xref: /linux/drivers/acpi/osl.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/pci.h>
18 #include <linux/interrupt.h>
19 #include <linux/kmod.h>
20 #include <linux/delay.h>
21 #include <linux/workqueue.h>
22 #include <linux/nmi.h>
23 #include <linux/acpi.h>
24 #include <linux/efi.h>
25 #include <linux/ioport.h>
26 #include <linux/list.h>
27 #include <linux/jiffies.h>
28 #include <linux/semaphore.h>
29 
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 
34 #include "acpica/accommon.h"
35 #include "acpica/acnamesp.h"
36 #include "internal.h"
37 
38 #define _COMPONENT		ACPI_OS_SERVICES
39 ACPI_MODULE_NAME("osl");
40 
41 struct acpi_os_dpc {
42 	acpi_osd_exec_callback function;
43 	void *context;
44 	struct work_struct work;
45 };
46 
47 #ifdef ENABLE_DEBUGGER
48 #include <linux/kdb.h>
49 
50 /* stuff for debugger support */
51 int acpi_in_debugger;
52 EXPORT_SYMBOL(acpi_in_debugger);
53 #endif				/*ENABLE_DEBUGGER */
54 
55 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
56 				      u32 pm1b_ctrl);
57 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
58 				      u32 val_b);
59 
60 static acpi_osd_handler acpi_irq_handler;
61 static void *acpi_irq_context;
62 static struct workqueue_struct *kacpid_wq;
63 static struct workqueue_struct *kacpi_notify_wq;
64 static struct workqueue_struct *kacpi_hotplug_wq;
65 static bool acpi_os_initialized;
66 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
67 bool acpi_permanent_mmap = false;
68 
69 /*
70  * This list of permanent mappings is for memory that may be accessed from
71  * interrupt context, where we can't do the ioremap().
72  */
73 struct acpi_ioremap {
74 	struct list_head list;
75 	void __iomem *virt;
76 	acpi_physical_address phys;
77 	acpi_size size;
78 	unsigned long refcount;
79 };
80 
81 static LIST_HEAD(acpi_ioremaps);
82 static DEFINE_MUTEX(acpi_ioremap_lock);
83 
84 static void __init acpi_request_region (struct acpi_generic_address *gas,
85 	unsigned int length, char *desc)
86 {
87 	u64 addr;
88 
89 	/* Handle possible alignment issues */
90 	memcpy(&addr, &gas->address, sizeof(addr));
91 	if (!addr || !length)
92 		return;
93 
94 	/* Resources are never freed */
95 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
96 		request_region(addr, length, desc);
97 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
98 		request_mem_region(addr, length, desc);
99 }
100 
101 static int __init acpi_reserve_resources(void)
102 {
103 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
104 		"ACPI PM1a_EVT_BLK");
105 
106 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
107 		"ACPI PM1b_EVT_BLK");
108 
109 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
110 		"ACPI PM1a_CNT_BLK");
111 
112 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
113 		"ACPI PM1b_CNT_BLK");
114 
115 	if (acpi_gbl_FADT.pm_timer_length == 4)
116 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
119 		"ACPI PM2_CNT_BLK");
120 
121 	/* Length of GPE blocks must be a non-negative multiple of 2 */
122 
123 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
124 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
125 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
126 
127 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
128 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
129 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
130 
131 	return 0;
132 }
133 fs_initcall_sync(acpi_reserve_resources);
134 
135 void acpi_os_printf(const char *fmt, ...)
136 {
137 	va_list args;
138 	va_start(args, fmt);
139 	acpi_os_vprintf(fmt, args);
140 	va_end(args);
141 }
142 EXPORT_SYMBOL(acpi_os_printf);
143 
144 void acpi_os_vprintf(const char *fmt, va_list args)
145 {
146 	static char buffer[512];
147 
148 	vsprintf(buffer, fmt, args);
149 
150 #ifdef ENABLE_DEBUGGER
151 	if (acpi_in_debugger) {
152 		kdb_printf("%s", buffer);
153 	} else {
154 		if (printk_get_level(buffer))
155 			printk("%s", buffer);
156 		else
157 			printk(KERN_CONT "%s", buffer);
158 	}
159 #else
160 	if (acpi_debugger_write_log(buffer) < 0) {
161 		if (printk_get_level(buffer))
162 			printk("%s", buffer);
163 		else
164 			printk(KERN_CONT "%s", buffer);
165 	}
166 #endif
167 }
168 
169 #ifdef CONFIG_KEXEC
170 static unsigned long acpi_rsdp;
171 static int __init setup_acpi_rsdp(char *arg)
172 {
173 	return kstrtoul(arg, 16, &acpi_rsdp);
174 }
175 early_param("acpi_rsdp", setup_acpi_rsdp);
176 #endif
177 
178 acpi_physical_address __init acpi_os_get_root_pointer(void)
179 {
180 	acpi_physical_address pa;
181 
182 #ifdef CONFIG_KEXEC
183 	if (acpi_rsdp)
184 		return acpi_rsdp;
185 #endif
186 	pa = acpi_arch_get_root_pointer();
187 	if (pa)
188 		return pa;
189 
190 	if (efi_enabled(EFI_CONFIG_TABLES)) {
191 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
192 			return efi.acpi20;
193 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
194 			return efi.acpi;
195 		pr_err(PREFIX "System description tables not found\n");
196 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
197 		acpi_find_root_pointer(&pa);
198 	}
199 
200 	return pa;
201 }
202 
203 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
204 static struct acpi_ioremap *
205 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
206 {
207 	struct acpi_ioremap *map;
208 
209 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
210 		if (map->phys <= phys &&
211 		    phys + size <= map->phys + map->size)
212 			return map;
213 
214 	return NULL;
215 }
216 
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static void __iomem *
219 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
220 {
221 	struct acpi_ioremap *map;
222 
223 	map = acpi_map_lookup(phys, size);
224 	if (map)
225 		return map->virt + (phys - map->phys);
226 
227 	return NULL;
228 }
229 
230 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
231 {
232 	struct acpi_ioremap *map;
233 	void __iomem *virt = NULL;
234 
235 	mutex_lock(&acpi_ioremap_lock);
236 	map = acpi_map_lookup(phys, size);
237 	if (map) {
238 		virt = map->virt + (phys - map->phys);
239 		map->refcount++;
240 	}
241 	mutex_unlock(&acpi_ioremap_lock);
242 	return virt;
243 }
244 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
245 
246 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
247 static struct acpi_ioremap *
248 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
249 {
250 	struct acpi_ioremap *map;
251 
252 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
253 		if (map->virt <= virt &&
254 		    virt + size <= map->virt + map->size)
255 			return map;
256 
257 	return NULL;
258 }
259 
260 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
261 /* ioremap will take care of cache attributes */
262 #define should_use_kmap(pfn)   0
263 #else
264 #define should_use_kmap(pfn)   page_is_ram(pfn)
265 #endif
266 
267 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
268 {
269 	unsigned long pfn;
270 
271 	pfn = pg_off >> PAGE_SHIFT;
272 	if (should_use_kmap(pfn)) {
273 		if (pg_sz > PAGE_SIZE)
274 			return NULL;
275 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
276 	} else
277 		return acpi_os_ioremap(pg_off, pg_sz);
278 }
279 
280 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
281 {
282 	unsigned long pfn;
283 
284 	pfn = pg_off >> PAGE_SHIFT;
285 	if (should_use_kmap(pfn))
286 		kunmap(pfn_to_page(pfn));
287 	else
288 		iounmap(vaddr);
289 }
290 
291 /**
292  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
293  * @phys: Start of the physical address range to map.
294  * @size: Size of the physical address range to map.
295  *
296  * Look up the given physical address range in the list of existing ACPI memory
297  * mappings.  If found, get a reference to it and return a pointer to it (its
298  * virtual address).  If not found, map it, add it to that list and return a
299  * pointer to it.
300  *
301  * During early init (when acpi_permanent_mmap has not been set yet) this
302  * routine simply calls __acpi_map_table() to get the job done.
303  */
304 void __iomem __ref
305 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
306 {
307 	struct acpi_ioremap *map;
308 	void __iomem *virt;
309 	acpi_physical_address pg_off;
310 	acpi_size pg_sz;
311 
312 	if (phys > ULONG_MAX) {
313 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
314 		return NULL;
315 	}
316 
317 	if (!acpi_permanent_mmap)
318 		return __acpi_map_table((unsigned long)phys, size);
319 
320 	mutex_lock(&acpi_ioremap_lock);
321 	/* Check if there's a suitable mapping already. */
322 	map = acpi_map_lookup(phys, size);
323 	if (map) {
324 		map->refcount++;
325 		goto out;
326 	}
327 
328 	map = kzalloc(sizeof(*map), GFP_KERNEL);
329 	if (!map) {
330 		mutex_unlock(&acpi_ioremap_lock);
331 		return NULL;
332 	}
333 
334 	pg_off = round_down(phys, PAGE_SIZE);
335 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
336 	virt = acpi_map(pg_off, pg_sz);
337 	if (!virt) {
338 		mutex_unlock(&acpi_ioremap_lock);
339 		kfree(map);
340 		return NULL;
341 	}
342 
343 	INIT_LIST_HEAD(&map->list);
344 	map->virt = virt;
345 	map->phys = pg_off;
346 	map->size = pg_sz;
347 	map->refcount = 1;
348 
349 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
350 
351 out:
352 	mutex_unlock(&acpi_ioremap_lock);
353 	return map->virt + (phys - map->phys);
354 }
355 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
356 
357 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
358 {
359 	return (void *)acpi_os_map_iomem(phys, size);
360 }
361 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
362 
363 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
364 {
365 	if (!--map->refcount)
366 		list_del_rcu(&map->list);
367 }
368 
369 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
370 {
371 	if (!map->refcount) {
372 		synchronize_rcu_expedited();
373 		acpi_unmap(map->phys, map->virt);
374 		kfree(map);
375 	}
376 }
377 
378 /**
379  * acpi_os_unmap_iomem - Drop a memory mapping reference.
380  * @virt: Start of the address range to drop a reference to.
381  * @size: Size of the address range to drop a reference to.
382  *
383  * Look up the given virtual address range in the list of existing ACPI memory
384  * mappings, drop a reference to it and unmap it if there are no more active
385  * references to it.
386  *
387  * During early init (when acpi_permanent_mmap has not been set yet) this
388  * routine simply calls __acpi_unmap_table() to get the job done.  Since
389  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
390  * here.
391  */
392 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
393 {
394 	struct acpi_ioremap *map;
395 
396 	if (!acpi_permanent_mmap) {
397 		__acpi_unmap_table(virt, size);
398 		return;
399 	}
400 
401 	mutex_lock(&acpi_ioremap_lock);
402 	map = acpi_map_lookup_virt(virt, size);
403 	if (!map) {
404 		mutex_unlock(&acpi_ioremap_lock);
405 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
406 		return;
407 	}
408 	acpi_os_drop_map_ref(map);
409 	mutex_unlock(&acpi_ioremap_lock);
410 
411 	acpi_os_map_cleanup(map);
412 }
413 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
414 
415 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
416 {
417 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
418 }
419 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
420 
421 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
422 {
423 	u64 addr;
424 	void __iomem *virt;
425 
426 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
427 		return 0;
428 
429 	/* Handle possible alignment issues */
430 	memcpy(&addr, &gas->address, sizeof(addr));
431 	if (!addr || !gas->bit_width)
432 		return -EINVAL;
433 
434 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
435 	if (!virt)
436 		return -EIO;
437 
438 	return 0;
439 }
440 EXPORT_SYMBOL(acpi_os_map_generic_address);
441 
442 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
443 {
444 	u64 addr;
445 	struct acpi_ioremap *map;
446 
447 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
448 		return;
449 
450 	/* Handle possible alignment issues */
451 	memcpy(&addr, &gas->address, sizeof(addr));
452 	if (!addr || !gas->bit_width)
453 		return;
454 
455 	mutex_lock(&acpi_ioremap_lock);
456 	map = acpi_map_lookup(addr, gas->bit_width / 8);
457 	if (!map) {
458 		mutex_unlock(&acpi_ioremap_lock);
459 		return;
460 	}
461 	acpi_os_drop_map_ref(map);
462 	mutex_unlock(&acpi_ioremap_lock);
463 
464 	acpi_os_map_cleanup(map);
465 }
466 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
467 
468 #ifdef ACPI_FUTURE_USAGE
469 acpi_status
470 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
471 {
472 	if (!phys || !virt)
473 		return AE_BAD_PARAMETER;
474 
475 	*phys = virt_to_phys(virt);
476 
477 	return AE_OK;
478 }
479 #endif
480 
481 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
482 static bool acpi_rev_override;
483 
484 int __init acpi_rev_override_setup(char *str)
485 {
486 	acpi_rev_override = true;
487 	return 1;
488 }
489 __setup("acpi_rev_override", acpi_rev_override_setup);
490 #else
491 #define acpi_rev_override	false
492 #endif
493 
494 #define ACPI_MAX_OVERRIDE_LEN 100
495 
496 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
497 
498 acpi_status
499 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
500 			    acpi_string *new_val)
501 {
502 	if (!init_val || !new_val)
503 		return AE_BAD_PARAMETER;
504 
505 	*new_val = NULL;
506 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
507 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
508 		       acpi_os_name);
509 		*new_val = acpi_os_name;
510 	}
511 
512 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
513 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
514 		*new_val = (char *)5;
515 	}
516 
517 	return AE_OK;
518 }
519 
520 static irqreturn_t acpi_irq(int irq, void *dev_id)
521 {
522 	u32 handled;
523 
524 	handled = (*acpi_irq_handler) (acpi_irq_context);
525 
526 	if (handled) {
527 		acpi_irq_handled++;
528 		return IRQ_HANDLED;
529 	} else {
530 		acpi_irq_not_handled++;
531 		return IRQ_NONE;
532 	}
533 }
534 
535 acpi_status
536 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
537 				  void *context)
538 {
539 	unsigned int irq;
540 
541 	acpi_irq_stats_init();
542 
543 	/*
544 	 * ACPI interrupts different from the SCI in our copy of the FADT are
545 	 * not supported.
546 	 */
547 	if (gsi != acpi_gbl_FADT.sci_interrupt)
548 		return AE_BAD_PARAMETER;
549 
550 	if (acpi_irq_handler)
551 		return AE_ALREADY_ACQUIRED;
552 
553 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
554 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
555 		       gsi);
556 		return AE_OK;
557 	}
558 
559 	acpi_irq_handler = handler;
560 	acpi_irq_context = context;
561 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
562 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
563 		acpi_irq_handler = NULL;
564 		return AE_NOT_ACQUIRED;
565 	}
566 	acpi_sci_irq = irq;
567 
568 	return AE_OK;
569 }
570 
571 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
572 {
573 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
574 		return AE_BAD_PARAMETER;
575 
576 	free_irq(acpi_sci_irq, acpi_irq);
577 	acpi_irq_handler = NULL;
578 	acpi_sci_irq = INVALID_ACPI_IRQ;
579 
580 	return AE_OK;
581 }
582 
583 /*
584  * Running in interpreter thread context, safe to sleep
585  */
586 
587 void acpi_os_sleep(u64 ms)
588 {
589 	msleep(ms);
590 }
591 
592 void acpi_os_stall(u32 us)
593 {
594 	while (us) {
595 		u32 delay = 1000;
596 
597 		if (delay > us)
598 			delay = us;
599 		udelay(delay);
600 		touch_nmi_watchdog();
601 		us -= delay;
602 	}
603 }
604 
605 /*
606  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
607  * monotonically increasing timer with 100ns granularity. Do not use
608  * ktime_get() to implement this function because this function may get
609  * called after timekeeping has been suspended. Note: calling this function
610  * after timekeeping has been suspended may lead to unexpected results
611  * because when timekeeping is suspended the jiffies counter is not
612  * incremented. See also timekeeping_suspend().
613  */
614 u64 acpi_os_get_timer(void)
615 {
616 	return (get_jiffies_64() - INITIAL_JIFFIES) *
617 		(ACPI_100NSEC_PER_SEC / HZ);
618 }
619 
620 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
621 {
622 	u32 dummy;
623 
624 	if (!value)
625 		value = &dummy;
626 
627 	*value = 0;
628 	if (width <= 8) {
629 		*(u8 *) value = inb(port);
630 	} else if (width <= 16) {
631 		*(u16 *) value = inw(port);
632 	} else if (width <= 32) {
633 		*(u32 *) value = inl(port);
634 	} else {
635 		BUG();
636 	}
637 
638 	return AE_OK;
639 }
640 
641 EXPORT_SYMBOL(acpi_os_read_port);
642 
643 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
644 {
645 	if (width <= 8) {
646 		outb(value, port);
647 	} else if (width <= 16) {
648 		outw(value, port);
649 	} else if (width <= 32) {
650 		outl(value, port);
651 	} else {
652 		BUG();
653 	}
654 
655 	return AE_OK;
656 }
657 
658 EXPORT_SYMBOL(acpi_os_write_port);
659 
660 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
661 {
662 
663 	switch (width) {
664 	case 8:
665 		*(u8 *) value = readb(virt_addr);
666 		break;
667 	case 16:
668 		*(u16 *) value = readw(virt_addr);
669 		break;
670 	case 32:
671 		*(u32 *) value = readl(virt_addr);
672 		break;
673 	case 64:
674 		*(u64 *) value = readq(virt_addr);
675 		break;
676 	default:
677 		return -EINVAL;
678 	}
679 
680 	return 0;
681 }
682 
683 acpi_status
684 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
685 {
686 	void __iomem *virt_addr;
687 	unsigned int size = width / 8;
688 	bool unmap = false;
689 	u64 dummy;
690 	int error;
691 
692 	rcu_read_lock();
693 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
694 	if (!virt_addr) {
695 		rcu_read_unlock();
696 		virt_addr = acpi_os_ioremap(phys_addr, size);
697 		if (!virt_addr)
698 			return AE_BAD_ADDRESS;
699 		unmap = true;
700 	}
701 
702 	if (!value)
703 		value = &dummy;
704 
705 	error = acpi_os_read_iomem(virt_addr, value, width);
706 	BUG_ON(error);
707 
708 	if (unmap)
709 		iounmap(virt_addr);
710 	else
711 		rcu_read_unlock();
712 
713 	return AE_OK;
714 }
715 
716 acpi_status
717 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
718 {
719 	void __iomem *virt_addr;
720 	unsigned int size = width / 8;
721 	bool unmap = false;
722 
723 	rcu_read_lock();
724 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
725 	if (!virt_addr) {
726 		rcu_read_unlock();
727 		virt_addr = acpi_os_ioremap(phys_addr, size);
728 		if (!virt_addr)
729 			return AE_BAD_ADDRESS;
730 		unmap = true;
731 	}
732 
733 	switch (width) {
734 	case 8:
735 		writeb(value, virt_addr);
736 		break;
737 	case 16:
738 		writew(value, virt_addr);
739 		break;
740 	case 32:
741 		writel(value, virt_addr);
742 		break;
743 	case 64:
744 		writeq(value, virt_addr);
745 		break;
746 	default:
747 		BUG();
748 	}
749 
750 	if (unmap)
751 		iounmap(virt_addr);
752 	else
753 		rcu_read_unlock();
754 
755 	return AE_OK;
756 }
757 
758 #ifdef CONFIG_PCI
759 acpi_status
760 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
761 			       u64 *value, u32 width)
762 {
763 	int result, size;
764 	u32 value32;
765 
766 	if (!value)
767 		return AE_BAD_PARAMETER;
768 
769 	switch (width) {
770 	case 8:
771 		size = 1;
772 		break;
773 	case 16:
774 		size = 2;
775 		break;
776 	case 32:
777 		size = 4;
778 		break;
779 	default:
780 		return AE_ERROR;
781 	}
782 
783 	result = raw_pci_read(pci_id->segment, pci_id->bus,
784 				PCI_DEVFN(pci_id->device, pci_id->function),
785 				reg, size, &value32);
786 	*value = value32;
787 
788 	return (result ? AE_ERROR : AE_OK);
789 }
790 
791 acpi_status
792 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
793 				u64 value, u32 width)
794 {
795 	int result, size;
796 
797 	switch (width) {
798 	case 8:
799 		size = 1;
800 		break;
801 	case 16:
802 		size = 2;
803 		break;
804 	case 32:
805 		size = 4;
806 		break;
807 	default:
808 		return AE_ERROR;
809 	}
810 
811 	result = raw_pci_write(pci_id->segment, pci_id->bus,
812 				PCI_DEVFN(pci_id->device, pci_id->function),
813 				reg, size, value);
814 
815 	return (result ? AE_ERROR : AE_OK);
816 }
817 #endif
818 
819 static void acpi_os_execute_deferred(struct work_struct *work)
820 {
821 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
822 
823 	dpc->function(dpc->context);
824 	kfree(dpc);
825 }
826 
827 #ifdef CONFIG_ACPI_DEBUGGER
828 static struct acpi_debugger acpi_debugger;
829 static bool acpi_debugger_initialized;
830 
831 int acpi_register_debugger(struct module *owner,
832 			   const struct acpi_debugger_ops *ops)
833 {
834 	int ret = 0;
835 
836 	mutex_lock(&acpi_debugger.lock);
837 	if (acpi_debugger.ops) {
838 		ret = -EBUSY;
839 		goto err_lock;
840 	}
841 
842 	acpi_debugger.owner = owner;
843 	acpi_debugger.ops = ops;
844 
845 err_lock:
846 	mutex_unlock(&acpi_debugger.lock);
847 	return ret;
848 }
849 EXPORT_SYMBOL(acpi_register_debugger);
850 
851 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
852 {
853 	mutex_lock(&acpi_debugger.lock);
854 	if (ops == acpi_debugger.ops) {
855 		acpi_debugger.ops = NULL;
856 		acpi_debugger.owner = NULL;
857 	}
858 	mutex_unlock(&acpi_debugger.lock);
859 }
860 EXPORT_SYMBOL(acpi_unregister_debugger);
861 
862 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
863 {
864 	int ret;
865 	int (*func)(acpi_osd_exec_callback, void *);
866 	struct module *owner;
867 
868 	if (!acpi_debugger_initialized)
869 		return -ENODEV;
870 	mutex_lock(&acpi_debugger.lock);
871 	if (!acpi_debugger.ops) {
872 		ret = -ENODEV;
873 		goto err_lock;
874 	}
875 	if (!try_module_get(acpi_debugger.owner)) {
876 		ret = -ENODEV;
877 		goto err_lock;
878 	}
879 	func = acpi_debugger.ops->create_thread;
880 	owner = acpi_debugger.owner;
881 	mutex_unlock(&acpi_debugger.lock);
882 
883 	ret = func(function, context);
884 
885 	mutex_lock(&acpi_debugger.lock);
886 	module_put(owner);
887 err_lock:
888 	mutex_unlock(&acpi_debugger.lock);
889 	return ret;
890 }
891 
892 ssize_t acpi_debugger_write_log(const char *msg)
893 {
894 	ssize_t ret;
895 	ssize_t (*func)(const char *);
896 	struct module *owner;
897 
898 	if (!acpi_debugger_initialized)
899 		return -ENODEV;
900 	mutex_lock(&acpi_debugger.lock);
901 	if (!acpi_debugger.ops) {
902 		ret = -ENODEV;
903 		goto err_lock;
904 	}
905 	if (!try_module_get(acpi_debugger.owner)) {
906 		ret = -ENODEV;
907 		goto err_lock;
908 	}
909 	func = acpi_debugger.ops->write_log;
910 	owner = acpi_debugger.owner;
911 	mutex_unlock(&acpi_debugger.lock);
912 
913 	ret = func(msg);
914 
915 	mutex_lock(&acpi_debugger.lock);
916 	module_put(owner);
917 err_lock:
918 	mutex_unlock(&acpi_debugger.lock);
919 	return ret;
920 }
921 
922 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
923 {
924 	ssize_t ret;
925 	ssize_t (*func)(char *, size_t);
926 	struct module *owner;
927 
928 	if (!acpi_debugger_initialized)
929 		return -ENODEV;
930 	mutex_lock(&acpi_debugger.lock);
931 	if (!acpi_debugger.ops) {
932 		ret = -ENODEV;
933 		goto err_lock;
934 	}
935 	if (!try_module_get(acpi_debugger.owner)) {
936 		ret = -ENODEV;
937 		goto err_lock;
938 	}
939 	func = acpi_debugger.ops->read_cmd;
940 	owner = acpi_debugger.owner;
941 	mutex_unlock(&acpi_debugger.lock);
942 
943 	ret = func(buffer, buffer_length);
944 
945 	mutex_lock(&acpi_debugger.lock);
946 	module_put(owner);
947 err_lock:
948 	mutex_unlock(&acpi_debugger.lock);
949 	return ret;
950 }
951 
952 int acpi_debugger_wait_command_ready(void)
953 {
954 	int ret;
955 	int (*func)(bool, char *, size_t);
956 	struct module *owner;
957 
958 	if (!acpi_debugger_initialized)
959 		return -ENODEV;
960 	mutex_lock(&acpi_debugger.lock);
961 	if (!acpi_debugger.ops) {
962 		ret = -ENODEV;
963 		goto err_lock;
964 	}
965 	if (!try_module_get(acpi_debugger.owner)) {
966 		ret = -ENODEV;
967 		goto err_lock;
968 	}
969 	func = acpi_debugger.ops->wait_command_ready;
970 	owner = acpi_debugger.owner;
971 	mutex_unlock(&acpi_debugger.lock);
972 
973 	ret = func(acpi_gbl_method_executing,
974 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
975 
976 	mutex_lock(&acpi_debugger.lock);
977 	module_put(owner);
978 err_lock:
979 	mutex_unlock(&acpi_debugger.lock);
980 	return ret;
981 }
982 
983 int acpi_debugger_notify_command_complete(void)
984 {
985 	int ret;
986 	int (*func)(void);
987 	struct module *owner;
988 
989 	if (!acpi_debugger_initialized)
990 		return -ENODEV;
991 	mutex_lock(&acpi_debugger.lock);
992 	if (!acpi_debugger.ops) {
993 		ret = -ENODEV;
994 		goto err_lock;
995 	}
996 	if (!try_module_get(acpi_debugger.owner)) {
997 		ret = -ENODEV;
998 		goto err_lock;
999 	}
1000 	func = acpi_debugger.ops->notify_command_complete;
1001 	owner = acpi_debugger.owner;
1002 	mutex_unlock(&acpi_debugger.lock);
1003 
1004 	ret = func();
1005 
1006 	mutex_lock(&acpi_debugger.lock);
1007 	module_put(owner);
1008 err_lock:
1009 	mutex_unlock(&acpi_debugger.lock);
1010 	return ret;
1011 }
1012 
1013 int __init acpi_debugger_init(void)
1014 {
1015 	mutex_init(&acpi_debugger.lock);
1016 	acpi_debugger_initialized = true;
1017 	return 0;
1018 }
1019 #endif
1020 
1021 /*******************************************************************************
1022  *
1023  * FUNCTION:    acpi_os_execute
1024  *
1025  * PARAMETERS:  Type               - Type of the callback
1026  *              Function           - Function to be executed
1027  *              Context            - Function parameters
1028  *
1029  * RETURN:      Status
1030  *
1031  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1032  *              immediately executes function on a separate thread.
1033  *
1034  ******************************************************************************/
1035 
1036 acpi_status acpi_os_execute(acpi_execute_type type,
1037 			    acpi_osd_exec_callback function, void *context)
1038 {
1039 	acpi_status status = AE_OK;
1040 	struct acpi_os_dpc *dpc;
1041 	struct workqueue_struct *queue;
1042 	int ret;
1043 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1044 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1045 			  function, context));
1046 
1047 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1048 		ret = acpi_debugger_create_thread(function, context);
1049 		if (ret) {
1050 			pr_err("Call to kthread_create() failed.\n");
1051 			status = AE_ERROR;
1052 		}
1053 		goto out_thread;
1054 	}
1055 
1056 	/*
1057 	 * Allocate/initialize DPC structure.  Note that this memory will be
1058 	 * freed by the callee.  The kernel handles the work_struct list  in a
1059 	 * way that allows us to also free its memory inside the callee.
1060 	 * Because we may want to schedule several tasks with different
1061 	 * parameters we can't use the approach some kernel code uses of
1062 	 * having a static work_struct.
1063 	 */
1064 
1065 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1066 	if (!dpc)
1067 		return AE_NO_MEMORY;
1068 
1069 	dpc->function = function;
1070 	dpc->context = context;
1071 
1072 	/*
1073 	 * To prevent lockdep from complaining unnecessarily, make sure that
1074 	 * there is a different static lockdep key for each workqueue by using
1075 	 * INIT_WORK() for each of them separately.
1076 	 */
1077 	if (type == OSL_NOTIFY_HANDLER) {
1078 		queue = kacpi_notify_wq;
1079 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1080 	} else if (type == OSL_GPE_HANDLER) {
1081 		queue = kacpid_wq;
1082 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1083 	} else {
1084 		pr_err("Unsupported os_execute type %d.\n", type);
1085 		status = AE_ERROR;
1086 	}
1087 
1088 	if (ACPI_FAILURE(status))
1089 		goto err_workqueue;
1090 
1091 	/*
1092 	 * On some machines, a software-initiated SMI causes corruption unless
1093 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1094 	 * typically it's done in GPE-related methods that are run via
1095 	 * workqueues, so we can avoid the known corruption cases by always
1096 	 * queueing on CPU 0.
1097 	 */
1098 	ret = queue_work_on(0, queue, &dpc->work);
1099 	if (!ret) {
1100 		printk(KERN_ERR PREFIX
1101 			  "Call to queue_work() failed.\n");
1102 		status = AE_ERROR;
1103 	}
1104 err_workqueue:
1105 	if (ACPI_FAILURE(status))
1106 		kfree(dpc);
1107 out_thread:
1108 	return status;
1109 }
1110 EXPORT_SYMBOL(acpi_os_execute);
1111 
1112 void acpi_os_wait_events_complete(void)
1113 {
1114 	/*
1115 	 * Make sure the GPE handler or the fixed event handler is not used
1116 	 * on another CPU after removal.
1117 	 */
1118 	if (acpi_sci_irq_valid())
1119 		synchronize_hardirq(acpi_sci_irq);
1120 	flush_workqueue(kacpid_wq);
1121 	flush_workqueue(kacpi_notify_wq);
1122 }
1123 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1124 
1125 struct acpi_hp_work {
1126 	struct work_struct work;
1127 	struct acpi_device *adev;
1128 	u32 src;
1129 };
1130 
1131 static void acpi_hotplug_work_fn(struct work_struct *work)
1132 {
1133 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1134 
1135 	acpi_os_wait_events_complete();
1136 	acpi_device_hotplug(hpw->adev, hpw->src);
1137 	kfree(hpw);
1138 }
1139 
1140 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1141 {
1142 	struct acpi_hp_work *hpw;
1143 
1144 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1145 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1146 		  adev, src));
1147 
1148 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1149 	if (!hpw)
1150 		return AE_NO_MEMORY;
1151 
1152 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1153 	hpw->adev = adev;
1154 	hpw->src = src;
1155 	/*
1156 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1157 	 * the hotplug code may call driver .remove() functions, which may
1158 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1159 	 * these workqueues.
1160 	 */
1161 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1162 		kfree(hpw);
1163 		return AE_ERROR;
1164 	}
1165 	return AE_OK;
1166 }
1167 
1168 bool acpi_queue_hotplug_work(struct work_struct *work)
1169 {
1170 	return queue_work(kacpi_hotplug_wq, work);
1171 }
1172 
1173 acpi_status
1174 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1175 {
1176 	struct semaphore *sem = NULL;
1177 
1178 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1179 	if (!sem)
1180 		return AE_NO_MEMORY;
1181 
1182 	sema_init(sem, initial_units);
1183 
1184 	*handle = (acpi_handle *) sem;
1185 
1186 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1187 			  *handle, initial_units));
1188 
1189 	return AE_OK;
1190 }
1191 
1192 /*
1193  * TODO: A better way to delete semaphores?  Linux doesn't have a
1194  * 'delete_semaphore()' function -- may result in an invalid
1195  * pointer dereference for non-synchronized consumers.	Should
1196  * we at least check for blocked threads and signal/cancel them?
1197  */
1198 
1199 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1200 {
1201 	struct semaphore *sem = (struct semaphore *)handle;
1202 
1203 	if (!sem)
1204 		return AE_BAD_PARAMETER;
1205 
1206 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1207 
1208 	BUG_ON(!list_empty(&sem->wait_list));
1209 	kfree(sem);
1210 	sem = NULL;
1211 
1212 	return AE_OK;
1213 }
1214 
1215 /*
1216  * TODO: Support for units > 1?
1217  */
1218 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1219 {
1220 	acpi_status status = AE_OK;
1221 	struct semaphore *sem = (struct semaphore *)handle;
1222 	long jiffies;
1223 	int ret = 0;
1224 
1225 	if (!acpi_os_initialized)
1226 		return AE_OK;
1227 
1228 	if (!sem || (units < 1))
1229 		return AE_BAD_PARAMETER;
1230 
1231 	if (units > 1)
1232 		return AE_SUPPORT;
1233 
1234 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1235 			  handle, units, timeout));
1236 
1237 	if (timeout == ACPI_WAIT_FOREVER)
1238 		jiffies = MAX_SCHEDULE_TIMEOUT;
1239 	else
1240 		jiffies = msecs_to_jiffies(timeout);
1241 
1242 	ret = down_timeout(sem, jiffies);
1243 	if (ret)
1244 		status = AE_TIME;
1245 
1246 	if (ACPI_FAILURE(status)) {
1247 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1248 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1249 				  handle, units, timeout,
1250 				  acpi_format_exception(status)));
1251 	} else {
1252 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253 				  "Acquired semaphore[%p|%d|%d]", handle,
1254 				  units, timeout));
1255 	}
1256 
1257 	return status;
1258 }
1259 
1260 /*
1261  * TODO: Support for units > 1?
1262  */
1263 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1264 {
1265 	struct semaphore *sem = (struct semaphore *)handle;
1266 
1267 	if (!acpi_os_initialized)
1268 		return AE_OK;
1269 
1270 	if (!sem || (units < 1))
1271 		return AE_BAD_PARAMETER;
1272 
1273 	if (units > 1)
1274 		return AE_SUPPORT;
1275 
1276 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1277 			  units));
1278 
1279 	up(sem);
1280 
1281 	return AE_OK;
1282 }
1283 
1284 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1285 {
1286 #ifdef ENABLE_DEBUGGER
1287 	if (acpi_in_debugger) {
1288 		u32 chars;
1289 
1290 		kdb_read(buffer, buffer_length);
1291 
1292 		/* remove the CR kdb includes */
1293 		chars = strlen(buffer) - 1;
1294 		buffer[chars] = '\0';
1295 	}
1296 #else
1297 	int ret;
1298 
1299 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1300 	if (ret < 0)
1301 		return AE_ERROR;
1302 	if (bytes_read)
1303 		*bytes_read = ret;
1304 #endif
1305 
1306 	return AE_OK;
1307 }
1308 EXPORT_SYMBOL(acpi_os_get_line);
1309 
1310 acpi_status acpi_os_wait_command_ready(void)
1311 {
1312 	int ret;
1313 
1314 	ret = acpi_debugger_wait_command_ready();
1315 	if (ret < 0)
1316 		return AE_ERROR;
1317 	return AE_OK;
1318 }
1319 
1320 acpi_status acpi_os_notify_command_complete(void)
1321 {
1322 	int ret;
1323 
1324 	ret = acpi_debugger_notify_command_complete();
1325 	if (ret < 0)
1326 		return AE_ERROR;
1327 	return AE_OK;
1328 }
1329 
1330 acpi_status acpi_os_signal(u32 function, void *info)
1331 {
1332 	switch (function) {
1333 	case ACPI_SIGNAL_FATAL:
1334 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1335 		break;
1336 	case ACPI_SIGNAL_BREAKPOINT:
1337 		/*
1338 		 * AML Breakpoint
1339 		 * ACPI spec. says to treat it as a NOP unless
1340 		 * you are debugging.  So if/when we integrate
1341 		 * AML debugger into the kernel debugger its
1342 		 * hook will go here.  But until then it is
1343 		 * not useful to print anything on breakpoints.
1344 		 */
1345 		break;
1346 	default:
1347 		break;
1348 	}
1349 
1350 	return AE_OK;
1351 }
1352 
1353 static int __init acpi_os_name_setup(char *str)
1354 {
1355 	char *p = acpi_os_name;
1356 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1357 
1358 	if (!str || !*str)
1359 		return 0;
1360 
1361 	for (; count-- && *str; str++) {
1362 		if (isalnum(*str) || *str == ' ' || *str == ':')
1363 			*p++ = *str;
1364 		else if (*str == '\'' || *str == '"')
1365 			continue;
1366 		else
1367 			break;
1368 	}
1369 	*p = 0;
1370 
1371 	return 1;
1372 
1373 }
1374 
1375 __setup("acpi_os_name=", acpi_os_name_setup);
1376 
1377 /*
1378  * Disable the auto-serialization of named objects creation methods.
1379  *
1380  * This feature is enabled by default.  It marks the AML control methods
1381  * that contain the opcodes to create named objects as "Serialized".
1382  */
1383 static int __init acpi_no_auto_serialize_setup(char *str)
1384 {
1385 	acpi_gbl_auto_serialize_methods = FALSE;
1386 	pr_info("ACPI: auto-serialization disabled\n");
1387 
1388 	return 1;
1389 }
1390 
1391 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1392 
1393 /* Check of resource interference between native drivers and ACPI
1394  * OperationRegions (SystemIO and System Memory only).
1395  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1396  * in arbitrary AML code and can interfere with legacy drivers.
1397  * acpi_enforce_resources= can be set to:
1398  *
1399  *   - strict (default) (2)
1400  *     -> further driver trying to access the resources will not load
1401  *   - lax              (1)
1402  *     -> further driver trying to access the resources will load, but you
1403  *     get a system message that something might go wrong...
1404  *
1405  *   - no               (0)
1406  *     -> ACPI Operation Region resources will not be registered
1407  *
1408  */
1409 #define ENFORCE_RESOURCES_STRICT 2
1410 #define ENFORCE_RESOURCES_LAX    1
1411 #define ENFORCE_RESOURCES_NO     0
1412 
1413 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1414 
1415 static int __init acpi_enforce_resources_setup(char *str)
1416 {
1417 	if (str == NULL || *str == '\0')
1418 		return 0;
1419 
1420 	if (!strcmp("strict", str))
1421 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1422 	else if (!strcmp("lax", str))
1423 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1424 	else if (!strcmp("no", str))
1425 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1426 
1427 	return 1;
1428 }
1429 
1430 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1431 
1432 /* Check for resource conflicts between ACPI OperationRegions and native
1433  * drivers */
1434 int acpi_check_resource_conflict(const struct resource *res)
1435 {
1436 	acpi_adr_space_type space_id;
1437 	acpi_size length;
1438 	u8 warn = 0;
1439 	int clash = 0;
1440 
1441 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1442 		return 0;
1443 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1444 		return 0;
1445 
1446 	if (res->flags & IORESOURCE_IO)
1447 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1448 	else
1449 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1450 
1451 	length = resource_size(res);
1452 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1453 		warn = 1;
1454 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1455 
1456 	if (clash) {
1457 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1458 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1459 				printk(KERN_NOTICE "ACPI: This conflict may"
1460 				       " cause random problems and system"
1461 				       " instability\n");
1462 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1463 			       " for this device, you should use it instead of"
1464 			       " the native driver\n");
1465 		}
1466 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1467 			return -EBUSY;
1468 	}
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(acpi_check_resource_conflict);
1472 
1473 int acpi_check_region(resource_size_t start, resource_size_t n,
1474 		      const char *name)
1475 {
1476 	struct resource res = {
1477 		.start = start,
1478 		.end   = start + n - 1,
1479 		.name  = name,
1480 		.flags = IORESOURCE_IO,
1481 	};
1482 
1483 	return acpi_check_resource_conflict(&res);
1484 }
1485 EXPORT_SYMBOL(acpi_check_region);
1486 
1487 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1488 					      void *_res, void **return_value)
1489 {
1490 	struct acpi_mem_space_context **mem_ctx;
1491 	union acpi_operand_object *handler_obj;
1492 	union acpi_operand_object *region_obj2;
1493 	union acpi_operand_object *region_obj;
1494 	struct resource *res = _res;
1495 	acpi_status status;
1496 
1497 	region_obj = acpi_ns_get_attached_object(handle);
1498 	if (!region_obj)
1499 		return AE_OK;
1500 
1501 	handler_obj = region_obj->region.handler;
1502 	if (!handler_obj)
1503 		return AE_OK;
1504 
1505 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1506 		return AE_OK;
1507 
1508 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1509 		return AE_OK;
1510 
1511 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1512 	if (!region_obj2)
1513 		return AE_OK;
1514 
1515 	mem_ctx = (void *)&region_obj2->extra.region_context;
1516 
1517 	if (!(mem_ctx[0]->address >= res->start &&
1518 	      mem_ctx[0]->address < res->end))
1519 		return AE_OK;
1520 
1521 	status = handler_obj->address_space.setup(region_obj,
1522 						  ACPI_REGION_DEACTIVATE,
1523 						  NULL, (void **)mem_ctx);
1524 	if (ACPI_SUCCESS(status))
1525 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1526 
1527 	return status;
1528 }
1529 
1530 /**
1531  * acpi_release_memory - Release any mappings done to a memory region
1532  * @handle: Handle to namespace node
1533  * @res: Memory resource
1534  * @level: A level that terminates the search
1535  *
1536  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1537  * overlap with @res and that have already been activated (mapped).
1538  *
1539  * This is a helper that allows drivers to place special requirements on memory
1540  * region that may overlap with operation regions, primarily allowing them to
1541  * safely map the region as non-cached memory.
1542  *
1543  * The unmapped Operation Regions will be automatically remapped next time they
1544  * are called, so the drivers do not need to do anything else.
1545  */
1546 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1547 				u32 level)
1548 {
1549 	if (!(res->flags & IORESOURCE_MEM))
1550 		return AE_TYPE;
1551 
1552 	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1553 				   acpi_deactivate_mem_region, NULL, res, NULL);
1554 }
1555 EXPORT_SYMBOL_GPL(acpi_release_memory);
1556 
1557 /*
1558  * Let drivers know whether the resource checks are effective
1559  */
1560 int acpi_resources_are_enforced(void)
1561 {
1562 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1563 }
1564 EXPORT_SYMBOL(acpi_resources_are_enforced);
1565 
1566 /*
1567  * Deallocate the memory for a spinlock.
1568  */
1569 void acpi_os_delete_lock(acpi_spinlock handle)
1570 {
1571 	ACPI_FREE(handle);
1572 }
1573 
1574 /*
1575  * Acquire a spinlock.
1576  *
1577  * handle is a pointer to the spinlock_t.
1578  */
1579 
1580 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1581 {
1582 	acpi_cpu_flags flags;
1583 	spin_lock_irqsave(lockp, flags);
1584 	return flags;
1585 }
1586 
1587 /*
1588  * Release a spinlock. See above.
1589  */
1590 
1591 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1592 {
1593 	spin_unlock_irqrestore(lockp, flags);
1594 }
1595 
1596 #ifndef ACPI_USE_LOCAL_CACHE
1597 
1598 /*******************************************************************************
1599  *
1600  * FUNCTION:    acpi_os_create_cache
1601  *
1602  * PARAMETERS:  name      - Ascii name for the cache
1603  *              size      - Size of each cached object
1604  *              depth     - Maximum depth of the cache (in objects) <ignored>
1605  *              cache     - Where the new cache object is returned
1606  *
1607  * RETURN:      status
1608  *
1609  * DESCRIPTION: Create a cache object
1610  *
1611  ******************************************************************************/
1612 
1613 acpi_status
1614 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1615 {
1616 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1617 	if (*cache == NULL)
1618 		return AE_ERROR;
1619 	else
1620 		return AE_OK;
1621 }
1622 
1623 /*******************************************************************************
1624  *
1625  * FUNCTION:    acpi_os_purge_cache
1626  *
1627  * PARAMETERS:  Cache           - Handle to cache object
1628  *
1629  * RETURN:      Status
1630  *
1631  * DESCRIPTION: Free all objects within the requested cache.
1632  *
1633  ******************************************************************************/
1634 
1635 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1636 {
1637 	kmem_cache_shrink(cache);
1638 	return (AE_OK);
1639 }
1640 
1641 /*******************************************************************************
1642  *
1643  * FUNCTION:    acpi_os_delete_cache
1644  *
1645  * PARAMETERS:  Cache           - Handle to cache object
1646  *
1647  * RETURN:      Status
1648  *
1649  * DESCRIPTION: Free all objects within the requested cache and delete the
1650  *              cache object.
1651  *
1652  ******************************************************************************/
1653 
1654 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1655 {
1656 	kmem_cache_destroy(cache);
1657 	return (AE_OK);
1658 }
1659 
1660 /*******************************************************************************
1661  *
1662  * FUNCTION:    acpi_os_release_object
1663  *
1664  * PARAMETERS:  Cache       - Handle to cache object
1665  *              Object      - The object to be released
1666  *
1667  * RETURN:      None
1668  *
1669  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1670  *              the object is deleted.
1671  *
1672  ******************************************************************************/
1673 
1674 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1675 {
1676 	kmem_cache_free(cache, object);
1677 	return (AE_OK);
1678 }
1679 #endif
1680 
1681 static int __init acpi_no_static_ssdt_setup(char *s)
1682 {
1683 	acpi_gbl_disable_ssdt_table_install = TRUE;
1684 	pr_info("ACPI: static SSDT installation disabled\n");
1685 
1686 	return 0;
1687 }
1688 
1689 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1690 
1691 static int __init acpi_disable_return_repair(char *s)
1692 {
1693 	printk(KERN_NOTICE PREFIX
1694 	       "ACPI: Predefined validation mechanism disabled\n");
1695 	acpi_gbl_disable_auto_repair = TRUE;
1696 
1697 	return 1;
1698 }
1699 
1700 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1701 
1702 acpi_status __init acpi_os_initialize(void)
1703 {
1704 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1705 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1706 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1707 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1708 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1709 		/*
1710 		 * Use acpi_os_map_generic_address to pre-map the reset
1711 		 * register if it's in system memory.
1712 		 */
1713 		int rv;
1714 
1715 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1716 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1717 	}
1718 	acpi_os_initialized = true;
1719 
1720 	return AE_OK;
1721 }
1722 
1723 acpi_status __init acpi_os_initialize1(void)
1724 {
1725 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1726 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1727 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1728 	BUG_ON(!kacpid_wq);
1729 	BUG_ON(!kacpi_notify_wq);
1730 	BUG_ON(!kacpi_hotplug_wq);
1731 	acpi_osi_init();
1732 	return AE_OK;
1733 }
1734 
1735 acpi_status acpi_os_terminate(void)
1736 {
1737 	if (acpi_irq_handler) {
1738 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1739 						 acpi_irq_handler);
1740 	}
1741 
1742 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1743 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1744 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1745 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1746 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1747 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1748 
1749 	destroy_workqueue(kacpid_wq);
1750 	destroy_workqueue(kacpi_notify_wq);
1751 	destroy_workqueue(kacpi_hotplug_wq);
1752 
1753 	return AE_OK;
1754 }
1755 
1756 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1757 				  u32 pm1b_control)
1758 {
1759 	int rc = 0;
1760 	if (__acpi_os_prepare_sleep)
1761 		rc = __acpi_os_prepare_sleep(sleep_state,
1762 					     pm1a_control, pm1b_control);
1763 	if (rc < 0)
1764 		return AE_ERROR;
1765 	else if (rc > 0)
1766 		return AE_CTRL_TERMINATE;
1767 
1768 	return AE_OK;
1769 }
1770 
1771 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1772 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1773 {
1774 	__acpi_os_prepare_sleep = func;
1775 }
1776 
1777 #if (ACPI_REDUCED_HARDWARE)
1778 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1779 				  u32 val_b)
1780 {
1781 	int rc = 0;
1782 	if (__acpi_os_prepare_extended_sleep)
1783 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1784 					     val_a, val_b);
1785 	if (rc < 0)
1786 		return AE_ERROR;
1787 	else if (rc > 0)
1788 		return AE_CTRL_TERMINATE;
1789 
1790 	return AE_OK;
1791 }
1792 #else
1793 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1794 				  u32 val_b)
1795 {
1796 	return AE_OK;
1797 }
1798 #endif
1799 
1800 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1801 			       u32 val_a, u32 val_b))
1802 {
1803 	__acpi_os_prepare_extended_sleep = func;
1804 }
1805 
1806 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1807 				u32 reg_a_value, u32 reg_b_value)
1808 {
1809 	acpi_status status;
1810 
1811 	if (acpi_gbl_reduced_hardware)
1812 		status = acpi_os_prepare_extended_sleep(sleep_state,
1813 							reg_a_value,
1814 							reg_b_value);
1815 	else
1816 		status = acpi_os_prepare_sleep(sleep_state,
1817 					       reg_a_value, reg_b_value);
1818 	return status;
1819 }
1820