1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2019, Intel Corporation. 4 * 5 * Heterogeneous Memory Attributes Table (HMAT) representation 6 * 7 * This program parses and reports the platform's HMAT tables, and registers 8 * the applicable attributes with the node's interfaces. 9 */ 10 11 #define pr_fmt(fmt) "acpi/hmat: " fmt 12 #define dev_fmt(fmt) "acpi/hmat: " fmt 13 14 #include <linux/acpi.h> 15 #include <linux/bitops.h> 16 #include <linux/device.h> 17 #include <linux/init.h> 18 #include <linux/list.h> 19 #include <linux/mm.h> 20 #include <linux/platform_device.h> 21 #include <linux/list_sort.h> 22 #include <linux/memregion.h> 23 #include <linux/memory.h> 24 #include <linux/mutex.h> 25 #include <linux/node.h> 26 #include <linux/sysfs.h> 27 #include <linux/dax.h> 28 29 static u8 hmat_revision; 30 static int hmat_disable __initdata; 31 32 void __init disable_hmat(void) 33 { 34 hmat_disable = 1; 35 } 36 37 static LIST_HEAD(targets); 38 static LIST_HEAD(initiators); 39 static LIST_HEAD(localities); 40 41 static DEFINE_MUTEX(target_lock); 42 43 /* 44 * The defined enum order is used to prioritize attributes to break ties when 45 * selecting the best performing node. 46 */ 47 enum locality_types { 48 WRITE_LATENCY, 49 READ_LATENCY, 50 WRITE_BANDWIDTH, 51 READ_BANDWIDTH, 52 }; 53 54 static struct memory_locality *localities_types[4]; 55 56 struct target_cache { 57 struct list_head node; 58 struct node_cache_attrs cache_attrs; 59 }; 60 61 struct memory_target { 62 struct list_head node; 63 unsigned int memory_pxm; 64 unsigned int processor_pxm; 65 struct resource memregions; 66 struct node_hmem_attrs hmem_attrs; 67 struct list_head caches; 68 struct node_cache_attrs cache_attrs; 69 bool registered; 70 }; 71 72 struct memory_initiator { 73 struct list_head node; 74 unsigned int processor_pxm; 75 }; 76 77 struct memory_locality { 78 struct list_head node; 79 struct acpi_hmat_locality *hmat_loc; 80 }; 81 82 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm) 83 { 84 struct memory_initiator *initiator; 85 86 list_for_each_entry(initiator, &initiators, node) 87 if (initiator->processor_pxm == cpu_pxm) 88 return initiator; 89 return NULL; 90 } 91 92 static struct memory_target *find_mem_target(unsigned int mem_pxm) 93 { 94 struct memory_target *target; 95 96 list_for_each_entry(target, &targets, node) 97 if (target->memory_pxm == mem_pxm) 98 return target; 99 return NULL; 100 } 101 102 static __init void alloc_memory_initiator(unsigned int cpu_pxm) 103 { 104 struct memory_initiator *initiator; 105 106 if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE) 107 return; 108 109 initiator = find_mem_initiator(cpu_pxm); 110 if (initiator) 111 return; 112 113 initiator = kzalloc(sizeof(*initiator), GFP_KERNEL); 114 if (!initiator) 115 return; 116 117 initiator->processor_pxm = cpu_pxm; 118 list_add_tail(&initiator->node, &initiators); 119 } 120 121 static __init void alloc_memory_target(unsigned int mem_pxm, 122 resource_size_t start, resource_size_t len) 123 { 124 struct memory_target *target; 125 126 target = find_mem_target(mem_pxm); 127 if (!target) { 128 target = kzalloc(sizeof(*target), GFP_KERNEL); 129 if (!target) 130 return; 131 target->memory_pxm = mem_pxm; 132 target->processor_pxm = PXM_INVAL; 133 target->memregions = (struct resource) { 134 .name = "ACPI mem", 135 .start = 0, 136 .end = -1, 137 .flags = IORESOURCE_MEM, 138 }; 139 list_add_tail(&target->node, &targets); 140 INIT_LIST_HEAD(&target->caches); 141 } 142 143 /* 144 * There are potentially multiple ranges per PXM, so record each 145 * in the per-target memregions resource tree. 146 */ 147 if (!__request_region(&target->memregions, start, len, "memory target", 148 IORESOURCE_MEM)) 149 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n", 150 start, start + len, mem_pxm); 151 } 152 153 static __init const char *hmat_data_type(u8 type) 154 { 155 switch (type) { 156 case ACPI_HMAT_ACCESS_LATENCY: 157 return "Access Latency"; 158 case ACPI_HMAT_READ_LATENCY: 159 return "Read Latency"; 160 case ACPI_HMAT_WRITE_LATENCY: 161 return "Write Latency"; 162 case ACPI_HMAT_ACCESS_BANDWIDTH: 163 return "Access Bandwidth"; 164 case ACPI_HMAT_READ_BANDWIDTH: 165 return "Read Bandwidth"; 166 case ACPI_HMAT_WRITE_BANDWIDTH: 167 return "Write Bandwidth"; 168 default: 169 return "Reserved"; 170 } 171 } 172 173 static __init const char *hmat_data_type_suffix(u8 type) 174 { 175 switch (type) { 176 case ACPI_HMAT_ACCESS_LATENCY: 177 case ACPI_HMAT_READ_LATENCY: 178 case ACPI_HMAT_WRITE_LATENCY: 179 return " nsec"; 180 case ACPI_HMAT_ACCESS_BANDWIDTH: 181 case ACPI_HMAT_READ_BANDWIDTH: 182 case ACPI_HMAT_WRITE_BANDWIDTH: 183 return " MB/s"; 184 default: 185 return ""; 186 } 187 } 188 189 static u32 hmat_normalize(u16 entry, u64 base, u8 type) 190 { 191 u32 value; 192 193 /* 194 * Check for invalid and overflow values 195 */ 196 if (entry == 0xffff || !entry) 197 return 0; 198 else if (base > (UINT_MAX / (entry))) 199 return 0; 200 201 /* 202 * Divide by the base unit for version 1, convert latency from 203 * picosenonds to nanoseconds if revision 2. 204 */ 205 value = entry * base; 206 if (hmat_revision == 1) { 207 if (value < 10) 208 return 0; 209 value = DIV_ROUND_UP(value, 10); 210 } else if (hmat_revision == 2) { 211 switch (type) { 212 case ACPI_HMAT_ACCESS_LATENCY: 213 case ACPI_HMAT_READ_LATENCY: 214 case ACPI_HMAT_WRITE_LATENCY: 215 value = DIV_ROUND_UP(value, 1000); 216 break; 217 default: 218 break; 219 } 220 } 221 return value; 222 } 223 224 static void hmat_update_target_access(struct memory_target *target, 225 u8 type, u32 value) 226 { 227 switch (type) { 228 case ACPI_HMAT_ACCESS_LATENCY: 229 target->hmem_attrs.read_latency = value; 230 target->hmem_attrs.write_latency = value; 231 break; 232 case ACPI_HMAT_READ_LATENCY: 233 target->hmem_attrs.read_latency = value; 234 break; 235 case ACPI_HMAT_WRITE_LATENCY: 236 target->hmem_attrs.write_latency = value; 237 break; 238 case ACPI_HMAT_ACCESS_BANDWIDTH: 239 target->hmem_attrs.read_bandwidth = value; 240 target->hmem_attrs.write_bandwidth = value; 241 break; 242 case ACPI_HMAT_READ_BANDWIDTH: 243 target->hmem_attrs.read_bandwidth = value; 244 break; 245 case ACPI_HMAT_WRITE_BANDWIDTH: 246 target->hmem_attrs.write_bandwidth = value; 247 break; 248 default: 249 break; 250 } 251 } 252 253 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc) 254 { 255 struct memory_locality *loc; 256 257 loc = kzalloc(sizeof(*loc), GFP_KERNEL); 258 if (!loc) { 259 pr_notice_once("Failed to allocate HMAT locality\n"); 260 return; 261 } 262 263 loc->hmat_loc = hmat_loc; 264 list_add_tail(&loc->node, &localities); 265 266 switch (hmat_loc->data_type) { 267 case ACPI_HMAT_ACCESS_LATENCY: 268 localities_types[READ_LATENCY] = loc; 269 localities_types[WRITE_LATENCY] = loc; 270 break; 271 case ACPI_HMAT_READ_LATENCY: 272 localities_types[READ_LATENCY] = loc; 273 break; 274 case ACPI_HMAT_WRITE_LATENCY: 275 localities_types[WRITE_LATENCY] = loc; 276 break; 277 case ACPI_HMAT_ACCESS_BANDWIDTH: 278 localities_types[READ_BANDWIDTH] = loc; 279 localities_types[WRITE_BANDWIDTH] = loc; 280 break; 281 case ACPI_HMAT_READ_BANDWIDTH: 282 localities_types[READ_BANDWIDTH] = loc; 283 break; 284 case ACPI_HMAT_WRITE_BANDWIDTH: 285 localities_types[WRITE_BANDWIDTH] = loc; 286 break; 287 default: 288 break; 289 } 290 } 291 292 static __init int hmat_parse_locality(union acpi_subtable_headers *header, 293 const unsigned long end) 294 { 295 struct acpi_hmat_locality *hmat_loc = (void *)header; 296 struct memory_target *target; 297 unsigned int init, targ, total_size, ipds, tpds; 298 u32 *inits, *targs, value; 299 u16 *entries; 300 u8 type, mem_hier; 301 302 if (hmat_loc->header.length < sizeof(*hmat_loc)) { 303 pr_notice("HMAT: Unexpected locality header length: %u\n", 304 hmat_loc->header.length); 305 return -EINVAL; 306 } 307 308 type = hmat_loc->data_type; 309 mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY; 310 ipds = hmat_loc->number_of_initiator_Pds; 311 tpds = hmat_loc->number_of_target_Pds; 312 total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds + 313 sizeof(*inits) * ipds + sizeof(*targs) * tpds; 314 if (hmat_loc->header.length < total_size) { 315 pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n", 316 hmat_loc->header.length, total_size); 317 return -EINVAL; 318 } 319 320 pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n", 321 hmat_loc->flags, hmat_data_type(type), ipds, tpds, 322 hmat_loc->entry_base_unit); 323 324 inits = (u32 *)(hmat_loc + 1); 325 targs = inits + ipds; 326 entries = (u16 *)(targs + tpds); 327 for (init = 0; init < ipds; init++) { 328 alloc_memory_initiator(inits[init]); 329 for (targ = 0; targ < tpds; targ++) { 330 value = hmat_normalize(entries[init * tpds + targ], 331 hmat_loc->entry_base_unit, 332 type); 333 pr_info(" Initiator-Target[%u-%u]:%u%s\n", 334 inits[init], targs[targ], value, 335 hmat_data_type_suffix(type)); 336 337 if (mem_hier == ACPI_HMAT_MEMORY) { 338 target = find_mem_target(targs[targ]); 339 if (target && target->processor_pxm == inits[init]) 340 hmat_update_target_access(target, type, value); 341 } 342 } 343 } 344 345 if (mem_hier == ACPI_HMAT_MEMORY) 346 hmat_add_locality(hmat_loc); 347 348 return 0; 349 } 350 351 static __init int hmat_parse_cache(union acpi_subtable_headers *header, 352 const unsigned long end) 353 { 354 struct acpi_hmat_cache *cache = (void *)header; 355 struct memory_target *target; 356 struct target_cache *tcache; 357 u32 attrs; 358 359 if (cache->header.length < sizeof(*cache)) { 360 pr_notice("HMAT: Unexpected cache header length: %u\n", 361 cache->header.length); 362 return -EINVAL; 363 } 364 365 attrs = cache->cache_attributes; 366 pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n", 367 cache->memory_PD, cache->cache_size, attrs, 368 cache->number_of_SMBIOShandles); 369 370 target = find_mem_target(cache->memory_PD); 371 if (!target) 372 return 0; 373 374 tcache = kzalloc(sizeof(*tcache), GFP_KERNEL); 375 if (!tcache) { 376 pr_notice_once("Failed to allocate HMAT cache info\n"); 377 return 0; 378 } 379 380 tcache->cache_attrs.size = cache->cache_size; 381 tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4; 382 tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16; 383 384 switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) { 385 case ACPI_HMAT_CA_DIRECT_MAPPED: 386 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP; 387 break; 388 case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING: 389 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED; 390 break; 391 case ACPI_HMAT_CA_NONE: 392 default: 393 tcache->cache_attrs.indexing = NODE_CACHE_OTHER; 394 break; 395 } 396 397 switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) { 398 case ACPI_HMAT_CP_WB: 399 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK; 400 break; 401 case ACPI_HMAT_CP_WT: 402 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH; 403 break; 404 case ACPI_HMAT_CP_NONE: 405 default: 406 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER; 407 break; 408 } 409 list_add_tail(&tcache->node, &target->caches); 410 411 return 0; 412 } 413 414 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header, 415 const unsigned long end) 416 { 417 struct acpi_hmat_proximity_domain *p = (void *)header; 418 struct memory_target *target = NULL; 419 420 if (p->header.length != sizeof(*p)) { 421 pr_notice("HMAT: Unexpected address range header length: %u\n", 422 p->header.length); 423 return -EINVAL; 424 } 425 426 if (hmat_revision == 1) 427 pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n", 428 p->reserved3, p->reserved4, p->flags, p->processor_PD, 429 p->memory_PD); 430 else 431 pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n", 432 p->flags, p->processor_PD, p->memory_PD); 433 434 if (p->flags & ACPI_HMAT_MEMORY_PD_VALID && hmat_revision == 1) { 435 target = find_mem_target(p->memory_PD); 436 if (!target) { 437 pr_debug("HMAT: Memory Domain missing from SRAT\n"); 438 return -EINVAL; 439 } 440 } 441 if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) { 442 int p_node = pxm_to_node(p->processor_PD); 443 444 if (p_node == NUMA_NO_NODE) { 445 pr_debug("HMAT: Invalid Processor Domain\n"); 446 return -EINVAL; 447 } 448 target->processor_pxm = p->processor_PD; 449 } 450 451 return 0; 452 } 453 454 static int __init hmat_parse_subtable(union acpi_subtable_headers *header, 455 const unsigned long end) 456 { 457 struct acpi_hmat_structure *hdr = (void *)header; 458 459 if (!hdr) 460 return -EINVAL; 461 462 switch (hdr->type) { 463 case ACPI_HMAT_TYPE_PROXIMITY: 464 return hmat_parse_proximity_domain(header, end); 465 case ACPI_HMAT_TYPE_LOCALITY: 466 return hmat_parse_locality(header, end); 467 case ACPI_HMAT_TYPE_CACHE: 468 return hmat_parse_cache(header, end); 469 default: 470 return -EINVAL; 471 } 472 } 473 474 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header, 475 const unsigned long end) 476 { 477 struct acpi_srat_mem_affinity *ma = (void *)header; 478 479 if (!ma) 480 return -EINVAL; 481 if (!(ma->flags & ACPI_SRAT_MEM_ENABLED)) 482 return 0; 483 alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length); 484 return 0; 485 } 486 487 static u32 hmat_initiator_perf(struct memory_target *target, 488 struct memory_initiator *initiator, 489 struct acpi_hmat_locality *hmat_loc) 490 { 491 unsigned int ipds, tpds, i, idx = 0, tdx = 0; 492 u32 *inits, *targs; 493 u16 *entries; 494 495 ipds = hmat_loc->number_of_initiator_Pds; 496 tpds = hmat_loc->number_of_target_Pds; 497 inits = (u32 *)(hmat_loc + 1); 498 targs = inits + ipds; 499 entries = (u16 *)(targs + tpds); 500 501 for (i = 0; i < ipds; i++) { 502 if (inits[i] == initiator->processor_pxm) { 503 idx = i; 504 break; 505 } 506 } 507 508 if (i == ipds) 509 return 0; 510 511 for (i = 0; i < tpds; i++) { 512 if (targs[i] == target->memory_pxm) { 513 tdx = i; 514 break; 515 } 516 } 517 if (i == tpds) 518 return 0; 519 520 return hmat_normalize(entries[idx * tpds + tdx], 521 hmat_loc->entry_base_unit, 522 hmat_loc->data_type); 523 } 524 525 static bool hmat_update_best(u8 type, u32 value, u32 *best) 526 { 527 bool updated = false; 528 529 if (!value) 530 return false; 531 532 switch (type) { 533 case ACPI_HMAT_ACCESS_LATENCY: 534 case ACPI_HMAT_READ_LATENCY: 535 case ACPI_HMAT_WRITE_LATENCY: 536 if (!*best || *best > value) { 537 *best = value; 538 updated = true; 539 } 540 break; 541 case ACPI_HMAT_ACCESS_BANDWIDTH: 542 case ACPI_HMAT_READ_BANDWIDTH: 543 case ACPI_HMAT_WRITE_BANDWIDTH: 544 if (!*best || *best < value) { 545 *best = value; 546 updated = true; 547 } 548 break; 549 } 550 551 return updated; 552 } 553 554 static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b) 555 { 556 struct memory_initiator *ia; 557 struct memory_initiator *ib; 558 unsigned long *p_nodes = priv; 559 560 ia = list_entry(a, struct memory_initiator, node); 561 ib = list_entry(b, struct memory_initiator, node); 562 563 set_bit(ia->processor_pxm, p_nodes); 564 set_bit(ib->processor_pxm, p_nodes); 565 566 return ia->processor_pxm - ib->processor_pxm; 567 } 568 569 static void hmat_register_target_initiators(struct memory_target *target) 570 { 571 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES); 572 struct memory_initiator *initiator; 573 unsigned int mem_nid, cpu_nid; 574 struct memory_locality *loc = NULL; 575 u32 best = 0; 576 int i; 577 578 mem_nid = pxm_to_node(target->memory_pxm); 579 /* 580 * If the Address Range Structure provides a local processor pxm, link 581 * only that one. Otherwise, find the best performance attributes and 582 * register all initiators that match. 583 */ 584 if (target->processor_pxm != PXM_INVAL) { 585 cpu_nid = pxm_to_node(target->processor_pxm); 586 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0); 587 return; 588 } 589 590 if (list_empty(&localities)) 591 return; 592 593 /* 594 * We need the initiator list sorted so we can use bitmap_clear for 595 * previously set initiators when we find a better memory accessor. 596 * We'll also use the sorting to prime the candidate nodes with known 597 * initiators. 598 */ 599 bitmap_zero(p_nodes, MAX_NUMNODES); 600 list_sort(p_nodes, &initiators, initiator_cmp); 601 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) { 602 loc = localities_types[i]; 603 if (!loc) 604 continue; 605 606 best = 0; 607 list_for_each_entry(initiator, &initiators, node) { 608 u32 value; 609 610 if (!test_bit(initiator->processor_pxm, p_nodes)) 611 continue; 612 613 value = hmat_initiator_perf(target, initiator, loc->hmat_loc); 614 if (hmat_update_best(loc->hmat_loc->data_type, value, &best)) 615 bitmap_clear(p_nodes, 0, initiator->processor_pxm); 616 if (value != best) 617 clear_bit(initiator->processor_pxm, p_nodes); 618 } 619 if (best) 620 hmat_update_target_access(target, loc->hmat_loc->data_type, best); 621 } 622 623 for_each_set_bit(i, p_nodes, MAX_NUMNODES) { 624 cpu_nid = pxm_to_node(i); 625 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0); 626 } 627 } 628 629 static void hmat_register_target_cache(struct memory_target *target) 630 { 631 unsigned mem_nid = pxm_to_node(target->memory_pxm); 632 struct target_cache *tcache; 633 634 list_for_each_entry(tcache, &target->caches, node) 635 node_add_cache(mem_nid, &tcache->cache_attrs); 636 } 637 638 static void hmat_register_target_perf(struct memory_target *target) 639 { 640 unsigned mem_nid = pxm_to_node(target->memory_pxm); 641 node_set_perf_attrs(mem_nid, &target->hmem_attrs, 0); 642 } 643 644 static void hmat_register_target_devices(struct memory_target *target) 645 { 646 struct resource *res; 647 648 /* 649 * Do not bother creating devices if no driver is available to 650 * consume them. 651 */ 652 if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM)) 653 return; 654 655 for (res = target->memregions.child; res; res = res->sibling) { 656 int target_nid = acpi_map_pxm_to_node(target->memory_pxm); 657 658 hmem_register_device(target_nid, res); 659 } 660 } 661 662 static void hmat_register_target(struct memory_target *target) 663 { 664 int nid = pxm_to_node(target->memory_pxm); 665 666 /* 667 * Devices may belong to either an offline or online 668 * node, so unconditionally add them. 669 */ 670 hmat_register_target_devices(target); 671 672 /* 673 * Skip offline nodes. This can happen when memory 674 * marked EFI_MEMORY_SP, "specific purpose", is applied 675 * to all the memory in a promixity domain leading to 676 * the node being marked offline / unplugged, or if 677 * memory-only "hotplug" node is offline. 678 */ 679 if (nid == NUMA_NO_NODE || !node_online(nid)) 680 return; 681 682 mutex_lock(&target_lock); 683 if (!target->registered) { 684 hmat_register_target_initiators(target); 685 hmat_register_target_cache(target); 686 hmat_register_target_perf(target); 687 target->registered = true; 688 } 689 mutex_unlock(&target_lock); 690 } 691 692 static void hmat_register_targets(void) 693 { 694 struct memory_target *target; 695 696 list_for_each_entry(target, &targets, node) 697 hmat_register_target(target); 698 } 699 700 static int hmat_callback(struct notifier_block *self, 701 unsigned long action, void *arg) 702 { 703 struct memory_target *target; 704 struct memory_notify *mnb = arg; 705 int pxm, nid = mnb->status_change_nid; 706 707 if (nid == NUMA_NO_NODE || action != MEM_ONLINE) 708 return NOTIFY_OK; 709 710 pxm = node_to_pxm(nid); 711 target = find_mem_target(pxm); 712 if (!target) 713 return NOTIFY_OK; 714 715 hmat_register_target(target); 716 return NOTIFY_OK; 717 } 718 719 static struct notifier_block hmat_callback_nb = { 720 .notifier_call = hmat_callback, 721 .priority = 2, 722 }; 723 724 static __init void hmat_free_structures(void) 725 { 726 struct memory_target *target, *tnext; 727 struct memory_locality *loc, *lnext; 728 struct memory_initiator *initiator, *inext; 729 struct target_cache *tcache, *cnext; 730 731 list_for_each_entry_safe(target, tnext, &targets, node) { 732 struct resource *res, *res_next; 733 734 list_for_each_entry_safe(tcache, cnext, &target->caches, node) { 735 list_del(&tcache->node); 736 kfree(tcache); 737 } 738 739 list_del(&target->node); 740 res = target->memregions.child; 741 while (res) { 742 res_next = res->sibling; 743 __release_region(&target->memregions, res->start, 744 resource_size(res)); 745 res = res_next; 746 } 747 kfree(target); 748 } 749 750 list_for_each_entry_safe(initiator, inext, &initiators, node) { 751 list_del(&initiator->node); 752 kfree(initiator); 753 } 754 755 list_for_each_entry_safe(loc, lnext, &localities, node) { 756 list_del(&loc->node); 757 kfree(loc); 758 } 759 } 760 761 static __init int hmat_init(void) 762 { 763 struct acpi_table_header *tbl; 764 enum acpi_hmat_type i; 765 acpi_status status; 766 767 if (srat_disabled() || hmat_disable) 768 return 0; 769 770 status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl); 771 if (ACPI_FAILURE(status)) 772 return 0; 773 774 if (acpi_table_parse_entries(ACPI_SIG_SRAT, 775 sizeof(struct acpi_table_srat), 776 ACPI_SRAT_TYPE_MEMORY_AFFINITY, 777 srat_parse_mem_affinity, 0) < 0) 778 goto out_put; 779 acpi_put_table(tbl); 780 781 status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl); 782 if (ACPI_FAILURE(status)) 783 goto out_put; 784 785 hmat_revision = tbl->revision; 786 switch (hmat_revision) { 787 case 1: 788 case 2: 789 break; 790 default: 791 pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision); 792 goto out_put; 793 } 794 795 for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) { 796 if (acpi_table_parse_entries(ACPI_SIG_HMAT, 797 sizeof(struct acpi_table_hmat), i, 798 hmat_parse_subtable, 0) < 0) { 799 pr_notice("Ignoring HMAT: Invalid table"); 800 goto out_put; 801 } 802 } 803 hmat_register_targets(); 804 805 /* Keep the table and structures if the notifier may use them */ 806 if (!register_hotmemory_notifier(&hmat_callback_nb)) 807 return 0; 808 out_put: 809 hmat_free_structures(); 810 acpi_put_table(tbl); 811 return 0; 812 } 813 device_initcall(hmat_init); 814