xref: /linux/drivers/acpi/numa/hmat.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019, Intel Corporation.
4  *
5  * Heterogeneous Memory Attributes Table (HMAT) representation
6  *
7  * This program parses and reports the platform's HMAT tables, and registers
8  * the applicable attributes with the node's interfaces.
9  */
10 
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12 #define dev_fmt(fmt) "acpi/hmat: " fmt
13 
14 #include <linux/acpi.h>
15 #include <linux/bitops.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/list.h>
19 #include <linux/mm.h>
20 #include <linux/platform_device.h>
21 #include <linux/list_sort.h>
22 #include <linux/memregion.h>
23 #include <linux/memory.h>
24 #include <linux/mutex.h>
25 #include <linux/node.h>
26 #include <linux/sysfs.h>
27 #include <linux/dax.h>
28 
29 static u8 hmat_revision;
30 static int hmat_disable __initdata;
31 
32 void __init disable_hmat(void)
33 {
34 	hmat_disable = 1;
35 }
36 
37 static LIST_HEAD(targets);
38 static LIST_HEAD(initiators);
39 static LIST_HEAD(localities);
40 
41 static DEFINE_MUTEX(target_lock);
42 
43 /*
44  * The defined enum order is used to prioritize attributes to break ties when
45  * selecting the best performing node.
46  */
47 enum locality_types {
48 	WRITE_LATENCY,
49 	READ_LATENCY,
50 	WRITE_BANDWIDTH,
51 	READ_BANDWIDTH,
52 };
53 
54 static struct memory_locality *localities_types[4];
55 
56 struct target_cache {
57 	struct list_head node;
58 	struct node_cache_attrs cache_attrs;
59 };
60 
61 struct memory_target {
62 	struct list_head node;
63 	unsigned int memory_pxm;
64 	unsigned int processor_pxm;
65 	struct resource memregions;
66 	struct node_hmem_attrs hmem_attrs;
67 	struct list_head caches;
68 	struct node_cache_attrs cache_attrs;
69 	bool registered;
70 };
71 
72 struct memory_initiator {
73 	struct list_head node;
74 	unsigned int processor_pxm;
75 };
76 
77 struct memory_locality {
78 	struct list_head node;
79 	struct acpi_hmat_locality *hmat_loc;
80 };
81 
82 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
83 {
84 	struct memory_initiator *initiator;
85 
86 	list_for_each_entry(initiator, &initiators, node)
87 		if (initiator->processor_pxm == cpu_pxm)
88 			return initiator;
89 	return NULL;
90 }
91 
92 static struct memory_target *find_mem_target(unsigned int mem_pxm)
93 {
94 	struct memory_target *target;
95 
96 	list_for_each_entry(target, &targets, node)
97 		if (target->memory_pxm == mem_pxm)
98 			return target;
99 	return NULL;
100 }
101 
102 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
103 {
104 	struct memory_initiator *initiator;
105 
106 	if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
107 		return;
108 
109 	initiator = find_mem_initiator(cpu_pxm);
110 	if (initiator)
111 		return;
112 
113 	initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
114 	if (!initiator)
115 		return;
116 
117 	initiator->processor_pxm = cpu_pxm;
118 	list_add_tail(&initiator->node, &initiators);
119 }
120 
121 static __init void alloc_memory_target(unsigned int mem_pxm,
122 		resource_size_t start, resource_size_t len)
123 {
124 	struct memory_target *target;
125 
126 	target = find_mem_target(mem_pxm);
127 	if (!target) {
128 		target = kzalloc(sizeof(*target), GFP_KERNEL);
129 		if (!target)
130 			return;
131 		target->memory_pxm = mem_pxm;
132 		target->processor_pxm = PXM_INVAL;
133 		target->memregions = (struct resource) {
134 			.name	= "ACPI mem",
135 			.start	= 0,
136 			.end	= -1,
137 			.flags	= IORESOURCE_MEM,
138 		};
139 		list_add_tail(&target->node, &targets);
140 		INIT_LIST_HEAD(&target->caches);
141 	}
142 
143 	/*
144 	 * There are potentially multiple ranges per PXM, so record each
145 	 * in the per-target memregions resource tree.
146 	 */
147 	if (!__request_region(&target->memregions, start, len, "memory target",
148 				IORESOURCE_MEM))
149 		pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
150 				start, start + len, mem_pxm);
151 }
152 
153 static __init const char *hmat_data_type(u8 type)
154 {
155 	switch (type) {
156 	case ACPI_HMAT_ACCESS_LATENCY:
157 		return "Access Latency";
158 	case ACPI_HMAT_READ_LATENCY:
159 		return "Read Latency";
160 	case ACPI_HMAT_WRITE_LATENCY:
161 		return "Write Latency";
162 	case ACPI_HMAT_ACCESS_BANDWIDTH:
163 		return "Access Bandwidth";
164 	case ACPI_HMAT_READ_BANDWIDTH:
165 		return "Read Bandwidth";
166 	case ACPI_HMAT_WRITE_BANDWIDTH:
167 		return "Write Bandwidth";
168 	default:
169 		return "Reserved";
170 	}
171 }
172 
173 static __init const char *hmat_data_type_suffix(u8 type)
174 {
175 	switch (type) {
176 	case ACPI_HMAT_ACCESS_LATENCY:
177 	case ACPI_HMAT_READ_LATENCY:
178 	case ACPI_HMAT_WRITE_LATENCY:
179 		return " nsec";
180 	case ACPI_HMAT_ACCESS_BANDWIDTH:
181 	case ACPI_HMAT_READ_BANDWIDTH:
182 	case ACPI_HMAT_WRITE_BANDWIDTH:
183 		return " MB/s";
184 	default:
185 		return "";
186 	}
187 }
188 
189 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
190 {
191 	u32 value;
192 
193 	/*
194 	 * Check for invalid and overflow values
195 	 */
196 	if (entry == 0xffff || !entry)
197 		return 0;
198 	else if (base > (UINT_MAX / (entry)))
199 		return 0;
200 
201 	/*
202 	 * Divide by the base unit for version 1, convert latency from
203 	 * picosenonds to nanoseconds if revision 2.
204 	 */
205 	value = entry * base;
206 	if (hmat_revision == 1) {
207 		if (value < 10)
208 			return 0;
209 		value = DIV_ROUND_UP(value, 10);
210 	} else if (hmat_revision == 2) {
211 		switch (type) {
212 		case ACPI_HMAT_ACCESS_LATENCY:
213 		case ACPI_HMAT_READ_LATENCY:
214 		case ACPI_HMAT_WRITE_LATENCY:
215 			value = DIV_ROUND_UP(value, 1000);
216 			break;
217 		default:
218 			break;
219 		}
220 	}
221 	return value;
222 }
223 
224 static void hmat_update_target_access(struct memory_target *target,
225 					     u8 type, u32 value)
226 {
227 	switch (type) {
228 	case ACPI_HMAT_ACCESS_LATENCY:
229 		target->hmem_attrs.read_latency = value;
230 		target->hmem_attrs.write_latency = value;
231 		break;
232 	case ACPI_HMAT_READ_LATENCY:
233 		target->hmem_attrs.read_latency = value;
234 		break;
235 	case ACPI_HMAT_WRITE_LATENCY:
236 		target->hmem_attrs.write_latency = value;
237 		break;
238 	case ACPI_HMAT_ACCESS_BANDWIDTH:
239 		target->hmem_attrs.read_bandwidth = value;
240 		target->hmem_attrs.write_bandwidth = value;
241 		break;
242 	case ACPI_HMAT_READ_BANDWIDTH:
243 		target->hmem_attrs.read_bandwidth = value;
244 		break;
245 	case ACPI_HMAT_WRITE_BANDWIDTH:
246 		target->hmem_attrs.write_bandwidth = value;
247 		break;
248 	default:
249 		break;
250 	}
251 }
252 
253 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
254 {
255 	struct memory_locality *loc;
256 
257 	loc = kzalloc(sizeof(*loc), GFP_KERNEL);
258 	if (!loc) {
259 		pr_notice_once("Failed to allocate HMAT locality\n");
260 		return;
261 	}
262 
263 	loc->hmat_loc = hmat_loc;
264 	list_add_tail(&loc->node, &localities);
265 
266 	switch (hmat_loc->data_type) {
267 	case ACPI_HMAT_ACCESS_LATENCY:
268 		localities_types[READ_LATENCY] = loc;
269 		localities_types[WRITE_LATENCY] = loc;
270 		break;
271 	case ACPI_HMAT_READ_LATENCY:
272 		localities_types[READ_LATENCY] = loc;
273 		break;
274 	case ACPI_HMAT_WRITE_LATENCY:
275 		localities_types[WRITE_LATENCY] = loc;
276 		break;
277 	case ACPI_HMAT_ACCESS_BANDWIDTH:
278 		localities_types[READ_BANDWIDTH] = loc;
279 		localities_types[WRITE_BANDWIDTH] = loc;
280 		break;
281 	case ACPI_HMAT_READ_BANDWIDTH:
282 		localities_types[READ_BANDWIDTH] = loc;
283 		break;
284 	case ACPI_HMAT_WRITE_BANDWIDTH:
285 		localities_types[WRITE_BANDWIDTH] = loc;
286 		break;
287 	default:
288 		break;
289 	}
290 }
291 
292 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
293 				      const unsigned long end)
294 {
295 	struct acpi_hmat_locality *hmat_loc = (void *)header;
296 	struct memory_target *target;
297 	unsigned int init, targ, total_size, ipds, tpds;
298 	u32 *inits, *targs, value;
299 	u16 *entries;
300 	u8 type, mem_hier;
301 
302 	if (hmat_loc->header.length < sizeof(*hmat_loc)) {
303 		pr_notice("HMAT: Unexpected locality header length: %u\n",
304 			 hmat_loc->header.length);
305 		return -EINVAL;
306 	}
307 
308 	type = hmat_loc->data_type;
309 	mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
310 	ipds = hmat_loc->number_of_initiator_Pds;
311 	tpds = hmat_loc->number_of_target_Pds;
312 	total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
313 		     sizeof(*inits) * ipds + sizeof(*targs) * tpds;
314 	if (hmat_loc->header.length < total_size) {
315 		pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n",
316 			 hmat_loc->header.length, total_size);
317 		return -EINVAL;
318 	}
319 
320 	pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
321 		hmat_loc->flags, hmat_data_type(type), ipds, tpds,
322 		hmat_loc->entry_base_unit);
323 
324 	inits = (u32 *)(hmat_loc + 1);
325 	targs = inits + ipds;
326 	entries = (u16 *)(targs + tpds);
327 	for (init = 0; init < ipds; init++) {
328 		alloc_memory_initiator(inits[init]);
329 		for (targ = 0; targ < tpds; targ++) {
330 			value = hmat_normalize(entries[init * tpds + targ],
331 					       hmat_loc->entry_base_unit,
332 					       type);
333 			pr_info("  Initiator-Target[%u-%u]:%u%s\n",
334 				inits[init], targs[targ], value,
335 				hmat_data_type_suffix(type));
336 
337 			if (mem_hier == ACPI_HMAT_MEMORY) {
338 				target = find_mem_target(targs[targ]);
339 				if (target && target->processor_pxm == inits[init])
340 					hmat_update_target_access(target, type, value);
341 			}
342 		}
343 	}
344 
345 	if (mem_hier == ACPI_HMAT_MEMORY)
346 		hmat_add_locality(hmat_loc);
347 
348 	return 0;
349 }
350 
351 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
352 				   const unsigned long end)
353 {
354 	struct acpi_hmat_cache *cache = (void *)header;
355 	struct memory_target *target;
356 	struct target_cache *tcache;
357 	u32 attrs;
358 
359 	if (cache->header.length < sizeof(*cache)) {
360 		pr_notice("HMAT: Unexpected cache header length: %u\n",
361 			 cache->header.length);
362 		return -EINVAL;
363 	}
364 
365 	attrs = cache->cache_attributes;
366 	pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
367 		cache->memory_PD, cache->cache_size, attrs,
368 		cache->number_of_SMBIOShandles);
369 
370 	target = find_mem_target(cache->memory_PD);
371 	if (!target)
372 		return 0;
373 
374 	tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
375 	if (!tcache) {
376 		pr_notice_once("Failed to allocate HMAT cache info\n");
377 		return 0;
378 	}
379 
380 	tcache->cache_attrs.size = cache->cache_size;
381 	tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
382 	tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
383 
384 	switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
385 	case ACPI_HMAT_CA_DIRECT_MAPPED:
386 		tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
387 		break;
388 	case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
389 		tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
390 		break;
391 	case ACPI_HMAT_CA_NONE:
392 	default:
393 		tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
394 		break;
395 	}
396 
397 	switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
398 	case ACPI_HMAT_CP_WB:
399 		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
400 		break;
401 	case ACPI_HMAT_CP_WT:
402 		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
403 		break;
404 	case ACPI_HMAT_CP_NONE:
405 	default:
406 		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
407 		break;
408 	}
409 	list_add_tail(&tcache->node, &target->caches);
410 
411 	return 0;
412 }
413 
414 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
415 					      const unsigned long end)
416 {
417 	struct acpi_hmat_proximity_domain *p = (void *)header;
418 	struct memory_target *target = NULL;
419 
420 	if (p->header.length != sizeof(*p)) {
421 		pr_notice("HMAT: Unexpected address range header length: %u\n",
422 			 p->header.length);
423 		return -EINVAL;
424 	}
425 
426 	if (hmat_revision == 1)
427 		pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
428 			p->reserved3, p->reserved4, p->flags, p->processor_PD,
429 			p->memory_PD);
430 	else
431 		pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
432 			p->flags, p->processor_PD, p->memory_PD);
433 
434 	if (p->flags & ACPI_HMAT_MEMORY_PD_VALID && hmat_revision == 1) {
435 		target = find_mem_target(p->memory_PD);
436 		if (!target) {
437 			pr_debug("HMAT: Memory Domain missing from SRAT\n");
438 			return -EINVAL;
439 		}
440 	}
441 	if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
442 		int p_node = pxm_to_node(p->processor_PD);
443 
444 		if (p_node == NUMA_NO_NODE) {
445 			pr_debug("HMAT: Invalid Processor Domain\n");
446 			return -EINVAL;
447 		}
448 		target->processor_pxm = p->processor_PD;
449 	}
450 
451 	return 0;
452 }
453 
454 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
455 				      const unsigned long end)
456 {
457 	struct acpi_hmat_structure *hdr = (void *)header;
458 
459 	if (!hdr)
460 		return -EINVAL;
461 
462 	switch (hdr->type) {
463 	case ACPI_HMAT_TYPE_PROXIMITY:
464 		return hmat_parse_proximity_domain(header, end);
465 	case ACPI_HMAT_TYPE_LOCALITY:
466 		return hmat_parse_locality(header, end);
467 	case ACPI_HMAT_TYPE_CACHE:
468 		return hmat_parse_cache(header, end);
469 	default:
470 		return -EINVAL;
471 	}
472 }
473 
474 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
475 					  const unsigned long end)
476 {
477 	struct acpi_srat_mem_affinity *ma = (void *)header;
478 
479 	if (!ma)
480 		return -EINVAL;
481 	if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
482 		return 0;
483 	alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
484 	return 0;
485 }
486 
487 static u32 hmat_initiator_perf(struct memory_target *target,
488 			       struct memory_initiator *initiator,
489 			       struct acpi_hmat_locality *hmat_loc)
490 {
491 	unsigned int ipds, tpds, i, idx = 0, tdx = 0;
492 	u32 *inits, *targs;
493 	u16 *entries;
494 
495 	ipds = hmat_loc->number_of_initiator_Pds;
496 	tpds = hmat_loc->number_of_target_Pds;
497 	inits = (u32 *)(hmat_loc + 1);
498 	targs = inits + ipds;
499 	entries = (u16 *)(targs + tpds);
500 
501 	for (i = 0; i < ipds; i++) {
502 		if (inits[i] == initiator->processor_pxm) {
503 			idx = i;
504 			break;
505 		}
506 	}
507 
508 	if (i == ipds)
509 		return 0;
510 
511 	for (i = 0; i < tpds; i++) {
512 		if (targs[i] == target->memory_pxm) {
513 			tdx = i;
514 			break;
515 		}
516 	}
517 	if (i == tpds)
518 		return 0;
519 
520 	return hmat_normalize(entries[idx * tpds + tdx],
521 			      hmat_loc->entry_base_unit,
522 			      hmat_loc->data_type);
523 }
524 
525 static bool hmat_update_best(u8 type, u32 value, u32 *best)
526 {
527 	bool updated = false;
528 
529 	if (!value)
530 		return false;
531 
532 	switch (type) {
533 	case ACPI_HMAT_ACCESS_LATENCY:
534 	case ACPI_HMAT_READ_LATENCY:
535 	case ACPI_HMAT_WRITE_LATENCY:
536 		if (!*best || *best > value) {
537 			*best = value;
538 			updated = true;
539 		}
540 		break;
541 	case ACPI_HMAT_ACCESS_BANDWIDTH:
542 	case ACPI_HMAT_READ_BANDWIDTH:
543 	case ACPI_HMAT_WRITE_BANDWIDTH:
544 		if (!*best || *best < value) {
545 			*best = value;
546 			updated = true;
547 		}
548 		break;
549 	}
550 
551 	return updated;
552 }
553 
554 static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b)
555 {
556 	struct memory_initiator *ia;
557 	struct memory_initiator *ib;
558 	unsigned long *p_nodes = priv;
559 
560 	ia = list_entry(a, struct memory_initiator, node);
561 	ib = list_entry(b, struct memory_initiator, node);
562 
563 	set_bit(ia->processor_pxm, p_nodes);
564 	set_bit(ib->processor_pxm, p_nodes);
565 
566 	return ia->processor_pxm - ib->processor_pxm;
567 }
568 
569 static void hmat_register_target_initiators(struct memory_target *target)
570 {
571 	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
572 	struct memory_initiator *initiator;
573 	unsigned int mem_nid, cpu_nid;
574 	struct memory_locality *loc = NULL;
575 	u32 best = 0;
576 	int i;
577 
578 	mem_nid = pxm_to_node(target->memory_pxm);
579 	/*
580 	 * If the Address Range Structure provides a local processor pxm, link
581 	 * only that one. Otherwise, find the best performance attributes and
582 	 * register all initiators that match.
583 	 */
584 	if (target->processor_pxm != PXM_INVAL) {
585 		cpu_nid = pxm_to_node(target->processor_pxm);
586 		register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
587 		return;
588 	}
589 
590 	if (list_empty(&localities))
591 		return;
592 
593 	/*
594 	 * We need the initiator list sorted so we can use bitmap_clear for
595 	 * previously set initiators when we find a better memory accessor.
596 	 * We'll also use the sorting to prime the candidate nodes with known
597 	 * initiators.
598 	 */
599 	bitmap_zero(p_nodes, MAX_NUMNODES);
600 	list_sort(p_nodes, &initiators, initiator_cmp);
601 	for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
602 		loc = localities_types[i];
603 		if (!loc)
604 			continue;
605 
606 		best = 0;
607 		list_for_each_entry(initiator, &initiators, node) {
608 			u32 value;
609 
610 			if (!test_bit(initiator->processor_pxm, p_nodes))
611 				continue;
612 
613 			value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
614 			if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
615 				bitmap_clear(p_nodes, 0, initiator->processor_pxm);
616 			if (value != best)
617 				clear_bit(initiator->processor_pxm, p_nodes);
618 		}
619 		if (best)
620 			hmat_update_target_access(target, loc->hmat_loc->data_type, best);
621 	}
622 
623 	for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
624 		cpu_nid = pxm_to_node(i);
625 		register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
626 	}
627 }
628 
629 static void hmat_register_target_cache(struct memory_target *target)
630 {
631 	unsigned mem_nid = pxm_to_node(target->memory_pxm);
632 	struct target_cache *tcache;
633 
634 	list_for_each_entry(tcache, &target->caches, node)
635 		node_add_cache(mem_nid, &tcache->cache_attrs);
636 }
637 
638 static void hmat_register_target_perf(struct memory_target *target)
639 {
640 	unsigned mem_nid = pxm_to_node(target->memory_pxm);
641 	node_set_perf_attrs(mem_nid, &target->hmem_attrs, 0);
642 }
643 
644 static void hmat_register_target_devices(struct memory_target *target)
645 {
646 	struct resource *res;
647 
648 	/*
649 	 * Do not bother creating devices if no driver is available to
650 	 * consume them.
651 	 */
652 	if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
653 		return;
654 
655 	for (res = target->memregions.child; res; res = res->sibling) {
656 		int target_nid = acpi_map_pxm_to_node(target->memory_pxm);
657 
658 		hmem_register_device(target_nid, res);
659 	}
660 }
661 
662 static void hmat_register_target(struct memory_target *target)
663 {
664 	int nid = pxm_to_node(target->memory_pxm);
665 
666 	/*
667 	 * Devices may belong to either an offline or online
668 	 * node, so unconditionally add them.
669 	 */
670 	hmat_register_target_devices(target);
671 
672 	/*
673 	 * Skip offline nodes. This can happen when memory
674 	 * marked EFI_MEMORY_SP, "specific purpose", is applied
675 	 * to all the memory in a promixity domain leading to
676 	 * the node being marked offline / unplugged, or if
677 	 * memory-only "hotplug" node is offline.
678 	 */
679 	if (nid == NUMA_NO_NODE || !node_online(nid))
680 		return;
681 
682 	mutex_lock(&target_lock);
683 	if (!target->registered) {
684 		hmat_register_target_initiators(target);
685 		hmat_register_target_cache(target);
686 		hmat_register_target_perf(target);
687 		target->registered = true;
688 	}
689 	mutex_unlock(&target_lock);
690 }
691 
692 static void hmat_register_targets(void)
693 {
694 	struct memory_target *target;
695 
696 	list_for_each_entry(target, &targets, node)
697 		hmat_register_target(target);
698 }
699 
700 static int hmat_callback(struct notifier_block *self,
701 			 unsigned long action, void *arg)
702 {
703 	struct memory_target *target;
704 	struct memory_notify *mnb = arg;
705 	int pxm, nid = mnb->status_change_nid;
706 
707 	if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
708 		return NOTIFY_OK;
709 
710 	pxm = node_to_pxm(nid);
711 	target = find_mem_target(pxm);
712 	if (!target)
713 		return NOTIFY_OK;
714 
715 	hmat_register_target(target);
716 	return NOTIFY_OK;
717 }
718 
719 static struct notifier_block hmat_callback_nb = {
720 	.notifier_call = hmat_callback,
721 	.priority = 2,
722 };
723 
724 static __init void hmat_free_structures(void)
725 {
726 	struct memory_target *target, *tnext;
727 	struct memory_locality *loc, *lnext;
728 	struct memory_initiator *initiator, *inext;
729 	struct target_cache *tcache, *cnext;
730 
731 	list_for_each_entry_safe(target, tnext, &targets, node) {
732 		struct resource *res, *res_next;
733 
734 		list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
735 			list_del(&tcache->node);
736 			kfree(tcache);
737 		}
738 
739 		list_del(&target->node);
740 		res = target->memregions.child;
741 		while (res) {
742 			res_next = res->sibling;
743 			__release_region(&target->memregions, res->start,
744 					resource_size(res));
745 			res = res_next;
746 		}
747 		kfree(target);
748 	}
749 
750 	list_for_each_entry_safe(initiator, inext, &initiators, node) {
751 		list_del(&initiator->node);
752 		kfree(initiator);
753 	}
754 
755 	list_for_each_entry_safe(loc, lnext, &localities, node) {
756 		list_del(&loc->node);
757 		kfree(loc);
758 	}
759 }
760 
761 static __init int hmat_init(void)
762 {
763 	struct acpi_table_header *tbl;
764 	enum acpi_hmat_type i;
765 	acpi_status status;
766 
767 	if (srat_disabled() || hmat_disable)
768 		return 0;
769 
770 	status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
771 	if (ACPI_FAILURE(status))
772 		return 0;
773 
774 	if (acpi_table_parse_entries(ACPI_SIG_SRAT,
775 				sizeof(struct acpi_table_srat),
776 				ACPI_SRAT_TYPE_MEMORY_AFFINITY,
777 				srat_parse_mem_affinity, 0) < 0)
778 		goto out_put;
779 	acpi_put_table(tbl);
780 
781 	status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
782 	if (ACPI_FAILURE(status))
783 		goto out_put;
784 
785 	hmat_revision = tbl->revision;
786 	switch (hmat_revision) {
787 	case 1:
788 	case 2:
789 		break;
790 	default:
791 		pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
792 		goto out_put;
793 	}
794 
795 	for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
796 		if (acpi_table_parse_entries(ACPI_SIG_HMAT,
797 					     sizeof(struct acpi_table_hmat), i,
798 					     hmat_parse_subtable, 0) < 0) {
799 			pr_notice("Ignoring HMAT: Invalid table");
800 			goto out_put;
801 		}
802 	}
803 	hmat_register_targets();
804 
805 	/* Keep the table and structures if the notifier may use them */
806 	if (!register_hotmemory_notifier(&hmat_callback_nb))
807 		return 0;
808 out_put:
809 	hmat_free_structures();
810 	acpi_put_table(tbl);
811 	return 0;
812 }
813 device_initcall(hmat_init);
814