1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $) 4 * 5 * Copyright (C) 2000 Andrew Henroid 6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Copyright (c) 2008 Intel Corporation 9 * Author: Matthew Wilcox <willy@linux.intel.com> 10 */ 11 12 #define pr_fmt(fmt) "ACPI: OSL: " fmt 13 14 #include <linux/module.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/mm.h> 18 #include <linux/highmem.h> 19 #include <linux/lockdep.h> 20 #include <linux/pci.h> 21 #include <linux/interrupt.h> 22 #include <linux/kmod.h> 23 #include <linux/delay.h> 24 #include <linux/workqueue.h> 25 #include <linux/nmi.h> 26 #include <linux/acpi.h> 27 #include <linux/efi.h> 28 #include <linux/ioport.h> 29 #include <linux/list.h> 30 #include <linux/jiffies.h> 31 #include <linux/semaphore.h> 32 #include <linux/security.h> 33 34 #include <asm/io.h> 35 #include <linux/uaccess.h> 36 #include <linux/io-64-nonatomic-lo-hi.h> 37 38 #include "acpica/accommon.h" 39 #include "internal.h" 40 41 /* Definitions for ACPI_DEBUG_PRINT() */ 42 #define _COMPONENT ACPI_OS_SERVICES 43 ACPI_MODULE_NAME("osl"); 44 45 struct acpi_os_dpc { 46 acpi_osd_exec_callback function; 47 void *context; 48 struct work_struct work; 49 }; 50 51 #ifdef ENABLE_DEBUGGER 52 #include <linux/kdb.h> 53 54 /* stuff for debugger support */ 55 int acpi_in_debugger; 56 EXPORT_SYMBOL(acpi_in_debugger); 57 #endif /*ENABLE_DEBUGGER */ 58 59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, 60 u32 pm1b_ctrl); 61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, 62 u32 val_b); 63 64 static acpi_osd_handler acpi_irq_handler; 65 static void *acpi_irq_context; 66 static struct workqueue_struct *kacpid_wq; 67 static struct workqueue_struct *kacpi_notify_wq; 68 static struct workqueue_struct *kacpi_hotplug_wq; 69 static bool acpi_os_initialized; 70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ; 71 bool acpi_permanent_mmap = false; 72 73 /* 74 * This list of permanent mappings is for memory that may be accessed from 75 * interrupt context, where we can't do the ioremap(). 76 */ 77 struct acpi_ioremap { 78 struct list_head list; 79 void __iomem *virt; 80 acpi_physical_address phys; 81 acpi_size size; 82 union { 83 unsigned long refcount; 84 struct rcu_work rwork; 85 } track; 86 }; 87 88 static LIST_HEAD(acpi_ioremaps); 89 static DEFINE_MUTEX(acpi_ioremap_lock); 90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map) 91 92 static void __init acpi_request_region (struct acpi_generic_address *gas, 93 unsigned int length, char *desc) 94 { 95 u64 addr; 96 97 /* Handle possible alignment issues */ 98 memcpy(&addr, &gas->address, sizeof(addr)); 99 if (!addr || !length) 100 return; 101 102 /* Resources are never freed */ 103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) 104 request_region(addr, length, desc); 105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 106 request_mem_region(addr, length, desc); 107 } 108 109 static int __init acpi_reserve_resources(void) 110 { 111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, 112 "ACPI PM1a_EVT_BLK"); 113 114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, 115 "ACPI PM1b_EVT_BLK"); 116 117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, 118 "ACPI PM1a_CNT_BLK"); 119 120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, 121 "ACPI PM1b_CNT_BLK"); 122 123 if (acpi_gbl_FADT.pm_timer_length == 4) 124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); 125 126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, 127 "ACPI PM2_CNT_BLK"); 128 129 /* Length of GPE blocks must be a non-negative multiple of 2 */ 130 131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) 132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block, 133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); 134 135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) 136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block, 137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); 138 139 return 0; 140 } 141 fs_initcall_sync(acpi_reserve_resources); 142 143 void acpi_os_printf(const char *fmt, ...) 144 { 145 va_list args; 146 va_start(args, fmt); 147 acpi_os_vprintf(fmt, args); 148 va_end(args); 149 } 150 EXPORT_SYMBOL(acpi_os_printf); 151 152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args) 153 { 154 static char buffer[512]; 155 156 vsprintf(buffer, fmt, args); 157 158 #ifdef ENABLE_DEBUGGER 159 if (acpi_in_debugger) { 160 kdb_printf("%s", buffer); 161 } else { 162 if (printk_get_level(buffer)) 163 printk("%s", buffer); 164 else 165 printk(KERN_CONT "%s", buffer); 166 } 167 #else 168 if (acpi_debugger_write_log(buffer) < 0) { 169 if (printk_get_level(buffer)) 170 printk("%s", buffer); 171 else 172 printk(KERN_CONT "%s", buffer); 173 } 174 #endif 175 } 176 177 #ifdef CONFIG_KEXEC 178 static unsigned long acpi_rsdp; 179 static int __init setup_acpi_rsdp(char *arg) 180 { 181 return kstrtoul(arg, 16, &acpi_rsdp); 182 } 183 early_param("acpi_rsdp", setup_acpi_rsdp); 184 #endif 185 186 acpi_physical_address __init acpi_os_get_root_pointer(void) 187 { 188 acpi_physical_address pa; 189 190 #ifdef CONFIG_KEXEC 191 /* 192 * We may have been provided with an RSDP on the command line, 193 * but if a malicious user has done so they may be pointing us 194 * at modified ACPI tables that could alter kernel behaviour - 195 * so, we check the lockdown status before making use of 196 * it. If we trust it then also stash it in an architecture 197 * specific location (if appropriate) so it can be carried 198 * over further kexec()s. 199 */ 200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) { 201 acpi_arch_set_root_pointer(acpi_rsdp); 202 return acpi_rsdp; 203 } 204 #endif 205 pa = acpi_arch_get_root_pointer(); 206 if (pa) 207 return pa; 208 209 if (efi_enabled(EFI_CONFIG_TABLES)) { 210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 211 return efi.acpi20; 212 if (efi.acpi != EFI_INVALID_TABLE_ADDR) 213 return efi.acpi; 214 pr_err("System description tables not found\n"); 215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) { 216 acpi_find_root_pointer(&pa); 217 } 218 219 return pa; 220 } 221 222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 223 static struct acpi_ioremap * 224 acpi_map_lookup(acpi_physical_address phys, acpi_size size) 225 { 226 struct acpi_ioremap *map; 227 228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) 229 if (map->phys <= phys && 230 phys + size <= map->phys + map->size) 231 return map; 232 233 return NULL; 234 } 235 236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 237 static void __iomem * 238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) 239 { 240 struct acpi_ioremap *map; 241 242 map = acpi_map_lookup(phys, size); 243 if (map) 244 return map->virt + (phys - map->phys); 245 246 return NULL; 247 } 248 249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) 250 { 251 struct acpi_ioremap *map; 252 void __iomem *virt = NULL; 253 254 mutex_lock(&acpi_ioremap_lock); 255 map = acpi_map_lookup(phys, size); 256 if (map) { 257 virt = map->virt + (phys - map->phys); 258 map->track.refcount++; 259 } 260 mutex_unlock(&acpi_ioremap_lock); 261 return virt; 262 } 263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem); 264 265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 266 static struct acpi_ioremap * 267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size) 268 { 269 struct acpi_ioremap *map; 270 271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) 272 if (map->virt <= virt && 273 virt + size <= map->virt + map->size) 274 return map; 275 276 return NULL; 277 } 278 279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 280 /* ioremap will take care of cache attributes */ 281 #define should_use_kmap(pfn) 0 282 #else 283 #define should_use_kmap(pfn) page_is_ram(pfn) 284 #endif 285 286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) 287 { 288 unsigned long pfn; 289 290 pfn = pg_off >> PAGE_SHIFT; 291 if (should_use_kmap(pfn)) { 292 if (pg_sz > PAGE_SIZE) 293 return NULL; 294 return (void __iomem __force *)kmap(pfn_to_page(pfn)); 295 } else 296 return acpi_os_ioremap(pg_off, pg_sz); 297 } 298 299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) 300 { 301 unsigned long pfn; 302 303 pfn = pg_off >> PAGE_SHIFT; 304 if (should_use_kmap(pfn)) 305 kunmap(pfn_to_page(pfn)); 306 else 307 iounmap(vaddr); 308 } 309 310 /** 311 * acpi_os_map_iomem - Get a virtual address for a given physical address range. 312 * @phys: Start of the physical address range to map. 313 * @size: Size of the physical address range to map. 314 * 315 * Look up the given physical address range in the list of existing ACPI memory 316 * mappings. If found, get a reference to it and return a pointer to it (its 317 * virtual address). If not found, map it, add it to that list and return a 318 * pointer to it. 319 * 320 * During early init (when acpi_permanent_mmap has not been set yet) this 321 * routine simply calls __acpi_map_table() to get the job done. 322 */ 323 void __iomem __ref 324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) 325 { 326 struct acpi_ioremap *map; 327 void __iomem *virt; 328 acpi_physical_address pg_off; 329 acpi_size pg_sz; 330 331 if (phys > ULONG_MAX) { 332 pr_err("Cannot map memory that high: 0x%llx\n", phys); 333 return NULL; 334 } 335 336 if (!acpi_permanent_mmap) 337 return __acpi_map_table((unsigned long)phys, size); 338 339 mutex_lock(&acpi_ioremap_lock); 340 /* Check if there's a suitable mapping already. */ 341 map = acpi_map_lookup(phys, size); 342 if (map) { 343 map->track.refcount++; 344 goto out; 345 } 346 347 map = kzalloc(sizeof(*map), GFP_KERNEL); 348 if (!map) { 349 mutex_unlock(&acpi_ioremap_lock); 350 return NULL; 351 } 352 353 pg_off = round_down(phys, PAGE_SIZE); 354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; 355 virt = acpi_map(phys, size); 356 if (!virt) { 357 mutex_unlock(&acpi_ioremap_lock); 358 kfree(map); 359 return NULL; 360 } 361 362 INIT_LIST_HEAD(&map->list); 363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK); 364 map->phys = pg_off; 365 map->size = pg_sz; 366 map->track.refcount = 1; 367 368 list_add_tail_rcu(&map->list, &acpi_ioremaps); 369 370 out: 371 mutex_unlock(&acpi_ioremap_lock); 372 return map->virt + (phys - map->phys); 373 } 374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem); 375 376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size) 377 { 378 return (void *)acpi_os_map_iomem(phys, size); 379 } 380 EXPORT_SYMBOL_GPL(acpi_os_map_memory); 381 382 static void acpi_os_map_remove(struct work_struct *work) 383 { 384 struct acpi_ioremap *map = container_of(to_rcu_work(work), 385 struct acpi_ioremap, 386 track.rwork); 387 388 acpi_unmap(map->phys, map->virt); 389 kfree(map); 390 } 391 392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */ 393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map) 394 { 395 if (--map->track.refcount) 396 return; 397 398 list_del_rcu(&map->list); 399 400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove); 401 queue_rcu_work(system_wq, &map->track.rwork); 402 } 403 404 /** 405 * acpi_os_unmap_iomem - Drop a memory mapping reference. 406 * @virt: Start of the address range to drop a reference to. 407 * @size: Size of the address range to drop a reference to. 408 * 409 * Look up the given virtual address range in the list of existing ACPI memory 410 * mappings, drop a reference to it and if there are no more active references 411 * to it, queue it up for later removal. 412 * 413 * During early init (when acpi_permanent_mmap has not been set yet) this 414 * routine simply calls __acpi_unmap_table() to get the job done. Since 415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed 416 * here. 417 */ 418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) 419 { 420 struct acpi_ioremap *map; 421 422 if (!acpi_permanent_mmap) { 423 __acpi_unmap_table(virt, size); 424 return; 425 } 426 427 mutex_lock(&acpi_ioremap_lock); 428 429 map = acpi_map_lookup_virt(virt, size); 430 if (!map) { 431 mutex_unlock(&acpi_ioremap_lock); 432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt); 433 return; 434 } 435 acpi_os_drop_map_ref(map); 436 437 mutex_unlock(&acpi_ioremap_lock); 438 } 439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); 440 441 /** 442 * acpi_os_unmap_memory - Drop a memory mapping reference. 443 * @virt: Start of the address range to drop a reference to. 444 * @size: Size of the address range to drop a reference to. 445 */ 446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size) 447 { 448 acpi_os_unmap_iomem((void __iomem *)virt, size); 449 } 450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); 451 452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas) 453 { 454 u64 addr; 455 456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 457 return NULL; 458 459 /* Handle possible alignment issues */ 460 memcpy(&addr, &gas->address, sizeof(addr)); 461 if (!addr || !gas->bit_width) 462 return NULL; 463 464 return acpi_os_map_iomem(addr, gas->bit_width / 8); 465 } 466 EXPORT_SYMBOL(acpi_os_map_generic_address); 467 468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) 469 { 470 u64 addr; 471 struct acpi_ioremap *map; 472 473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 474 return; 475 476 /* Handle possible alignment issues */ 477 memcpy(&addr, &gas->address, sizeof(addr)); 478 if (!addr || !gas->bit_width) 479 return; 480 481 mutex_lock(&acpi_ioremap_lock); 482 483 map = acpi_map_lookup(addr, gas->bit_width / 8); 484 if (!map) { 485 mutex_unlock(&acpi_ioremap_lock); 486 return; 487 } 488 acpi_os_drop_map_ref(map); 489 490 mutex_unlock(&acpi_ioremap_lock); 491 } 492 EXPORT_SYMBOL(acpi_os_unmap_generic_address); 493 494 #ifdef ACPI_FUTURE_USAGE 495 acpi_status 496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys) 497 { 498 if (!phys || !virt) 499 return AE_BAD_PARAMETER; 500 501 *phys = virt_to_phys(virt); 502 503 return AE_OK; 504 } 505 #endif 506 507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE 508 static bool acpi_rev_override; 509 510 int __init acpi_rev_override_setup(char *str) 511 { 512 acpi_rev_override = true; 513 return 1; 514 } 515 __setup("acpi_rev_override", acpi_rev_override_setup); 516 #else 517 #define acpi_rev_override false 518 #endif 519 520 #define ACPI_MAX_OVERRIDE_LEN 100 521 522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; 523 524 acpi_status 525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val, 526 acpi_string *new_val) 527 { 528 if (!init_val || !new_val) 529 return AE_BAD_PARAMETER; 530 531 *new_val = NULL; 532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { 533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name); 534 *new_val = acpi_os_name; 535 } 536 537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) { 538 pr_info("Overriding _REV return value to 5\n"); 539 *new_val = (char *)5; 540 } 541 542 return AE_OK; 543 } 544 545 static irqreturn_t acpi_irq(int irq, void *dev_id) 546 { 547 if ((*acpi_irq_handler)(acpi_irq_context)) { 548 acpi_irq_handled++; 549 return IRQ_HANDLED; 550 } else { 551 acpi_irq_not_handled++; 552 return IRQ_NONE; 553 } 554 } 555 556 acpi_status 557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, 558 void *context) 559 { 560 unsigned int irq; 561 562 acpi_irq_stats_init(); 563 564 /* 565 * ACPI interrupts different from the SCI in our copy of the FADT are 566 * not supported. 567 */ 568 if (gsi != acpi_gbl_FADT.sci_interrupt) 569 return AE_BAD_PARAMETER; 570 571 if (acpi_irq_handler) 572 return AE_ALREADY_ACQUIRED; 573 574 if (acpi_gsi_to_irq(gsi, &irq) < 0) { 575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi); 576 return AE_OK; 577 } 578 579 acpi_irq_handler = handler; 580 acpi_irq_context = context; 581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT, 582 "acpi", acpi_irq)) { 583 pr_err("SCI (IRQ%d) allocation failed\n", irq); 584 acpi_irq_handler = NULL; 585 return AE_NOT_ACQUIRED; 586 } 587 acpi_sci_irq = irq; 588 589 return AE_OK; 590 } 591 592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler) 593 { 594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid()) 595 return AE_BAD_PARAMETER; 596 597 free_irq(acpi_sci_irq, acpi_irq); 598 acpi_irq_handler = NULL; 599 acpi_sci_irq = INVALID_ACPI_IRQ; 600 601 return AE_OK; 602 } 603 604 /* 605 * Running in interpreter thread context, safe to sleep 606 */ 607 608 void acpi_os_sleep(u64 ms) 609 { 610 msleep(ms); 611 } 612 613 void acpi_os_stall(u32 us) 614 { 615 while (us) { 616 u32 delay = 1000; 617 618 if (delay > us) 619 delay = us; 620 udelay(delay); 621 touch_nmi_watchdog(); 622 us -= delay; 623 } 624 } 625 626 /* 627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running, 628 * monotonically increasing timer with 100ns granularity. Do not use 629 * ktime_get() to implement this function because this function may get 630 * called after timekeeping has been suspended. Note: calling this function 631 * after timekeeping has been suspended may lead to unexpected results 632 * because when timekeeping is suspended the jiffies counter is not 633 * incremented. See also timekeeping_suspend(). 634 */ 635 u64 acpi_os_get_timer(void) 636 { 637 return (get_jiffies_64() - INITIAL_JIFFIES) * 638 (ACPI_100NSEC_PER_SEC / HZ); 639 } 640 641 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width) 642 { 643 u32 dummy; 644 645 if (value) 646 *value = 0; 647 else 648 value = &dummy; 649 650 if (width <= 8) { 651 *value = inb(port); 652 } else if (width <= 16) { 653 *value = inw(port); 654 } else if (width <= 32) { 655 *value = inl(port); 656 } else { 657 pr_debug("%s: Access width %d not supported\n", __func__, width); 658 return AE_BAD_PARAMETER; 659 } 660 661 return AE_OK; 662 } 663 664 EXPORT_SYMBOL(acpi_os_read_port); 665 666 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) 667 { 668 if (width <= 8) { 669 outb(value, port); 670 } else if (width <= 16) { 671 outw(value, port); 672 } else if (width <= 32) { 673 outl(value, port); 674 } else { 675 pr_debug("%s: Access width %d not supported\n", __func__, width); 676 return AE_BAD_PARAMETER; 677 } 678 679 return AE_OK; 680 } 681 682 EXPORT_SYMBOL(acpi_os_write_port); 683 684 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width) 685 { 686 687 switch (width) { 688 case 8: 689 *(u8 *) value = readb(virt_addr); 690 break; 691 case 16: 692 *(u16 *) value = readw(virt_addr); 693 break; 694 case 32: 695 *(u32 *) value = readl(virt_addr); 696 break; 697 case 64: 698 *(u64 *) value = readq(virt_addr); 699 break; 700 default: 701 return -EINVAL; 702 } 703 704 return 0; 705 } 706 707 acpi_status 708 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) 709 { 710 void __iomem *virt_addr; 711 unsigned int size = width / 8; 712 bool unmap = false; 713 u64 dummy; 714 int error; 715 716 rcu_read_lock(); 717 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 718 if (!virt_addr) { 719 rcu_read_unlock(); 720 virt_addr = acpi_os_ioremap(phys_addr, size); 721 if (!virt_addr) 722 return AE_BAD_ADDRESS; 723 unmap = true; 724 } 725 726 if (!value) 727 value = &dummy; 728 729 error = acpi_os_read_iomem(virt_addr, value, width); 730 BUG_ON(error); 731 732 if (unmap) 733 iounmap(virt_addr); 734 else 735 rcu_read_unlock(); 736 737 return AE_OK; 738 } 739 740 acpi_status 741 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) 742 { 743 void __iomem *virt_addr; 744 unsigned int size = width / 8; 745 bool unmap = false; 746 747 rcu_read_lock(); 748 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 749 if (!virt_addr) { 750 rcu_read_unlock(); 751 virt_addr = acpi_os_ioremap(phys_addr, size); 752 if (!virt_addr) 753 return AE_BAD_ADDRESS; 754 unmap = true; 755 } 756 757 switch (width) { 758 case 8: 759 writeb(value, virt_addr); 760 break; 761 case 16: 762 writew(value, virt_addr); 763 break; 764 case 32: 765 writel(value, virt_addr); 766 break; 767 case 64: 768 writeq(value, virt_addr); 769 break; 770 default: 771 BUG(); 772 } 773 774 if (unmap) 775 iounmap(virt_addr); 776 else 777 rcu_read_unlock(); 778 779 return AE_OK; 780 } 781 782 #ifdef CONFIG_PCI 783 acpi_status 784 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg, 785 u64 *value, u32 width) 786 { 787 int result, size; 788 u32 value32; 789 790 if (!value) 791 return AE_BAD_PARAMETER; 792 793 switch (width) { 794 case 8: 795 size = 1; 796 break; 797 case 16: 798 size = 2; 799 break; 800 case 32: 801 size = 4; 802 break; 803 default: 804 return AE_ERROR; 805 } 806 807 result = raw_pci_read(pci_id->segment, pci_id->bus, 808 PCI_DEVFN(pci_id->device, pci_id->function), 809 reg, size, &value32); 810 *value = value32; 811 812 return (result ? AE_ERROR : AE_OK); 813 } 814 815 acpi_status 816 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg, 817 u64 value, u32 width) 818 { 819 int result, size; 820 821 switch (width) { 822 case 8: 823 size = 1; 824 break; 825 case 16: 826 size = 2; 827 break; 828 case 32: 829 size = 4; 830 break; 831 default: 832 return AE_ERROR; 833 } 834 835 result = raw_pci_write(pci_id->segment, pci_id->bus, 836 PCI_DEVFN(pci_id->device, pci_id->function), 837 reg, size, value); 838 839 return (result ? AE_ERROR : AE_OK); 840 } 841 #endif 842 843 static void acpi_os_execute_deferred(struct work_struct *work) 844 { 845 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); 846 847 dpc->function(dpc->context); 848 kfree(dpc); 849 } 850 851 #ifdef CONFIG_ACPI_DEBUGGER 852 static struct acpi_debugger acpi_debugger; 853 static bool acpi_debugger_initialized; 854 855 int acpi_register_debugger(struct module *owner, 856 const struct acpi_debugger_ops *ops) 857 { 858 int ret = 0; 859 860 mutex_lock(&acpi_debugger.lock); 861 if (acpi_debugger.ops) { 862 ret = -EBUSY; 863 goto err_lock; 864 } 865 866 acpi_debugger.owner = owner; 867 acpi_debugger.ops = ops; 868 869 err_lock: 870 mutex_unlock(&acpi_debugger.lock); 871 return ret; 872 } 873 EXPORT_SYMBOL(acpi_register_debugger); 874 875 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) 876 { 877 mutex_lock(&acpi_debugger.lock); 878 if (ops == acpi_debugger.ops) { 879 acpi_debugger.ops = NULL; 880 acpi_debugger.owner = NULL; 881 } 882 mutex_unlock(&acpi_debugger.lock); 883 } 884 EXPORT_SYMBOL(acpi_unregister_debugger); 885 886 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) 887 { 888 int ret; 889 int (*func)(acpi_osd_exec_callback, void *); 890 struct module *owner; 891 892 if (!acpi_debugger_initialized) 893 return -ENODEV; 894 mutex_lock(&acpi_debugger.lock); 895 if (!acpi_debugger.ops) { 896 ret = -ENODEV; 897 goto err_lock; 898 } 899 if (!try_module_get(acpi_debugger.owner)) { 900 ret = -ENODEV; 901 goto err_lock; 902 } 903 func = acpi_debugger.ops->create_thread; 904 owner = acpi_debugger.owner; 905 mutex_unlock(&acpi_debugger.lock); 906 907 ret = func(function, context); 908 909 mutex_lock(&acpi_debugger.lock); 910 module_put(owner); 911 err_lock: 912 mutex_unlock(&acpi_debugger.lock); 913 return ret; 914 } 915 916 ssize_t acpi_debugger_write_log(const char *msg) 917 { 918 ssize_t ret; 919 ssize_t (*func)(const char *); 920 struct module *owner; 921 922 if (!acpi_debugger_initialized) 923 return -ENODEV; 924 mutex_lock(&acpi_debugger.lock); 925 if (!acpi_debugger.ops) { 926 ret = -ENODEV; 927 goto err_lock; 928 } 929 if (!try_module_get(acpi_debugger.owner)) { 930 ret = -ENODEV; 931 goto err_lock; 932 } 933 func = acpi_debugger.ops->write_log; 934 owner = acpi_debugger.owner; 935 mutex_unlock(&acpi_debugger.lock); 936 937 ret = func(msg); 938 939 mutex_lock(&acpi_debugger.lock); 940 module_put(owner); 941 err_lock: 942 mutex_unlock(&acpi_debugger.lock); 943 return ret; 944 } 945 946 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length) 947 { 948 ssize_t ret; 949 ssize_t (*func)(char *, size_t); 950 struct module *owner; 951 952 if (!acpi_debugger_initialized) 953 return -ENODEV; 954 mutex_lock(&acpi_debugger.lock); 955 if (!acpi_debugger.ops) { 956 ret = -ENODEV; 957 goto err_lock; 958 } 959 if (!try_module_get(acpi_debugger.owner)) { 960 ret = -ENODEV; 961 goto err_lock; 962 } 963 func = acpi_debugger.ops->read_cmd; 964 owner = acpi_debugger.owner; 965 mutex_unlock(&acpi_debugger.lock); 966 967 ret = func(buffer, buffer_length); 968 969 mutex_lock(&acpi_debugger.lock); 970 module_put(owner); 971 err_lock: 972 mutex_unlock(&acpi_debugger.lock); 973 return ret; 974 } 975 976 int acpi_debugger_wait_command_ready(void) 977 { 978 int ret; 979 int (*func)(bool, char *, size_t); 980 struct module *owner; 981 982 if (!acpi_debugger_initialized) 983 return -ENODEV; 984 mutex_lock(&acpi_debugger.lock); 985 if (!acpi_debugger.ops) { 986 ret = -ENODEV; 987 goto err_lock; 988 } 989 if (!try_module_get(acpi_debugger.owner)) { 990 ret = -ENODEV; 991 goto err_lock; 992 } 993 func = acpi_debugger.ops->wait_command_ready; 994 owner = acpi_debugger.owner; 995 mutex_unlock(&acpi_debugger.lock); 996 997 ret = func(acpi_gbl_method_executing, 998 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE); 999 1000 mutex_lock(&acpi_debugger.lock); 1001 module_put(owner); 1002 err_lock: 1003 mutex_unlock(&acpi_debugger.lock); 1004 return ret; 1005 } 1006 1007 int acpi_debugger_notify_command_complete(void) 1008 { 1009 int ret; 1010 int (*func)(void); 1011 struct module *owner; 1012 1013 if (!acpi_debugger_initialized) 1014 return -ENODEV; 1015 mutex_lock(&acpi_debugger.lock); 1016 if (!acpi_debugger.ops) { 1017 ret = -ENODEV; 1018 goto err_lock; 1019 } 1020 if (!try_module_get(acpi_debugger.owner)) { 1021 ret = -ENODEV; 1022 goto err_lock; 1023 } 1024 func = acpi_debugger.ops->notify_command_complete; 1025 owner = acpi_debugger.owner; 1026 mutex_unlock(&acpi_debugger.lock); 1027 1028 ret = func(); 1029 1030 mutex_lock(&acpi_debugger.lock); 1031 module_put(owner); 1032 err_lock: 1033 mutex_unlock(&acpi_debugger.lock); 1034 return ret; 1035 } 1036 1037 int __init acpi_debugger_init(void) 1038 { 1039 mutex_init(&acpi_debugger.lock); 1040 acpi_debugger_initialized = true; 1041 return 0; 1042 } 1043 #endif 1044 1045 /******************************************************************************* 1046 * 1047 * FUNCTION: acpi_os_execute 1048 * 1049 * PARAMETERS: Type - Type of the callback 1050 * Function - Function to be executed 1051 * Context - Function parameters 1052 * 1053 * RETURN: Status 1054 * 1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or 1056 * immediately executes function on a separate thread. 1057 * 1058 ******************************************************************************/ 1059 1060 acpi_status acpi_os_execute(acpi_execute_type type, 1061 acpi_osd_exec_callback function, void *context) 1062 { 1063 struct acpi_os_dpc *dpc; 1064 int ret; 1065 1066 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1067 "Scheduling function [%p(%p)] for deferred execution.\n", 1068 function, context)); 1069 1070 if (type == OSL_DEBUGGER_MAIN_THREAD) { 1071 ret = acpi_debugger_create_thread(function, context); 1072 if (ret) { 1073 pr_err("Kernel thread creation failed\n"); 1074 return AE_ERROR; 1075 } 1076 return AE_OK; 1077 } 1078 1079 /* 1080 * Allocate/initialize DPC structure. Note that this memory will be 1081 * freed by the callee. The kernel handles the work_struct list in a 1082 * way that allows us to also free its memory inside the callee. 1083 * Because we may want to schedule several tasks with different 1084 * parameters we can't use the approach some kernel code uses of 1085 * having a static work_struct. 1086 */ 1087 1088 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); 1089 if (!dpc) 1090 return AE_NO_MEMORY; 1091 1092 dpc->function = function; 1093 dpc->context = context; 1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1095 1096 /* 1097 * To prevent lockdep from complaining unnecessarily, make sure that 1098 * there is a different static lockdep key for each workqueue by using 1099 * INIT_WORK() for each of them separately. 1100 */ 1101 switch (type) { 1102 case OSL_NOTIFY_HANDLER: 1103 ret = queue_work(kacpi_notify_wq, &dpc->work); 1104 break; 1105 case OSL_GPE_HANDLER: 1106 /* 1107 * On some machines, a software-initiated SMI causes corruption 1108 * unless the SMI runs on CPU 0. An SMI can be initiated by 1109 * any AML, but typically it's done in GPE-related methods that 1110 * are run via workqueues, so we can avoid the known corruption 1111 * cases by always queueing on CPU 0. 1112 */ 1113 ret = queue_work_on(0, kacpid_wq, &dpc->work); 1114 break; 1115 default: 1116 pr_err("Unsupported os_execute type %d.\n", type); 1117 goto err; 1118 } 1119 if (!ret) { 1120 pr_err("Unable to queue work\n"); 1121 goto err; 1122 } 1123 1124 return AE_OK; 1125 1126 err: 1127 kfree(dpc); 1128 return AE_ERROR; 1129 } 1130 EXPORT_SYMBOL(acpi_os_execute); 1131 1132 void acpi_os_wait_events_complete(void) 1133 { 1134 /* 1135 * Make sure the GPE handler or the fixed event handler is not used 1136 * on another CPU after removal. 1137 */ 1138 if (acpi_sci_irq_valid()) 1139 synchronize_hardirq(acpi_sci_irq); 1140 flush_workqueue(kacpid_wq); 1141 flush_workqueue(kacpi_notify_wq); 1142 } 1143 EXPORT_SYMBOL(acpi_os_wait_events_complete); 1144 1145 struct acpi_hp_work { 1146 struct work_struct work; 1147 struct acpi_device *adev; 1148 u32 src; 1149 }; 1150 1151 static void acpi_hotplug_work_fn(struct work_struct *work) 1152 { 1153 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); 1154 1155 acpi_os_wait_events_complete(); 1156 acpi_device_hotplug(hpw->adev, hpw->src); 1157 kfree(hpw); 1158 } 1159 1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) 1161 { 1162 struct acpi_hp_work *hpw; 1163 1164 acpi_handle_debug(adev->handle, 1165 "Scheduling hotplug event %u for deferred handling\n", 1166 src); 1167 1168 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); 1169 if (!hpw) 1170 return AE_NO_MEMORY; 1171 1172 INIT_WORK(&hpw->work, acpi_hotplug_work_fn); 1173 hpw->adev = adev; 1174 hpw->src = src; 1175 /* 1176 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because 1177 * the hotplug code may call driver .remove() functions, which may 1178 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush 1179 * these workqueues. 1180 */ 1181 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { 1182 kfree(hpw); 1183 return AE_ERROR; 1184 } 1185 return AE_OK; 1186 } 1187 1188 bool acpi_queue_hotplug_work(struct work_struct *work) 1189 { 1190 return queue_work(kacpi_hotplug_wq, work); 1191 } 1192 1193 acpi_status 1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle) 1195 { 1196 struct semaphore *sem = NULL; 1197 1198 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); 1199 if (!sem) 1200 return AE_NO_MEMORY; 1201 1202 sema_init(sem, initial_units); 1203 1204 *handle = (acpi_handle *) sem; 1205 1206 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", 1207 *handle, initial_units)); 1208 1209 return AE_OK; 1210 } 1211 1212 /* 1213 * TODO: A better way to delete semaphores? Linux doesn't have a 1214 * 'delete_semaphore()' function -- may result in an invalid 1215 * pointer dereference for non-synchronized consumers. Should 1216 * we at least check for blocked threads and signal/cancel them? 1217 */ 1218 1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle) 1220 { 1221 struct semaphore *sem = (struct semaphore *)handle; 1222 1223 if (!sem) 1224 return AE_BAD_PARAMETER; 1225 1226 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); 1227 1228 BUG_ON(!list_empty(&sem->wait_list)); 1229 kfree(sem); 1230 sem = NULL; 1231 1232 return AE_OK; 1233 } 1234 1235 /* 1236 * TODO: Support for units > 1? 1237 */ 1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) 1239 { 1240 acpi_status status = AE_OK; 1241 struct semaphore *sem = (struct semaphore *)handle; 1242 long jiffies; 1243 int ret = 0; 1244 1245 if (!acpi_os_initialized) 1246 return AE_OK; 1247 1248 if (!sem || (units < 1)) 1249 return AE_BAD_PARAMETER; 1250 1251 if (units > 1) 1252 return AE_SUPPORT; 1253 1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", 1255 handle, units, timeout)); 1256 1257 if (timeout == ACPI_WAIT_FOREVER) 1258 jiffies = MAX_SCHEDULE_TIMEOUT; 1259 else 1260 jiffies = msecs_to_jiffies(timeout); 1261 1262 ret = down_timeout(sem, jiffies); 1263 if (ret) 1264 status = AE_TIME; 1265 1266 if (ACPI_FAILURE(status)) { 1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1268 "Failed to acquire semaphore[%p|%d|%d], %s", 1269 handle, units, timeout, 1270 acpi_format_exception(status))); 1271 } else { 1272 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1273 "Acquired semaphore[%p|%d|%d]", handle, 1274 units, timeout)); 1275 } 1276 1277 return status; 1278 } 1279 1280 /* 1281 * TODO: Support for units > 1? 1282 */ 1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) 1284 { 1285 struct semaphore *sem = (struct semaphore *)handle; 1286 1287 if (!acpi_os_initialized) 1288 return AE_OK; 1289 1290 if (!sem || (units < 1)) 1291 return AE_BAD_PARAMETER; 1292 1293 if (units > 1) 1294 return AE_SUPPORT; 1295 1296 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, 1297 units)); 1298 1299 up(sem); 1300 1301 return AE_OK; 1302 } 1303 1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read) 1305 { 1306 #ifdef ENABLE_DEBUGGER 1307 if (acpi_in_debugger) { 1308 u32 chars; 1309 1310 kdb_read(buffer, buffer_length); 1311 1312 /* remove the CR kdb includes */ 1313 chars = strlen(buffer) - 1; 1314 buffer[chars] = '\0'; 1315 } 1316 #else 1317 int ret; 1318 1319 ret = acpi_debugger_read_cmd(buffer, buffer_length); 1320 if (ret < 0) 1321 return AE_ERROR; 1322 if (bytes_read) 1323 *bytes_read = ret; 1324 #endif 1325 1326 return AE_OK; 1327 } 1328 EXPORT_SYMBOL(acpi_os_get_line); 1329 1330 acpi_status acpi_os_wait_command_ready(void) 1331 { 1332 int ret; 1333 1334 ret = acpi_debugger_wait_command_ready(); 1335 if (ret < 0) 1336 return AE_ERROR; 1337 return AE_OK; 1338 } 1339 1340 acpi_status acpi_os_notify_command_complete(void) 1341 { 1342 int ret; 1343 1344 ret = acpi_debugger_notify_command_complete(); 1345 if (ret < 0) 1346 return AE_ERROR; 1347 return AE_OK; 1348 } 1349 1350 acpi_status acpi_os_signal(u32 function, void *info) 1351 { 1352 switch (function) { 1353 case ACPI_SIGNAL_FATAL: 1354 pr_err("Fatal opcode executed\n"); 1355 break; 1356 case ACPI_SIGNAL_BREAKPOINT: 1357 /* 1358 * AML Breakpoint 1359 * ACPI spec. says to treat it as a NOP unless 1360 * you are debugging. So if/when we integrate 1361 * AML debugger into the kernel debugger its 1362 * hook will go here. But until then it is 1363 * not useful to print anything on breakpoints. 1364 */ 1365 break; 1366 default: 1367 break; 1368 } 1369 1370 return AE_OK; 1371 } 1372 1373 static int __init acpi_os_name_setup(char *str) 1374 { 1375 char *p = acpi_os_name; 1376 int count = ACPI_MAX_OVERRIDE_LEN - 1; 1377 1378 if (!str || !*str) 1379 return 0; 1380 1381 for (; count-- && *str; str++) { 1382 if (isalnum(*str) || *str == ' ' || *str == ':') 1383 *p++ = *str; 1384 else if (*str == '\'' || *str == '"') 1385 continue; 1386 else 1387 break; 1388 } 1389 *p = 0; 1390 1391 return 1; 1392 1393 } 1394 1395 __setup("acpi_os_name=", acpi_os_name_setup); 1396 1397 /* 1398 * Disable the auto-serialization of named objects creation methods. 1399 * 1400 * This feature is enabled by default. It marks the AML control methods 1401 * that contain the opcodes to create named objects as "Serialized". 1402 */ 1403 static int __init acpi_no_auto_serialize_setup(char *str) 1404 { 1405 acpi_gbl_auto_serialize_methods = FALSE; 1406 pr_info("Auto-serialization disabled\n"); 1407 1408 return 1; 1409 } 1410 1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); 1412 1413 /* Check of resource interference between native drivers and ACPI 1414 * OperationRegions (SystemIO and System Memory only). 1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem 1416 * in arbitrary AML code and can interfere with legacy drivers. 1417 * acpi_enforce_resources= can be set to: 1418 * 1419 * - strict (default) (2) 1420 * -> further driver trying to access the resources will not load 1421 * - lax (1) 1422 * -> further driver trying to access the resources will load, but you 1423 * get a system message that something might go wrong... 1424 * 1425 * - no (0) 1426 * -> ACPI Operation Region resources will not be registered 1427 * 1428 */ 1429 #define ENFORCE_RESOURCES_STRICT 2 1430 #define ENFORCE_RESOURCES_LAX 1 1431 #define ENFORCE_RESOURCES_NO 0 1432 1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1434 1435 static int __init acpi_enforce_resources_setup(char *str) 1436 { 1437 if (str == NULL || *str == '\0') 1438 return 0; 1439 1440 if (!strcmp("strict", str)) 1441 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1442 else if (!strcmp("lax", str)) 1443 acpi_enforce_resources = ENFORCE_RESOURCES_LAX; 1444 else if (!strcmp("no", str)) 1445 acpi_enforce_resources = ENFORCE_RESOURCES_NO; 1446 1447 return 1; 1448 } 1449 1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); 1451 1452 /* Check for resource conflicts between ACPI OperationRegions and native 1453 * drivers */ 1454 int acpi_check_resource_conflict(const struct resource *res) 1455 { 1456 acpi_adr_space_type space_id; 1457 1458 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) 1459 return 0; 1460 1461 if (res->flags & IORESOURCE_IO) 1462 space_id = ACPI_ADR_SPACE_SYSTEM_IO; 1463 else if (res->flags & IORESOURCE_MEM) 1464 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; 1465 else 1466 return 0; 1467 1468 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1)) 1469 return 0; 1470 1471 pr_info("Resource conflict; ACPI support missing from driver?\n"); 1472 1473 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) 1474 return -EBUSY; 1475 1476 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) 1477 pr_notice("Resource conflict: System may be unstable or behave erratically\n"); 1478 1479 return 0; 1480 } 1481 EXPORT_SYMBOL(acpi_check_resource_conflict); 1482 1483 int acpi_check_region(resource_size_t start, resource_size_t n, 1484 const char *name) 1485 { 1486 struct resource res = DEFINE_RES_IO_NAMED(start, n, name); 1487 1488 return acpi_check_resource_conflict(&res); 1489 } 1490 EXPORT_SYMBOL(acpi_check_region); 1491 1492 /* 1493 * Let drivers know whether the resource checks are effective 1494 */ 1495 int acpi_resources_are_enforced(void) 1496 { 1497 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; 1498 } 1499 EXPORT_SYMBOL(acpi_resources_are_enforced); 1500 1501 /* 1502 * Deallocate the memory for a spinlock. 1503 */ 1504 void acpi_os_delete_lock(acpi_spinlock handle) 1505 { 1506 ACPI_FREE(handle); 1507 } 1508 1509 /* 1510 * Acquire a spinlock. 1511 * 1512 * handle is a pointer to the spinlock_t. 1513 */ 1514 1515 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) 1516 __acquires(lockp) 1517 { 1518 spin_lock(lockp); 1519 return 0; 1520 } 1521 1522 /* 1523 * Release a spinlock. See above. 1524 */ 1525 1526 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used) 1527 __releases(lockp) 1528 { 1529 spin_unlock(lockp); 1530 } 1531 1532 #ifndef ACPI_USE_LOCAL_CACHE 1533 1534 /******************************************************************************* 1535 * 1536 * FUNCTION: acpi_os_create_cache 1537 * 1538 * PARAMETERS: name - Ascii name for the cache 1539 * size - Size of each cached object 1540 * depth - Maximum depth of the cache (in objects) <ignored> 1541 * cache - Where the new cache object is returned 1542 * 1543 * RETURN: status 1544 * 1545 * DESCRIPTION: Create a cache object 1546 * 1547 ******************************************************************************/ 1548 1549 acpi_status 1550 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache) 1551 { 1552 *cache = kmem_cache_create(name, size, 0, 0, NULL); 1553 if (*cache == NULL) 1554 return AE_ERROR; 1555 else 1556 return AE_OK; 1557 } 1558 1559 /******************************************************************************* 1560 * 1561 * FUNCTION: acpi_os_purge_cache 1562 * 1563 * PARAMETERS: Cache - Handle to cache object 1564 * 1565 * RETURN: Status 1566 * 1567 * DESCRIPTION: Free all objects within the requested cache. 1568 * 1569 ******************************************************************************/ 1570 1571 acpi_status acpi_os_purge_cache(acpi_cache_t *cache) 1572 { 1573 kmem_cache_shrink(cache); 1574 return AE_OK; 1575 } 1576 1577 /******************************************************************************* 1578 * 1579 * FUNCTION: acpi_os_delete_cache 1580 * 1581 * PARAMETERS: Cache - Handle to cache object 1582 * 1583 * RETURN: Status 1584 * 1585 * DESCRIPTION: Free all objects within the requested cache and delete the 1586 * cache object. 1587 * 1588 ******************************************************************************/ 1589 1590 acpi_status acpi_os_delete_cache(acpi_cache_t *cache) 1591 { 1592 kmem_cache_destroy(cache); 1593 return AE_OK; 1594 } 1595 1596 /******************************************************************************* 1597 * 1598 * FUNCTION: acpi_os_release_object 1599 * 1600 * PARAMETERS: Cache - Handle to cache object 1601 * Object - The object to be released 1602 * 1603 * RETURN: None 1604 * 1605 * DESCRIPTION: Release an object to the specified cache. If cache is full, 1606 * the object is deleted. 1607 * 1608 ******************************************************************************/ 1609 1610 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object) 1611 { 1612 kmem_cache_free(cache, object); 1613 return AE_OK; 1614 } 1615 #endif 1616 1617 static int __init acpi_no_static_ssdt_setup(char *s) 1618 { 1619 acpi_gbl_disable_ssdt_table_install = TRUE; 1620 pr_info("Static SSDT installation disabled\n"); 1621 1622 return 0; 1623 } 1624 1625 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); 1626 1627 static int __init acpi_disable_return_repair(char *s) 1628 { 1629 pr_notice("Predefined validation mechanism disabled\n"); 1630 acpi_gbl_disable_auto_repair = TRUE; 1631 1632 return 1; 1633 } 1634 1635 __setup("acpica_no_return_repair", acpi_disable_return_repair); 1636 1637 acpi_status __init acpi_os_initialize(void) 1638 { 1639 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1641 1642 acpi_gbl_xgpe0_block_logical_address = 1643 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); 1644 acpi_gbl_xgpe1_block_logical_address = 1645 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); 1646 1647 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { 1648 /* 1649 * Use acpi_os_map_generic_address to pre-map the reset 1650 * register if it's in system memory. 1651 */ 1652 void *rv; 1653 1654 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); 1655 pr_debug("%s: Reset register mapping %s\n", __func__, 1656 rv ? "successful" : "failed"); 1657 } 1658 acpi_os_initialized = true; 1659 1660 return AE_OK; 1661 } 1662 1663 acpi_status __init acpi_os_initialize1(void) 1664 { 1665 kacpid_wq = alloc_workqueue("kacpid", 0, 1); 1666 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0); 1667 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); 1668 BUG_ON(!kacpid_wq); 1669 BUG_ON(!kacpi_notify_wq); 1670 BUG_ON(!kacpi_hotplug_wq); 1671 acpi_osi_init(); 1672 return AE_OK; 1673 } 1674 1675 acpi_status acpi_os_terminate(void) 1676 { 1677 if (acpi_irq_handler) { 1678 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, 1679 acpi_irq_handler); 1680 } 1681 1682 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); 1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); 1684 acpi_gbl_xgpe0_block_logical_address = 0UL; 1685 acpi_gbl_xgpe1_block_logical_address = 0UL; 1686 1687 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1688 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1689 1690 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) 1691 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); 1692 1693 destroy_workqueue(kacpid_wq); 1694 destroy_workqueue(kacpi_notify_wq); 1695 destroy_workqueue(kacpi_hotplug_wq); 1696 1697 return AE_OK; 1698 } 1699 1700 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, 1701 u32 pm1b_control) 1702 { 1703 int rc = 0; 1704 1705 if (__acpi_os_prepare_sleep) 1706 rc = __acpi_os_prepare_sleep(sleep_state, 1707 pm1a_control, pm1b_control); 1708 if (rc < 0) 1709 return AE_ERROR; 1710 else if (rc > 0) 1711 return AE_CTRL_TERMINATE; 1712 1713 return AE_OK; 1714 } 1715 1716 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, 1717 u32 pm1a_ctrl, u32 pm1b_ctrl)) 1718 { 1719 __acpi_os_prepare_sleep = func; 1720 } 1721 1722 #if (ACPI_REDUCED_HARDWARE) 1723 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1724 u32 val_b) 1725 { 1726 int rc = 0; 1727 1728 if (__acpi_os_prepare_extended_sleep) 1729 rc = __acpi_os_prepare_extended_sleep(sleep_state, 1730 val_a, val_b); 1731 if (rc < 0) 1732 return AE_ERROR; 1733 else if (rc > 0) 1734 return AE_CTRL_TERMINATE; 1735 1736 return AE_OK; 1737 } 1738 #else 1739 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1740 u32 val_b) 1741 { 1742 return AE_OK; 1743 } 1744 #endif 1745 1746 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, 1747 u32 val_a, u32 val_b)) 1748 { 1749 __acpi_os_prepare_extended_sleep = func; 1750 } 1751 1752 acpi_status acpi_os_enter_sleep(u8 sleep_state, 1753 u32 reg_a_value, u32 reg_b_value) 1754 { 1755 acpi_status status; 1756 1757 if (acpi_gbl_reduced_hardware) 1758 status = acpi_os_prepare_extended_sleep(sleep_state, 1759 reg_a_value, 1760 reg_b_value); 1761 else 1762 status = acpi_os_prepare_sleep(sleep_state, 1763 reg_a_value, reg_b_value); 1764 return status; 1765 } 1766