xref: /linux/drivers/acpi/nfit/core.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/nospec.h>
9 #include <linux/mutex.h>
10 #include <linux/ndctl.h>
11 #include <linux/sysfs.h>
12 #include <linux/delay.h>
13 #include <linux/list.h>
14 #include <linux/acpi.h>
15 #include <linux/sort.h>
16 #include <linux/io.h>
17 #include <linux/nd.h>
18 #include <asm/cacheflush.h>
19 #include <acpi/nfit.h>
20 #include "intel.h"
21 #include "nfit.h"
22 
23 /*
24  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25  * irrelevant.
26  */
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 
29 static bool force_enable_dimms;
30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32 
33 static bool disable_vendor_specific;
34 module_param(disable_vendor_specific, bool, S_IRUGO);
35 MODULE_PARM_DESC(disable_vendor_specific,
36 		"Limit commands to the publicly specified set");
37 
38 static unsigned long override_dsm_mask;
39 module_param(override_dsm_mask, ulong, S_IRUGO);
40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41 
42 static int default_dsm_family = -1;
43 module_param(default_dsm_family, int, S_IRUGO);
44 MODULE_PARM_DESC(default_dsm_family,
45 		"Try this DSM type first when identifying NVDIMM family");
46 
47 static bool no_init_ars;
48 module_param(no_init_ars, bool, 0644);
49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50 
51 static bool force_labels;
52 module_param(force_labels, bool, 0444);
53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54 
55 LIST_HEAD(acpi_descs);
56 DEFINE_MUTEX(acpi_desc_lock);
57 
58 static struct workqueue_struct *nfit_wq;
59 
60 struct nfit_table_prev {
61 	struct list_head spas;
62 	struct list_head memdevs;
63 	struct list_head dcrs;
64 	struct list_head bdws;
65 	struct list_head idts;
66 	struct list_head flushes;
67 };
68 
69 static guid_t nfit_uuid[NFIT_UUID_MAX];
70 
71 const guid_t *to_nfit_uuid(enum nfit_uuids id)
72 {
73 	return &nfit_uuid[id];
74 }
75 EXPORT_SYMBOL(to_nfit_uuid);
76 
77 static const guid_t *to_nfit_bus_uuid(int family)
78 {
79 	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80 			"only secondary bus families can be translated\n"))
81 		return NULL;
82 	/*
83 	 * The index of bus UUIDs starts immediately following the last
84 	 * NVDIMM/leaf family.
85 	 */
86 	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87 }
88 
89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90 {
91 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92 
93 	/*
94 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95 	 * acpi_device.
96 	 */
97 	if (!nd_desc->provider_name
98 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99 		return NULL;
100 
101 	return to_acpi_device(acpi_desc->dev);
102 }
103 
104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105 {
106 	struct nd_cmd_clear_error *clear_err;
107 	struct nd_cmd_ars_status *ars_status;
108 	u16 flags;
109 
110 	switch (cmd) {
111 	case ND_CMD_ARS_CAP:
112 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113 			return -ENOTTY;
114 
115 		/* Command failed */
116 		if (status & 0xffff)
117 			return -EIO;
118 
119 		/* No supported scan types for this range */
120 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121 		if ((status >> 16 & flags) == 0)
122 			return -ENOTTY;
123 		return 0;
124 	case ND_CMD_ARS_START:
125 		/* ARS is in progress */
126 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127 			return -EBUSY;
128 
129 		/* Command failed */
130 		if (status & 0xffff)
131 			return -EIO;
132 		return 0;
133 	case ND_CMD_ARS_STATUS:
134 		ars_status = buf;
135 		/* Command failed */
136 		if (status & 0xffff)
137 			return -EIO;
138 		/* Check extended status (Upper two bytes) */
139 		if (status == NFIT_ARS_STATUS_DONE)
140 			return 0;
141 
142 		/* ARS is in progress */
143 		if (status == NFIT_ARS_STATUS_BUSY)
144 			return -EBUSY;
145 
146 		/* No ARS performed for the current boot */
147 		if (status == NFIT_ARS_STATUS_NONE)
148 			return -EAGAIN;
149 
150 		/*
151 		 * ARS interrupted, either we overflowed or some other
152 		 * agent wants the scan to stop.  If we didn't overflow
153 		 * then just continue with the returned results.
154 		 */
155 		if (status == NFIT_ARS_STATUS_INTR) {
156 			if (ars_status->out_length >= 40 && (ars_status->flags
157 						& NFIT_ARS_F_OVERFLOW))
158 				return -ENOSPC;
159 			return 0;
160 		}
161 
162 		/* Unknown status */
163 		if (status >> 16)
164 			return -EIO;
165 		return 0;
166 	case ND_CMD_CLEAR_ERROR:
167 		clear_err = buf;
168 		if (status & 0xffff)
169 			return -EIO;
170 		if (!clear_err->cleared)
171 			return -EIO;
172 		if (clear_err->length > clear_err->cleared)
173 			return clear_err->cleared;
174 		return 0;
175 	default:
176 		break;
177 	}
178 
179 	/* all other non-zero status results in an error */
180 	if (status)
181 		return -EIO;
182 	return 0;
183 }
184 
185 #define ACPI_LABELS_LOCKED 3
186 
187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188 		u32 status)
189 {
190 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191 
192 	switch (cmd) {
193 	case ND_CMD_GET_CONFIG_SIZE:
194 		/*
195 		 * In the _LSI, _LSR, _LSW case the locked status is
196 		 * communicated via the read/write commands
197 		 */
198 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199 			break;
200 
201 		if (status >> 16 & ND_CONFIG_LOCKED)
202 			return -EACCES;
203 		break;
204 	case ND_CMD_GET_CONFIG_DATA:
205 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206 				&& status == ACPI_LABELS_LOCKED)
207 			return -EACCES;
208 		break;
209 	case ND_CMD_SET_CONFIG_DATA:
210 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211 				&& status == ACPI_LABELS_LOCKED)
212 			return -EACCES;
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	/* all other non-zero status results in an error */
219 	if (status)
220 		return -EIO;
221 	return 0;
222 }
223 
224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225 		u32 status)
226 {
227 	if (!nvdimm)
228 		return xlat_bus_status(buf, cmd, status);
229 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230 }
231 
232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
233 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234 {
235 	int i;
236 	void *dst;
237 	size_t size = 0;
238 	union acpi_object *buf = NULL;
239 
240 	if (pkg->type != ACPI_TYPE_PACKAGE) {
241 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 				pkg->type);
243 		goto err;
244 	}
245 
246 	for (i = 0; i < pkg->package.count; i++) {
247 		union acpi_object *obj = &pkg->package.elements[i];
248 
249 		if (obj->type == ACPI_TYPE_INTEGER)
250 			size += 4;
251 		else if (obj->type == ACPI_TYPE_BUFFER)
252 			size += obj->buffer.length;
253 		else {
254 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255 					obj->type);
256 			goto err;
257 		}
258 	}
259 
260 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261 	if (!buf)
262 		goto err;
263 
264 	dst = buf + 1;
265 	buf->type = ACPI_TYPE_BUFFER;
266 	buf->buffer.length = size;
267 	buf->buffer.pointer = dst;
268 	for (i = 0; i < pkg->package.count; i++) {
269 		union acpi_object *obj = &pkg->package.elements[i];
270 
271 		if (obj->type == ACPI_TYPE_INTEGER) {
272 			memcpy(dst, &obj->integer.value, 4);
273 			dst += 4;
274 		} else if (obj->type == ACPI_TYPE_BUFFER) {
275 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276 			dst += obj->buffer.length;
277 		}
278 	}
279 err:
280 	ACPI_FREE(pkg);
281 	return buf;
282 }
283 
284 static union acpi_object *int_to_buf(union acpi_object *integer)
285 {
286 	union acpi_object *buf = NULL;
287 	void *dst = NULL;
288 
289 	if (integer->type != ACPI_TYPE_INTEGER) {
290 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291 				integer->type);
292 		goto err;
293 	}
294 
295 	buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
296 	if (!buf)
297 		goto err;
298 
299 	dst = buf + 1;
300 	buf->type = ACPI_TYPE_BUFFER;
301 	buf->buffer.length = 4;
302 	buf->buffer.pointer = dst;
303 	memcpy(dst, &integer->integer.value, 4);
304 err:
305 	ACPI_FREE(integer);
306 	return buf;
307 }
308 
309 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
310 		u32 len, void *data)
311 {
312 	acpi_status rc;
313 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
314 	struct acpi_object_list input = {
315 		.count = 3,
316 		.pointer = (union acpi_object []) {
317 			[0] = {
318 				.integer.type = ACPI_TYPE_INTEGER,
319 				.integer.value = offset,
320 			},
321 			[1] = {
322 				.integer.type = ACPI_TYPE_INTEGER,
323 				.integer.value = len,
324 			},
325 			[2] = {
326 				.buffer.type = ACPI_TYPE_BUFFER,
327 				.buffer.pointer = data,
328 				.buffer.length = len,
329 			},
330 		},
331 	};
332 
333 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
334 	if (ACPI_FAILURE(rc))
335 		return NULL;
336 	return int_to_buf(buf.pointer);
337 }
338 
339 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
340 		u32 len)
341 {
342 	acpi_status rc;
343 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
344 	struct acpi_object_list input = {
345 		.count = 2,
346 		.pointer = (union acpi_object []) {
347 			[0] = {
348 				.integer.type = ACPI_TYPE_INTEGER,
349 				.integer.value = offset,
350 			},
351 			[1] = {
352 				.integer.type = ACPI_TYPE_INTEGER,
353 				.integer.value = len,
354 			},
355 		},
356 	};
357 
358 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
359 	if (ACPI_FAILURE(rc))
360 		return NULL;
361 	return pkg_to_buf(buf.pointer);
362 }
363 
364 static union acpi_object *acpi_label_info(acpi_handle handle)
365 {
366 	acpi_status rc;
367 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
368 
369 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
370 	if (ACPI_FAILURE(rc))
371 		return NULL;
372 	return pkg_to_buf(buf.pointer);
373 }
374 
375 static u8 nfit_dsm_revid(unsigned family, unsigned func)
376 {
377 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
378 		[NVDIMM_FAMILY_INTEL] = {
379 			[NVDIMM_INTEL_GET_MODES ...
380 				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
381 		},
382 	};
383 	u8 id;
384 
385 	if (family > NVDIMM_FAMILY_MAX)
386 		return 0;
387 	if (func > NVDIMM_CMD_MAX)
388 		return 0;
389 	id = revid_table[family][func];
390 	if (id == 0)
391 		return 1; /* default */
392 	return id;
393 }
394 
395 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
396 {
397 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
398 
399 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
400 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
401 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
402 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
403 	return true;
404 }
405 
406 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
407 		struct nd_cmd_pkg *call_pkg, int *family)
408 {
409 	if (call_pkg) {
410 		int i;
411 
412 		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
413 			return -ENOTTY;
414 
415 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
416 			if (call_pkg->nd_reserved2[i])
417 				return -EINVAL;
418 		*family = call_pkg->nd_family;
419 		return call_pkg->nd_command;
420 	}
421 
422 	/* In the !call_pkg case, bus commands == bus functions */
423 	if (!nfit_mem)
424 		return cmd;
425 
426 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
427 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
428 		return cmd;
429 
430 	/*
431 	 * Force function number validation to fail since 0 is never
432 	 * published as a valid function in dsm_mask.
433 	 */
434 	return 0;
435 }
436 
437 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
438 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
439 {
440 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
441 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
442 	union acpi_object in_obj, in_buf, *out_obj;
443 	const struct nd_cmd_desc *desc = NULL;
444 	struct device *dev = acpi_desc->dev;
445 	struct nd_cmd_pkg *call_pkg = NULL;
446 	const char *cmd_name, *dimm_name;
447 	unsigned long cmd_mask, dsm_mask;
448 	u32 offset, fw_status = 0;
449 	acpi_handle handle;
450 	const guid_t *guid;
451 	int func, rc, i;
452 	int family = 0;
453 
454 	if (cmd_rc)
455 		*cmd_rc = -EINVAL;
456 
457 	if (cmd == ND_CMD_CALL) {
458 		if (!buf || buf_len < sizeof(*call_pkg))
459 			return -EINVAL;
460 
461 		call_pkg = buf;
462 	}
463 
464 	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
465 	if (func < 0)
466 		return func;
467 
468 	if (nvdimm) {
469 		struct acpi_device *adev = nfit_mem->adev;
470 
471 		if (!adev)
472 			return -ENOTTY;
473 
474 		dimm_name = nvdimm_name(nvdimm);
475 		cmd_name = nvdimm_cmd_name(cmd);
476 		cmd_mask = nvdimm_cmd_mask(nvdimm);
477 		dsm_mask = nfit_mem->dsm_mask;
478 		desc = nd_cmd_dimm_desc(cmd);
479 		guid = to_nfit_uuid(nfit_mem->family);
480 		handle = adev->handle;
481 	} else {
482 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
483 
484 		cmd_name = nvdimm_bus_cmd_name(cmd);
485 		cmd_mask = nd_desc->cmd_mask;
486 		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
487 			family = call_pkg->nd_family;
488 			if (family > NVDIMM_BUS_FAMILY_MAX ||
489 			    !test_bit(family, &nd_desc->bus_family_mask))
490 				return -EINVAL;
491 			family = array_index_nospec(family,
492 						    NVDIMM_BUS_FAMILY_MAX + 1);
493 			dsm_mask = acpi_desc->family_dsm_mask[family];
494 			guid = to_nfit_bus_uuid(family);
495 		} else {
496 			dsm_mask = acpi_desc->bus_dsm_mask;
497 			guid = to_nfit_uuid(NFIT_DEV_BUS);
498 		}
499 		desc = nd_cmd_bus_desc(cmd);
500 		handle = adev->handle;
501 		dimm_name = "bus";
502 	}
503 
504 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
505 		return -ENOTTY;
506 
507 	/*
508 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
509 	 * make sure that the DSM function is supported.
510 	 */
511 	if (cmd == ND_CMD_CALL &&
512 	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
513 		return -ENOTTY;
514 	else if (!test_bit(cmd, &cmd_mask))
515 		return -ENOTTY;
516 
517 	in_obj.type = ACPI_TYPE_PACKAGE;
518 	in_obj.package.count = 1;
519 	in_obj.package.elements = &in_buf;
520 	in_buf.type = ACPI_TYPE_BUFFER;
521 	in_buf.buffer.pointer = buf;
522 	in_buf.buffer.length = 0;
523 
524 	/* libnvdimm has already validated the input envelope */
525 	for (i = 0; i < desc->in_num; i++)
526 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
527 				i, buf);
528 
529 	if (call_pkg) {
530 		/* skip over package wrapper */
531 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
532 		in_buf.buffer.length = call_pkg->nd_size_in;
533 	}
534 
535 	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
536 		dimm_name, cmd, family, func, in_buf.buffer.length);
537 	if (payload_dumpable(nvdimm, func))
538 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
539 				in_buf.buffer.pointer,
540 				min_t(u32, 256, in_buf.buffer.length), true);
541 
542 	/* call the BIOS, prefer the named methods over _DSM if available */
543 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
544 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
545 		out_obj = acpi_label_info(handle);
546 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
547 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
548 		struct nd_cmd_get_config_data_hdr *p = buf;
549 
550 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
551 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
552 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
553 		struct nd_cmd_set_config_hdr *p = buf;
554 
555 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
556 				p->in_buf);
557 	} else {
558 		u8 revid;
559 
560 		if (nvdimm)
561 			revid = nfit_dsm_revid(nfit_mem->family, func);
562 		else
563 			revid = 1;
564 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
565 	}
566 
567 	if (!out_obj) {
568 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
569 		return -EINVAL;
570 	}
571 
572 	if (out_obj->type != ACPI_TYPE_BUFFER) {
573 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
574 				dimm_name, cmd_name, out_obj->type);
575 		rc = -EINVAL;
576 		goto out;
577 	}
578 
579 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
580 			cmd_name, out_obj->buffer.length);
581 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
582 			out_obj->buffer.pointer,
583 			min_t(u32, 128, out_obj->buffer.length), true);
584 
585 	if (call_pkg) {
586 		call_pkg->nd_fw_size = out_obj->buffer.length;
587 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
588 			out_obj->buffer.pointer,
589 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
590 
591 		ACPI_FREE(out_obj);
592 		/*
593 		 * Need to support FW function w/o known size in advance.
594 		 * Caller can determine required size based upon nd_fw_size.
595 		 * If we return an error (like elsewhere) then caller wouldn't
596 		 * be able to rely upon data returned to make calculation.
597 		 */
598 		if (cmd_rc)
599 			*cmd_rc = 0;
600 		return 0;
601 	}
602 
603 	for (i = 0, offset = 0; i < desc->out_num; i++) {
604 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
605 				(u32 *) out_obj->buffer.pointer,
606 				out_obj->buffer.length - offset);
607 
608 		if (offset + out_size > out_obj->buffer.length) {
609 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
610 					dimm_name, cmd_name, i);
611 			break;
612 		}
613 
614 		if (in_buf.buffer.length + offset + out_size > buf_len) {
615 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
616 					dimm_name, cmd_name, i);
617 			rc = -ENXIO;
618 			goto out;
619 		}
620 		memcpy(buf + in_buf.buffer.length + offset,
621 				out_obj->buffer.pointer + offset, out_size);
622 		offset += out_size;
623 	}
624 
625 	/*
626 	 * Set fw_status for all the commands with a known format to be
627 	 * later interpreted by xlat_status().
628 	 */
629 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
630 					&& cmd <= ND_CMD_CLEAR_ERROR)
631 				|| (nvdimm && cmd >= ND_CMD_SMART
632 					&& cmd <= ND_CMD_VENDOR)))
633 		fw_status = *(u32 *) out_obj->buffer.pointer;
634 
635 	if (offset + in_buf.buffer.length < buf_len) {
636 		if (i >= 1) {
637 			/*
638 			 * status valid, return the number of bytes left
639 			 * unfilled in the output buffer
640 			 */
641 			rc = buf_len - offset - in_buf.buffer.length;
642 			if (cmd_rc)
643 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
644 						fw_status);
645 		} else {
646 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
647 					__func__, dimm_name, cmd_name, buf_len,
648 					offset);
649 			rc = -ENXIO;
650 		}
651 	} else {
652 		rc = 0;
653 		if (cmd_rc)
654 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
655 	}
656 
657  out:
658 	ACPI_FREE(out_obj);
659 
660 	return rc;
661 }
662 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
663 
664 static const char *spa_type_name(u16 type)
665 {
666 	static const char *to_name[] = {
667 		[NFIT_SPA_VOLATILE] = "volatile",
668 		[NFIT_SPA_PM] = "pmem",
669 		[NFIT_SPA_DCR] = "dimm-control-region",
670 		[NFIT_SPA_BDW] = "block-data-window",
671 		[NFIT_SPA_VDISK] = "volatile-disk",
672 		[NFIT_SPA_VCD] = "volatile-cd",
673 		[NFIT_SPA_PDISK] = "persistent-disk",
674 		[NFIT_SPA_PCD] = "persistent-cd",
675 
676 	};
677 
678 	if (type > NFIT_SPA_PCD)
679 		return "unknown";
680 
681 	return to_name[type];
682 }
683 
684 int nfit_spa_type(struct acpi_nfit_system_address *spa)
685 {
686 	guid_t guid;
687 	int i;
688 
689 	import_guid(&guid, spa->range_guid);
690 	for (i = 0; i < NFIT_UUID_MAX; i++)
691 		if (guid_equal(to_nfit_uuid(i), &guid))
692 			return i;
693 	return -1;
694 }
695 
696 static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
697 {
698 	if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
699 		return sizeof(*spa);
700 	return sizeof(*spa) - 8;
701 }
702 
703 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
704 		struct nfit_table_prev *prev,
705 		struct acpi_nfit_system_address *spa)
706 {
707 	struct device *dev = acpi_desc->dev;
708 	struct nfit_spa *nfit_spa;
709 
710 	if (spa->header.length != sizeof_spa(spa))
711 		return false;
712 
713 	list_for_each_entry(nfit_spa, &prev->spas, list) {
714 		if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
715 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
716 			return true;
717 		}
718 	}
719 
720 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
721 			GFP_KERNEL);
722 	if (!nfit_spa)
723 		return false;
724 	INIT_LIST_HEAD(&nfit_spa->list);
725 	memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
726 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
727 	dev_dbg(dev, "spa index: %d type: %s\n",
728 			spa->range_index,
729 			spa_type_name(nfit_spa_type(spa)));
730 	return true;
731 }
732 
733 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
734 		struct nfit_table_prev *prev,
735 		struct acpi_nfit_memory_map *memdev)
736 {
737 	struct device *dev = acpi_desc->dev;
738 	struct nfit_memdev *nfit_memdev;
739 
740 	if (memdev->header.length != sizeof(*memdev))
741 		return false;
742 
743 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
744 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
745 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
746 			return true;
747 		}
748 
749 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
750 			GFP_KERNEL);
751 	if (!nfit_memdev)
752 		return false;
753 	INIT_LIST_HEAD(&nfit_memdev->list);
754 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
755 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
756 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
757 			memdev->device_handle, memdev->range_index,
758 			memdev->region_index, memdev->flags);
759 	return true;
760 }
761 
762 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
763 {
764 	struct acpi_nfit_memory_map *memdev;
765 	struct acpi_nfit_desc *acpi_desc;
766 	struct nfit_mem *nfit_mem;
767 	u16 physical_id;
768 
769 	mutex_lock(&acpi_desc_lock);
770 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
771 		mutex_lock(&acpi_desc->init_mutex);
772 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
773 			memdev = __to_nfit_memdev(nfit_mem);
774 			if (memdev->device_handle == device_handle) {
775 				*flags = memdev->flags;
776 				physical_id = memdev->physical_id;
777 				mutex_unlock(&acpi_desc->init_mutex);
778 				mutex_unlock(&acpi_desc_lock);
779 				return physical_id;
780 			}
781 		}
782 		mutex_unlock(&acpi_desc->init_mutex);
783 	}
784 	mutex_unlock(&acpi_desc_lock);
785 
786 	return -ENODEV;
787 }
788 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
789 
790 /*
791  * An implementation may provide a truncated control region if no block windows
792  * are defined.
793  */
794 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
795 {
796 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
797 				window_size))
798 		return 0;
799 	if (dcr->windows)
800 		return sizeof(*dcr);
801 	return offsetof(struct acpi_nfit_control_region, window_size);
802 }
803 
804 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
805 		struct nfit_table_prev *prev,
806 		struct acpi_nfit_control_region *dcr)
807 {
808 	struct device *dev = acpi_desc->dev;
809 	struct nfit_dcr *nfit_dcr;
810 
811 	if (!sizeof_dcr(dcr))
812 		return false;
813 
814 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
815 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
816 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
817 			return true;
818 		}
819 
820 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
821 			GFP_KERNEL);
822 	if (!nfit_dcr)
823 		return false;
824 	INIT_LIST_HEAD(&nfit_dcr->list);
825 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
826 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
827 	dev_dbg(dev, "dcr index: %d windows: %d\n",
828 			dcr->region_index, dcr->windows);
829 	return true;
830 }
831 
832 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
833 		struct nfit_table_prev *prev,
834 		struct acpi_nfit_data_region *bdw)
835 {
836 	struct device *dev = acpi_desc->dev;
837 	struct nfit_bdw *nfit_bdw;
838 
839 	if (bdw->header.length != sizeof(*bdw))
840 		return false;
841 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
842 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
843 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
844 			return true;
845 		}
846 
847 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
848 			GFP_KERNEL);
849 	if (!nfit_bdw)
850 		return false;
851 	INIT_LIST_HEAD(&nfit_bdw->list);
852 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
853 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
854 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
855 			bdw->region_index, bdw->windows);
856 	return true;
857 }
858 
859 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
860 {
861 	if (idt->header.length < sizeof(*idt))
862 		return 0;
863 	return sizeof(*idt) + sizeof(u32) * idt->line_count;
864 }
865 
866 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
867 		struct nfit_table_prev *prev,
868 		struct acpi_nfit_interleave *idt)
869 {
870 	struct device *dev = acpi_desc->dev;
871 	struct nfit_idt *nfit_idt;
872 
873 	if (!sizeof_idt(idt))
874 		return false;
875 
876 	list_for_each_entry(nfit_idt, &prev->idts, list) {
877 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
878 			continue;
879 
880 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
881 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
882 			return true;
883 		}
884 	}
885 
886 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
887 			GFP_KERNEL);
888 	if (!nfit_idt)
889 		return false;
890 	INIT_LIST_HEAD(&nfit_idt->list);
891 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
892 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
893 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
894 			idt->interleave_index, idt->line_count);
895 	return true;
896 }
897 
898 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
899 {
900 	if (flush->header.length < sizeof(*flush))
901 		return 0;
902 	return struct_size(flush, hint_address, flush->hint_count);
903 }
904 
905 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
906 		struct nfit_table_prev *prev,
907 		struct acpi_nfit_flush_address *flush)
908 {
909 	struct device *dev = acpi_desc->dev;
910 	struct nfit_flush *nfit_flush;
911 
912 	if (!sizeof_flush(flush))
913 		return false;
914 
915 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
916 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
917 			continue;
918 
919 		if (memcmp(nfit_flush->flush, flush,
920 					sizeof_flush(flush)) == 0) {
921 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
922 			return true;
923 		}
924 	}
925 
926 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
927 			+ sizeof_flush(flush), GFP_KERNEL);
928 	if (!nfit_flush)
929 		return false;
930 	INIT_LIST_HEAD(&nfit_flush->list);
931 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
932 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
933 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
934 			flush->device_handle, flush->hint_count);
935 	return true;
936 }
937 
938 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
939 		struct acpi_nfit_capabilities *pcap)
940 {
941 	struct device *dev = acpi_desc->dev;
942 	u32 mask;
943 
944 	mask = (1 << (pcap->highest_capability + 1)) - 1;
945 	acpi_desc->platform_cap = pcap->capabilities & mask;
946 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
947 	return true;
948 }
949 
950 static void *add_table(struct acpi_nfit_desc *acpi_desc,
951 		struct nfit_table_prev *prev, void *table, const void *end)
952 {
953 	struct device *dev = acpi_desc->dev;
954 	struct acpi_nfit_header *hdr;
955 	void *err = ERR_PTR(-ENOMEM);
956 
957 	if (table >= end)
958 		return NULL;
959 
960 	hdr = table;
961 	if (!hdr->length) {
962 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
963 			hdr->type);
964 		return NULL;
965 	}
966 
967 	switch (hdr->type) {
968 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
969 		if (!add_spa(acpi_desc, prev, table))
970 			return err;
971 		break;
972 	case ACPI_NFIT_TYPE_MEMORY_MAP:
973 		if (!add_memdev(acpi_desc, prev, table))
974 			return err;
975 		break;
976 	case ACPI_NFIT_TYPE_CONTROL_REGION:
977 		if (!add_dcr(acpi_desc, prev, table))
978 			return err;
979 		break;
980 	case ACPI_NFIT_TYPE_DATA_REGION:
981 		if (!add_bdw(acpi_desc, prev, table))
982 			return err;
983 		break;
984 	case ACPI_NFIT_TYPE_INTERLEAVE:
985 		if (!add_idt(acpi_desc, prev, table))
986 			return err;
987 		break;
988 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
989 		if (!add_flush(acpi_desc, prev, table))
990 			return err;
991 		break;
992 	case ACPI_NFIT_TYPE_SMBIOS:
993 		dev_dbg(dev, "smbios\n");
994 		break;
995 	case ACPI_NFIT_TYPE_CAPABILITIES:
996 		if (!add_platform_cap(acpi_desc, table))
997 			return err;
998 		break;
999 	default:
1000 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
1001 		break;
1002 	}
1003 
1004 	return table + hdr->length;
1005 }
1006 
1007 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1008 		struct acpi_nfit_system_address *spa)
1009 {
1010 	struct nfit_mem *nfit_mem, *found;
1011 	struct nfit_memdev *nfit_memdev;
1012 	int type = spa ? nfit_spa_type(spa) : 0;
1013 
1014 	switch (type) {
1015 	case NFIT_SPA_DCR:
1016 	case NFIT_SPA_PM:
1017 		break;
1018 	default:
1019 		if (spa)
1020 			return 0;
1021 	}
1022 
1023 	/*
1024 	 * This loop runs in two modes, when a dimm is mapped the loop
1025 	 * adds memdev associations to an existing dimm, or creates a
1026 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1027 	 * instances with an invalid / zero range_index and adds those
1028 	 * dimms without spa associations.
1029 	 */
1030 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1031 		struct nfit_flush *nfit_flush;
1032 		struct nfit_dcr *nfit_dcr;
1033 		u32 device_handle;
1034 		u16 dcr;
1035 
1036 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1037 			continue;
1038 		if (!spa && nfit_memdev->memdev->range_index)
1039 			continue;
1040 		found = NULL;
1041 		dcr = nfit_memdev->memdev->region_index;
1042 		device_handle = nfit_memdev->memdev->device_handle;
1043 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1044 			if (__to_nfit_memdev(nfit_mem)->device_handle
1045 					== device_handle) {
1046 				found = nfit_mem;
1047 				break;
1048 			}
1049 
1050 		if (found)
1051 			nfit_mem = found;
1052 		else {
1053 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1054 					sizeof(*nfit_mem), GFP_KERNEL);
1055 			if (!nfit_mem)
1056 				return -ENOMEM;
1057 			INIT_LIST_HEAD(&nfit_mem->list);
1058 			nfit_mem->acpi_desc = acpi_desc;
1059 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1060 		}
1061 
1062 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1063 			if (nfit_dcr->dcr->region_index != dcr)
1064 				continue;
1065 			/*
1066 			 * Record the control region for the dimm.  For
1067 			 * the ACPI 6.1 case, where there are separate
1068 			 * control regions for the pmem vs blk
1069 			 * interfaces, be sure to record the extended
1070 			 * blk details.
1071 			 */
1072 			if (!nfit_mem->dcr)
1073 				nfit_mem->dcr = nfit_dcr->dcr;
1074 			else if (nfit_mem->dcr->windows == 0
1075 					&& nfit_dcr->dcr->windows)
1076 				nfit_mem->dcr = nfit_dcr->dcr;
1077 			break;
1078 		}
1079 
1080 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1081 			struct acpi_nfit_flush_address *flush;
1082 			u16 i;
1083 
1084 			if (nfit_flush->flush->device_handle != device_handle)
1085 				continue;
1086 			nfit_mem->nfit_flush = nfit_flush;
1087 			flush = nfit_flush->flush;
1088 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1089 					flush->hint_count,
1090 					sizeof(struct resource),
1091 					GFP_KERNEL);
1092 			if (!nfit_mem->flush_wpq)
1093 				return -ENOMEM;
1094 			for (i = 0; i < flush->hint_count; i++) {
1095 				struct resource *res = &nfit_mem->flush_wpq[i];
1096 
1097 				res->start = flush->hint_address[i];
1098 				res->end = res->start + 8 - 1;
1099 			}
1100 			break;
1101 		}
1102 
1103 		if (dcr && !nfit_mem->dcr) {
1104 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1105 					spa->range_index, dcr);
1106 			return -ENODEV;
1107 		}
1108 
1109 		if (type == NFIT_SPA_DCR) {
1110 			struct nfit_idt *nfit_idt;
1111 			u16 idt_idx;
1112 
1113 			/* multiple dimms may share a SPA when interleaved */
1114 			nfit_mem->spa_dcr = spa;
1115 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1116 			idt_idx = nfit_memdev->memdev->interleave_index;
1117 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1118 				if (nfit_idt->idt->interleave_index != idt_idx)
1119 					continue;
1120 				nfit_mem->idt_dcr = nfit_idt->idt;
1121 				break;
1122 			}
1123 		} else if (type == NFIT_SPA_PM) {
1124 			/*
1125 			 * A single dimm may belong to multiple SPA-PM
1126 			 * ranges, record at least one in addition to
1127 			 * any SPA-DCR range.
1128 			 */
1129 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1130 		} else
1131 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1138 		const struct list_head *_b)
1139 {
1140 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1141 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1142 	u32 handleA, handleB;
1143 
1144 	handleA = __to_nfit_memdev(a)->device_handle;
1145 	handleB = __to_nfit_memdev(b)->device_handle;
1146 	if (handleA < handleB)
1147 		return -1;
1148 	else if (handleA > handleB)
1149 		return 1;
1150 	return 0;
1151 }
1152 
1153 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1154 {
1155 	struct nfit_spa *nfit_spa;
1156 	int rc;
1157 
1158 
1159 	/*
1160 	 * For each SPA-DCR or SPA-PMEM address range find its
1161 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1162 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1163 	 * try to find a SPA-BDW and a corresponding BDW that references
1164 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1165 	 * BDWs are optional.
1166 	 */
1167 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1168 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1169 		if (rc)
1170 			return rc;
1171 	}
1172 
1173 	/*
1174 	 * If a DIMM has failed to be mapped into SPA there will be no
1175 	 * SPA entries above. Find and register all the unmapped DIMMs
1176 	 * for reporting and recovery purposes.
1177 	 */
1178 	rc = __nfit_mem_init(acpi_desc, NULL);
1179 	if (rc)
1180 		return rc;
1181 
1182 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1183 
1184 	return 0;
1185 }
1186 
1187 static ssize_t bus_dsm_mask_show(struct device *dev,
1188 		struct device_attribute *attr, char *buf)
1189 {
1190 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1191 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1192 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1193 
1194 	return sysfs_emit(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1195 }
1196 static struct device_attribute dev_attr_bus_dsm_mask =
1197 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1198 
1199 static ssize_t revision_show(struct device *dev,
1200 		struct device_attribute *attr, char *buf)
1201 {
1202 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1203 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1204 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1205 
1206 	return sysfs_emit(buf, "%d\n", acpi_desc->acpi_header.revision);
1207 }
1208 static DEVICE_ATTR_RO(revision);
1209 
1210 static ssize_t hw_error_scrub_show(struct device *dev,
1211 		struct device_attribute *attr, char *buf)
1212 {
1213 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1214 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1215 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1216 
1217 	return sysfs_emit(buf, "%d\n", acpi_desc->scrub_mode);
1218 }
1219 
1220 /*
1221  * The 'hw_error_scrub' attribute can have the following values written to it:
1222  * '0': Switch to the default mode where an exception will only insert
1223  *      the address of the memory error into the poison and badblocks lists.
1224  * '1': Enable a full scrub to happen if an exception for a memory error is
1225  *      received.
1226  */
1227 static ssize_t hw_error_scrub_store(struct device *dev,
1228 		struct device_attribute *attr, const char *buf, size_t size)
1229 {
1230 	struct nvdimm_bus_descriptor *nd_desc;
1231 	ssize_t rc;
1232 	long val;
1233 
1234 	rc = kstrtol(buf, 0, &val);
1235 	if (rc)
1236 		return rc;
1237 
1238 	device_lock(dev);
1239 	nd_desc = dev_get_drvdata(dev);
1240 	if (nd_desc) {
1241 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1242 
1243 		switch (val) {
1244 		case HW_ERROR_SCRUB_ON:
1245 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1246 			break;
1247 		case HW_ERROR_SCRUB_OFF:
1248 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1249 			break;
1250 		default:
1251 			rc = -EINVAL;
1252 			break;
1253 		}
1254 	}
1255 	device_unlock(dev);
1256 	if (rc)
1257 		return rc;
1258 	return size;
1259 }
1260 static DEVICE_ATTR_RW(hw_error_scrub);
1261 
1262 /*
1263  * This shows the number of full Address Range Scrubs that have been
1264  * completed since driver load time. Userspace can wait on this using
1265  * select/poll etc. A '+' at the end indicates an ARS is in progress
1266  */
1267 static ssize_t scrub_show(struct device *dev,
1268 		struct device_attribute *attr, char *buf)
1269 {
1270 	struct nvdimm_bus_descriptor *nd_desc;
1271 	struct acpi_nfit_desc *acpi_desc;
1272 	ssize_t rc = -ENXIO;
1273 	bool busy;
1274 
1275 	device_lock(dev);
1276 	nd_desc = dev_get_drvdata(dev);
1277 	if (!nd_desc) {
1278 		device_unlock(dev);
1279 		return rc;
1280 	}
1281 	acpi_desc = to_acpi_desc(nd_desc);
1282 
1283 	mutex_lock(&acpi_desc->init_mutex);
1284 	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1285 		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1286 	rc = sysfs_emit(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1287 	/* Allow an admin to poll the busy state at a higher rate */
1288 	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1289 				&acpi_desc->scrub_flags)) {
1290 		acpi_desc->scrub_tmo = 1;
1291 		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1292 	}
1293 
1294 	mutex_unlock(&acpi_desc->init_mutex);
1295 	device_unlock(dev);
1296 	return rc;
1297 }
1298 
1299 static ssize_t scrub_store(struct device *dev,
1300 		struct device_attribute *attr, const char *buf, size_t size)
1301 {
1302 	struct nvdimm_bus_descriptor *nd_desc;
1303 	ssize_t rc;
1304 	long val;
1305 
1306 	rc = kstrtol(buf, 0, &val);
1307 	if (rc)
1308 		return rc;
1309 	if (val != 1)
1310 		return -EINVAL;
1311 
1312 	device_lock(dev);
1313 	nd_desc = dev_get_drvdata(dev);
1314 	if (nd_desc) {
1315 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1316 
1317 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1318 	}
1319 	device_unlock(dev);
1320 	if (rc)
1321 		return rc;
1322 	return size;
1323 }
1324 static DEVICE_ATTR_RW(scrub);
1325 
1326 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1327 {
1328 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1329 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1330 		| 1 << ND_CMD_ARS_STATUS;
1331 
1332 	return (nd_desc->cmd_mask & mask) == mask;
1333 }
1334 
1335 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1336 {
1337 	struct device *dev = kobj_to_dev(kobj);
1338 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1339 
1340 	if (a == &dev_attr_scrub.attr)
1341 		return ars_supported(nvdimm_bus) ? a->mode : 0;
1342 
1343 	if (a == &dev_attr_firmware_activate_noidle.attr)
1344 		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1345 
1346 	return a->mode;
1347 }
1348 
1349 static struct attribute *acpi_nfit_attributes[] = {
1350 	&dev_attr_revision.attr,
1351 	&dev_attr_scrub.attr,
1352 	&dev_attr_hw_error_scrub.attr,
1353 	&dev_attr_bus_dsm_mask.attr,
1354 	&dev_attr_firmware_activate_noidle.attr,
1355 	NULL,
1356 };
1357 
1358 static const struct attribute_group acpi_nfit_attribute_group = {
1359 	.name = "nfit",
1360 	.attrs = acpi_nfit_attributes,
1361 	.is_visible = nfit_visible,
1362 };
1363 
1364 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1365 	&acpi_nfit_attribute_group,
1366 	NULL,
1367 };
1368 
1369 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1370 {
1371 	struct nvdimm *nvdimm = to_nvdimm(dev);
1372 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1373 
1374 	return __to_nfit_memdev(nfit_mem);
1375 }
1376 
1377 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1378 {
1379 	struct nvdimm *nvdimm = to_nvdimm(dev);
1380 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1381 
1382 	return nfit_mem->dcr;
1383 }
1384 
1385 static ssize_t handle_show(struct device *dev,
1386 		struct device_attribute *attr, char *buf)
1387 {
1388 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1389 
1390 	return sysfs_emit(buf, "%#x\n", memdev->device_handle);
1391 }
1392 static DEVICE_ATTR_RO(handle);
1393 
1394 static ssize_t phys_id_show(struct device *dev,
1395 		struct device_attribute *attr, char *buf)
1396 {
1397 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1398 
1399 	return sysfs_emit(buf, "%#x\n", memdev->physical_id);
1400 }
1401 static DEVICE_ATTR_RO(phys_id);
1402 
1403 static ssize_t vendor_show(struct device *dev,
1404 		struct device_attribute *attr, char *buf)
1405 {
1406 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1407 
1408 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1409 }
1410 static DEVICE_ATTR_RO(vendor);
1411 
1412 static ssize_t rev_id_show(struct device *dev,
1413 		struct device_attribute *attr, char *buf)
1414 {
1415 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1416 
1417 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1418 }
1419 static DEVICE_ATTR_RO(rev_id);
1420 
1421 static ssize_t device_show(struct device *dev,
1422 		struct device_attribute *attr, char *buf)
1423 {
1424 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1425 
1426 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1427 }
1428 static DEVICE_ATTR_RO(device);
1429 
1430 static ssize_t subsystem_vendor_show(struct device *dev,
1431 		struct device_attribute *attr, char *buf)
1432 {
1433 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1434 
1435 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1436 }
1437 static DEVICE_ATTR_RO(subsystem_vendor);
1438 
1439 static ssize_t subsystem_rev_id_show(struct device *dev,
1440 		struct device_attribute *attr, char *buf)
1441 {
1442 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1443 
1444 	return sysfs_emit(buf, "0x%04x\n",
1445 			be16_to_cpu(dcr->subsystem_revision_id));
1446 }
1447 static DEVICE_ATTR_RO(subsystem_rev_id);
1448 
1449 static ssize_t subsystem_device_show(struct device *dev,
1450 		struct device_attribute *attr, char *buf)
1451 {
1452 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1453 
1454 	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1455 }
1456 static DEVICE_ATTR_RO(subsystem_device);
1457 
1458 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1459 {
1460 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1461 	int formats = 0;
1462 
1463 	if (nfit_mem->memdev_pmem)
1464 		formats++;
1465 	return formats;
1466 }
1467 
1468 static ssize_t format_show(struct device *dev,
1469 		struct device_attribute *attr, char *buf)
1470 {
1471 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1472 
1473 	return sysfs_emit(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1474 }
1475 static DEVICE_ATTR_RO(format);
1476 
1477 static ssize_t format1_show(struct device *dev,
1478 		struct device_attribute *attr, char *buf)
1479 {
1480 	u32 handle;
1481 	ssize_t rc = -ENXIO;
1482 	struct nfit_mem *nfit_mem;
1483 	struct nfit_memdev *nfit_memdev;
1484 	struct acpi_nfit_desc *acpi_desc;
1485 	struct nvdimm *nvdimm = to_nvdimm(dev);
1486 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1487 
1488 	nfit_mem = nvdimm_provider_data(nvdimm);
1489 	acpi_desc = nfit_mem->acpi_desc;
1490 	handle = to_nfit_memdev(dev)->device_handle;
1491 
1492 	/* assumes DIMMs have at most 2 published interface codes */
1493 	mutex_lock(&acpi_desc->init_mutex);
1494 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1495 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1496 		struct nfit_dcr *nfit_dcr;
1497 
1498 		if (memdev->device_handle != handle)
1499 			continue;
1500 
1501 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1502 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1503 				continue;
1504 			if (nfit_dcr->dcr->code == dcr->code)
1505 				continue;
1506 			rc = sysfs_emit(buf, "0x%04x\n",
1507 					le16_to_cpu(nfit_dcr->dcr->code));
1508 			break;
1509 		}
1510 		if (rc != -ENXIO)
1511 			break;
1512 	}
1513 	mutex_unlock(&acpi_desc->init_mutex);
1514 	return rc;
1515 }
1516 static DEVICE_ATTR_RO(format1);
1517 
1518 static ssize_t formats_show(struct device *dev,
1519 		struct device_attribute *attr, char *buf)
1520 {
1521 	struct nvdimm *nvdimm = to_nvdimm(dev);
1522 
1523 	return sysfs_emit(buf, "%d\n", num_nvdimm_formats(nvdimm));
1524 }
1525 static DEVICE_ATTR_RO(formats);
1526 
1527 static ssize_t serial_show(struct device *dev,
1528 		struct device_attribute *attr, char *buf)
1529 {
1530 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1531 
1532 	return sysfs_emit(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1533 }
1534 static DEVICE_ATTR_RO(serial);
1535 
1536 static ssize_t family_show(struct device *dev,
1537 		struct device_attribute *attr, char *buf)
1538 {
1539 	struct nvdimm *nvdimm = to_nvdimm(dev);
1540 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1541 
1542 	if (nfit_mem->family < 0)
1543 		return -ENXIO;
1544 	return sysfs_emit(buf, "%d\n", nfit_mem->family);
1545 }
1546 static DEVICE_ATTR_RO(family);
1547 
1548 static ssize_t dsm_mask_show(struct device *dev,
1549 		struct device_attribute *attr, char *buf)
1550 {
1551 	struct nvdimm *nvdimm = to_nvdimm(dev);
1552 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1553 
1554 	if (nfit_mem->family < 0)
1555 		return -ENXIO;
1556 	return sysfs_emit(buf, "%#lx\n", nfit_mem->dsm_mask);
1557 }
1558 static DEVICE_ATTR_RO(dsm_mask);
1559 
1560 static ssize_t flags_show(struct device *dev,
1561 		struct device_attribute *attr, char *buf)
1562 {
1563 	struct nvdimm *nvdimm = to_nvdimm(dev);
1564 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1565 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1566 
1567 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1568 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1569 
1570 	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
1571 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1572 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1573 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1574 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1575 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1576 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1577 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1578 }
1579 static DEVICE_ATTR_RO(flags);
1580 
1581 static ssize_t id_show(struct device *dev,
1582 		struct device_attribute *attr, char *buf)
1583 {
1584 	struct nvdimm *nvdimm = to_nvdimm(dev);
1585 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1586 
1587 	return sysfs_emit(buf, "%s\n", nfit_mem->id);
1588 }
1589 static DEVICE_ATTR_RO(id);
1590 
1591 static ssize_t dirty_shutdown_show(struct device *dev,
1592 		struct device_attribute *attr, char *buf)
1593 {
1594 	struct nvdimm *nvdimm = to_nvdimm(dev);
1595 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1596 
1597 	return sysfs_emit(buf, "%d\n", nfit_mem->dirty_shutdown);
1598 }
1599 static DEVICE_ATTR_RO(dirty_shutdown);
1600 
1601 static struct attribute *acpi_nfit_dimm_attributes[] = {
1602 	&dev_attr_handle.attr,
1603 	&dev_attr_phys_id.attr,
1604 	&dev_attr_vendor.attr,
1605 	&dev_attr_device.attr,
1606 	&dev_attr_rev_id.attr,
1607 	&dev_attr_subsystem_vendor.attr,
1608 	&dev_attr_subsystem_device.attr,
1609 	&dev_attr_subsystem_rev_id.attr,
1610 	&dev_attr_format.attr,
1611 	&dev_attr_formats.attr,
1612 	&dev_attr_format1.attr,
1613 	&dev_attr_serial.attr,
1614 	&dev_attr_flags.attr,
1615 	&dev_attr_id.attr,
1616 	&dev_attr_family.attr,
1617 	&dev_attr_dsm_mask.attr,
1618 	&dev_attr_dirty_shutdown.attr,
1619 	NULL,
1620 };
1621 
1622 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1623 		struct attribute *a, int n)
1624 {
1625 	struct device *dev = kobj_to_dev(kobj);
1626 	struct nvdimm *nvdimm = to_nvdimm(dev);
1627 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1628 
1629 	if (!to_nfit_dcr(dev)) {
1630 		/* Without a dcr only the memdev attributes can be surfaced */
1631 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1632 				|| a == &dev_attr_flags.attr
1633 				|| a == &dev_attr_family.attr
1634 				|| a == &dev_attr_dsm_mask.attr)
1635 			return a->mode;
1636 		return 0;
1637 	}
1638 
1639 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1640 		return 0;
1641 
1642 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1643 			&& a == &dev_attr_dirty_shutdown.attr)
1644 		return 0;
1645 
1646 	return a->mode;
1647 }
1648 
1649 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1650 	.name = "nfit",
1651 	.attrs = acpi_nfit_dimm_attributes,
1652 	.is_visible = acpi_nfit_dimm_attr_visible,
1653 };
1654 
1655 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1656 	&acpi_nfit_dimm_attribute_group,
1657 	NULL,
1658 };
1659 
1660 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1661 		u32 device_handle)
1662 {
1663 	struct nfit_mem *nfit_mem;
1664 
1665 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1666 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1667 			return nfit_mem->nvdimm;
1668 
1669 	return NULL;
1670 }
1671 
1672 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1673 {
1674 	struct nfit_mem *nfit_mem;
1675 	struct acpi_nfit_desc *acpi_desc;
1676 
1677 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1678 			event);
1679 
1680 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1681 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1682 				event);
1683 		return;
1684 	}
1685 
1686 	acpi_desc = dev_get_drvdata(dev->parent);
1687 	if (!acpi_desc)
1688 		return;
1689 
1690 	/*
1691 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1692 	 * is still valid.
1693 	 */
1694 	nfit_mem = dev_get_drvdata(dev);
1695 	if (nfit_mem && nfit_mem->flags_attr)
1696 		sysfs_notify_dirent(nfit_mem->flags_attr);
1697 }
1698 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1699 
1700 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1701 {
1702 	struct acpi_device *adev = data;
1703 	struct device *dev = &adev->dev;
1704 
1705 	device_lock(dev->parent);
1706 	__acpi_nvdimm_notify(dev, event);
1707 	device_unlock(dev->parent);
1708 }
1709 
1710 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1711 {
1712 	acpi_handle handle;
1713 	acpi_status status;
1714 
1715 	status = acpi_get_handle(adev->handle, method, &handle);
1716 
1717 	if (ACPI_SUCCESS(status))
1718 		return true;
1719 	return false;
1720 }
1721 
1722 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1723 {
1724 	struct device *dev = &nfit_mem->adev->dev;
1725 	struct nd_intel_smart smart = { 0 };
1726 	union acpi_object in_buf = {
1727 		.buffer.type = ACPI_TYPE_BUFFER,
1728 		.buffer.length = 0,
1729 	};
1730 	union acpi_object in_obj = {
1731 		.package.type = ACPI_TYPE_PACKAGE,
1732 		.package.count = 1,
1733 		.package.elements = &in_buf,
1734 	};
1735 	const u8 func = ND_INTEL_SMART;
1736 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1737 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1738 	struct acpi_device *adev = nfit_mem->adev;
1739 	acpi_handle handle = adev->handle;
1740 	union acpi_object *out_obj;
1741 
1742 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1743 		return;
1744 
1745 	out_obj = acpi_evaluate_dsm_typed(handle, guid, revid, func, &in_obj, ACPI_TYPE_BUFFER);
1746 	if (!out_obj || out_obj->buffer.length < sizeof(smart)) {
1747 		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1748 				dev_name(dev));
1749 		ACPI_FREE(out_obj);
1750 		return;
1751 	}
1752 	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1753 	ACPI_FREE(out_obj);
1754 
1755 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1756 		if (smart.shutdown_state)
1757 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1758 	}
1759 
1760 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1761 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1762 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1763 	}
1764 }
1765 
1766 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1767 {
1768 	/*
1769 	 * For DIMMs that provide a dynamic facility to retrieve a
1770 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1771 	 * these values in nfit_mem.
1772 	 */
1773 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1774 		nfit_intel_shutdown_status(nfit_mem);
1775 }
1776 
1777 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1778 		struct nfit_mem *nfit_mem, u32 device_handle)
1779 {
1780 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1781 	struct acpi_device *adev, *adev_dimm;
1782 	struct device *dev = acpi_desc->dev;
1783 	unsigned long dsm_mask, label_mask;
1784 	const guid_t *guid;
1785 	int i;
1786 	int family = -1;
1787 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1788 
1789 	/* nfit test assumes 1:1 relationship between commands and dsms */
1790 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1791 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1792 	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1793 
1794 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1795 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1796 				be16_to_cpu(dcr->vendor_id),
1797 				dcr->manufacturing_location,
1798 				be16_to_cpu(dcr->manufacturing_date),
1799 				be32_to_cpu(dcr->serial_number));
1800 	else
1801 		sprintf(nfit_mem->id, "%04x-%08x",
1802 				be16_to_cpu(dcr->vendor_id),
1803 				be32_to_cpu(dcr->serial_number));
1804 
1805 	adev = to_acpi_dev(acpi_desc);
1806 	if (!adev) {
1807 		/* unit test case */
1808 		populate_shutdown_status(nfit_mem);
1809 		return 0;
1810 	}
1811 
1812 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1813 	nfit_mem->adev = adev_dimm;
1814 	if (!adev_dimm) {
1815 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1816 				device_handle);
1817 		return force_enable_dimms ? 0 : -ENODEV;
1818 	}
1819 
1820 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1821 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1822 		dev_err(dev, "%s: notification registration failed\n",
1823 				dev_name(&adev_dimm->dev));
1824 		return -ENXIO;
1825 	}
1826 	/*
1827 	 * Record nfit_mem for the notification path to track back to
1828 	 * the nfit sysfs attributes for this dimm device object.
1829 	 */
1830 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1831 
1832 	/*
1833 	 * There are 4 "legacy" NVDIMM command sets
1834 	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1835 	 * an EFI working group was established to constrain this
1836 	 * proliferation. The nfit driver probes for the supported command
1837 	 * set by GUID. Note, if you're a platform developer looking to add
1838 	 * a new command set to this probe, consider using an existing set,
1839 	 * or otherwise seek approval to publish the command set at
1840 	 * http://www.uefi.org/RFIC_LIST.
1841 	 *
1842 	 * Note, that checking for function0 (bit0) tells us if any commands
1843 	 * are reachable through this GUID.
1844 	 */
1845 	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1846 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1847 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1848 			set_bit(i, &nd_desc->dimm_family_mask);
1849 			if (family < 0 || i == default_dsm_family)
1850 				family = i;
1851 		}
1852 
1853 	/* limit the supported commands to those that are publicly documented */
1854 	nfit_mem->family = family;
1855 	if (override_dsm_mask && !disable_vendor_specific)
1856 		dsm_mask = override_dsm_mask;
1857 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1858 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1859 		if (disable_vendor_specific)
1860 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1861 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1862 		dsm_mask = 0x1c3c76;
1863 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1864 		dsm_mask = 0x1fe;
1865 		if (disable_vendor_specific)
1866 			dsm_mask &= ~(1 << 8);
1867 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1868 		dsm_mask = 0xffffffff;
1869 	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1870 		dsm_mask = 0x1f;
1871 	} else {
1872 		dev_dbg(dev, "unknown dimm command family\n");
1873 		nfit_mem->family = -1;
1874 		/* DSMs are optional, continue loading the driver... */
1875 		return 0;
1876 	}
1877 
1878 	/*
1879 	 * Function 0 is the command interrogation function, don't
1880 	 * export it to potential userspace use, and enable it to be
1881 	 * used as an error value in acpi_nfit_ctl().
1882 	 */
1883 	dsm_mask &= ~1UL;
1884 
1885 	guid = to_nfit_uuid(nfit_mem->family);
1886 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1887 		if (acpi_check_dsm(adev_dimm->handle, guid,
1888 					nfit_dsm_revid(nfit_mem->family, i),
1889 					1ULL << i))
1890 			set_bit(i, &nfit_mem->dsm_mask);
1891 
1892 	/*
1893 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1894 	 * due to their better semantics handling locked capacity.
1895 	 */
1896 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1897 		| 1 << ND_CMD_SET_CONFIG_DATA;
1898 	if (family == NVDIMM_FAMILY_INTEL
1899 			&& (dsm_mask & label_mask) == label_mask)
1900 		/* skip _LS{I,R,W} enabling */;
1901 	else {
1902 		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1903 				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1904 			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1905 			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1906 		}
1907 
1908 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1909 				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1910 			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1911 			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1912 		}
1913 
1914 		/*
1915 		 * Quirk read-only label configurations to preserve
1916 		 * access to label-less namespaces by default.
1917 		 */
1918 		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1919 				&& !force_labels) {
1920 			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1921 					dev_name(&adev_dimm->dev));
1922 			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1923 		} else
1924 			dev_dbg(dev, "%s: Force enable labels\n",
1925 					dev_name(&adev_dimm->dev));
1926 	}
1927 
1928 	populate_shutdown_status(nfit_mem);
1929 
1930 	return 0;
1931 }
1932 
1933 static void shutdown_dimm_notify(void *data)
1934 {
1935 	struct acpi_nfit_desc *acpi_desc = data;
1936 	struct nfit_mem *nfit_mem;
1937 
1938 	mutex_lock(&acpi_desc->init_mutex);
1939 	/*
1940 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1941 	 * notifications.
1942 	 */
1943 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1944 		struct acpi_device *adev_dimm = nfit_mem->adev;
1945 
1946 		if (nfit_mem->flags_attr) {
1947 			sysfs_put(nfit_mem->flags_attr);
1948 			nfit_mem->flags_attr = NULL;
1949 		}
1950 		if (adev_dimm) {
1951 			acpi_remove_notify_handler(adev_dimm->handle,
1952 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1953 			dev_set_drvdata(&adev_dimm->dev, NULL);
1954 		}
1955 	}
1956 	mutex_unlock(&acpi_desc->init_mutex);
1957 }
1958 
1959 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1960 {
1961 	switch (family) {
1962 	case NVDIMM_FAMILY_INTEL:
1963 		return intel_security_ops;
1964 	default:
1965 		return NULL;
1966 	}
1967 }
1968 
1969 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
1970 		struct nfit_mem *nfit_mem)
1971 {
1972 	unsigned long mask;
1973 	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
1974 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1975 
1976 	if (!nd_desc->fw_ops)
1977 		return NULL;
1978 
1979 	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
1980 		return NULL;
1981 
1982 	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
1983 	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
1984 		return NULL;
1985 
1986 	return intel_fw_ops;
1987 }
1988 
1989 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1990 {
1991 	struct nfit_mem *nfit_mem;
1992 	int dimm_count = 0, rc;
1993 	struct nvdimm *nvdimm;
1994 
1995 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1996 		struct acpi_nfit_flush_address *flush;
1997 		unsigned long flags = 0, cmd_mask;
1998 		struct nfit_memdev *nfit_memdev;
1999 		u32 device_handle;
2000 		u16 mem_flags;
2001 
2002 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2003 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2004 		if (nvdimm) {
2005 			dimm_count++;
2006 			continue;
2007 		}
2008 
2009 		/* collate flags across all memdevs for this dimm */
2010 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2011 			struct acpi_nfit_memory_map *dimm_memdev;
2012 
2013 			dimm_memdev = __to_nfit_memdev(nfit_mem);
2014 			if (dimm_memdev->device_handle
2015 					!= nfit_memdev->memdev->device_handle)
2016 				continue;
2017 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2018 		}
2019 
2020 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2021 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2022 			set_bit(NDD_UNARMED, &flags);
2023 
2024 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2025 		if (rc)
2026 			continue;
2027 
2028 		/*
2029 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2030 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2031 		 * userspace interface.
2032 		 */
2033 		cmd_mask = 1UL << ND_CMD_CALL;
2034 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2035 			/*
2036 			 * These commands have a 1:1 correspondence
2037 			 * between DSM payload and libnvdimm ioctl
2038 			 * payload format.
2039 			 */
2040 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2041 		}
2042 
2043 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2044 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2045 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2046 		}
2047 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2048 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2049 
2050 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2051 			: NULL;
2052 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2053 				acpi_nfit_dimm_attribute_groups,
2054 				flags, cmd_mask, flush ? flush->hint_count : 0,
2055 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2056 				acpi_nfit_get_security_ops(nfit_mem->family),
2057 				acpi_nfit_get_fw_ops(nfit_mem));
2058 		if (!nvdimm)
2059 			return -ENOMEM;
2060 
2061 		nfit_mem->nvdimm = nvdimm;
2062 		dimm_count++;
2063 
2064 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2065 			continue;
2066 
2067 		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2068 				nvdimm_name(nvdimm),
2069 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2070 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2071 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2072 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2073 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2074 
2075 	}
2076 
2077 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2078 	if (rc)
2079 		return rc;
2080 
2081 	/*
2082 	 * Now that dimms are successfully registered, and async registration
2083 	 * is flushed, attempt to enable event notification.
2084 	 */
2085 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2086 		struct kernfs_node *nfit_kernfs;
2087 
2088 		nvdimm = nfit_mem->nvdimm;
2089 		if (!nvdimm)
2090 			continue;
2091 
2092 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2093 		if (nfit_kernfs)
2094 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2095 					"flags");
2096 		sysfs_put(nfit_kernfs);
2097 		if (!nfit_mem->flags_attr)
2098 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2099 					nvdimm_name(nvdimm));
2100 	}
2101 
2102 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2103 			acpi_desc);
2104 }
2105 
2106 /*
2107  * These constants are private because there are no kernel consumers of
2108  * these commands.
2109  */
2110 enum nfit_aux_cmds {
2111 	NFIT_CMD_TRANSLATE_SPA = 5,
2112 	NFIT_CMD_ARS_INJECT_SET = 7,
2113 	NFIT_CMD_ARS_INJECT_CLEAR = 8,
2114 	NFIT_CMD_ARS_INJECT_GET = 9,
2115 };
2116 
2117 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2118 {
2119 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2120 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2121 	unsigned long dsm_mask, *mask;
2122 	struct acpi_device *adev;
2123 	int i;
2124 
2125 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2126 	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2127 
2128 	/* enable nfit_test to inject bus command emulation */
2129 	if (acpi_desc->bus_cmd_force_en) {
2130 		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2131 		mask = &nd_desc->bus_family_mask;
2132 		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2133 			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2134 			nd_desc->fw_ops = intel_bus_fw_ops;
2135 		}
2136 	}
2137 
2138 	adev = to_acpi_dev(acpi_desc);
2139 	if (!adev)
2140 		return;
2141 
2142 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2143 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2144 			set_bit(i, &nd_desc->cmd_mask);
2145 
2146 	dsm_mask =
2147 		(1 << ND_CMD_ARS_CAP) |
2148 		(1 << ND_CMD_ARS_START) |
2149 		(1 << ND_CMD_ARS_STATUS) |
2150 		(1 << ND_CMD_CLEAR_ERROR) |
2151 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2152 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2153 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2154 		(1 << NFIT_CMD_ARS_INJECT_GET);
2155 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2156 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2157 			set_bit(i, &acpi_desc->bus_dsm_mask);
2158 
2159 	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2160 	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2161 	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2162 	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2163 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2164 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2165 			set_bit(i, mask);
2166 
2167 	if (*mask == dsm_mask) {
2168 		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2169 		nd_desc->fw_ops = intel_bus_fw_ops;
2170 	}
2171 }
2172 
2173 static ssize_t range_index_show(struct device *dev,
2174 		struct device_attribute *attr, char *buf)
2175 {
2176 	struct nd_region *nd_region = to_nd_region(dev);
2177 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2178 
2179 	return sysfs_emit(buf, "%d\n", nfit_spa->spa->range_index);
2180 }
2181 static DEVICE_ATTR_RO(range_index);
2182 
2183 static struct attribute *acpi_nfit_region_attributes[] = {
2184 	&dev_attr_range_index.attr,
2185 	NULL,
2186 };
2187 
2188 static const struct attribute_group acpi_nfit_region_attribute_group = {
2189 	.name = "nfit",
2190 	.attrs = acpi_nfit_region_attributes,
2191 };
2192 
2193 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2194 	&acpi_nfit_region_attribute_group,
2195 	NULL,
2196 };
2197 
2198 /* enough info to uniquely specify an interleave set */
2199 struct nfit_set_info {
2200 	u64 region_offset;
2201 	u32 serial_number;
2202 	u32 pad;
2203 };
2204 
2205 struct nfit_set_info2 {
2206 	u64 region_offset;
2207 	u32 serial_number;
2208 	u16 vendor_id;
2209 	u16 manufacturing_date;
2210 	u8 manufacturing_location;
2211 	u8 reserved[31];
2212 };
2213 
2214 static int cmp_map_compat(const void *m0, const void *m1)
2215 {
2216 	const struct nfit_set_info *map0 = m0;
2217 	const struct nfit_set_info *map1 = m1;
2218 
2219 	return memcmp(&map0->region_offset, &map1->region_offset,
2220 			sizeof(u64));
2221 }
2222 
2223 static int cmp_map(const void *m0, const void *m1)
2224 {
2225 	const struct nfit_set_info *map0 = m0;
2226 	const struct nfit_set_info *map1 = m1;
2227 
2228 	if (map0->region_offset < map1->region_offset)
2229 		return -1;
2230 	else if (map0->region_offset > map1->region_offset)
2231 		return 1;
2232 	return 0;
2233 }
2234 
2235 static int cmp_map2(const void *m0, const void *m1)
2236 {
2237 	const struct nfit_set_info2 *map0 = m0;
2238 	const struct nfit_set_info2 *map1 = m1;
2239 
2240 	if (map0->region_offset < map1->region_offset)
2241 		return -1;
2242 	else if (map0->region_offset > map1->region_offset)
2243 		return 1;
2244 	return 0;
2245 }
2246 
2247 /* Retrieve the nth entry referencing this spa */
2248 static struct acpi_nfit_memory_map *memdev_from_spa(
2249 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2250 {
2251 	struct nfit_memdev *nfit_memdev;
2252 
2253 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2254 		if (nfit_memdev->memdev->range_index == range_index)
2255 			if (n-- == 0)
2256 				return nfit_memdev->memdev;
2257 	return NULL;
2258 }
2259 
2260 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2261 		struct nd_region_desc *ndr_desc,
2262 		struct acpi_nfit_system_address *spa)
2263 {
2264 	u16 nr = ndr_desc->num_mappings;
2265 	struct nfit_set_info2 *info2 __free(kfree) =
2266 		kcalloc(nr, sizeof(*info2), GFP_KERNEL);
2267 	struct nfit_set_info *info __free(kfree) =
2268 		kcalloc(nr, sizeof(*info), GFP_KERNEL);
2269 	struct device *dev = acpi_desc->dev;
2270 	struct nd_interleave_set *nd_set;
2271 	int i;
2272 
2273 	if (!info || !info2)
2274 		return -ENOMEM;
2275 
2276 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2277 	if (!nd_set)
2278 		return -ENOMEM;
2279 	import_guid(&nd_set->type_guid, spa->range_guid);
2280 
2281 	for (i = 0; i < nr; i++) {
2282 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2283 		struct nvdimm *nvdimm = mapping->nvdimm;
2284 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2285 		struct nfit_set_info *map = &info[i];
2286 		struct nfit_set_info2 *map2 = &info2[i];
2287 		struct acpi_nfit_memory_map *memdev =
2288 			memdev_from_spa(acpi_desc, spa->range_index, i);
2289 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2290 
2291 		if (!memdev || !nfit_mem->dcr) {
2292 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2293 			return -ENODEV;
2294 		}
2295 
2296 		map->region_offset = memdev->region_offset;
2297 		map->serial_number = dcr->serial_number;
2298 
2299 		map2->region_offset = memdev->region_offset;
2300 		map2->serial_number = dcr->serial_number;
2301 		map2->vendor_id = dcr->vendor_id;
2302 		map2->manufacturing_date = dcr->manufacturing_date;
2303 		map2->manufacturing_location = dcr->manufacturing_location;
2304 	}
2305 
2306 	/* v1.1 namespaces */
2307 	sort(info, nr, sizeof(*info), cmp_map, NULL);
2308 	nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
2309 
2310 	/* v1.2 namespaces */
2311 	sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
2312 	nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
2313 
2314 	/* support v1.1 namespaces created with the wrong sort order */
2315 	sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
2316 	nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
2317 
2318 	/* record the result of the sort for the mapping position */
2319 	for (i = 0; i < nr; i++) {
2320 		struct nfit_set_info2 *map2 = &info2[i];
2321 		int j;
2322 
2323 		for (j = 0; j < nr; j++) {
2324 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2325 			struct nvdimm *nvdimm = mapping->nvdimm;
2326 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2327 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2328 
2329 			if (map2->serial_number == dcr->serial_number &&
2330 			    map2->vendor_id == dcr->vendor_id &&
2331 			    map2->manufacturing_date == dcr->manufacturing_date &&
2332 			    map2->manufacturing_location
2333 				    == dcr->manufacturing_location) {
2334 				mapping->position = i;
2335 				break;
2336 			}
2337 		}
2338 	}
2339 
2340 	ndr_desc->nd_set = nd_set;
2341 
2342 	return 0;
2343 }
2344 
2345 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2346 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2347 {
2348 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2349 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2350 	int cmd_rc, rc;
2351 
2352 	cmd->address = spa->address;
2353 	cmd->length = spa->length;
2354 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2355 			sizeof(*cmd), &cmd_rc);
2356 	if (rc < 0)
2357 		return rc;
2358 	return cmd_rc;
2359 }
2360 
2361 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2362 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2363 {
2364 	int rc;
2365 	int cmd_rc;
2366 	struct nd_cmd_ars_start ars_start;
2367 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2368 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2369 
2370 	memset(&ars_start, 0, sizeof(ars_start));
2371 	ars_start.address = spa->address;
2372 	ars_start.length = spa->length;
2373 	if (req_type == ARS_REQ_SHORT)
2374 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2375 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2376 		ars_start.type = ND_ARS_PERSISTENT;
2377 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2378 		ars_start.type = ND_ARS_VOLATILE;
2379 	else
2380 		return -ENOTTY;
2381 
2382 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2383 			sizeof(ars_start), &cmd_rc);
2384 
2385 	if (rc < 0)
2386 		return rc;
2387 	if (cmd_rc < 0)
2388 		return cmd_rc;
2389 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2390 	return 0;
2391 }
2392 
2393 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2394 {
2395 	int rc, cmd_rc;
2396 	struct nd_cmd_ars_start ars_start;
2397 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2398 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2399 
2400 	ars_start = (struct nd_cmd_ars_start) {
2401 		.address = ars_status->restart_address,
2402 		.length = ars_status->restart_length,
2403 		.type = ars_status->type,
2404 	};
2405 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2406 			sizeof(ars_start), &cmd_rc);
2407 	if (rc < 0)
2408 		return rc;
2409 	return cmd_rc;
2410 }
2411 
2412 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2413 {
2414 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2415 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2416 	int rc, cmd_rc;
2417 
2418 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2419 			acpi_desc->max_ars, &cmd_rc);
2420 	if (rc < 0)
2421 		return rc;
2422 	return cmd_rc;
2423 }
2424 
2425 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2426 		struct nfit_spa *nfit_spa)
2427 {
2428 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2429 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2430 	struct nd_region *nd_region = nfit_spa->nd_region;
2431 	struct device *dev;
2432 
2433 	lockdep_assert_held(&acpi_desc->init_mutex);
2434 	/*
2435 	 * Only advance the ARS state for ARS runs initiated by the
2436 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2437 	 * completion tracking.
2438 	 */
2439 	if (acpi_desc->scrub_spa != nfit_spa)
2440 		return;
2441 
2442 	if ((ars_status->address >= spa->address && ars_status->address
2443 				< spa->address + spa->length)
2444 			|| (ars_status->address < spa->address)) {
2445 		/*
2446 		 * Assume that if a scrub starts at an offset from the
2447 		 * start of nfit_spa that we are in the continuation
2448 		 * case.
2449 		 *
2450 		 * Otherwise, if the scrub covers the spa range, mark
2451 		 * any pending request complete.
2452 		 */
2453 		if (ars_status->address + ars_status->length
2454 				>= spa->address + spa->length)
2455 				/* complete */;
2456 		else
2457 			return;
2458 	} else
2459 		return;
2460 
2461 	acpi_desc->scrub_spa = NULL;
2462 	if (nd_region) {
2463 		dev = nd_region_dev(nd_region);
2464 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2465 	} else
2466 		dev = acpi_desc->dev;
2467 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2468 }
2469 
2470 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2471 {
2472 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2473 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2474 	int rc;
2475 	u32 i;
2476 
2477 	/*
2478 	 * First record starts at 44 byte offset from the start of the
2479 	 * payload.
2480 	 */
2481 	if (ars_status->out_length < 44)
2482 		return 0;
2483 
2484 	/*
2485 	 * Ignore potentially stale results that are only refreshed
2486 	 * after a start-ARS event.
2487 	 */
2488 	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2489 		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2490 				ars_status->num_records);
2491 		return 0;
2492 	}
2493 
2494 	for (i = 0; i < ars_status->num_records; i++) {
2495 		/* only process full records */
2496 		if (ars_status->out_length
2497 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2498 			break;
2499 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2500 				ars_status->records[i].err_address,
2501 				ars_status->records[i].length);
2502 		if (rc)
2503 			return rc;
2504 	}
2505 	if (i < ars_status->num_records)
2506 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2507 
2508 	return 0;
2509 }
2510 
2511 static void acpi_nfit_remove_resource(void *data)
2512 {
2513 	struct resource *res = data;
2514 
2515 	remove_resource(res);
2516 }
2517 
2518 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2519 		struct nd_region_desc *ndr_desc)
2520 {
2521 	struct resource *res, *nd_res = ndr_desc->res;
2522 	int is_pmem, ret;
2523 
2524 	/* No operation if the region is already registered as PMEM */
2525 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2526 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2527 	if (is_pmem == REGION_INTERSECTS)
2528 		return 0;
2529 
2530 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2531 	if (!res)
2532 		return -ENOMEM;
2533 
2534 	res->name = "Persistent Memory";
2535 	res->start = nd_res->start;
2536 	res->end = nd_res->end;
2537 	res->flags = IORESOURCE_MEM;
2538 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2539 
2540 	ret = insert_resource(&iomem_resource, res);
2541 	if (ret)
2542 		return ret;
2543 
2544 	ret = devm_add_action_or_reset(acpi_desc->dev,
2545 					acpi_nfit_remove_resource,
2546 					res);
2547 	if (ret)
2548 		return ret;
2549 
2550 	return 0;
2551 }
2552 
2553 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2554 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2555 		struct acpi_nfit_memory_map *memdev,
2556 		struct nfit_spa *nfit_spa)
2557 {
2558 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2559 			memdev->device_handle);
2560 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2561 
2562 	if (!nvdimm) {
2563 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2564 				spa->range_index, memdev->device_handle);
2565 		return -ENODEV;
2566 	}
2567 
2568 	mapping->nvdimm = nvdimm;
2569 	switch (nfit_spa_type(spa)) {
2570 	case NFIT_SPA_PM:
2571 	case NFIT_SPA_VOLATILE:
2572 		mapping->start = memdev->address;
2573 		mapping->size = memdev->region_size;
2574 		break;
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2581 {
2582 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2583 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2584 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2585 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2586 }
2587 
2588 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2589 {
2590 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2591 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2592 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2593 }
2594 
2595 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2596 		struct nfit_spa *nfit_spa)
2597 {
2598 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2599 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2600 	struct nd_region_desc *ndr_desc, _ndr_desc;
2601 	struct nfit_memdev *nfit_memdev;
2602 	struct nvdimm_bus *nvdimm_bus;
2603 	struct resource res;
2604 	int count = 0, rc;
2605 
2606 	if (nfit_spa->nd_region)
2607 		return 0;
2608 
2609 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2610 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2611 		return 0;
2612 	}
2613 
2614 	memset(&res, 0, sizeof(res));
2615 	memset(&mappings, 0, sizeof(mappings));
2616 	memset(&_ndr_desc, 0, sizeof(_ndr_desc));
2617 	res.start = spa->address;
2618 	res.end = res.start + spa->length - 1;
2619 	ndr_desc = &_ndr_desc;
2620 	ndr_desc->res = &res;
2621 	ndr_desc->provider_data = nfit_spa;
2622 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2623 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2624 		ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
2625 		ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
2626 	} else {
2627 		ndr_desc->numa_node = NUMA_NO_NODE;
2628 		ndr_desc->target_node = NUMA_NO_NODE;
2629 	}
2630 
2631 	/* Fallback to address based numa information if node lookup failed */
2632 	if (ndr_desc->numa_node == NUMA_NO_NODE) {
2633 		ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
2634 		dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
2635 			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2636 	}
2637 	if (ndr_desc->target_node == NUMA_NO_NODE) {
2638 		ndr_desc->target_node = phys_to_target_node(spa->address);
2639 		dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
2640 			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2641 	}
2642 
2643 	/*
2644 	 * Persistence domain bits are hierarchical, if
2645 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2646 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2647 	 */
2648 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2649 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2650 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2651 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2652 
2653 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2654 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2655 		struct nd_mapping_desc *mapping;
2656 
2657 		/* range index 0 == unmapped in SPA or invalid-SPA */
2658 		if (memdev->range_index == 0 || spa->range_index == 0)
2659 			continue;
2660 		if (memdev->range_index != spa->range_index)
2661 			continue;
2662 		if (count >= ND_MAX_MAPPINGS) {
2663 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2664 					spa->range_index, ND_MAX_MAPPINGS);
2665 			return -ENXIO;
2666 		}
2667 		mapping = &mappings[count++];
2668 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2669 				memdev, nfit_spa);
2670 		if (rc)
2671 			goto out;
2672 	}
2673 
2674 	ndr_desc->mapping = mappings;
2675 	ndr_desc->num_mappings = count;
2676 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2677 	if (rc)
2678 		goto out;
2679 
2680 	nvdimm_bus = acpi_desc->nvdimm_bus;
2681 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2682 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2683 		if (rc) {
2684 			dev_warn(acpi_desc->dev,
2685 				"failed to insert pmem resource to iomem: %d\n",
2686 				rc);
2687 			goto out;
2688 		}
2689 
2690 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2691 				ndr_desc);
2692 		if (!nfit_spa->nd_region)
2693 			rc = -ENOMEM;
2694 	} else if (nfit_spa_is_volatile(spa)) {
2695 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2696 				ndr_desc);
2697 		if (!nfit_spa->nd_region)
2698 			rc = -ENOMEM;
2699 	} else if (nfit_spa_is_virtual(spa)) {
2700 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2701 				ndr_desc);
2702 		if (!nfit_spa->nd_region)
2703 			rc = -ENOMEM;
2704 	}
2705 
2706  out:
2707 	if (rc)
2708 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2709 				nfit_spa->spa->range_index);
2710 	return rc;
2711 }
2712 
2713 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2714 {
2715 	struct device *dev = acpi_desc->dev;
2716 	struct nd_cmd_ars_status *ars_status;
2717 
2718 	if (acpi_desc->ars_status) {
2719 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2720 		return 0;
2721 	}
2722 
2723 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2724 	if (!ars_status)
2725 		return -ENOMEM;
2726 	acpi_desc->ars_status = ars_status;
2727 	return 0;
2728 }
2729 
2730 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2731 {
2732 	int rc;
2733 
2734 	if (ars_status_alloc(acpi_desc))
2735 		return -ENOMEM;
2736 
2737 	rc = ars_get_status(acpi_desc);
2738 
2739 	if (rc < 0 && rc != -ENOSPC)
2740 		return rc;
2741 
2742 	if (ars_status_process_records(acpi_desc))
2743 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2744 
2745 	return rc;
2746 }
2747 
2748 static int ars_register(struct acpi_nfit_desc *acpi_desc,
2749 		struct nfit_spa *nfit_spa)
2750 {
2751 	int rc;
2752 
2753 	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2754 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2755 
2756 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2757 	if (!no_init_ars)
2758 		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2759 
2760 	switch (acpi_nfit_query_poison(acpi_desc)) {
2761 	case 0:
2762 	case -ENOSPC:
2763 	case -EAGAIN:
2764 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2765 		/* shouldn't happen, try again later */
2766 		if (rc == -EBUSY)
2767 			break;
2768 		if (rc) {
2769 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2770 			break;
2771 		}
2772 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2773 		rc = acpi_nfit_query_poison(acpi_desc);
2774 		if (rc)
2775 			break;
2776 		acpi_desc->scrub_spa = nfit_spa;
2777 		ars_complete(acpi_desc, nfit_spa);
2778 		/*
2779 		 * If ars_complete() says we didn't complete the
2780 		 * short scrub, we'll try again with a long
2781 		 * request.
2782 		 */
2783 		acpi_desc->scrub_spa = NULL;
2784 		break;
2785 	case -EBUSY:
2786 	case -ENOMEM:
2787 		/*
2788 		 * BIOS was using ARS, wait for it to complete (or
2789 		 * resources to become available) and then perform our
2790 		 * own scrubs.
2791 		 */
2792 		break;
2793 	default:
2794 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2795 		break;
2796 	}
2797 
2798 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2799 }
2800 
2801 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2802 {
2803 	struct nfit_spa *nfit_spa;
2804 
2805 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2806 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2807 			continue;
2808 		ars_complete(acpi_desc, nfit_spa);
2809 	}
2810 }
2811 
2812 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2813 		int query_rc)
2814 {
2815 	unsigned int tmo = acpi_desc->scrub_tmo;
2816 	struct device *dev = acpi_desc->dev;
2817 	struct nfit_spa *nfit_spa;
2818 
2819 	lockdep_assert_held(&acpi_desc->init_mutex);
2820 
2821 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2822 		return 0;
2823 
2824 	if (query_rc == -EBUSY) {
2825 		dev_dbg(dev, "ARS: ARS busy\n");
2826 		return min(30U * 60U, tmo * 2);
2827 	}
2828 	if (query_rc == -ENOSPC) {
2829 		dev_dbg(dev, "ARS: ARS continue\n");
2830 		ars_continue(acpi_desc);
2831 		return 1;
2832 	}
2833 	if (query_rc && query_rc != -EAGAIN) {
2834 		unsigned long long addr, end;
2835 
2836 		addr = acpi_desc->ars_status->address;
2837 		end = addr + acpi_desc->ars_status->length;
2838 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2839 				query_rc);
2840 	}
2841 
2842 	ars_complete_all(acpi_desc);
2843 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2844 		enum nfit_ars_state req_type;
2845 		int rc;
2846 
2847 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2848 			continue;
2849 
2850 		/* prefer short ARS requests first */
2851 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
2852 			req_type = ARS_REQ_SHORT;
2853 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
2854 			req_type = ARS_REQ_LONG;
2855 		else
2856 			continue;
2857 		rc = ars_start(acpi_desc, nfit_spa, req_type);
2858 
2859 		dev = nd_region_dev(nfit_spa->nd_region);
2860 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
2861 				nfit_spa->spa->range_index,
2862 				req_type == ARS_REQ_SHORT ? "short" : "long",
2863 				rc);
2864 		/*
2865 		 * Hmm, we raced someone else starting ARS? Try again in
2866 		 * a bit.
2867 		 */
2868 		if (rc == -EBUSY)
2869 			return 1;
2870 		if (rc == 0) {
2871 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
2872 					"scrub start while range %d active\n",
2873 					acpi_desc->scrub_spa->spa->range_index);
2874 			clear_bit(req_type, &nfit_spa->ars_state);
2875 			acpi_desc->scrub_spa = nfit_spa;
2876 			/*
2877 			 * Consider this spa last for future scrub
2878 			 * requests
2879 			 */
2880 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
2881 			return 1;
2882 		}
2883 
2884 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2885 				nfit_spa->spa->range_index, rc);
2886 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2887 	}
2888 	return 0;
2889 }
2890 
2891 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
2892 {
2893 	lockdep_assert_held(&acpi_desc->init_mutex);
2894 
2895 	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2896 	/* note this should only be set from within the workqueue */
2897 	if (tmo)
2898 		acpi_desc->scrub_tmo = tmo;
2899 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2900 }
2901 
2902 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
2903 {
2904 	__sched_ars(acpi_desc, 0);
2905 }
2906 
2907 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
2908 {
2909 	lockdep_assert_held(&acpi_desc->init_mutex);
2910 
2911 	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2912 	acpi_desc->scrub_count++;
2913 	if (acpi_desc->scrub_count_state)
2914 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2915 }
2916 
2917 static void acpi_nfit_scrub(struct work_struct *work)
2918 {
2919 	struct acpi_nfit_desc *acpi_desc;
2920 	unsigned int tmo;
2921 	int query_rc;
2922 
2923 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2924 	mutex_lock(&acpi_desc->init_mutex);
2925 	query_rc = acpi_nfit_query_poison(acpi_desc);
2926 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2927 	if (tmo)
2928 		__sched_ars(acpi_desc, tmo);
2929 	else
2930 		notify_ars_done(acpi_desc);
2931 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2932 	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
2933 	mutex_unlock(&acpi_desc->init_mutex);
2934 }
2935 
2936 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2937 		struct nfit_spa *nfit_spa)
2938 {
2939 	int type = nfit_spa_type(nfit_spa->spa);
2940 	struct nd_cmd_ars_cap ars_cap;
2941 	int rc;
2942 
2943 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
2944 	memset(&ars_cap, 0, sizeof(ars_cap));
2945 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2946 	if (rc < 0)
2947 		return;
2948 	/* check that the supported scrub types match the spa type */
2949 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2950 				& ND_ARS_VOLATILE) == 0)
2951 		return;
2952 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2953 				& ND_ARS_PERSISTENT) == 0)
2954 		return;
2955 
2956 	nfit_spa->max_ars = ars_cap.max_ars_out;
2957 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2958 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2959 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2960 }
2961 
2962 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2963 {
2964 	struct nfit_spa *nfit_spa;
2965 	int rc, do_sched_ars = 0;
2966 
2967 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2968 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2969 		switch (nfit_spa_type(nfit_spa->spa)) {
2970 		case NFIT_SPA_VOLATILE:
2971 		case NFIT_SPA_PM:
2972 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
2973 			break;
2974 		}
2975 	}
2976 
2977 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2978 		switch (nfit_spa_type(nfit_spa->spa)) {
2979 		case NFIT_SPA_VOLATILE:
2980 		case NFIT_SPA_PM:
2981 			/* register regions and kick off initial ARS run */
2982 			rc = ars_register(acpi_desc, nfit_spa);
2983 			if (rc)
2984 				return rc;
2985 
2986 			/*
2987 			 * Kick off background ARS if at least one
2988 			 * region successfully registered ARS
2989 			 */
2990 			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
2991 				do_sched_ars++;
2992 			break;
2993 		case NFIT_SPA_BDW:
2994 			/* nothing to register */
2995 			break;
2996 		case NFIT_SPA_DCR:
2997 		case NFIT_SPA_VDISK:
2998 		case NFIT_SPA_VCD:
2999 		case NFIT_SPA_PDISK:
3000 		case NFIT_SPA_PCD:
3001 			/* register known regions that don't support ARS */
3002 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3003 			if (rc)
3004 				return rc;
3005 			break;
3006 		default:
3007 			/* don't register unknown regions */
3008 			break;
3009 		}
3010 	}
3011 
3012 	if (do_sched_ars)
3013 		sched_ars(acpi_desc);
3014 	return 0;
3015 }
3016 
3017 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3018 		struct nfit_table_prev *prev)
3019 {
3020 	struct device *dev = acpi_desc->dev;
3021 
3022 	if (!list_empty(&prev->spas) ||
3023 			!list_empty(&prev->memdevs) ||
3024 			!list_empty(&prev->dcrs) ||
3025 			!list_empty(&prev->bdws) ||
3026 			!list_empty(&prev->idts) ||
3027 			!list_empty(&prev->flushes)) {
3028 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3029 		return -ENXIO;
3030 	}
3031 	return 0;
3032 }
3033 
3034 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3035 {
3036 	struct device *dev = acpi_desc->dev;
3037 	struct kernfs_node *nfit;
3038 	struct device *bus_dev;
3039 
3040 	if (!ars_supported(acpi_desc->nvdimm_bus))
3041 		return 0;
3042 
3043 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3044 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3045 	if (!nfit) {
3046 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3047 		return -ENODEV;
3048 	}
3049 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3050 	sysfs_put(nfit);
3051 	if (!acpi_desc->scrub_count_state) {
3052 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3053 		return -ENODEV;
3054 	}
3055 
3056 	return 0;
3057 }
3058 
3059 static void acpi_nfit_unregister(void *data)
3060 {
3061 	struct acpi_nfit_desc *acpi_desc = data;
3062 
3063 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3064 }
3065 
3066 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3067 {
3068 	struct device *dev = acpi_desc->dev;
3069 	struct nfit_table_prev prev;
3070 	const void *end;
3071 	int rc;
3072 
3073 	if (!acpi_desc->nvdimm_bus) {
3074 		acpi_nfit_init_dsms(acpi_desc);
3075 
3076 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3077 				&acpi_desc->nd_desc);
3078 		if (!acpi_desc->nvdimm_bus)
3079 			return -ENOMEM;
3080 
3081 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3082 				acpi_desc);
3083 		if (rc)
3084 			return rc;
3085 
3086 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3087 		if (rc)
3088 			return rc;
3089 
3090 		/* register this acpi_desc for mce notifications */
3091 		mutex_lock(&acpi_desc_lock);
3092 		list_add_tail(&acpi_desc->list, &acpi_descs);
3093 		mutex_unlock(&acpi_desc_lock);
3094 	}
3095 
3096 	mutex_lock(&acpi_desc->init_mutex);
3097 
3098 	INIT_LIST_HEAD(&prev.spas);
3099 	INIT_LIST_HEAD(&prev.memdevs);
3100 	INIT_LIST_HEAD(&prev.dcrs);
3101 	INIT_LIST_HEAD(&prev.bdws);
3102 	INIT_LIST_HEAD(&prev.idts);
3103 	INIT_LIST_HEAD(&prev.flushes);
3104 
3105 	list_cut_position(&prev.spas, &acpi_desc->spas,
3106 				acpi_desc->spas.prev);
3107 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3108 				acpi_desc->memdevs.prev);
3109 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3110 				acpi_desc->dcrs.prev);
3111 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3112 				acpi_desc->bdws.prev);
3113 	list_cut_position(&prev.idts, &acpi_desc->idts,
3114 				acpi_desc->idts.prev);
3115 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3116 				acpi_desc->flushes.prev);
3117 
3118 	end = data + sz;
3119 	while (!IS_ERR_OR_NULL(data))
3120 		data = add_table(acpi_desc, &prev, data, end);
3121 
3122 	if (IS_ERR(data)) {
3123 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3124 		rc = PTR_ERR(data);
3125 		goto out_unlock;
3126 	}
3127 
3128 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3129 	if (rc)
3130 		goto out_unlock;
3131 
3132 	rc = nfit_mem_init(acpi_desc);
3133 	if (rc)
3134 		goto out_unlock;
3135 
3136 	rc = acpi_nfit_register_dimms(acpi_desc);
3137 	if (rc)
3138 		goto out_unlock;
3139 
3140 	rc = acpi_nfit_register_regions(acpi_desc);
3141 
3142  out_unlock:
3143 	mutex_unlock(&acpi_desc->init_mutex);
3144 	return rc;
3145 }
3146 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3147 
3148 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3149 {
3150 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3151 	struct device *dev = acpi_desc->dev;
3152 
3153 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3154 	device_lock(dev);
3155 	device_unlock(dev);
3156 
3157 	/* Bounce the init_mutex to complete initial registration */
3158 	mutex_lock(&acpi_desc->init_mutex);
3159 	mutex_unlock(&acpi_desc->init_mutex);
3160 
3161 	return 0;
3162 }
3163 
3164 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3165 		struct nvdimm *nvdimm, unsigned int cmd)
3166 {
3167 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3168 
3169 	if (nvdimm)
3170 		return 0;
3171 	if (cmd != ND_CMD_ARS_START)
3172 		return 0;
3173 
3174 	/*
3175 	 * The kernel and userspace may race to initiate a scrub, but
3176 	 * the scrub thread is prepared to lose that initial race.  It
3177 	 * just needs guarantees that any ARS it initiates are not
3178 	 * interrupted by any intervening start requests from userspace.
3179 	 */
3180 	if (work_busy(&acpi_desc->dwork.work))
3181 		return -EBUSY;
3182 
3183 	return 0;
3184 }
3185 
3186 /*
3187  * Prevent security and firmware activate commands from being issued via
3188  * ioctl.
3189  */
3190 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3191 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3192 {
3193 	struct nd_cmd_pkg *call_pkg = buf;
3194 	unsigned int func;
3195 
3196 	if (nvdimm && cmd == ND_CMD_CALL &&
3197 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3198 		func = call_pkg->nd_command;
3199 		if (func > NVDIMM_CMD_MAX ||
3200 		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3201 			return -EOPNOTSUPP;
3202 	}
3203 
3204 	/* block all non-nfit bus commands */
3205 	if (!nvdimm && cmd == ND_CMD_CALL &&
3206 			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3207 		return -EOPNOTSUPP;
3208 
3209 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3210 }
3211 
3212 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3213 		enum nfit_ars_state req_type)
3214 {
3215 	struct device *dev = acpi_desc->dev;
3216 	int scheduled = 0, busy = 0;
3217 	struct nfit_spa *nfit_spa;
3218 
3219 	mutex_lock(&acpi_desc->init_mutex);
3220 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3221 		mutex_unlock(&acpi_desc->init_mutex);
3222 		return 0;
3223 	}
3224 
3225 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3226 		int type = nfit_spa_type(nfit_spa->spa);
3227 
3228 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3229 			continue;
3230 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3231 			continue;
3232 
3233 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3234 			busy++;
3235 		else
3236 			scheduled++;
3237 	}
3238 	if (scheduled) {
3239 		sched_ars(acpi_desc);
3240 		dev_dbg(dev, "ars_scan triggered\n");
3241 	}
3242 	mutex_unlock(&acpi_desc->init_mutex);
3243 
3244 	if (scheduled)
3245 		return 0;
3246 	if (busy)
3247 		return -EBUSY;
3248 	return -ENOTTY;
3249 }
3250 
3251 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3252 {
3253 	struct nvdimm_bus_descriptor *nd_desc;
3254 
3255 	dev_set_drvdata(dev, acpi_desc);
3256 	acpi_desc->dev = dev;
3257 	nd_desc = &acpi_desc->nd_desc;
3258 	nd_desc->provider_name = "ACPI.NFIT";
3259 	nd_desc->module = THIS_MODULE;
3260 	nd_desc->ndctl = acpi_nfit_ctl;
3261 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3262 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3263 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3264 
3265 	INIT_LIST_HEAD(&acpi_desc->spas);
3266 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3267 	INIT_LIST_HEAD(&acpi_desc->bdws);
3268 	INIT_LIST_HEAD(&acpi_desc->idts);
3269 	INIT_LIST_HEAD(&acpi_desc->flushes);
3270 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3271 	INIT_LIST_HEAD(&acpi_desc->dimms);
3272 	INIT_LIST_HEAD(&acpi_desc->list);
3273 	mutex_init(&acpi_desc->init_mutex);
3274 	acpi_desc->scrub_tmo = 1;
3275 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3276 }
3277 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3278 
3279 static void acpi_nfit_put_table(void *table)
3280 {
3281 	acpi_put_table(table);
3282 }
3283 
3284 static void acpi_nfit_notify(acpi_handle handle, u32 event, void *data)
3285 {
3286 	struct acpi_device *adev = data;
3287 
3288 	device_lock(&adev->dev);
3289 	__acpi_nfit_notify(&adev->dev, handle, event);
3290 	device_unlock(&adev->dev);
3291 }
3292 
3293 static void acpi_nfit_remove_notify_handler(void *data)
3294 {
3295 	struct acpi_device *adev = data;
3296 
3297 	acpi_dev_remove_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3298 				       acpi_nfit_notify);
3299 }
3300 
3301 void acpi_nfit_shutdown(void *data)
3302 {
3303 	struct acpi_nfit_desc *acpi_desc = data;
3304 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3305 
3306 	/*
3307 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3308 	 * race teardown
3309 	 */
3310 	mutex_lock(&acpi_desc_lock);
3311 	list_del(&acpi_desc->list);
3312 	mutex_unlock(&acpi_desc_lock);
3313 
3314 	mutex_lock(&acpi_desc->init_mutex);
3315 	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3316 	mutex_unlock(&acpi_desc->init_mutex);
3317 	cancel_delayed_work_sync(&acpi_desc->dwork);
3318 
3319 	/*
3320 	 * Bounce the nvdimm bus lock to make sure any in-flight
3321 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3322 	 * either submit or see ->cancel set.
3323 	 */
3324 	device_lock(bus_dev);
3325 	device_unlock(bus_dev);
3326 
3327 	flush_workqueue(nfit_wq);
3328 }
3329 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3330 
3331 static int acpi_nfit_add(struct acpi_device *adev)
3332 {
3333 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3334 	struct acpi_nfit_desc *acpi_desc;
3335 	struct device *dev = &adev->dev;
3336 	struct acpi_table_header *tbl;
3337 	acpi_status status = AE_OK;
3338 	acpi_size sz;
3339 	int rc = 0;
3340 
3341 	rc = acpi_dev_install_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3342 					     acpi_nfit_notify, adev);
3343 	if (rc)
3344 		return rc;
3345 
3346 	rc = devm_add_action_or_reset(dev, acpi_nfit_remove_notify_handler,
3347 					adev);
3348 	if (rc)
3349 		return rc;
3350 
3351 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3352 	if (ACPI_FAILURE(status)) {
3353 		/* The NVDIMM root device allows OS to trigger enumeration of
3354 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3355 		 * root level via the _FIT method during runtime.
3356 		 * This is ok to return 0 here, we could have an nvdimm
3357 		 * hotplugged later and evaluate _FIT method which returns
3358 		 * data in the format of a series of NFIT Structures.
3359 		 */
3360 		dev_dbg(dev, "failed to find NFIT at startup\n");
3361 		return 0;
3362 	}
3363 
3364 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3365 	if (rc)
3366 		return rc;
3367 	sz = tbl->length;
3368 
3369 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3370 	if (!acpi_desc)
3371 		return -ENOMEM;
3372 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3373 
3374 	/* Save the acpi header for exporting the revision via sysfs */
3375 	acpi_desc->acpi_header = *tbl;
3376 
3377 	/* Evaluate _FIT and override with that if present */
3378 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3379 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3380 		union acpi_object *obj = buf.pointer;
3381 
3382 		if (obj->type == ACPI_TYPE_BUFFER)
3383 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3384 					obj->buffer.length);
3385 		else
3386 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3387 				(int) obj->type);
3388 		kfree(buf.pointer);
3389 	} else
3390 		/* skip over the lead-in header table */
3391 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3392 				+ sizeof(struct acpi_table_nfit),
3393 				sz - sizeof(struct acpi_table_nfit));
3394 
3395 	if (rc)
3396 		return rc;
3397 
3398 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3399 }
3400 
3401 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3402 {
3403 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3404 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3405 	union acpi_object *obj;
3406 	acpi_status status;
3407 	int ret;
3408 
3409 	if (!dev->driver) {
3410 		/* dev->driver may be null if we're being removed */
3411 		dev_dbg(dev, "no driver found for dev\n");
3412 		return;
3413 	}
3414 
3415 	if (!acpi_desc) {
3416 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3417 		if (!acpi_desc)
3418 			return;
3419 		acpi_nfit_desc_init(acpi_desc, dev);
3420 	} else {
3421 		/*
3422 		 * Finish previous registration before considering new
3423 		 * regions.
3424 		 */
3425 		flush_workqueue(nfit_wq);
3426 	}
3427 
3428 	/* Evaluate _FIT */
3429 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3430 	if (ACPI_FAILURE(status)) {
3431 		dev_err(dev, "failed to evaluate _FIT\n");
3432 		return;
3433 	}
3434 
3435 	obj = buf.pointer;
3436 	if (obj->type == ACPI_TYPE_BUFFER) {
3437 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3438 				obj->buffer.length);
3439 		if (ret)
3440 			dev_err(dev, "failed to merge updated NFIT\n");
3441 	} else
3442 		dev_err(dev, "Invalid _FIT\n");
3443 	kfree(buf.pointer);
3444 }
3445 
3446 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3447 {
3448 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3449 
3450 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3451 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3452 	else
3453 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3454 }
3455 
3456 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3457 {
3458 	dev_dbg(dev, "event: 0x%x\n", event);
3459 
3460 	switch (event) {
3461 	case NFIT_NOTIFY_UPDATE:
3462 		return acpi_nfit_update_notify(dev, handle);
3463 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3464 		return acpi_nfit_uc_error_notify(dev, handle);
3465 	default:
3466 		return;
3467 	}
3468 }
3469 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3470 
3471 static const struct acpi_device_id acpi_nfit_ids[] = {
3472 	{ "ACPI0012", 0 },
3473 	{ "", 0 },
3474 };
3475 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3476 
3477 static struct acpi_driver acpi_nfit_driver = {
3478 	.name = KBUILD_MODNAME,
3479 	.ids = acpi_nfit_ids,
3480 	.ops = {
3481 		.add = acpi_nfit_add,
3482 	},
3483 };
3484 
3485 static __init int nfit_init(void)
3486 {
3487 	int ret;
3488 
3489 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3490 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
3491 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3492 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 16);
3493 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 8);
3494 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3495 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3496 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3497 
3498 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3499 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3500 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3501 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3502 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3503 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3504 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3505 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3506 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3507 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3508 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3509 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3510 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3511 	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3512 	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3513 
3514 	nfit_wq = create_singlethread_workqueue("nfit");
3515 	if (!nfit_wq)
3516 		return -ENOMEM;
3517 
3518 	nfit_mce_register();
3519 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3520 	if (ret) {
3521 		nfit_mce_unregister();
3522 		destroy_workqueue(nfit_wq);
3523 	}
3524 
3525 	return ret;
3526 
3527 }
3528 
3529 static __exit void nfit_exit(void)
3530 {
3531 	nfit_mce_unregister();
3532 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3533 	destroy_workqueue(nfit_wq);
3534 	WARN_ON(!list_empty(&acpi_descs));
3535 }
3536 
3537 module_init(nfit_init);
3538 module_exit(nfit_exit);
3539 MODULE_DESCRIPTION("ACPI NVDIMM Firmware Interface Table (NFIT) driver");
3540 MODULE_LICENSE("GPL v2");
3541 MODULE_AUTHOR("Intel Corporation");
3542