xref: /linux/drivers/acpi/osl.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/pci.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/acpi.h>
41 #include <linux/acpi_io.h>
42 #include <linux/efi.h>
43 #include <linux/ioport.h>
44 #include <linux/list.h>
45 #include <linux/jiffies.h>
46 #include <linux/semaphore.h>
47 
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 
51 #include <acpi/acpi.h>
52 #include <acpi/acpi_bus.h>
53 #include <acpi/processor.h>
54 
55 #define _COMPONENT		ACPI_OS_SERVICES
56 ACPI_MODULE_NAME("osl");
57 #define PREFIX		"ACPI: "
58 struct acpi_os_dpc {
59 	acpi_osd_exec_callback function;
60 	void *context;
61 	struct work_struct work;
62 	int wait;
63 };
64 
65 #ifdef CONFIG_ACPI_CUSTOM_DSDT
66 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
67 #endif
68 
69 #ifdef ENABLE_DEBUGGER
70 #include <linux/kdb.h>
71 
72 /* stuff for debugger support */
73 int acpi_in_debugger;
74 EXPORT_SYMBOL(acpi_in_debugger);
75 
76 extern char line_buf[80];
77 #endif				/*ENABLE_DEBUGGER */
78 
79 static acpi_osd_handler acpi_irq_handler;
80 static void *acpi_irq_context;
81 static struct workqueue_struct *kacpid_wq;
82 static struct workqueue_struct *kacpi_notify_wq;
83 static struct workqueue_struct *kacpi_hotplug_wq;
84 
85 struct acpi_res_list {
86 	resource_size_t start;
87 	resource_size_t end;
88 	acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 	char name[5];   /* only can have a length of 4 chars, make use of this
90 			   one instead of res->name, no need to kalloc then */
91 	struct list_head resource_list;
92 	int count;
93 };
94 
95 static LIST_HEAD(resource_list_head);
96 static DEFINE_SPINLOCK(acpi_res_lock);
97 
98 /*
99  * This list of permanent mappings is for memory that may be accessed from
100  * interrupt context, where we can't do the ioremap().
101  */
102 struct acpi_ioremap {
103 	struct list_head list;
104 	void __iomem *virt;
105 	acpi_physical_address phys;
106 	acpi_size size;
107 	unsigned long refcount;
108 };
109 
110 static LIST_HEAD(acpi_ioremaps);
111 static DEFINE_MUTEX(acpi_ioremap_lock);
112 
113 static void __init acpi_osi_setup_late(void);
114 
115 /*
116  * The story of _OSI(Linux)
117  *
118  * From pre-history through Linux-2.6.22,
119  * Linux responded TRUE upon a BIOS OSI(Linux) query.
120  *
121  * Unfortunately, reference BIOS writers got wind of this
122  * and put OSI(Linux) in their example code, quickly exposing
123  * this string as ill-conceived and opening the door to
124  * an un-bounded number of BIOS incompatibilities.
125  *
126  * For example, OSI(Linux) was used on resume to re-POST a
127  * video card on one system, because Linux at that time
128  * could not do a speedy restore in its native driver.
129  * But then upon gaining quick native restore capability,
130  * Linux has no way to tell the BIOS to skip the time-consuming
131  * POST -- putting Linux at a permanent performance disadvantage.
132  * On another system, the BIOS writer used OSI(Linux)
133  * to infer native OS support for IPMI!  On other systems,
134  * OSI(Linux) simply got in the way of Linux claiming to
135  * be compatible with other operating systems, exposing
136  * BIOS issues such as skipped device initialization.
137  *
138  * So "Linux" turned out to be a really poor chose of
139  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
140  *
141  * BIOS writers should NOT query _OSI(Linux) on future systems.
142  * Linux will complain on the console when it sees it, and return FALSE.
143  * To get Linux to return TRUE for your system  will require
144  * a kernel source update to add a DMI entry,
145  * or boot with "acpi_osi=Linux"
146  */
147 
148 static struct osi_linux {
149 	unsigned int	enable:1;
150 	unsigned int	dmi:1;
151 	unsigned int	cmdline:1;
152 } osi_linux = {0, 0, 0};
153 
154 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
155 {
156 	if (!strcmp("Linux", interface)) {
157 
158 		printk(KERN_NOTICE FW_BUG PREFIX
159 			"BIOS _OSI(Linux) query %s%s\n",
160 			osi_linux.enable ? "honored" : "ignored",
161 			osi_linux.cmdline ? " via cmdline" :
162 			osi_linux.dmi ? " via DMI" : "");
163 	}
164 
165 	return supported;
166 }
167 
168 static void __init acpi_request_region (struct acpi_generic_address *addr,
169 	unsigned int length, char *desc)
170 {
171 	if (!addr->address || !length)
172 		return;
173 
174 	/* Resources are never freed */
175 	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
176 		request_region(addr->address, length, desc);
177 	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
178 		request_mem_region(addr->address, length, desc);
179 }
180 
181 static int __init acpi_reserve_resources(void)
182 {
183 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
184 		"ACPI PM1a_EVT_BLK");
185 
186 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
187 		"ACPI PM1b_EVT_BLK");
188 
189 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
190 		"ACPI PM1a_CNT_BLK");
191 
192 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
193 		"ACPI PM1b_CNT_BLK");
194 
195 	if (acpi_gbl_FADT.pm_timer_length == 4)
196 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
197 
198 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
199 		"ACPI PM2_CNT_BLK");
200 
201 	/* Length of GPE blocks must be a non-negative multiple of 2 */
202 
203 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
204 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
205 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
206 
207 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
208 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
209 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
210 
211 	return 0;
212 }
213 device_initcall(acpi_reserve_resources);
214 
215 void acpi_os_printf(const char *fmt, ...)
216 {
217 	va_list args;
218 	va_start(args, fmt);
219 	acpi_os_vprintf(fmt, args);
220 	va_end(args);
221 }
222 
223 void acpi_os_vprintf(const char *fmt, va_list args)
224 {
225 	static char buffer[512];
226 
227 	vsprintf(buffer, fmt, args);
228 
229 #ifdef ENABLE_DEBUGGER
230 	if (acpi_in_debugger) {
231 		kdb_printf("%s", buffer);
232 	} else {
233 		printk(KERN_CONT "%s", buffer);
234 	}
235 #else
236 	printk(KERN_CONT "%s", buffer);
237 #endif
238 }
239 
240 acpi_physical_address __init acpi_os_get_root_pointer(void)
241 {
242 	if (efi_enabled) {
243 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
244 			return efi.acpi20;
245 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
246 			return efi.acpi;
247 		else {
248 			printk(KERN_ERR PREFIX
249 			       "System description tables not found\n");
250 			return 0;
251 		}
252 	} else {
253 		acpi_physical_address pa = 0;
254 
255 		acpi_find_root_pointer(&pa);
256 		return pa;
257 	}
258 }
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 		if (map->phys <= phys &&
268 		    phys + size <= map->phys + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
275 static void __iomem *
276 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
277 {
278 	struct acpi_ioremap *map;
279 
280 	map = acpi_map_lookup(phys, size);
281 	if (map)
282 		return map->virt + (phys - map->phys);
283 
284 	return NULL;
285 }
286 
287 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
288 {
289 	struct acpi_ioremap *map;
290 	void __iomem *virt = NULL;
291 
292 	mutex_lock(&acpi_ioremap_lock);
293 	map = acpi_map_lookup(phys, size);
294 	if (map) {
295 		virt = map->virt + (phys - map->phys);
296 		map->refcount++;
297 	}
298 	mutex_unlock(&acpi_ioremap_lock);
299 	return virt;
300 }
301 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
302 
303 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
304 static struct acpi_ioremap *
305 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
306 {
307 	struct acpi_ioremap *map;
308 
309 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
310 		if (map->virt <= virt &&
311 		    virt + size <= map->virt + map->size)
312 			return map;
313 
314 	return NULL;
315 }
316 
317 void __iomem *__init_refok
318 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
319 {
320 	struct acpi_ioremap *map;
321 	void __iomem *virt;
322 	acpi_physical_address pg_off;
323 	acpi_size pg_sz;
324 
325 	if (phys > ULONG_MAX) {
326 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
327 		return NULL;
328 	}
329 
330 	if (!acpi_gbl_permanent_mmap)
331 		return __acpi_map_table((unsigned long)phys, size);
332 
333 	mutex_lock(&acpi_ioremap_lock);
334 	/* Check if there's a suitable mapping already. */
335 	map = acpi_map_lookup(phys, size);
336 	if (map) {
337 		map->refcount++;
338 		goto out;
339 	}
340 
341 	map = kzalloc(sizeof(*map), GFP_KERNEL);
342 	if (!map) {
343 		mutex_unlock(&acpi_ioremap_lock);
344 		return NULL;
345 	}
346 
347 	pg_off = round_down(phys, PAGE_SIZE);
348 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
349 	virt = acpi_os_ioremap(pg_off, pg_sz);
350 	if (!virt) {
351 		mutex_unlock(&acpi_ioremap_lock);
352 		kfree(map);
353 		return NULL;
354 	}
355 
356 	INIT_LIST_HEAD(&map->list);
357 	map->virt = virt;
358 	map->phys = pg_off;
359 	map->size = pg_sz;
360 	map->refcount = 1;
361 
362 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
363 
364  out:
365 	mutex_unlock(&acpi_ioremap_lock);
366 	return map->virt + (phys - map->phys);
367 }
368 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
369 
370 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
371 {
372 	if (!--map->refcount)
373 		list_del_rcu(&map->list);
374 }
375 
376 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
377 {
378 	if (!map->refcount) {
379 		synchronize_rcu();
380 		iounmap(map->virt);
381 		kfree(map);
382 	}
383 }
384 
385 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
386 {
387 	struct acpi_ioremap *map;
388 
389 	if (!acpi_gbl_permanent_mmap) {
390 		__acpi_unmap_table(virt, size);
391 		return;
392 	}
393 
394 	mutex_lock(&acpi_ioremap_lock);
395 	map = acpi_map_lookup_virt(virt, size);
396 	if (!map) {
397 		mutex_unlock(&acpi_ioremap_lock);
398 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
399 		return;
400 	}
401 	acpi_os_drop_map_ref(map);
402 	mutex_unlock(&acpi_ioremap_lock);
403 
404 	acpi_os_map_cleanup(map);
405 }
406 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
407 
408 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
409 {
410 	if (!acpi_gbl_permanent_mmap)
411 		__acpi_unmap_table(virt, size);
412 }
413 
414 static int acpi_os_map_generic_address(struct acpi_generic_address *addr)
415 {
416 	void __iomem *virt;
417 
418 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
419 		return 0;
420 
421 	if (!addr->address || !addr->bit_width)
422 		return -EINVAL;
423 
424 	virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
425 	if (!virt)
426 		return -EIO;
427 
428 	return 0;
429 }
430 
431 static void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
432 {
433 	struct acpi_ioremap *map;
434 
435 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
436 		return;
437 
438 	if (!addr->address || !addr->bit_width)
439 		return;
440 
441 	mutex_lock(&acpi_ioremap_lock);
442 	map = acpi_map_lookup(addr->address, addr->bit_width / 8);
443 	if (!map) {
444 		mutex_unlock(&acpi_ioremap_lock);
445 		return;
446 	}
447 	acpi_os_drop_map_ref(map);
448 	mutex_unlock(&acpi_ioremap_lock);
449 
450 	acpi_os_map_cleanup(map);
451 }
452 
453 #ifdef ACPI_FUTURE_USAGE
454 acpi_status
455 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
456 {
457 	if (!phys || !virt)
458 		return AE_BAD_PARAMETER;
459 
460 	*phys = virt_to_phys(virt);
461 
462 	return AE_OK;
463 }
464 #endif
465 
466 #define ACPI_MAX_OVERRIDE_LEN 100
467 
468 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
469 
470 acpi_status
471 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
472 			    acpi_string * new_val)
473 {
474 	if (!init_val || !new_val)
475 		return AE_BAD_PARAMETER;
476 
477 	*new_val = NULL;
478 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
479 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
480 		       acpi_os_name);
481 		*new_val = acpi_os_name;
482 	}
483 
484 	return AE_OK;
485 }
486 
487 acpi_status
488 acpi_os_table_override(struct acpi_table_header * existing_table,
489 		       struct acpi_table_header ** new_table)
490 {
491 	if (!existing_table || !new_table)
492 		return AE_BAD_PARAMETER;
493 
494 	*new_table = NULL;
495 
496 #ifdef CONFIG_ACPI_CUSTOM_DSDT
497 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
498 		*new_table = (struct acpi_table_header *)AmlCode;
499 #endif
500 	if (*new_table != NULL) {
501 		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
502 			   "this is unsafe: tainting kernel\n",
503 		       existing_table->signature,
504 		       existing_table->oem_table_id);
505 		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
506 	}
507 	return AE_OK;
508 }
509 
510 static irqreturn_t acpi_irq(int irq, void *dev_id)
511 {
512 	u32 handled;
513 
514 	handled = (*acpi_irq_handler) (acpi_irq_context);
515 
516 	if (handled) {
517 		acpi_irq_handled++;
518 		return IRQ_HANDLED;
519 	} else {
520 		acpi_irq_not_handled++;
521 		return IRQ_NONE;
522 	}
523 }
524 
525 acpi_status
526 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
527 				  void *context)
528 {
529 	unsigned int irq;
530 
531 	acpi_irq_stats_init();
532 
533 	/*
534 	 * ACPI interrupts different from the SCI in our copy of the FADT are
535 	 * not supported.
536 	 */
537 	if (gsi != acpi_gbl_FADT.sci_interrupt)
538 		return AE_BAD_PARAMETER;
539 
540 	if (acpi_irq_handler)
541 		return AE_ALREADY_ACQUIRED;
542 
543 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
544 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
545 		       gsi);
546 		return AE_OK;
547 	}
548 
549 	acpi_irq_handler = handler;
550 	acpi_irq_context = context;
551 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
552 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
553 		acpi_irq_handler = NULL;
554 		return AE_NOT_ACQUIRED;
555 	}
556 
557 	return AE_OK;
558 }
559 
560 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
561 {
562 	if (irq != acpi_gbl_FADT.sci_interrupt)
563 		return AE_BAD_PARAMETER;
564 
565 	free_irq(irq, acpi_irq);
566 	acpi_irq_handler = NULL;
567 
568 	return AE_OK;
569 }
570 
571 /*
572  * Running in interpreter thread context, safe to sleep
573  */
574 
575 void acpi_os_sleep(u64 ms)
576 {
577 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
578 }
579 
580 void acpi_os_stall(u32 us)
581 {
582 	while (us) {
583 		u32 delay = 1000;
584 
585 		if (delay > us)
586 			delay = us;
587 		udelay(delay);
588 		touch_nmi_watchdog();
589 		us -= delay;
590 	}
591 }
592 
593 /*
594  * Support ACPI 3.0 AML Timer operand
595  * Returns 64-bit free-running, monotonically increasing timer
596  * with 100ns granularity
597  */
598 u64 acpi_os_get_timer(void)
599 {
600 	static u64 t;
601 
602 #ifdef	CONFIG_HPET
603 	/* TBD: use HPET if available */
604 #endif
605 
606 #ifdef	CONFIG_X86_PM_TIMER
607 	/* TBD: default to PM timer if HPET was not available */
608 #endif
609 	if (!t)
610 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
611 
612 	return ++t;
613 }
614 
615 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
616 {
617 	u32 dummy;
618 
619 	if (!value)
620 		value = &dummy;
621 
622 	*value = 0;
623 	if (width <= 8) {
624 		*(u8 *) value = inb(port);
625 	} else if (width <= 16) {
626 		*(u16 *) value = inw(port);
627 	} else if (width <= 32) {
628 		*(u32 *) value = inl(port);
629 	} else {
630 		BUG();
631 	}
632 
633 	return AE_OK;
634 }
635 
636 EXPORT_SYMBOL(acpi_os_read_port);
637 
638 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
639 {
640 	if (width <= 8) {
641 		outb(value, port);
642 	} else if (width <= 16) {
643 		outw(value, port);
644 	} else if (width <= 32) {
645 		outl(value, port);
646 	} else {
647 		BUG();
648 	}
649 
650 	return AE_OK;
651 }
652 
653 EXPORT_SYMBOL(acpi_os_write_port);
654 
655 acpi_status
656 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
657 {
658 	void __iomem *virt_addr;
659 	unsigned int size = width / 8;
660 	bool unmap = false;
661 	u32 dummy;
662 
663 	rcu_read_lock();
664 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
665 	if (!virt_addr) {
666 		rcu_read_unlock();
667 		virt_addr = acpi_os_ioremap(phys_addr, size);
668 		if (!virt_addr)
669 			return AE_BAD_ADDRESS;
670 		unmap = true;
671 	}
672 
673 	if (!value)
674 		value = &dummy;
675 
676 	switch (width) {
677 	case 8:
678 		*(u8 *) value = readb(virt_addr);
679 		break;
680 	case 16:
681 		*(u16 *) value = readw(virt_addr);
682 		break;
683 	case 32:
684 		*(u32 *) value = readl(virt_addr);
685 		break;
686 	default:
687 		BUG();
688 	}
689 
690 	if (unmap)
691 		iounmap(virt_addr);
692 	else
693 		rcu_read_unlock();
694 
695 	return AE_OK;
696 }
697 
698 acpi_status
699 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
700 {
701 	void __iomem *virt_addr;
702 	unsigned int size = width / 8;
703 	bool unmap = false;
704 
705 	rcu_read_lock();
706 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
707 	if (!virt_addr) {
708 		rcu_read_unlock();
709 		virt_addr = acpi_os_ioremap(phys_addr, size);
710 		if (!virt_addr)
711 			return AE_BAD_ADDRESS;
712 		unmap = true;
713 	}
714 
715 	switch (width) {
716 	case 8:
717 		writeb(value, virt_addr);
718 		break;
719 	case 16:
720 		writew(value, virt_addr);
721 		break;
722 	case 32:
723 		writel(value, virt_addr);
724 		break;
725 	default:
726 		BUG();
727 	}
728 
729 	if (unmap)
730 		iounmap(virt_addr);
731 	else
732 		rcu_read_unlock();
733 
734 	return AE_OK;
735 }
736 
737 acpi_status
738 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
739 			       u64 *value, u32 width)
740 {
741 	int result, size;
742 	u32 value32;
743 
744 	if (!value)
745 		return AE_BAD_PARAMETER;
746 
747 	switch (width) {
748 	case 8:
749 		size = 1;
750 		break;
751 	case 16:
752 		size = 2;
753 		break;
754 	case 32:
755 		size = 4;
756 		break;
757 	default:
758 		return AE_ERROR;
759 	}
760 
761 	result = raw_pci_read(pci_id->segment, pci_id->bus,
762 				PCI_DEVFN(pci_id->device, pci_id->function),
763 				reg, size, &value32);
764 	*value = value32;
765 
766 	return (result ? AE_ERROR : AE_OK);
767 }
768 
769 acpi_status
770 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
771 				u64 value, u32 width)
772 {
773 	int result, size;
774 
775 	switch (width) {
776 	case 8:
777 		size = 1;
778 		break;
779 	case 16:
780 		size = 2;
781 		break;
782 	case 32:
783 		size = 4;
784 		break;
785 	default:
786 		return AE_ERROR;
787 	}
788 
789 	result = raw_pci_write(pci_id->segment, pci_id->bus,
790 				PCI_DEVFN(pci_id->device, pci_id->function),
791 				reg, size, value);
792 
793 	return (result ? AE_ERROR : AE_OK);
794 }
795 
796 static void acpi_os_execute_deferred(struct work_struct *work)
797 {
798 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
799 
800 	if (dpc->wait)
801 		acpi_os_wait_events_complete(NULL);
802 
803 	dpc->function(dpc->context);
804 	kfree(dpc);
805 }
806 
807 /*******************************************************************************
808  *
809  * FUNCTION:    acpi_os_execute
810  *
811  * PARAMETERS:  Type               - Type of the callback
812  *              Function           - Function to be executed
813  *              Context            - Function parameters
814  *
815  * RETURN:      Status
816  *
817  * DESCRIPTION: Depending on type, either queues function for deferred execution or
818  *              immediately executes function on a separate thread.
819  *
820  ******************************************************************************/
821 
822 static acpi_status __acpi_os_execute(acpi_execute_type type,
823 	acpi_osd_exec_callback function, void *context, int hp)
824 {
825 	acpi_status status = AE_OK;
826 	struct acpi_os_dpc *dpc;
827 	struct workqueue_struct *queue;
828 	int ret;
829 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
830 			  "Scheduling function [%p(%p)] for deferred execution.\n",
831 			  function, context));
832 
833 	/*
834 	 * Allocate/initialize DPC structure.  Note that this memory will be
835 	 * freed by the callee.  The kernel handles the work_struct list  in a
836 	 * way that allows us to also free its memory inside the callee.
837 	 * Because we may want to schedule several tasks with different
838 	 * parameters we can't use the approach some kernel code uses of
839 	 * having a static work_struct.
840 	 */
841 
842 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
843 	if (!dpc)
844 		return AE_NO_MEMORY;
845 
846 	dpc->function = function;
847 	dpc->context = context;
848 
849 	/*
850 	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
851 	 * because the hotplug code may call driver .remove() functions,
852 	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
853 	 * to flush these workqueues.
854 	 */
855 	queue = hp ? kacpi_hotplug_wq :
856 		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
857 	dpc->wait = hp ? 1 : 0;
858 
859 	if (queue == kacpi_hotplug_wq)
860 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
861 	else if (queue == kacpi_notify_wq)
862 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
863 	else
864 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
865 
866 	/*
867 	 * On some machines, a software-initiated SMI causes corruption unless
868 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
869 	 * typically it's done in GPE-related methods that are run via
870 	 * workqueues, so we can avoid the known corruption cases by always
871 	 * queueing on CPU 0.
872 	 */
873 	ret = queue_work_on(0, queue, &dpc->work);
874 
875 	if (!ret) {
876 		printk(KERN_ERR PREFIX
877 			  "Call to queue_work() failed.\n");
878 		status = AE_ERROR;
879 		kfree(dpc);
880 	}
881 	return status;
882 }
883 
884 acpi_status acpi_os_execute(acpi_execute_type type,
885 			    acpi_osd_exec_callback function, void *context)
886 {
887 	return __acpi_os_execute(type, function, context, 0);
888 }
889 EXPORT_SYMBOL(acpi_os_execute);
890 
891 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
892 	void *context)
893 {
894 	return __acpi_os_execute(0, function, context, 1);
895 }
896 
897 void acpi_os_wait_events_complete(void *context)
898 {
899 	flush_workqueue(kacpid_wq);
900 	flush_workqueue(kacpi_notify_wq);
901 }
902 
903 EXPORT_SYMBOL(acpi_os_wait_events_complete);
904 
905 acpi_status
906 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
907 {
908 	struct semaphore *sem = NULL;
909 
910 	sem = acpi_os_allocate(sizeof(struct semaphore));
911 	if (!sem)
912 		return AE_NO_MEMORY;
913 	memset(sem, 0, sizeof(struct semaphore));
914 
915 	sema_init(sem, initial_units);
916 
917 	*handle = (acpi_handle *) sem;
918 
919 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
920 			  *handle, initial_units));
921 
922 	return AE_OK;
923 }
924 
925 /*
926  * TODO: A better way to delete semaphores?  Linux doesn't have a
927  * 'delete_semaphore()' function -- may result in an invalid
928  * pointer dereference for non-synchronized consumers.	Should
929  * we at least check for blocked threads and signal/cancel them?
930  */
931 
932 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
933 {
934 	struct semaphore *sem = (struct semaphore *)handle;
935 
936 	if (!sem)
937 		return AE_BAD_PARAMETER;
938 
939 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
940 
941 	BUG_ON(!list_empty(&sem->wait_list));
942 	kfree(sem);
943 	sem = NULL;
944 
945 	return AE_OK;
946 }
947 
948 /*
949  * TODO: Support for units > 1?
950  */
951 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
952 {
953 	acpi_status status = AE_OK;
954 	struct semaphore *sem = (struct semaphore *)handle;
955 	long jiffies;
956 	int ret = 0;
957 
958 	if (!sem || (units < 1))
959 		return AE_BAD_PARAMETER;
960 
961 	if (units > 1)
962 		return AE_SUPPORT;
963 
964 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
965 			  handle, units, timeout));
966 
967 	if (timeout == ACPI_WAIT_FOREVER)
968 		jiffies = MAX_SCHEDULE_TIMEOUT;
969 	else
970 		jiffies = msecs_to_jiffies(timeout);
971 
972 	ret = down_timeout(sem, jiffies);
973 	if (ret)
974 		status = AE_TIME;
975 
976 	if (ACPI_FAILURE(status)) {
977 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
978 				  "Failed to acquire semaphore[%p|%d|%d], %s",
979 				  handle, units, timeout,
980 				  acpi_format_exception(status)));
981 	} else {
982 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
983 				  "Acquired semaphore[%p|%d|%d]", handle,
984 				  units, timeout));
985 	}
986 
987 	return status;
988 }
989 
990 /*
991  * TODO: Support for units > 1?
992  */
993 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
994 {
995 	struct semaphore *sem = (struct semaphore *)handle;
996 
997 	if (!sem || (units < 1))
998 		return AE_BAD_PARAMETER;
999 
1000 	if (units > 1)
1001 		return AE_SUPPORT;
1002 
1003 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1004 			  units));
1005 
1006 	up(sem);
1007 
1008 	return AE_OK;
1009 }
1010 
1011 #ifdef ACPI_FUTURE_USAGE
1012 u32 acpi_os_get_line(char *buffer)
1013 {
1014 
1015 #ifdef ENABLE_DEBUGGER
1016 	if (acpi_in_debugger) {
1017 		u32 chars;
1018 
1019 		kdb_read(buffer, sizeof(line_buf));
1020 
1021 		/* remove the CR kdb includes */
1022 		chars = strlen(buffer) - 1;
1023 		buffer[chars] = '\0';
1024 	}
1025 #endif
1026 
1027 	return 0;
1028 }
1029 #endif				/*  ACPI_FUTURE_USAGE  */
1030 
1031 acpi_status acpi_os_signal(u32 function, void *info)
1032 {
1033 	switch (function) {
1034 	case ACPI_SIGNAL_FATAL:
1035 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1036 		break;
1037 	case ACPI_SIGNAL_BREAKPOINT:
1038 		/*
1039 		 * AML Breakpoint
1040 		 * ACPI spec. says to treat it as a NOP unless
1041 		 * you are debugging.  So if/when we integrate
1042 		 * AML debugger into the kernel debugger its
1043 		 * hook will go here.  But until then it is
1044 		 * not useful to print anything on breakpoints.
1045 		 */
1046 		break;
1047 	default:
1048 		break;
1049 	}
1050 
1051 	return AE_OK;
1052 }
1053 
1054 static int __init acpi_os_name_setup(char *str)
1055 {
1056 	char *p = acpi_os_name;
1057 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1058 
1059 	if (!str || !*str)
1060 		return 0;
1061 
1062 	for (; count-- && str && *str; str++) {
1063 		if (isalnum(*str) || *str == ' ' || *str == ':')
1064 			*p++ = *str;
1065 		else if (*str == '\'' || *str == '"')
1066 			continue;
1067 		else
1068 			break;
1069 	}
1070 	*p = 0;
1071 
1072 	return 1;
1073 
1074 }
1075 
1076 __setup("acpi_os_name=", acpi_os_name_setup);
1077 
1078 #define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1079 #define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1080 
1081 struct osi_setup_entry {
1082 	char string[OSI_STRING_LENGTH_MAX];
1083 	bool enable;
1084 };
1085 
1086 static struct osi_setup_entry __initdata osi_setup_entries[OSI_STRING_ENTRIES_MAX];
1087 
1088 void __init acpi_osi_setup(char *str)
1089 {
1090 	struct osi_setup_entry *osi;
1091 	bool enable = true;
1092 	int i;
1093 
1094 	if (!acpi_gbl_create_osi_method)
1095 		return;
1096 
1097 	if (str == NULL || *str == '\0') {
1098 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1099 		acpi_gbl_create_osi_method = FALSE;
1100 		return;
1101 	}
1102 
1103 	if (*str == '!') {
1104 		str++;
1105 		enable = false;
1106 	}
1107 
1108 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1109 		osi = &osi_setup_entries[i];
1110 		if (!strcmp(osi->string, str)) {
1111 			osi->enable = enable;
1112 			break;
1113 		} else if (osi->string[0] == '\0') {
1114 			osi->enable = enable;
1115 			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1116 			break;
1117 		}
1118 	}
1119 }
1120 
1121 static void __init set_osi_linux(unsigned int enable)
1122 {
1123 	if (osi_linux.enable != enable)
1124 		osi_linux.enable = enable;
1125 
1126 	if (osi_linux.enable)
1127 		acpi_osi_setup("Linux");
1128 	else
1129 		acpi_osi_setup("!Linux");
1130 
1131 	return;
1132 }
1133 
1134 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1135 {
1136 	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1137 	osi_linux.dmi = 0;
1138 	set_osi_linux(enable);
1139 
1140 	return;
1141 }
1142 
1143 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1144 {
1145 	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1146 
1147 	if (enable == -1)
1148 		return;
1149 
1150 	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1151 	set_osi_linux(enable);
1152 
1153 	return;
1154 }
1155 
1156 /*
1157  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1158  *
1159  * empty string disables _OSI
1160  * string starting with '!' disables that string
1161  * otherwise string is added to list, augmenting built-in strings
1162  */
1163 static void __init acpi_osi_setup_late(void)
1164 {
1165 	struct osi_setup_entry *osi;
1166 	char *str;
1167 	int i;
1168 	acpi_status status;
1169 
1170 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1171 		osi = &osi_setup_entries[i];
1172 		str = osi->string;
1173 
1174 		if (*str == '\0')
1175 			break;
1176 		if (osi->enable) {
1177 			status = acpi_install_interface(str);
1178 
1179 			if (ACPI_SUCCESS(status))
1180 				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1181 		} else {
1182 			status = acpi_remove_interface(str);
1183 
1184 			if (ACPI_SUCCESS(status))
1185 				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1186 		}
1187 	}
1188 }
1189 
1190 static int __init osi_setup(char *str)
1191 {
1192 	if (str && !strcmp("Linux", str))
1193 		acpi_cmdline_osi_linux(1);
1194 	else if (str && !strcmp("!Linux", str))
1195 		acpi_cmdline_osi_linux(0);
1196 	else
1197 		acpi_osi_setup(str);
1198 
1199 	return 1;
1200 }
1201 
1202 __setup("acpi_osi=", osi_setup);
1203 
1204 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1205 static int __init acpi_serialize_setup(char *str)
1206 {
1207 	printk(KERN_INFO PREFIX "serialize enabled\n");
1208 
1209 	acpi_gbl_all_methods_serialized = TRUE;
1210 
1211 	return 1;
1212 }
1213 
1214 __setup("acpi_serialize", acpi_serialize_setup);
1215 
1216 /* Check of resource interference between native drivers and ACPI
1217  * OperationRegions (SystemIO and System Memory only).
1218  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1219  * in arbitrary AML code and can interfere with legacy drivers.
1220  * acpi_enforce_resources= can be set to:
1221  *
1222  *   - strict (default) (2)
1223  *     -> further driver trying to access the resources will not load
1224  *   - lax              (1)
1225  *     -> further driver trying to access the resources will load, but you
1226  *     get a system message that something might go wrong...
1227  *
1228  *   - no               (0)
1229  *     -> ACPI Operation Region resources will not be registered
1230  *
1231  */
1232 #define ENFORCE_RESOURCES_STRICT 2
1233 #define ENFORCE_RESOURCES_LAX    1
1234 #define ENFORCE_RESOURCES_NO     0
1235 
1236 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1237 
1238 static int __init acpi_enforce_resources_setup(char *str)
1239 {
1240 	if (str == NULL || *str == '\0')
1241 		return 0;
1242 
1243 	if (!strcmp("strict", str))
1244 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1245 	else if (!strcmp("lax", str))
1246 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1247 	else if (!strcmp("no", str))
1248 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1249 
1250 	return 1;
1251 }
1252 
1253 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1254 
1255 /* Check for resource conflicts between ACPI OperationRegions and native
1256  * drivers */
1257 int acpi_check_resource_conflict(const struct resource *res)
1258 {
1259 	struct acpi_res_list *res_list_elem;
1260 	int ioport = 0, clash = 0;
1261 
1262 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1263 		return 0;
1264 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1265 		return 0;
1266 
1267 	ioport = res->flags & IORESOURCE_IO;
1268 
1269 	spin_lock(&acpi_res_lock);
1270 	list_for_each_entry(res_list_elem, &resource_list_head,
1271 			    resource_list) {
1272 		if (ioport && (res_list_elem->resource_type
1273 			       != ACPI_ADR_SPACE_SYSTEM_IO))
1274 			continue;
1275 		if (!ioport && (res_list_elem->resource_type
1276 				!= ACPI_ADR_SPACE_SYSTEM_MEMORY))
1277 			continue;
1278 
1279 		if (res->end < res_list_elem->start
1280 		    || res_list_elem->end < res->start)
1281 			continue;
1282 		clash = 1;
1283 		break;
1284 	}
1285 	spin_unlock(&acpi_res_lock);
1286 
1287 	if (clash) {
1288 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1289 			printk(KERN_WARNING "ACPI: resource %s %pR"
1290 			       " conflicts with ACPI region %s "
1291 			       "[%s 0x%zx-0x%zx]\n",
1292 			       res->name, res, res_list_elem->name,
1293 			       (res_list_elem->resource_type ==
1294 				ACPI_ADR_SPACE_SYSTEM_IO) ? "io" : "mem",
1295 			       (size_t) res_list_elem->start,
1296 			       (size_t) res_list_elem->end);
1297 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1298 				printk(KERN_NOTICE "ACPI: This conflict may"
1299 				       " cause random problems and system"
1300 				       " instability\n");
1301 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1302 			       " for this device, you should use it instead of"
1303 			       " the native driver\n");
1304 		}
1305 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1306 			return -EBUSY;
1307 	}
1308 	return 0;
1309 }
1310 EXPORT_SYMBOL(acpi_check_resource_conflict);
1311 
1312 int acpi_check_region(resource_size_t start, resource_size_t n,
1313 		      const char *name)
1314 {
1315 	struct resource res = {
1316 		.start = start,
1317 		.end   = start + n - 1,
1318 		.name  = name,
1319 		.flags = IORESOURCE_IO,
1320 	};
1321 
1322 	return acpi_check_resource_conflict(&res);
1323 }
1324 EXPORT_SYMBOL(acpi_check_region);
1325 
1326 /*
1327  * Let drivers know whether the resource checks are effective
1328  */
1329 int acpi_resources_are_enforced(void)
1330 {
1331 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1332 }
1333 EXPORT_SYMBOL(acpi_resources_are_enforced);
1334 
1335 /*
1336  * Create and initialize a spinlock.
1337  */
1338 acpi_status
1339 acpi_os_create_lock(acpi_spinlock *out_handle)
1340 {
1341 	spinlock_t *lock;
1342 
1343 	lock = ACPI_ALLOCATE(sizeof(spinlock_t));
1344 	if (!lock)
1345 		return AE_NO_MEMORY;
1346 	spin_lock_init(lock);
1347 	*out_handle = lock;
1348 
1349 	return AE_OK;
1350 }
1351 
1352 /*
1353  * Deallocate the memory for a spinlock.
1354  */
1355 void acpi_os_delete_lock(acpi_spinlock handle)
1356 {
1357 	ACPI_FREE(handle);
1358 }
1359 
1360 /*
1361  * Acquire a spinlock.
1362  *
1363  * handle is a pointer to the spinlock_t.
1364  */
1365 
1366 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1367 {
1368 	acpi_cpu_flags flags;
1369 	spin_lock_irqsave(lockp, flags);
1370 	return flags;
1371 }
1372 
1373 /*
1374  * Release a spinlock. See above.
1375  */
1376 
1377 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1378 {
1379 	spin_unlock_irqrestore(lockp, flags);
1380 }
1381 
1382 #ifndef ACPI_USE_LOCAL_CACHE
1383 
1384 /*******************************************************************************
1385  *
1386  * FUNCTION:    acpi_os_create_cache
1387  *
1388  * PARAMETERS:  name      - Ascii name for the cache
1389  *              size      - Size of each cached object
1390  *              depth     - Maximum depth of the cache (in objects) <ignored>
1391  *              cache     - Where the new cache object is returned
1392  *
1393  * RETURN:      status
1394  *
1395  * DESCRIPTION: Create a cache object
1396  *
1397  ******************************************************************************/
1398 
1399 acpi_status
1400 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1401 {
1402 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1403 	if (*cache == NULL)
1404 		return AE_ERROR;
1405 	else
1406 		return AE_OK;
1407 }
1408 
1409 /*******************************************************************************
1410  *
1411  * FUNCTION:    acpi_os_purge_cache
1412  *
1413  * PARAMETERS:  Cache           - Handle to cache object
1414  *
1415  * RETURN:      Status
1416  *
1417  * DESCRIPTION: Free all objects within the requested cache.
1418  *
1419  ******************************************************************************/
1420 
1421 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1422 {
1423 	kmem_cache_shrink(cache);
1424 	return (AE_OK);
1425 }
1426 
1427 /*******************************************************************************
1428  *
1429  * FUNCTION:    acpi_os_delete_cache
1430  *
1431  * PARAMETERS:  Cache           - Handle to cache object
1432  *
1433  * RETURN:      Status
1434  *
1435  * DESCRIPTION: Free all objects within the requested cache and delete the
1436  *              cache object.
1437  *
1438  ******************************************************************************/
1439 
1440 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1441 {
1442 	kmem_cache_destroy(cache);
1443 	return (AE_OK);
1444 }
1445 
1446 /*******************************************************************************
1447  *
1448  * FUNCTION:    acpi_os_release_object
1449  *
1450  * PARAMETERS:  Cache       - Handle to cache object
1451  *              Object      - The object to be released
1452  *
1453  * RETURN:      None
1454  *
1455  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1456  *              the object is deleted.
1457  *
1458  ******************************************************************************/
1459 
1460 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1461 {
1462 	kmem_cache_free(cache, object);
1463 	return (AE_OK);
1464 }
1465 
1466 static inline int acpi_res_list_add(struct acpi_res_list *res)
1467 {
1468 	struct acpi_res_list *res_list_elem;
1469 
1470 	list_for_each_entry(res_list_elem, &resource_list_head,
1471 			    resource_list) {
1472 
1473 		if (res->resource_type == res_list_elem->resource_type &&
1474 		    res->start == res_list_elem->start &&
1475 		    res->end == res_list_elem->end) {
1476 
1477 			/*
1478 			 * The Region(addr,len) already exist in the list,
1479 			 * just increase the count
1480 			 */
1481 
1482 			res_list_elem->count++;
1483 			return 0;
1484 		}
1485 	}
1486 
1487 	res->count = 1;
1488 	list_add(&res->resource_list, &resource_list_head);
1489 	return 1;
1490 }
1491 
1492 static inline void acpi_res_list_del(struct acpi_res_list *res)
1493 {
1494 	struct acpi_res_list *res_list_elem;
1495 
1496 	list_for_each_entry(res_list_elem, &resource_list_head,
1497 			    resource_list) {
1498 
1499 		if (res->resource_type == res_list_elem->resource_type &&
1500 		    res->start == res_list_elem->start &&
1501 		    res->end == res_list_elem->end) {
1502 
1503 			/*
1504 			 * If the res count is decreased to 0,
1505 			 * remove and free it
1506 			 */
1507 
1508 			if (--res_list_elem->count == 0) {
1509 				list_del(&res_list_elem->resource_list);
1510 				kfree(res_list_elem);
1511 			}
1512 			return;
1513 		}
1514 	}
1515 }
1516 
1517 acpi_status
1518 acpi_os_invalidate_address(
1519     u8                   space_id,
1520     acpi_physical_address   address,
1521     acpi_size               length)
1522 {
1523 	struct acpi_res_list res;
1524 
1525 	switch (space_id) {
1526 	case ACPI_ADR_SPACE_SYSTEM_IO:
1527 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1528 		/* Only interference checks against SystemIO and SystemMemory
1529 		   are needed */
1530 		res.start = address;
1531 		res.end = address + length - 1;
1532 		res.resource_type = space_id;
1533 		spin_lock(&acpi_res_lock);
1534 		acpi_res_list_del(&res);
1535 		spin_unlock(&acpi_res_lock);
1536 		break;
1537 	case ACPI_ADR_SPACE_PCI_CONFIG:
1538 	case ACPI_ADR_SPACE_EC:
1539 	case ACPI_ADR_SPACE_SMBUS:
1540 	case ACPI_ADR_SPACE_CMOS:
1541 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1542 	case ACPI_ADR_SPACE_DATA_TABLE:
1543 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1544 		break;
1545 	}
1546 	return AE_OK;
1547 }
1548 
1549 /******************************************************************************
1550  *
1551  * FUNCTION:    acpi_os_validate_address
1552  *
1553  * PARAMETERS:  space_id             - ACPI space ID
1554  *              address             - Physical address
1555  *              length              - Address length
1556  *
1557  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1558  *              should return AE_AML_ILLEGAL_ADDRESS.
1559  *
1560  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1561  *              the addresses accessed by AML operation regions.
1562  *
1563  *****************************************************************************/
1564 
1565 acpi_status
1566 acpi_os_validate_address (
1567     u8                   space_id,
1568     acpi_physical_address   address,
1569     acpi_size               length,
1570     char *name)
1571 {
1572 	struct acpi_res_list *res;
1573 	int added;
1574 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1575 		return AE_OK;
1576 
1577 	switch (space_id) {
1578 	case ACPI_ADR_SPACE_SYSTEM_IO:
1579 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1580 		/* Only interference checks against SystemIO and SystemMemory
1581 		   are needed */
1582 		res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1583 		if (!res)
1584 			return AE_OK;
1585 		/* ACPI names are fixed to 4 bytes, still better use strlcpy */
1586 		strlcpy(res->name, name, 5);
1587 		res->start = address;
1588 		res->end = address + length - 1;
1589 		res->resource_type = space_id;
1590 		spin_lock(&acpi_res_lock);
1591 		added = acpi_res_list_add(res);
1592 		spin_unlock(&acpi_res_lock);
1593 		pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1594 			 "name: %s\n", added ? "Added" : "Already exist",
1595 			 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1596 			 ? "SystemIO" : "System Memory",
1597 			 (unsigned long long)res->start,
1598 			 (unsigned long long)res->end,
1599 			 res->name);
1600 		if (!added)
1601 			kfree(res);
1602 		break;
1603 	case ACPI_ADR_SPACE_PCI_CONFIG:
1604 	case ACPI_ADR_SPACE_EC:
1605 	case ACPI_ADR_SPACE_SMBUS:
1606 	case ACPI_ADR_SPACE_CMOS:
1607 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1608 	case ACPI_ADR_SPACE_DATA_TABLE:
1609 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1610 		break;
1611 	}
1612 	return AE_OK;
1613 }
1614 #endif
1615 
1616 acpi_status __init acpi_os_initialize(void)
1617 {
1618 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1619 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1620 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1621 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1622 
1623 	return AE_OK;
1624 }
1625 
1626 acpi_status __init acpi_os_initialize1(void)
1627 {
1628 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1629 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1630 	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1631 	BUG_ON(!kacpid_wq);
1632 	BUG_ON(!kacpi_notify_wq);
1633 	BUG_ON(!kacpi_hotplug_wq);
1634 	acpi_install_interface_handler(acpi_osi_handler);
1635 	acpi_osi_setup_late();
1636 	return AE_OK;
1637 }
1638 
1639 acpi_status acpi_os_terminate(void)
1640 {
1641 	if (acpi_irq_handler) {
1642 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1643 						 acpi_irq_handler);
1644 	}
1645 
1646 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1647 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1648 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1649 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1650 
1651 	destroy_workqueue(kacpid_wq);
1652 	destroy_workqueue(kacpi_notify_wq);
1653 	destroy_workqueue(kacpi_hotplug_wq);
1654 
1655 	return AE_OK;
1656 }
1657