xref: /linux/drivers/acpi/numa/hmat.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019, Intel Corporation.
4  *
5  * Heterogeneous Memory Attributes Table (HMAT) representation
6  *
7  * This program parses and reports the platform's HMAT tables, and registers
8  * the applicable attributes with the node's interfaces.
9  */
10 
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12 
13 #include <linux/acpi.h>
14 #include <linux/bitops.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/platform_device.h>
20 #include <linux/list_sort.h>
21 #include <linux/memregion.h>
22 #include <linux/memory.h>
23 #include <linux/mutex.h>
24 #include <linux/node.h>
25 #include <linux/sysfs.h>
26 #include <linux/dax.h>
27 #include <linux/memory-tiers.h>
28 
29 static u8 hmat_revision;
30 static int hmat_disable __initdata;
31 
32 void __init disable_hmat(void)
33 {
34 	hmat_disable = 1;
35 }
36 
37 static LIST_HEAD(targets);
38 static LIST_HEAD(initiators);
39 static LIST_HEAD(localities);
40 
41 static DEFINE_MUTEX(target_lock);
42 
43 /*
44  * The defined enum order is used to prioritize attributes to break ties when
45  * selecting the best performing node.
46  */
47 enum locality_types {
48 	WRITE_LATENCY,
49 	READ_LATENCY,
50 	WRITE_BANDWIDTH,
51 	READ_BANDWIDTH,
52 };
53 
54 static struct memory_locality *localities_types[4];
55 
56 struct target_cache {
57 	struct list_head node;
58 	struct node_cache_attrs cache_attrs;
59 };
60 
61 enum {
62 	NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL = ACCESS_COORDINATE_MAX,
63 	NODE_ACCESS_CLASS_GENPORT_SINK_CPU,
64 	NODE_ACCESS_CLASS_MAX,
65 };
66 
67 struct memory_target {
68 	struct list_head node;
69 	unsigned int memory_pxm;
70 	unsigned int processor_pxm;
71 	struct resource memregions;
72 	struct access_coordinate coord[NODE_ACCESS_CLASS_MAX];
73 	struct list_head caches;
74 	struct node_cache_attrs cache_attrs;
75 	u8 gen_port_device_handle[ACPI_SRAT_DEVICE_HANDLE_SIZE];
76 	bool registered;
77 };
78 
79 struct memory_initiator {
80 	struct list_head node;
81 	unsigned int processor_pxm;
82 	bool has_cpu;
83 };
84 
85 struct memory_locality {
86 	struct list_head node;
87 	struct acpi_hmat_locality *hmat_loc;
88 };
89 
90 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
91 {
92 	struct memory_initiator *initiator;
93 
94 	list_for_each_entry(initiator, &initiators, node)
95 		if (initiator->processor_pxm == cpu_pxm)
96 			return initiator;
97 	return NULL;
98 }
99 
100 static struct memory_target *find_mem_target(unsigned int mem_pxm)
101 {
102 	struct memory_target *target;
103 
104 	list_for_each_entry(target, &targets, node)
105 		if (target->memory_pxm == mem_pxm)
106 			return target;
107 	return NULL;
108 }
109 
110 /**
111  * hmat_get_extended_linear_cache_size - Retrieve the extended linear cache size
112  * @backing_res: resource from the backing media
113  * @nid: node id for the memory region
114  * @cache_size: (Output) size of extended linear cache.
115  *
116  * Return: 0 on success. Errno on failure.
117  *
118  */
119 int hmat_get_extended_linear_cache_size(struct resource *backing_res, int nid,
120 					resource_size_t *cache_size)
121 {
122 	unsigned int pxm = node_to_pxm(nid);
123 	struct memory_target *target;
124 	struct target_cache *tcache;
125 	struct resource *res;
126 
127 	target = find_mem_target(pxm);
128 	if (!target)
129 		return -ENOENT;
130 
131 	list_for_each_entry(tcache, &target->caches, node) {
132 		if (tcache->cache_attrs.address_mode !=
133 				NODE_CACHE_ADDR_MODE_EXTENDED_LINEAR)
134 			continue;
135 
136 		res = &target->memregions;
137 		if (!resource_contains(res, backing_res))
138 			continue;
139 
140 		*cache_size = tcache->cache_attrs.size;
141 		return 0;
142 	}
143 
144 	*cache_size = 0;
145 	return 0;
146 }
147 EXPORT_SYMBOL_NS_GPL(hmat_get_extended_linear_cache_size, "CXL");
148 
149 static struct memory_target *acpi_find_genport_target(u32 uid)
150 {
151 	struct memory_target *target;
152 	u32 target_uid;
153 	u8 *uid_ptr;
154 
155 	list_for_each_entry(target, &targets, node) {
156 		uid_ptr = target->gen_port_device_handle + 8;
157 		target_uid = *(u32 *)uid_ptr;
158 		if (uid == target_uid)
159 			return target;
160 	}
161 
162 	return NULL;
163 }
164 
165 /**
166  * acpi_get_genport_coordinates - Retrieve the access coordinates for a generic port
167  * @uid: ACPI unique id
168  * @coord: The access coordinates written back out for the generic port.
169  *	   Expect 2 levels array.
170  *
171  * Return: 0 on success. Errno on failure.
172  *
173  * Only supports device handles that are ACPI. Assume ACPI0016 HID for CXL.
174  */
175 int acpi_get_genport_coordinates(u32 uid,
176 				 struct access_coordinate *coord)
177 {
178 	struct memory_target *target;
179 
180 	guard(mutex)(&target_lock);
181 	target = acpi_find_genport_target(uid);
182 	if (!target)
183 		return -ENOENT;
184 
185 	coord[ACCESS_COORDINATE_LOCAL] =
186 		target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL];
187 	coord[ACCESS_COORDINATE_CPU] =
188 		target->coord[NODE_ACCESS_CLASS_GENPORT_SINK_CPU];
189 
190 	return 0;
191 }
192 EXPORT_SYMBOL_NS_GPL(acpi_get_genport_coordinates, "CXL");
193 
194 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
195 {
196 	struct memory_initiator *initiator;
197 
198 	if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
199 		return;
200 
201 	initiator = find_mem_initiator(cpu_pxm);
202 	if (initiator)
203 		return;
204 
205 	initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
206 	if (!initiator)
207 		return;
208 
209 	initiator->processor_pxm = cpu_pxm;
210 	initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
211 	list_add_tail(&initiator->node, &initiators);
212 }
213 
214 static __init struct memory_target *alloc_target(unsigned int mem_pxm)
215 {
216 	struct memory_target *target;
217 
218 	target = find_mem_target(mem_pxm);
219 	if (!target) {
220 		target = kzalloc(sizeof(*target), GFP_KERNEL);
221 		if (!target)
222 			return NULL;
223 		target->memory_pxm = mem_pxm;
224 		target->processor_pxm = PXM_INVAL;
225 		target->memregions = (struct resource) {
226 			.name	= "ACPI mem",
227 			.start	= 0,
228 			.end	= -1,
229 			.flags	= IORESOURCE_MEM,
230 		};
231 		list_add_tail(&target->node, &targets);
232 		INIT_LIST_HEAD(&target->caches);
233 	}
234 
235 	return target;
236 }
237 
238 static __init void alloc_memory_target(unsigned int mem_pxm,
239 				       resource_size_t start,
240 				       resource_size_t len)
241 {
242 	struct memory_target *target;
243 
244 	target = alloc_target(mem_pxm);
245 	if (!target)
246 		return;
247 
248 	/*
249 	 * There are potentially multiple ranges per PXM, so record each
250 	 * in the per-target memregions resource tree.
251 	 */
252 	if (!__request_region(&target->memregions, start, len, "memory target",
253 				IORESOURCE_MEM))
254 		pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
255 				start, start + len, mem_pxm);
256 }
257 
258 static __init void alloc_genport_target(unsigned int mem_pxm, u8 *handle)
259 {
260 	struct memory_target *target;
261 
262 	target = alloc_target(mem_pxm);
263 	if (!target)
264 		return;
265 
266 	memcpy(target->gen_port_device_handle, handle,
267 	       ACPI_SRAT_DEVICE_HANDLE_SIZE);
268 }
269 
270 static __init const char *hmat_data_type(u8 type)
271 {
272 	switch (type) {
273 	case ACPI_HMAT_ACCESS_LATENCY:
274 		return "Access Latency";
275 	case ACPI_HMAT_READ_LATENCY:
276 		return "Read Latency";
277 	case ACPI_HMAT_WRITE_LATENCY:
278 		return "Write Latency";
279 	case ACPI_HMAT_ACCESS_BANDWIDTH:
280 		return "Access Bandwidth";
281 	case ACPI_HMAT_READ_BANDWIDTH:
282 		return "Read Bandwidth";
283 	case ACPI_HMAT_WRITE_BANDWIDTH:
284 		return "Write Bandwidth";
285 	default:
286 		return "Reserved";
287 	}
288 }
289 
290 static __init const char *hmat_data_type_suffix(u8 type)
291 {
292 	switch (type) {
293 	case ACPI_HMAT_ACCESS_LATENCY:
294 	case ACPI_HMAT_READ_LATENCY:
295 	case ACPI_HMAT_WRITE_LATENCY:
296 		return " nsec";
297 	case ACPI_HMAT_ACCESS_BANDWIDTH:
298 	case ACPI_HMAT_READ_BANDWIDTH:
299 	case ACPI_HMAT_WRITE_BANDWIDTH:
300 		return " MB/s";
301 	default:
302 		return "";
303 	}
304 }
305 
306 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
307 {
308 	u32 value;
309 
310 	/*
311 	 * Check for invalid and overflow values
312 	 */
313 	if (entry == 0xffff || !entry)
314 		return 0;
315 	else if (base > (UINT_MAX / (entry)))
316 		return 0;
317 
318 	/*
319 	 * Divide by the base unit for version 1, convert latency from
320 	 * picosenonds to nanoseconds if revision 2.
321 	 */
322 	value = entry * base;
323 	if (hmat_revision == 1) {
324 		if (value < 10)
325 			return 0;
326 		value = DIV_ROUND_UP(value, 10);
327 	} else if (hmat_revision == 2) {
328 		switch (type) {
329 		case ACPI_HMAT_ACCESS_LATENCY:
330 		case ACPI_HMAT_READ_LATENCY:
331 		case ACPI_HMAT_WRITE_LATENCY:
332 			value = DIV_ROUND_UP(value, 1000);
333 			break;
334 		default:
335 			break;
336 		}
337 	}
338 	return value;
339 }
340 
341 static void hmat_update_target_access(struct memory_target *target,
342 				      u8 type, u32 value, int access)
343 {
344 	switch (type) {
345 	case ACPI_HMAT_ACCESS_LATENCY:
346 		target->coord[access].read_latency = value;
347 		target->coord[access].write_latency = value;
348 		break;
349 	case ACPI_HMAT_READ_LATENCY:
350 		target->coord[access].read_latency = value;
351 		break;
352 	case ACPI_HMAT_WRITE_LATENCY:
353 		target->coord[access].write_latency = value;
354 		break;
355 	case ACPI_HMAT_ACCESS_BANDWIDTH:
356 		target->coord[access].read_bandwidth = value;
357 		target->coord[access].write_bandwidth = value;
358 		break;
359 	case ACPI_HMAT_READ_BANDWIDTH:
360 		target->coord[access].read_bandwidth = value;
361 		break;
362 	case ACPI_HMAT_WRITE_BANDWIDTH:
363 		target->coord[access].write_bandwidth = value;
364 		break;
365 	default:
366 		break;
367 	}
368 }
369 
370 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
371 {
372 	struct memory_locality *loc;
373 
374 	loc = kzalloc(sizeof(*loc), GFP_KERNEL);
375 	if (!loc) {
376 		pr_notice_once("Failed to allocate HMAT locality\n");
377 		return;
378 	}
379 
380 	loc->hmat_loc = hmat_loc;
381 	list_add_tail(&loc->node, &localities);
382 
383 	switch (hmat_loc->data_type) {
384 	case ACPI_HMAT_ACCESS_LATENCY:
385 		localities_types[READ_LATENCY] = loc;
386 		localities_types[WRITE_LATENCY] = loc;
387 		break;
388 	case ACPI_HMAT_READ_LATENCY:
389 		localities_types[READ_LATENCY] = loc;
390 		break;
391 	case ACPI_HMAT_WRITE_LATENCY:
392 		localities_types[WRITE_LATENCY] = loc;
393 		break;
394 	case ACPI_HMAT_ACCESS_BANDWIDTH:
395 		localities_types[READ_BANDWIDTH] = loc;
396 		localities_types[WRITE_BANDWIDTH] = loc;
397 		break;
398 	case ACPI_HMAT_READ_BANDWIDTH:
399 		localities_types[READ_BANDWIDTH] = loc;
400 		break;
401 	case ACPI_HMAT_WRITE_BANDWIDTH:
402 		localities_types[WRITE_BANDWIDTH] = loc;
403 		break;
404 	default:
405 		break;
406 	}
407 }
408 
409 static __init void hmat_update_target(unsigned int tgt_pxm, unsigned int init_pxm,
410 				      u8 mem_hier, u8 type, u32 value)
411 {
412 	struct memory_target *target = find_mem_target(tgt_pxm);
413 
414 	if (mem_hier != ACPI_HMAT_MEMORY)
415 		return;
416 
417 	if (target && target->processor_pxm == init_pxm) {
418 		hmat_update_target_access(target, type, value,
419 					  ACCESS_COORDINATE_LOCAL);
420 		/* If the node has a CPU, update access ACCESS_COORDINATE_CPU */
421 		if (node_state(pxm_to_node(init_pxm), N_CPU))
422 			hmat_update_target_access(target, type, value,
423 						  ACCESS_COORDINATE_CPU);
424 	}
425 }
426 
427 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
428 				      const unsigned long end)
429 {
430 	struct acpi_hmat_locality *hmat_loc = (void *)header;
431 	unsigned int init, targ, total_size, ipds, tpds;
432 	u32 *inits, *targs, value;
433 	u16 *entries;
434 	u8 type, mem_hier;
435 
436 	if (hmat_loc->header.length < sizeof(*hmat_loc)) {
437 		pr_notice("Unexpected locality header length: %u\n",
438 			 hmat_loc->header.length);
439 		return -EINVAL;
440 	}
441 
442 	type = hmat_loc->data_type;
443 	mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
444 	ipds = hmat_loc->number_of_initiator_Pds;
445 	tpds = hmat_loc->number_of_target_Pds;
446 	total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
447 		     sizeof(*inits) * ipds + sizeof(*targs) * tpds;
448 	if (hmat_loc->header.length < total_size) {
449 		pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
450 			 hmat_loc->header.length, total_size);
451 		return -EINVAL;
452 	}
453 
454 	pr_debug("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
455 		 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
456 		 hmat_loc->entry_base_unit);
457 
458 	inits = (u32 *)(hmat_loc + 1);
459 	targs = inits + ipds;
460 	entries = (u16 *)(targs + tpds);
461 	for (init = 0; init < ipds; init++) {
462 		alloc_memory_initiator(inits[init]);
463 		for (targ = 0; targ < tpds; targ++) {
464 			value = hmat_normalize(entries[init * tpds + targ],
465 					       hmat_loc->entry_base_unit,
466 					       type);
467 			pr_debug("  Initiator-Target[%u-%u]:%u%s\n",
468 				 inits[init], targs[targ], value,
469 				 hmat_data_type_suffix(type));
470 
471 			hmat_update_target(targs[targ], inits[init],
472 					   mem_hier, type, value);
473 		}
474 	}
475 
476 	if (mem_hier == ACPI_HMAT_MEMORY)
477 		hmat_add_locality(hmat_loc);
478 
479 	return 0;
480 }
481 
482 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
483 				   const unsigned long end)
484 {
485 	struct acpi_hmat_cache *cache = (void *)header;
486 	struct memory_target *target;
487 	struct target_cache *tcache;
488 	u32 attrs;
489 
490 	if (cache->header.length < sizeof(*cache)) {
491 		pr_notice("Unexpected cache header length: %u\n",
492 			 cache->header.length);
493 		return -EINVAL;
494 	}
495 
496 	attrs = cache->cache_attributes;
497 	pr_debug("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
498 		 cache->memory_PD, cache->cache_size, attrs,
499 		 cache->number_of_SMBIOShandles);
500 
501 	target = find_mem_target(cache->memory_PD);
502 	if (!target)
503 		return 0;
504 
505 	tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
506 	if (!tcache) {
507 		pr_notice_once("Failed to allocate HMAT cache info\n");
508 		return 0;
509 	}
510 
511 	tcache->cache_attrs.size = cache->cache_size;
512 	tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
513 	tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
514 
515 	switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
516 	case ACPI_HMAT_CA_DIRECT_MAPPED:
517 		tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
518 		/* Extended Linear mode is only valid if cache is direct mapped */
519 		if (cache->address_mode == ACPI_HMAT_CACHE_MODE_EXTENDED_LINEAR) {
520 			tcache->cache_attrs.address_mode =
521 				NODE_CACHE_ADDR_MODE_EXTENDED_LINEAR;
522 		}
523 		break;
524 	case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
525 		tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
526 		break;
527 	case ACPI_HMAT_CA_NONE:
528 	default:
529 		tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
530 		break;
531 	}
532 
533 	switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
534 	case ACPI_HMAT_CP_WB:
535 		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
536 		break;
537 	case ACPI_HMAT_CP_WT:
538 		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
539 		break;
540 	case ACPI_HMAT_CP_NONE:
541 	default:
542 		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
543 		break;
544 	}
545 	list_add_tail(&tcache->node, &target->caches);
546 
547 	return 0;
548 }
549 
550 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
551 					      const unsigned long end)
552 {
553 	struct acpi_hmat_proximity_domain *p = (void *)header;
554 	struct memory_target *target = NULL;
555 
556 	if (p->header.length != sizeof(*p)) {
557 		pr_notice("Unexpected address range header length: %u\n",
558 			 p->header.length);
559 		return -EINVAL;
560 	}
561 
562 	if (hmat_revision == 1)
563 		pr_debug("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
564 			 p->reserved3, p->reserved4, p->flags, p->processor_PD,
565 			 p->memory_PD);
566 	else
567 		pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
568 			p->flags, p->processor_PD, p->memory_PD);
569 
570 	if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
571 	    hmat_revision > 1) {
572 		target = find_mem_target(p->memory_PD);
573 		if (!target) {
574 			pr_debug("Memory Domain missing from SRAT\n");
575 			return -EINVAL;
576 		}
577 	}
578 	if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
579 		int p_node = pxm_to_node(p->processor_PD);
580 
581 		if (p_node == NUMA_NO_NODE) {
582 			pr_debug("Invalid Processor Domain\n");
583 			return -EINVAL;
584 		}
585 		target->processor_pxm = p->processor_PD;
586 	}
587 
588 	return 0;
589 }
590 
591 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
592 				      const unsigned long end)
593 {
594 	struct acpi_hmat_structure *hdr = (void *)header;
595 
596 	if (!hdr)
597 		return -EINVAL;
598 
599 	switch (hdr->type) {
600 	case ACPI_HMAT_TYPE_PROXIMITY:
601 		return hmat_parse_proximity_domain(header, end);
602 	case ACPI_HMAT_TYPE_LOCALITY:
603 		return hmat_parse_locality(header, end);
604 	case ACPI_HMAT_TYPE_CACHE:
605 		return hmat_parse_cache(header, end);
606 	default:
607 		return -EINVAL;
608 	}
609 }
610 
611 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
612 					  const unsigned long end)
613 {
614 	struct acpi_srat_mem_affinity *ma = (void *)header;
615 
616 	if (!ma)
617 		return -EINVAL;
618 	if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
619 		return 0;
620 	alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
621 	return 0;
622 }
623 
624 static __init int srat_parse_genport_affinity(union acpi_subtable_headers *header,
625 					      const unsigned long end)
626 {
627 	struct acpi_srat_generic_affinity *ga = (void *)header;
628 
629 	if (!ga)
630 		return -EINVAL;
631 
632 	if (!(ga->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED))
633 		return 0;
634 
635 	/* Skip PCI device_handle for now */
636 	if (ga->device_handle_type != 0)
637 		return 0;
638 
639 	alloc_genport_target(ga->proximity_domain,
640 			     (u8 *)ga->device_handle);
641 
642 	return 0;
643 }
644 
645 static u32 hmat_initiator_perf(struct memory_target *target,
646 			       struct memory_initiator *initiator,
647 			       struct acpi_hmat_locality *hmat_loc)
648 {
649 	unsigned int ipds, tpds, i, idx = 0, tdx = 0;
650 	u32 *inits, *targs;
651 	u16 *entries;
652 
653 	ipds = hmat_loc->number_of_initiator_Pds;
654 	tpds = hmat_loc->number_of_target_Pds;
655 	inits = (u32 *)(hmat_loc + 1);
656 	targs = inits + ipds;
657 	entries = (u16 *)(targs + tpds);
658 
659 	for (i = 0; i < ipds; i++) {
660 		if (inits[i] == initiator->processor_pxm) {
661 			idx = i;
662 			break;
663 		}
664 	}
665 
666 	if (i == ipds)
667 		return 0;
668 
669 	for (i = 0; i < tpds; i++) {
670 		if (targs[i] == target->memory_pxm) {
671 			tdx = i;
672 			break;
673 		}
674 	}
675 	if (i == tpds)
676 		return 0;
677 
678 	return hmat_normalize(entries[idx * tpds + tdx],
679 			      hmat_loc->entry_base_unit,
680 			      hmat_loc->data_type);
681 }
682 
683 static bool hmat_update_best(u8 type, u32 value, u32 *best)
684 {
685 	bool updated = false;
686 
687 	if (!value)
688 		return false;
689 
690 	switch (type) {
691 	case ACPI_HMAT_ACCESS_LATENCY:
692 	case ACPI_HMAT_READ_LATENCY:
693 	case ACPI_HMAT_WRITE_LATENCY:
694 		if (!*best || *best > value) {
695 			*best = value;
696 			updated = true;
697 		}
698 		break;
699 	case ACPI_HMAT_ACCESS_BANDWIDTH:
700 	case ACPI_HMAT_READ_BANDWIDTH:
701 	case ACPI_HMAT_WRITE_BANDWIDTH:
702 		if (!*best || *best < value) {
703 			*best = value;
704 			updated = true;
705 		}
706 		break;
707 	}
708 
709 	return updated;
710 }
711 
712 static int initiator_cmp(void *priv, const struct list_head *a,
713 			 const struct list_head *b)
714 {
715 	struct memory_initiator *ia;
716 	struct memory_initiator *ib;
717 
718 	ia = list_entry(a, struct memory_initiator, node);
719 	ib = list_entry(b, struct memory_initiator, node);
720 
721 	return ia->processor_pxm - ib->processor_pxm;
722 }
723 
724 static int initiators_to_nodemask(unsigned long *p_nodes)
725 {
726 	struct memory_initiator *initiator;
727 
728 	if (list_empty(&initiators))
729 		return -ENXIO;
730 
731 	list_for_each_entry(initiator, &initiators, node)
732 		set_bit(initiator->processor_pxm, p_nodes);
733 
734 	return 0;
735 }
736 
737 static void hmat_update_target_attrs(struct memory_target *target,
738 				     unsigned long *p_nodes, int access)
739 {
740 	struct memory_initiator *initiator;
741 	unsigned int cpu_nid;
742 	struct memory_locality *loc = NULL;
743 	u32 best = 0;
744 	int i;
745 
746 	/* Don't update for generic port if there's no device handle */
747 	if ((access == NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL ||
748 	     access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) &&
749 	    !(*(u16 *)target->gen_port_device_handle))
750 		return;
751 
752 	bitmap_zero(p_nodes, MAX_NUMNODES);
753 	/*
754 	 * If the Address Range Structure provides a local processor pxm, set
755 	 * only that one. Otherwise, find the best performance attributes and
756 	 * collect all initiators that match.
757 	 */
758 	if (target->processor_pxm != PXM_INVAL) {
759 		cpu_nid = pxm_to_node(target->processor_pxm);
760 		if (access == ACCESS_COORDINATE_LOCAL ||
761 		    node_state(cpu_nid, N_CPU)) {
762 			set_bit(target->processor_pxm, p_nodes);
763 			return;
764 		}
765 	}
766 
767 	if (list_empty(&localities))
768 		return;
769 
770 	/*
771 	 * We need the initiator list sorted so we can use bitmap_clear for
772 	 * previously set initiators when we find a better memory accessor.
773 	 * We'll also use the sorting to prime the candidate nodes with known
774 	 * initiators.
775 	 */
776 	list_sort(NULL, &initiators, initiator_cmp);
777 	if (initiators_to_nodemask(p_nodes) < 0)
778 		return;
779 
780 	for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
781 		loc = localities_types[i];
782 		if (!loc)
783 			continue;
784 
785 		best = 0;
786 		list_for_each_entry(initiator, &initiators, node) {
787 			u32 value;
788 
789 			if ((access == ACCESS_COORDINATE_CPU ||
790 			     access == NODE_ACCESS_CLASS_GENPORT_SINK_CPU) &&
791 			    !initiator->has_cpu) {
792 				clear_bit(initiator->processor_pxm, p_nodes);
793 				continue;
794 			}
795 			if (!test_bit(initiator->processor_pxm, p_nodes))
796 				continue;
797 
798 			value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
799 			if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
800 				bitmap_clear(p_nodes, 0, initiator->processor_pxm);
801 			if (value != best)
802 				clear_bit(initiator->processor_pxm, p_nodes);
803 		}
804 		if (best)
805 			hmat_update_target_access(target, loc->hmat_loc->data_type, best, access);
806 	}
807 }
808 
809 static void __hmat_register_target_initiators(struct memory_target *target,
810 					      unsigned long *p_nodes,
811 					      int access)
812 {
813 	unsigned int mem_nid, cpu_nid;
814 	int i;
815 
816 	mem_nid = pxm_to_node(target->memory_pxm);
817 	hmat_update_target_attrs(target, p_nodes, access);
818 	for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
819 		cpu_nid = pxm_to_node(i);
820 		register_memory_node_under_compute_node(mem_nid, cpu_nid, access);
821 	}
822 }
823 
824 static void hmat_update_generic_target(struct memory_target *target)
825 {
826 	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
827 
828 	hmat_update_target_attrs(target, p_nodes,
829 				 NODE_ACCESS_CLASS_GENPORT_SINK_LOCAL);
830 	hmat_update_target_attrs(target, p_nodes,
831 				 NODE_ACCESS_CLASS_GENPORT_SINK_CPU);
832 }
833 
834 static void hmat_register_target_initiators(struct memory_target *target)
835 {
836 	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
837 
838 	__hmat_register_target_initiators(target, p_nodes,
839 					  ACCESS_COORDINATE_LOCAL);
840 	__hmat_register_target_initiators(target, p_nodes,
841 					  ACCESS_COORDINATE_CPU);
842 }
843 
844 static void hmat_register_target_cache(struct memory_target *target)
845 {
846 	unsigned mem_nid = pxm_to_node(target->memory_pxm);
847 	struct target_cache *tcache;
848 
849 	list_for_each_entry(tcache, &target->caches, node)
850 		node_add_cache(mem_nid, &tcache->cache_attrs);
851 }
852 
853 static void hmat_register_target_perf(struct memory_target *target, int access)
854 {
855 	unsigned mem_nid = pxm_to_node(target->memory_pxm);
856 	node_set_perf_attrs(mem_nid, &target->coord[access], access);
857 }
858 
859 static void hmat_register_target_devices(struct memory_target *target)
860 {
861 	struct resource *res;
862 
863 	/*
864 	 * Do not bother creating devices if no driver is available to
865 	 * consume them.
866 	 */
867 	if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
868 		return;
869 
870 	for (res = target->memregions.child; res; res = res->sibling) {
871 		int target_nid = pxm_to_node(target->memory_pxm);
872 
873 		hmem_register_resource(target_nid, res);
874 	}
875 }
876 
877 static void hmat_register_target(struct memory_target *target)
878 {
879 	int nid = pxm_to_node(target->memory_pxm);
880 
881 	/*
882 	 * Devices may belong to either an offline or online
883 	 * node, so unconditionally add them.
884 	 */
885 	hmat_register_target_devices(target);
886 
887 	/*
888 	 * Register generic port perf numbers. The nid may not be
889 	 * initialized and is still NUMA_NO_NODE.
890 	 */
891 	mutex_lock(&target_lock);
892 	if (*(u16 *)target->gen_port_device_handle) {
893 		hmat_update_generic_target(target);
894 		target->registered = true;
895 	}
896 	mutex_unlock(&target_lock);
897 
898 	/*
899 	 * Skip offline nodes. This can happen when memory
900 	 * marked EFI_MEMORY_SP, "specific purpose", is applied
901 	 * to all the memory in a proximity domain leading to
902 	 * the node being marked offline / unplugged, or if
903 	 * memory-only "hotplug" node is offline.
904 	 */
905 	if (nid == NUMA_NO_NODE || !node_online(nid))
906 		return;
907 
908 	mutex_lock(&target_lock);
909 	if (!target->registered) {
910 		hmat_register_target_initiators(target);
911 		hmat_register_target_cache(target);
912 		hmat_register_target_perf(target, ACCESS_COORDINATE_LOCAL);
913 		hmat_register_target_perf(target, ACCESS_COORDINATE_CPU);
914 		target->registered = true;
915 	}
916 	mutex_unlock(&target_lock);
917 }
918 
919 static void hmat_register_targets(void)
920 {
921 	struct memory_target *target;
922 
923 	list_for_each_entry(target, &targets, node)
924 		hmat_register_target(target);
925 }
926 
927 static int hmat_callback(struct notifier_block *self,
928 			 unsigned long action, void *arg)
929 {
930 	struct memory_target *target;
931 	struct node_notify *nn = arg;
932 	int pxm, nid = nn->nid;
933 
934 	if (action != NODE_ADDED_FIRST_MEMORY)
935 		return NOTIFY_OK;
936 
937 	pxm = node_to_pxm(nid);
938 	target = find_mem_target(pxm);
939 	if (!target)
940 		return NOTIFY_OK;
941 
942 	hmat_register_target(target);
943 	return NOTIFY_OK;
944 }
945 
946 static int __init hmat_set_default_dram_perf(void)
947 {
948 	int rc;
949 	int nid, pxm;
950 	struct memory_target *target;
951 	struct access_coordinate *attrs;
952 
953 	for_each_node_mask(nid, default_dram_nodes) {
954 		pxm = node_to_pxm(nid);
955 		target = find_mem_target(pxm);
956 		if (!target)
957 			continue;
958 		attrs = &target->coord[ACCESS_COORDINATE_CPU];
959 		rc = mt_set_default_dram_perf(nid, attrs, "ACPI HMAT");
960 		if (rc)
961 			return rc;
962 	}
963 
964 	return 0;
965 }
966 
967 static int hmat_calculate_adistance(struct notifier_block *self,
968 				    unsigned long nid, void *data)
969 {
970 	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
971 	struct memory_target *target;
972 	struct access_coordinate *perf;
973 	int *adist = data;
974 	int pxm;
975 
976 	pxm = node_to_pxm(nid);
977 	target = find_mem_target(pxm);
978 	if (!target)
979 		return NOTIFY_OK;
980 
981 	mutex_lock(&target_lock);
982 	hmat_update_target_attrs(target, p_nodes, ACCESS_COORDINATE_CPU);
983 	mutex_unlock(&target_lock);
984 
985 	perf = &target->coord[ACCESS_COORDINATE_CPU];
986 
987 	if (mt_perf_to_adistance(perf, adist))
988 		return NOTIFY_OK;
989 
990 	return NOTIFY_STOP;
991 }
992 
993 static struct notifier_block hmat_adist_nb __meminitdata = {
994 	.notifier_call = hmat_calculate_adistance,
995 	.priority = 100,
996 };
997 
998 static __init void hmat_free_structures(void)
999 {
1000 	struct memory_target *target, *tnext;
1001 	struct memory_locality *loc, *lnext;
1002 	struct memory_initiator *initiator, *inext;
1003 	struct target_cache *tcache, *cnext;
1004 
1005 	list_for_each_entry_safe(target, tnext, &targets, node) {
1006 		struct resource *res, *res_next;
1007 
1008 		list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
1009 			list_del(&tcache->node);
1010 			kfree(tcache);
1011 		}
1012 
1013 		list_del(&target->node);
1014 		res = target->memregions.child;
1015 		while (res) {
1016 			res_next = res->sibling;
1017 			__release_region(&target->memregions, res->start,
1018 					resource_size(res));
1019 			res = res_next;
1020 		}
1021 		kfree(target);
1022 	}
1023 
1024 	list_for_each_entry_safe(initiator, inext, &initiators, node) {
1025 		list_del(&initiator->node);
1026 		kfree(initiator);
1027 	}
1028 
1029 	list_for_each_entry_safe(loc, lnext, &localities, node) {
1030 		list_del(&loc->node);
1031 		kfree(loc);
1032 	}
1033 }
1034 
1035 static __init int hmat_init(void)
1036 {
1037 	struct acpi_table_header *tbl;
1038 	enum acpi_hmat_type i;
1039 	acpi_status status;
1040 
1041 	if (srat_disabled() || hmat_disable)
1042 		return 0;
1043 
1044 	status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
1045 	if (ACPI_FAILURE(status))
1046 		return 0;
1047 
1048 	if (acpi_table_parse_entries(ACPI_SIG_SRAT,
1049 				sizeof(struct acpi_table_srat),
1050 				ACPI_SRAT_TYPE_MEMORY_AFFINITY,
1051 				srat_parse_mem_affinity, 0) < 0)
1052 		goto out_put;
1053 
1054 	if (acpi_table_parse_entries(ACPI_SIG_SRAT,
1055 				     sizeof(struct acpi_table_srat),
1056 				     ACPI_SRAT_TYPE_GENERIC_PORT_AFFINITY,
1057 				     srat_parse_genport_affinity, 0) < 0)
1058 		goto out_put;
1059 
1060 	acpi_put_table(tbl);
1061 
1062 	status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
1063 	if (ACPI_FAILURE(status))
1064 		goto out_put;
1065 
1066 	hmat_revision = tbl->revision;
1067 	switch (hmat_revision) {
1068 	case 1:
1069 	case 2:
1070 		break;
1071 	default:
1072 		pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
1073 		goto out_put;
1074 	}
1075 
1076 	for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
1077 		if (acpi_table_parse_entries(ACPI_SIG_HMAT,
1078 					     sizeof(struct acpi_table_hmat), i,
1079 					     hmat_parse_subtable, 0) < 0) {
1080 			pr_notice("Ignoring: Invalid table");
1081 			goto out_put;
1082 		}
1083 	}
1084 	hmat_register_targets();
1085 
1086 	/* Keep the table and structures if the notifier may use them */
1087 	if (hotplug_node_notifier(hmat_callback, HMAT_CALLBACK_PRI))
1088 		goto out_put;
1089 
1090 	if (!hmat_set_default_dram_perf())
1091 		register_mt_adistance_algorithm(&hmat_adist_nb);
1092 
1093 	return 0;
1094 out_put:
1095 	hmat_free_structures();
1096 	acpi_put_table(tbl);
1097 	return 0;
1098 }
1099 subsys_initcall(hmat_init);
1100