (!IS_ENABLED(CONFIG_HAS_IOPORT)) 678 return AE_NOT_IMPLEMENTED; 679 680 if (width <= 8) { 681 outb(value, port); 682 } else if (width <= 16) { 683 outw(value, port); 684 } else if (width <= 32) { 685 outl(value, port); 686 } else { 687 pr_debug("%s: Access width %d not supported\n", __func__, width); 688 return AE_BAD_PARAMETER; 689 } 690 691 return AE_OK; 692 } 693 694 EXPORT_SYMBOL(acpi_os_write_port); 695 696 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width) 697 { 698 699 switch (width) { 700 case 8: 701 *(u8 *) value = readb(virt_addr); 702 break; 703 case 16: 704 *(u16 *) value = readw(virt_addr); 705 break; 706 case 32: 707 *(u32 *) value = readl(virt_addr); 708 break; 709 case 64: 710 *(u64 *) value = readq(virt_addr); 711 break; 712 default: 713 return -EINVAL; 714 } 715 716 return 0; 717 } 718 719 acpi_status 720 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) 721 { 722 void __iomem *virt_addr; 723 unsigned int size = width / 8; 724 bool unmap = false; 725 u64 dummy; 726 int error; 727 728 rcu_read_lock(); 729 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 730 if (!virt_addr) { 731 rcu_read_unlock(); 732 virt_addr = acpi_os_ioremap(phys_addr, size); 733 if (!virt_addr) 734 return AE_BAD_ADDRESS; 735 unmap = true; 736 } 737 738 if (!value) 739 value = &dummy; 740 741 error = acpi_os_read_iomem(virt_addr, value, width); 742 BUG_ON(error); 743 744 if (unmap) 745 iounmap(virt_addr); 746 else 747 rcu_read_unlock(); 748 749 return AE_OK; 750 } 751 752 acpi_status 753 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) 754 { 755 void __iomem *virt_addr; 756 unsigned int size = width / 8; 757 bool unmap = false; 758 759 rcu_read_lock(); 760 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 761 if (!virt_addr) { 762 rcu_read_unlock(); 763 virt_addr = acpi_os_ioremap(phys_addr, size); 764 if (!virt_addr) 765 return AE_BAD_ADDRESS; 766 unmap = true; 767 } 768 769 switch (width) { 770 case 8: 771 writeb(value, virt_addr); 772 break; 773 case 16: 774 writew(value, virt_addr); 775 break; 776 case 32: 777 writel(value, virt_addr); 778 break; 779 case 64: 780 writeq(value, virt_addr); 781 break; 782 default: 783 BUG(); 784 } 785 786 if (unmap) 787 iounmap(virt_addr); 788 else 789 rcu_read_unlock(); 790 791 return AE_OK; 792 } 793 794 #ifdef CONFIG_PCI 795 acpi_status 796 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg, 797 u64 *value, u32 width) 798 { 799 int result, size; 800 u32 value32; 801 802 if (!value) 803 return AE_BAD_PARAMETER; 804 805 switch (width) { 806 case 8: 807 size = 1; 808 break; 809 case 16: 810 size = 2; 811 break; 812 case 32: 813 size = 4; 814 break; 815 default: 816 return AE_ERROR; 817 } 818 819 result = raw_pci_read(pci_id->segment, pci_id->bus, 820 PCI_DEVFN(pci_id->device, pci_id->function), 821 reg, size, &value32); 822 *value = value32; 823 824 return (result ? AE_ERROR : AE_OK); 825 } 826 827 acpi_status 828 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg, 829 u64 value, u32 width) 830 { 831 int result, size; 832 833 switch (width) { 834 case 8: 835 size = 1; 836 break; 837 case 16: 838 size = 2; 839 break; 840 case 32: 841 size = 4; 842 break; 843 default: 844 return AE_ERROR; 845 } 846 847 result = raw_pci_write(pci_id->segment, pci_id->bus, 848 PCI_DEVFN(pci_id->device, pci_id->function), 849 reg, size, value); 850 851 return (result ? AE_ERROR : AE_OK); 852 } 853 #endif 854 855 static void acpi_os_execute_deferred(struct work_struct *work) 856 { 857 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); 858 859 dpc->function(dpc->context); 860 kfree(dpc); 861 } 862 863 #ifdef CONFIG_ACPI_DEBUGGER 864 static struct acpi_debugger acpi_debugger; 865 static bool acpi_debugger_initialized; 866 867 int acpi_register_debugger(struct module *owner, 868 const struct acpi_debugger_ops *ops) 869 { 870 int ret = 0; 871 872 mutex_lock(&acpi_debugger.lock); 873 if (acpi_debugger.ops) { 874 ret = -EBUSY; 875 goto err_lock; 876 } 877 878 acpi_debugger.owner = owner; 879 acpi_debugger.ops = ops; 880 881 err_lock: 882 mutex_unlock(&acpi_debugger.lock); 883 return ret; 884 } 885 EXPORT_SYMBOL(acpi_register_debugger); 886 887 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) 888 { 889 mutex_lock(&acpi_debugger.lock); 890 if (ops == acpi_debugger.ops) { 891 acpi_debugger.ops = NULL; 892 acpi_debugger.owner = NULL; 893 } 894 mutex_unlock(&acpi_debugger.lock); 895 } 896 EXPORT_SYMBOL(acpi_unregister_debugger); 897 898 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) 899 { 900 int ret; 901 int (*func)(acpi_osd_exec_callback, void *); 902 struct module *owner; 903 904 if (!acpi_debugger_initialized) 905 return -ENODEV; 906 mutex_lock(&acpi_debugger.lock); 907 if (!acpi_debugger.ops) { 908 ret = -ENODEV; 909 goto err_lock; 910 } 911 if (!try_module_get(acpi_debugger.owner)) { 912 ret = -ENODEV; 913 goto err_lock; 914 } 915 func = acpi_debugger.ops->create_thread; 916 owner = acpi_debugger.owner; 917 mutex_unlock(&acpi_debugger.lock); 918 919 ret = func(function, context); 920 921 mutex_lock(&acpi_debugger.lock); 922 module_put(owner); 923 err_lock: 924 mutex_unlock(&acpi_debugger.lock); 925 return ret; 926 } 927 928 ssize_t acpi_debugger_write_log(const char *msg) 929 { 930 ssize_t ret; 931 ssize_t (*func)(const char *); 932 struct module *owner; 933 934 if (!acpi_debugger_initialized) 935 return -ENODEV; 936 mutex_lock(&acpi_debugger.lock); 937 if (!acpi_debugger.ops) { 938 ret = -ENODEV; 939 goto err_lock; 940 } 941 if (!try_module_get(acpi_debugger.owner)) { 942 ret = -ENODEV; 943 goto err_lock; 944 } 945 func = acpi_debugger.ops->write_log; 946 owner = acpi_debugger.owner; 947 mutex_unlock(&acpi_debugger.lock); 948 949 ret = func(msg); 950 951 mutex_lock(&acpi_debugger.lock); 952 module_put(owner); 953 err_lock: 954 mutex_unlock(&acpi_debugger.lock); 955 return ret; 956 } 957 958 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length) 959 { 960 ssize_t ret; 961 ssize_t (*func)(char *, size_t); 962 struct module *owner; 963 964 if (!acpi_debugger_initialized) 965 return -ENODEV; 966 mutex_lock(&acpi_debugger.lock); 967 if (!acpi_debugger.ops) { 968 ret = -ENODEV; 969 goto err_lock; 970 } 971 if (!try_module_get(acpi_debugger.owner)) { 972 ret = -ENODEV; 973 goto err_lock; 974 } 975 func = acpi_debugger.ops->read_cmd; 976 owner = acpi_debugger.owner; 977 mutex_unlock(&acpi_debugger.lock); 978 979 ret = func(buffer, buffer_length); 980 981 mutex_lock(&acpi_debugger.lock); 982 module_put(owner); 983 err_lock: 984 mutex_unlock(&acpi_debugger.lock); 985 return ret; 986 } 987 988 int acpi_debugger_wait_command_ready(void) 989 { 990 int ret; 991 int (*func)(bool, char *, size_t); 992 struct module *owner; 993 994 if (!acpi_debugger_initialized) 995 return -ENODEV; 996 mutex_lock(&acpi_debugger.lock); 997 if (!acpi_debugger.ops) { 998 ret = -ENODEV; 999 goto err_lock; 1000 } 1001 if (!try_module_get(acpi_debugger.owner)) { 1002 ret = -ENODEV; 1003 goto err_lock; 1004 } 1005 func = acpi_debugger.ops->wait_command_ready; 1006 owner = acpi_debugger.owner; 1007 mutex_unlock(&acpi_debugger.lock); 1008 1009 ret = func(acpi_gbl_method_executing, 1010 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE); 1011 1012 mutex_lock(&acpi_debugger.lock); 1013 module_put(owner); 1014 err_lock: 1015 mutex_unlock(&acpi_debugger.lock); 1016 return ret; 1017 } 1018 1019 int acpi_debugger_notify_command_complete(void) 1020 { 1021 int ret; 1022 int (*func)(void); 1023 struct module *owner; 1024 1025 if (!acpi_debugger_initialized) 1026 return -ENODEV; 1027 mutex_lock(&acpi_debugger.lock); 1028 if (!acpi_debugger.ops) { 1029 ret = -ENODEV; 1030 goto err_lock; 1031 } 1032 if (!try_module_get(acpi_debugger.owner)) { 1033 ret = -ENODEV; 1034 goto err_lock; 1035 } 1036 func = acpi_debugger.ops->notify_command_complete; 1037 owner = acpi_debugger.owner; 1038 mutex_unlock(&acpi_debugger.lock); 1039 1040 ret = func(); 1041 1042 mutex_lock(&acpi_debugger.lock); 1043 module_put(owner); 1044 err_lock: 1045 mutex_unlock(&acpi_debugger.lock); 1046 return ret; 1047 } 1048 1049 int __init acpi_debugger_init(void) 1050 { 1051 mutex_init(&acpi_debugger.lock); 1052 acpi_debugger_initialized = true; 1053 return 0; 1054 } 1055 #endif 1056 1057 /******************************************************************************* 1058 * 1059 * FUNCTION: acpi_os_execute 1060 * 1061 * PARAMETERS: Type - Type of the callback 1062 * Function - Function to be executed 1063 * Context - Function parameters 1064 * 1065 * RETURN: Status 1066 * 1067 * DESCRIPTION: Depending on type, either queues function for deferred execution or 1068 * immediately executes function on a separate thread. 1069 * 1070 ******************************************************************************/ 1071 1072 acpi_status acpi_os_execute(acpi_execute_type type, 1073 acpi_osd_exec_callback function, void *context) 1074 { 1075 struct acpi_os_dpc *dpc; 1076 int ret; 1077 1078 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1079 "Scheduling function [%p(%p)] for deferred execution.\n", 1080 function, context)); 1081 1082 if (type == OSL_DEBUGGER_MAIN_THREAD) { 1083 ret = acpi_debugger_create_thread(function, context); 1084 if (ret) { 1085 pr_err("Kernel thread creation failed\n"); 1086 return AE_ERROR; 1087 } 1088 return AE_OK; 1089 } 1090 1091 /* 1092 * Allocate/initialize DPC structure. Note that this memory will be 1093 * freed by the callee. The kernel handles the work_struct list in a 1094 * way that allows us to also free its memory inside the callee. 1095 * Because we may want to schedule several tasks with different 1096 * parameters we can't use the approach some kernel code uses of 1097 * having a static work_struct. 1098 */ 1099 1100 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); 1101 if (!dpc) 1102 return AE_NO_MEMORY; 1103 1104 dpc->function = function; 1105 dpc->context = context; 1106 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1107 1108 /* 1109 * To prevent lockdep from complaining unnecessarily, make sure that 1110 * there is a different static lockdep key for each workqueue by using 1111 * INIT_WORK() for each of them separately. 1112 */ 1113 switch (type) { 1114 case OSL_NOTIFY_HANDLER: 1115 ret = queue_work(kacpi_notify_wq, &dpc->work); 1116 break; 1117 case OSL_GPE_HANDLER: 1118 /* 1119 * On some machines, a software-initiated SMI causes corruption 1120 * unless the SMI runs on CPU 0. An SMI can be initiated by 1121 * any AML, but typically it's done in GPE-related methods that 1122 * are run via workqueues, so we can avoid the known corruption 1123 * cases by always queueing on CPU 0. 1124 */ 1125 ret = queue_work_on(0, kacpid_wq, &dpc->work); 1126 break; 1127 default: 1128 pr_err("Unsupported os_execute type %d.\n", type); 1129 goto err; 1130 } 1131 if (!ret) { 1132 pr_err("Unable to queue work\n"); 1133 goto err; 1134 } 1135 1136 return AE_OK; 1137 1138 err: 1139 kfree(dpc); 1140 return AE_ERROR; 1141 } 1142 EXPORT_SYMBOL(acpi_os_execute); 1143 1144 void acpi_os_wait_events_complete(void) 1145 { 1146 /* 1147 * Make sure the GPE handler or the fixed event handler is not used 1148 * on another CPU after removal. 1149 */ 1150 if (acpi_sci_irq_valid()) 1151 synchronize_hardirq(acpi_sci_irq); 1152 flush_workqueue(kacpid_wq); 1153 flush_workqueue(kacpi_notify_wq); 1154 } 1155 EXPORT_SYMBOL(acpi_os_wait_events_complete); 1156 1157 struct acpi_hp_work { 1158 struct work_struct work; 1159 struct acpi_device *adev; 1160 u32 src; 1161 }; 1162 1163 static void acpi_hotplug_work_fn(struct work_struct *work) 1164 { 1165 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); 1166 1167 acpi_os_wait_events_complete(); 1168 acpi_device_hotplug(hpw->adev, hpw->src); 1169 kfree(hpw); 1170 } 1171 1172 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) 1173 { 1174 struct acpi_hp_work *hpw; 1175 1176 acpi_handle_debug(adev->handle, 1177 "Scheduling hotplug event %u for deferred handling\n", 1178 src); 1179 1180 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); 1181 if (!hpw) 1182 return AE_NO_MEMORY; 1183 1184 INIT_WORK(&hpw->work, acpi_hotplug_work_fn); 1185 hpw->adev = adev; 1186 hpw->src = src; 1187 /* 1188 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because 1189 * the hotplug code may call driver .remove() functions, which may 1190 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush 1191 * these workqueues. 1192 */ 1193 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { 1194 kfree(hpw); 1195 return AE_ERROR; 1196 } 1197 return AE_OK; 1198 } 1199 1200 bool acpi_queue_hotplug_work(struct work_struct *work) 1201 { 1202 return queue_work(kacpi_hotplug_wq, work); 1203 } 1204 1205 acpi_status 1206 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle) 1207 { 1208 struct semaphore *sem = NULL; 1209 1210 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); 1211 if (!sem) 1212 return AE_NO_MEMORY; 1213 1214 sema_init(sem, initial_units); 1215 1216 *handle = (acpi_handle *) sem; 1217 1218 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", 1219 *handle, initial_units)); 1220 1221 return AE_OK; 1222 } 1223 1224 /* 1225 * TODO: A better way to delete semaphores? Linux doesn't have a 1226 * 'delete_semaphore()' function -- may result in an invalid 1227 * pointer dereference for non-synchronized consumers. Should 1228 * we at least check for blocked threads and signal/cancel them? 1229 */ 1230 1231 acpi_status acpi_os_delete_semaphore(acpi_handle handle) 1232 { 1233 struct semaphore *sem = (struct semaphore *)handle; 1234 1235 if (!sem) 1236 return AE_BAD_PARAMETER; 1237 1238 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); 1239 1240 BUG_ON(!list_empty(&sem->wait_list)); 1241 kfree(sem); 1242 sem = NULL; 1243 1244 return AE_OK; 1245 } 1246 1247 /* 1248 * TODO: Support for units > 1? 1249 */ 1250 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) 1251 { 1252 acpi_status status = AE_OK; 1253 struct semaphore *sem = (struct semaphore *)handle; 1254 long jiffies; 1255 int ret = 0; 1256 1257 if (!acpi_os_initialized) 1258 return AE_OK; 1259 1260 if (!sem || (units < 1)) 1261 return AE_BAD_PARAMETER; 1262 1263 if (units > 1) 1264 return AE_SUPPORT; 1265 1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", 1267 handle, units, timeout)); 1268 1269 if (timeout == ACPI_WAIT_FOREVER) 1270 jiffies = MAX_SCHEDULE_TIMEOUT; 1271 else 1272 jiffies = msecs_to_jiffies(timeout); 1273 1274 ret = down_timeout(sem, jiffies); 1275 if (ret) 1276 status = AE_TIME; 1277 1278 if (ACPI_FAILURE(status)) { 1279 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1280 "Failed to acquire semaphore[%p|%d|%d], %s", 1281 handle, units, timeout, 1282 acpi_format_exception(status))); 1283 } else { 1284 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1285 "Acquired semaphore[%p|%d|%d]", handle, 1286 units, timeout)); 1287 } 1288 1289 return status; 1290 } 1291 1292 /* 1293 * TODO: Support for units > 1? 1294 */ 1295 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) 1296 { 1297 struct semaphore *sem = (struct semaphore *)handle; 1298 1299 if (!acpi_os_initialized) 1300 return AE_OK; 1301 1302 if (!sem || (units < 1)) 1303 return AE_BAD_PARAMETER; 1304 1305 if (units > 1) 1306 return AE_SUPPORT; 1307 1308 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, 1309 units)); 1310 1311 up(sem); 1312 1313 return AE_OK; 1314 } 1315 1316 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read) 1317 { 1318 #ifdef ENABLE_DEBUGGER 1319 if (acpi_in_debugger) { 1320 u32 chars; 1321 1322 kdb_read(buffer, buffer_length); 1323 1324 /* remove the CR kdb includes */ 1325 chars = strlen(buffer) - 1; 1326 buffer[chars] = '\0'; 1327 } 1328 #else 1329 int ret; 1330 1331 ret = acpi_debugger_read_cmd(buffer, buffer_length); 1332 if (ret < 0) 1333 return AE_ERROR; 1334 if (bytes_read) 1335 *bytes_read = ret; 1336 #endif 1337 1338 return AE_OK; 1339 } 1340 EXPORT_SYMBOL(acpi_os_get_line); 1341 1342 acpi_status acpi_os_wait_command_ready(void) 1343 { 1344 int ret; 1345 1346 ret = acpi_debugger_wait_command_ready(); 1347 if (ret < 0) 1348 return AE_ERROR; 1349 return AE_OK; 1350 } 1351 1352 acpi_status acpi_os_notify_command_complete(void) 1353 { 1354 int ret; 1355 1356 ret = acpi_debugger_notify_command_complete(); 1357 if (ret < 0) 1358 return AE_ERROR; 1359 return AE_OK; 1360 } 1361 1362 acpi_status acpi_os_signal(u32 function, void *info) 1363 { 1364 switch (function) { 1365 case ACPI_SIGNAL_FATAL: 1366 pr_err("Fatal opcode executed\n"); 1367 break; 1368 case ACPI_SIGNAL_BREAKPOINT: 1369 /* 1370 * AML Breakpoint 1371 * ACPI spec. says to treat it as a NOP unless 1372 * you are debugging. So if/when we integrate 1373 * AML debugger into the kernel debugger its 1374 * hook will go here. But until then it is 1375 * not useful to print anything on breakpoints. 1376 */ 1377 break; 1378 default: 1379 break; 1380 } 1381 1382 return AE_OK; 1383 } 1384 1385 static int __init acpi_os_name_setup(char *str) 1386 { 1387 char *p = acpi_os_name; 1388 int count = ACPI_MAX_OVERRIDE_LEN - 1; 1389 1390 if (!str || !*str) 1391 return 0; 1392 1393 for (; count-- && *str; str++) { 1394 if (isalnum(*str) || *str == ' ' || *str == ':') 1395 *p++ = *str; 1396 else if (*str == '\'' || *str == '"') 1397 continue; 1398 else 1399 break; 1400 } 1401 *p = 0; 1402 1403 return 1; 1404 1405 } 1406 1407 __setup("acpi_os_name=", acpi_os_name_setup); 1408 1409 /* 1410 * Disable the auto-serialization of named objects creation methods. 1411 * 1412 * This feature is enabled by default. It marks the AML control methods 1413 * that contain the opcodes to create named objects as "Serialized". 1414 */ 1415 static int __init acpi_no_auto_serialize_setup(char *str) 1416 { 1417 acpi_gbl_auto_serialize_methods = FALSE; 1418 pr_info("Auto-serialization disabled\n"); 1419 1420 return 1; 1421 } 1422 1423 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); 1424 1425 /* Check of resource interference between native drivers and ACPI 1426 * OperationRegions (SystemIO and System Memory only). 1427 * IO ports and memory declared in ACPI might be used by the ACPI subsystem 1428 * in arbitrary AML code and can interfere with legacy drivers. 1429 * acpi_enforce_resources= can be set to: 1430 * 1431 * - strict (default) (2) 1432 * -> further driver trying to access the resources will not load 1433 * - lax (1) 1434 * -> further driver trying to access the resources will load, but you 1435 * get a system message that something might go wrong... 1436 * 1437 * - no (0) 1438 * -> ACPI Operation Region resources will not be registered 1439 * 1440 */ 1441 #define ENFORCE_RESOURCES_STRICT 2 1442 #define ENFORCE_RESOURCES_LAX 1 1443 #define ENFORCE_RESOURCES_NO 0 1444 1445 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1446 1447 static int __init acpi_enforce_resources_setup(char *str) 1448 { 1449 if (str == NULL || *str == '\0') 1450 return 0; 1451 1452 if (!strcmp("strict", str)) 1453 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1454 else if (!strcmp("lax", str)) 1455 acpi_enforce_resources = ENFORCE_RESOURCES_LAX; 1456 else if (!strcmp("no", str)) 1457 acpi_enforce_resources = ENFORCE_RESOURCES_NO; 1458 1459 return 1; 1460 } 1461 1462 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); 1463 1464 /* Check for resource conflicts between ACPI OperationRegions and native 1465 * drivers */ 1466 int acpi_check_resource_conflict(const struct resource *res) 1467 { 1468 acpi_adr_space_type space_id; 1469 1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) 1471 return 0; 1472 1473 if (res->flags & IORESOURCE_IO) 1474 space_id = ACPI_ADR_SPACE_SYSTEM_IO; 1475 else if (res->flags & IORESOURCE_MEM) 1476 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; 1477 else 1478 return 0; 1479 1480 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1)) 1481 return 0; 1482 1483 pr_info("Resource conflict; ACPI support missing from driver?\n"); 1484 1485 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) 1486 return -EBUSY; 1487 1488 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) 1489 pr_notice("Resource conflict: System may be unstable or behave erratically\n"); 1490 1491 return 0; 1492 } 1493 EXPORT_SYMBOL(acpi_check_resource_conflict); 1494 1495 int acpi_check_region(resource_size_t start, resource_size_t n, 1496 const char *name) 1497 { 1498 struct resource res = DEFINE_RES_IO_NAMED(start, n, name); 1499 1500 return acpi_check_resource_conflict(&res); 1501 } 1502 EXPORT_SYMBOL(acpi_check_region); 1503 1504 /* 1505 * Let drivers know whether the resource checks are effective 1506 */ 1507 int acpi_resources_are_enforced(void) 1508 { 1509 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; 1510 } 1511 EXPORT_SYMBOL(acpi_resources_are_enforced); 1512 1513 /* 1514 * Deallocate the memory for a spinlock. 1515 */ 1516 void acpi_os_delete_lock(acpi_spinlock handle) 1517 { 1518 ACPI_FREE(handle); 1519 } 1520 1521 /* 1522 * Acquire a spinlock. 1523 * 1524 * handle is a pointer to the spinlock_t. 1525 */ 1526 1527 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) 1528 __acquires(lockp) 1529 { 1530 spin_lock(lockp); 1531 return 0; 1532 } 1533 1534 /* 1535 * Release a spinlock. See above. 1536 */ 1537 1538 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used) 1539 __releases(lockp) 1540 { 1541 spin_unlock(lockp); 1542 } 1543 1544 #ifndef ACPI_USE_LOCAL_CACHE 1545 1546 /******************************************************************************* 1547 * 1548 * FUNCTION: acpi_os_create_cache 1549 * 1550 * PARAMETERS: name - Ascii name for the cache 1551 * size - Size of each cached object 1552 * depth - Maximum depth of the cache (in objects) <ignored> 1553 * cache - Where the new cache object is returned 1554 * 1555 * RETURN: status 1556 * 1557 * DESCRIPTION: Create a cache object 1558 * 1559 ******************************************************************************/ 1560 1561 acpi_status 1562 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache) 1563 { 1564 *cache = kmem_cache_create(name, size, 0, 0, NULL); 1565 if (*cache == NULL) 1566 return AE_ERROR; 1567 else 1568 return AE_OK; 1569 } 1570 1571 /******************************************************************************* 1572 * 1573 * FUNCTION: acpi_os_purge_cache 1574 * 1575 * PARAMETERS: Cache - Handle to cache object 1576 * 1577 * RETURN: Status 1578 * 1579 * DESCRIPTION: Free all objects within the requested cache. 1580 * 1581 ******************************************************************************/ 1582 1583 acpi_status acpi_os_purge_cache(acpi_cache_t *cache) 1584 { 1585 kmem_cache_shrink(cache); 1586 return AE_OK; 1587 } 1588 1589 /******************************************************************************* 1590 * 1591 * FUNCTION: acpi_os_delete_cache 1592 * 1593 * PARAMETERS: Cache - Handle to cache object 1594 * 1595 * RETURN: Status 1596 * 1597 * DESCRIPTION: Free all objects within the requested cache and delete the 1598 * cache object. 1599 * 1600 ******************************************************************************/ 1601 1602 acpi_status acpi_os_delete_cache(acpi_cache_t *cache) 1603 { 1604 kmem_cache_destroy(cache); 1605 return AE_OK; 1606 } 1607 1608 /******************************************************************************* 1609 * 1610 * FUNCTION: acpi_os_release_object 1611 * 1612 * PARAMETERS: Cache - Handle to cache object 1613 * Object - The object to be released 1614 * 1615 * RETURN: None 1616 * 1617 * DESCRIPTION: Release an object to the specified cache. If cache is full, 1618 * the object is deleted. 1619 * 1620 ******************************************************************************/ 1621 1622 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object) 1623 { 1624 kmem_cache_free(cache, object); 1625 return AE_OK; 1626 } 1627 #endif 1628 1629 static int __init acpi_no_static_ssdt_setup(char *s) 1630 { 1631 acpi_gbl_disable_ssdt_table_install = TRUE; 1632 pr_info("Static SSDT installation disabled\n"); 1633 1634 return 0; 1635 } 1636 1637 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); 1638 1639 static int __init acpi_disable_return_repair(char *s) 1640 { 1641 pr_notice("Predefined validation mechanism disabled\n"); 1642 acpi_gbl_disable_auto_repair = TRUE; 1643 1644 return 1; 1645 } 1646 1647 __setup("acpica_no_return_repair", acpi_disable_return_repair); 1648 1649 acpi_status __init acpi_os_initialize(void) 1650 { 1651 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1652 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1653 1654 acpi_gbl_xgpe0_block_logical_address = 1655 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); 1656 acpi_gbl_xgpe1_block_logical_address = 1657 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); 1658 1659 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { 1660 /* 1661 * Use acpi_os_map_generic_address to pre-map the reset 1662 * register if it's in system memory. 1663 */ 1664 void *rv; 1665 1666 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); 1667 pr_debug("%s: Reset register mapping %s\n", __func__, 1668 rv ? "successful" : "failed"); 1669 } 1670 acpi_os_initialized = true; 1671 1672 return AE_OK; 1673 } 1674 1675 acpi_status __init acpi_os_initialize1(void) 1676 { 1677 kacpid_wq = alloc_workqueue("kacpid", 0, 1); 1678 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0); 1679 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); 1680 BUG_ON(!kacpid_wq); 1681 BUG_ON(!kacpi_notify_wq); 1682 BUG_ON(!kacpi_hotplug_wq); 1683 acpi_osi_init(); 1684 return AE_OK; 1685 } 1686 1687 acpi_status acpi_os_terminate(void) 1688 { 1689 if (acpi_irq_handler) { 1690 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, 1691 acpi_irq_handler); 1692 } 1693 1694 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); 1695 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); 1696 acpi_gbl_xgpe0_block_logical_address = 0UL; 1697 acpi_gbl_xgpe1_block_logical_address = 0UL; 1698 1699 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1700 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1701 1702 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) 1703 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); 1704 1705 destroy_workqueue(kacpid_wq); 1706 destroy_workqueue(kacpi_notify_wq); 1707 destroy_workqueue(kacpi_hotplug_wq); 1708 1709 return AE_OK; 1710 } 1711 1712 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, 1713 u32 pm1b_control) 1714 { 1715 int rc = 0; 1716 1717 if (__acpi_os_prepare_sleep) 1718 rc = __acpi_os_prepare_sleep(sleep_state, 1719 pm1a_control, pm1b_control); 1720 if (rc < 0) 1721 return AE_ERROR; 1722 else if (rc > 0) 1723 return AE_CTRL_TERMINATE; 1724 1725 return AE_OK; 1726 } 1727 1728 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, 1729 u32 pm1a_ctrl, u32 pm1b_ctrl)) 1730 { 1731 __acpi_os_prepare_sleep = func; 1732 } 1733 1734 #if (ACPI_REDUCED_HARDWARE) 1735 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1736 u32 val_b) 1737 { 1738 int rc = 0; 1739 1740 if (__acpi_os_prepare_extended_sleep) 1741 rc = __acpi_os_prepare_extended_sleep(sleep_state, 1742 val_a, val_b); 1743 if (rc < 0) 1744 return AE_ERROR; 1745 else if (rc > 0) 1746 return AE_CTRL_TERMINATE; 1747 1748 return AE_OK; 1749 } 1750 #else 1751 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1752 u32 val_b) 1753 { 1754 return AE_OK; 1755 } 1756 #endif 1757 1758 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, 1759 u32 val_a, u32 val_b)) 1760 { 1761 __acpi_os_prepare_extended_sleep = func; 1762 } 1763 1764 acpi_status acpi_os_enter_sleep(u8 sleep_state, 1765 u32 reg_a_value, u32 reg_b_value) 1766 { 1767 acpi_status status; 1768 1769 if (acpi_gbl_reduced_hardware) 1770 status = acpi_os_prepare_extended_sleep(sleep_state, 1771 reg_a_value, 1772 reg_b_value); 1773 else 1774 status = acpi_os_prepare_sleep(sleep_state, 1775 reg_a_value, reg_b_value); 1776 return status; 1777 } 1778