1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/list_sort.h> 14 #include <linux/libnvdimm.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/ndctl.h> 18 #include <linux/sysfs.h> 19 #include <linux/delay.h> 20 #include <linux/list.h> 21 #include <linux/acpi.h> 22 #include <linux/sort.h> 23 #include <linux/io.h> 24 #include <linux/nd.h> 25 #include <asm/cacheflush.h> 26 #include <acpi/nfit.h> 27 #include "intel.h" 28 #include "nfit.h" 29 30 /* 31 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 32 * irrelevant. 33 */ 34 #include <linux/io-64-nonatomic-hi-lo.h> 35 36 static bool force_enable_dimms; 37 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 38 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 39 40 static bool disable_vendor_specific; 41 module_param(disable_vendor_specific, bool, S_IRUGO); 42 MODULE_PARM_DESC(disable_vendor_specific, 43 "Limit commands to the publicly specified set"); 44 45 static unsigned long override_dsm_mask; 46 module_param(override_dsm_mask, ulong, S_IRUGO); 47 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 48 49 static int default_dsm_family = -1; 50 module_param(default_dsm_family, int, S_IRUGO); 51 MODULE_PARM_DESC(default_dsm_family, 52 "Try this DSM type first when identifying NVDIMM family"); 53 54 static bool no_init_ars; 55 module_param(no_init_ars, bool, 0644); 56 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); 57 58 static bool force_labels; 59 module_param(force_labels, bool, 0444); 60 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); 61 62 LIST_HEAD(acpi_descs); 63 DEFINE_MUTEX(acpi_desc_lock); 64 65 static struct workqueue_struct *nfit_wq; 66 67 struct nfit_table_prev { 68 struct list_head spas; 69 struct list_head memdevs; 70 struct list_head dcrs; 71 struct list_head bdws; 72 struct list_head idts; 73 struct list_head flushes; 74 }; 75 76 static guid_t nfit_uuid[NFIT_UUID_MAX]; 77 78 const guid_t *to_nfit_uuid(enum nfit_uuids id) 79 { 80 return &nfit_uuid[id]; 81 } 82 EXPORT_SYMBOL(to_nfit_uuid); 83 84 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 85 { 86 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 87 88 /* 89 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 90 * acpi_device. 91 */ 92 if (!nd_desc->provider_name 93 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 94 return NULL; 95 96 return to_acpi_device(acpi_desc->dev); 97 } 98 99 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 100 { 101 struct nd_cmd_clear_error *clear_err; 102 struct nd_cmd_ars_status *ars_status; 103 u16 flags; 104 105 switch (cmd) { 106 case ND_CMD_ARS_CAP: 107 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 108 return -ENOTTY; 109 110 /* Command failed */ 111 if (status & 0xffff) 112 return -EIO; 113 114 /* No supported scan types for this range */ 115 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 116 if ((status >> 16 & flags) == 0) 117 return -ENOTTY; 118 return 0; 119 case ND_CMD_ARS_START: 120 /* ARS is in progress */ 121 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 122 return -EBUSY; 123 124 /* Command failed */ 125 if (status & 0xffff) 126 return -EIO; 127 return 0; 128 case ND_CMD_ARS_STATUS: 129 ars_status = buf; 130 /* Command failed */ 131 if (status & 0xffff) 132 return -EIO; 133 /* Check extended status (Upper two bytes) */ 134 if (status == NFIT_ARS_STATUS_DONE) 135 return 0; 136 137 /* ARS is in progress */ 138 if (status == NFIT_ARS_STATUS_BUSY) 139 return -EBUSY; 140 141 /* No ARS performed for the current boot */ 142 if (status == NFIT_ARS_STATUS_NONE) 143 return -EAGAIN; 144 145 /* 146 * ARS interrupted, either we overflowed or some other 147 * agent wants the scan to stop. If we didn't overflow 148 * then just continue with the returned results. 149 */ 150 if (status == NFIT_ARS_STATUS_INTR) { 151 if (ars_status->out_length >= 40 && (ars_status->flags 152 & NFIT_ARS_F_OVERFLOW)) 153 return -ENOSPC; 154 return 0; 155 } 156 157 /* Unknown status */ 158 if (status >> 16) 159 return -EIO; 160 return 0; 161 case ND_CMD_CLEAR_ERROR: 162 clear_err = buf; 163 if (status & 0xffff) 164 return -EIO; 165 if (!clear_err->cleared) 166 return -EIO; 167 if (clear_err->length > clear_err->cleared) 168 return clear_err->cleared; 169 return 0; 170 default: 171 break; 172 } 173 174 /* all other non-zero status results in an error */ 175 if (status) 176 return -EIO; 177 return 0; 178 } 179 180 #define ACPI_LABELS_LOCKED 3 181 182 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 183 u32 status) 184 { 185 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 186 187 switch (cmd) { 188 case ND_CMD_GET_CONFIG_SIZE: 189 /* 190 * In the _LSI, _LSR, _LSW case the locked status is 191 * communicated via the read/write commands 192 */ 193 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 194 break; 195 196 if (status >> 16 & ND_CONFIG_LOCKED) 197 return -EACCES; 198 break; 199 case ND_CMD_GET_CONFIG_DATA: 200 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 201 && status == ACPI_LABELS_LOCKED) 202 return -EACCES; 203 break; 204 case ND_CMD_SET_CONFIG_DATA: 205 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 206 && status == ACPI_LABELS_LOCKED) 207 return -EACCES; 208 break; 209 default: 210 break; 211 } 212 213 /* all other non-zero status results in an error */ 214 if (status) 215 return -EIO; 216 return 0; 217 } 218 219 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 220 u32 status) 221 { 222 if (!nvdimm) 223 return xlat_bus_status(buf, cmd, status); 224 return xlat_nvdimm_status(nvdimm, buf, cmd, status); 225 } 226 227 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ 228 static union acpi_object *pkg_to_buf(union acpi_object *pkg) 229 { 230 int i; 231 void *dst; 232 size_t size = 0; 233 union acpi_object *buf = NULL; 234 235 if (pkg->type != ACPI_TYPE_PACKAGE) { 236 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 237 pkg->type); 238 goto err; 239 } 240 241 for (i = 0; i < pkg->package.count; i++) { 242 union acpi_object *obj = &pkg->package.elements[i]; 243 244 if (obj->type == ACPI_TYPE_INTEGER) 245 size += 4; 246 else if (obj->type == ACPI_TYPE_BUFFER) 247 size += obj->buffer.length; 248 else { 249 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 250 obj->type); 251 goto err; 252 } 253 } 254 255 buf = ACPI_ALLOCATE(sizeof(*buf) + size); 256 if (!buf) 257 goto err; 258 259 dst = buf + 1; 260 buf->type = ACPI_TYPE_BUFFER; 261 buf->buffer.length = size; 262 buf->buffer.pointer = dst; 263 for (i = 0; i < pkg->package.count; i++) { 264 union acpi_object *obj = &pkg->package.elements[i]; 265 266 if (obj->type == ACPI_TYPE_INTEGER) { 267 memcpy(dst, &obj->integer.value, 4); 268 dst += 4; 269 } else if (obj->type == ACPI_TYPE_BUFFER) { 270 memcpy(dst, obj->buffer.pointer, obj->buffer.length); 271 dst += obj->buffer.length; 272 } 273 } 274 err: 275 ACPI_FREE(pkg); 276 return buf; 277 } 278 279 static union acpi_object *int_to_buf(union acpi_object *integer) 280 { 281 union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4); 282 void *dst = NULL; 283 284 if (!buf) 285 goto err; 286 287 if (integer->type != ACPI_TYPE_INTEGER) { 288 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 289 integer->type); 290 goto err; 291 } 292 293 dst = buf + 1; 294 buf->type = ACPI_TYPE_BUFFER; 295 buf->buffer.length = 4; 296 buf->buffer.pointer = dst; 297 memcpy(dst, &integer->integer.value, 4); 298 err: 299 ACPI_FREE(integer); 300 return buf; 301 } 302 303 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, 304 u32 len, void *data) 305 { 306 acpi_status rc; 307 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 308 struct acpi_object_list input = { 309 .count = 3, 310 .pointer = (union acpi_object []) { 311 [0] = { 312 .integer.type = ACPI_TYPE_INTEGER, 313 .integer.value = offset, 314 }, 315 [1] = { 316 .integer.type = ACPI_TYPE_INTEGER, 317 .integer.value = len, 318 }, 319 [2] = { 320 .buffer.type = ACPI_TYPE_BUFFER, 321 .buffer.pointer = data, 322 .buffer.length = len, 323 }, 324 }, 325 }; 326 327 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); 328 if (ACPI_FAILURE(rc)) 329 return NULL; 330 return int_to_buf(buf.pointer); 331 } 332 333 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, 334 u32 len) 335 { 336 acpi_status rc; 337 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 338 struct acpi_object_list input = { 339 .count = 2, 340 .pointer = (union acpi_object []) { 341 [0] = { 342 .integer.type = ACPI_TYPE_INTEGER, 343 .integer.value = offset, 344 }, 345 [1] = { 346 .integer.type = ACPI_TYPE_INTEGER, 347 .integer.value = len, 348 }, 349 }, 350 }; 351 352 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); 353 if (ACPI_FAILURE(rc)) 354 return NULL; 355 return pkg_to_buf(buf.pointer); 356 } 357 358 static union acpi_object *acpi_label_info(acpi_handle handle) 359 { 360 acpi_status rc; 361 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 362 363 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); 364 if (ACPI_FAILURE(rc)) 365 return NULL; 366 return pkg_to_buf(buf.pointer); 367 } 368 369 static u8 nfit_dsm_revid(unsigned family, unsigned func) 370 { 371 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = { 372 [NVDIMM_FAMILY_INTEL] = { 373 [NVDIMM_INTEL_GET_MODES] = 2, 374 [NVDIMM_INTEL_GET_FWINFO] = 2, 375 [NVDIMM_INTEL_START_FWUPDATE] = 2, 376 [NVDIMM_INTEL_SEND_FWUPDATE] = 2, 377 [NVDIMM_INTEL_FINISH_FWUPDATE] = 2, 378 [NVDIMM_INTEL_QUERY_FWUPDATE] = 2, 379 [NVDIMM_INTEL_SET_THRESHOLD] = 2, 380 [NVDIMM_INTEL_INJECT_ERROR] = 2, 381 [NVDIMM_INTEL_GET_SECURITY_STATE] = 2, 382 [NVDIMM_INTEL_SET_PASSPHRASE] = 2, 383 [NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2, 384 [NVDIMM_INTEL_UNLOCK_UNIT] = 2, 385 [NVDIMM_INTEL_FREEZE_LOCK] = 2, 386 [NVDIMM_INTEL_SECURE_ERASE] = 2, 387 [NVDIMM_INTEL_OVERWRITE] = 2, 388 [NVDIMM_INTEL_QUERY_OVERWRITE] = 2, 389 [NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2, 390 [NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2, 391 }, 392 }; 393 u8 id; 394 395 if (family > NVDIMM_FAMILY_MAX) 396 return 0; 397 if (func > 31) 398 return 0; 399 id = revid_table[family][func]; 400 if (id == 0) 401 return 1; /* default */ 402 return id; 403 } 404 405 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) 406 { 407 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 408 409 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL 410 && func >= NVDIMM_INTEL_GET_SECURITY_STATE 411 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) 412 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); 413 return true; 414 } 415 416 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, 417 struct nd_cmd_pkg *call_pkg) 418 { 419 if (call_pkg) { 420 int i; 421 422 if (nfit_mem && nfit_mem->family != call_pkg->nd_family) 423 return -ENOTTY; 424 425 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) 426 if (call_pkg->nd_reserved2[i]) 427 return -EINVAL; 428 return call_pkg->nd_command; 429 } 430 431 /* In the !call_pkg case, bus commands == bus functions */ 432 if (!nfit_mem) 433 return cmd; 434 435 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ 436 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 437 return cmd; 438 439 /* 440 * Force function number validation to fail since 0 is never 441 * published as a valid function in dsm_mask. 442 */ 443 return 0; 444 } 445 446 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 447 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 448 { 449 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 450 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 451 union acpi_object in_obj, in_buf, *out_obj; 452 const struct nd_cmd_desc *desc = NULL; 453 struct device *dev = acpi_desc->dev; 454 struct nd_cmd_pkg *call_pkg = NULL; 455 const char *cmd_name, *dimm_name; 456 unsigned long cmd_mask, dsm_mask; 457 u32 offset, fw_status = 0; 458 acpi_handle handle; 459 const guid_t *guid; 460 int func, rc, i; 461 462 if (cmd_rc) 463 *cmd_rc = -EINVAL; 464 465 if (cmd == ND_CMD_CALL) 466 call_pkg = buf; 467 func = cmd_to_func(nfit_mem, cmd, call_pkg); 468 if (func < 0) 469 return func; 470 471 if (nvdimm) { 472 struct acpi_device *adev = nfit_mem->adev; 473 474 if (!adev) 475 return -ENOTTY; 476 477 dimm_name = nvdimm_name(nvdimm); 478 cmd_name = nvdimm_cmd_name(cmd); 479 cmd_mask = nvdimm_cmd_mask(nvdimm); 480 dsm_mask = nfit_mem->dsm_mask; 481 desc = nd_cmd_dimm_desc(cmd); 482 guid = to_nfit_uuid(nfit_mem->family); 483 handle = adev->handle; 484 } else { 485 struct acpi_device *adev = to_acpi_dev(acpi_desc); 486 487 cmd_name = nvdimm_bus_cmd_name(cmd); 488 cmd_mask = nd_desc->cmd_mask; 489 dsm_mask = nd_desc->bus_dsm_mask; 490 desc = nd_cmd_bus_desc(cmd); 491 guid = to_nfit_uuid(NFIT_DEV_BUS); 492 handle = adev->handle; 493 dimm_name = "bus"; 494 } 495 496 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 497 return -ENOTTY; 498 499 /* 500 * Check for a valid command. For ND_CMD_CALL, we also have to 501 * make sure that the DSM function is supported. 502 */ 503 if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask)) 504 return -ENOTTY; 505 else if (!test_bit(cmd, &cmd_mask)) 506 return -ENOTTY; 507 508 in_obj.type = ACPI_TYPE_PACKAGE; 509 in_obj.package.count = 1; 510 in_obj.package.elements = &in_buf; 511 in_buf.type = ACPI_TYPE_BUFFER; 512 in_buf.buffer.pointer = buf; 513 in_buf.buffer.length = 0; 514 515 /* libnvdimm has already validated the input envelope */ 516 for (i = 0; i < desc->in_num; i++) 517 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 518 i, buf); 519 520 if (call_pkg) { 521 /* skip over package wrapper */ 522 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 523 in_buf.buffer.length = call_pkg->nd_size_in; 524 } 525 526 dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n", 527 dimm_name, cmd, func, in_buf.buffer.length); 528 if (payload_dumpable(nvdimm, func)) 529 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 530 in_buf.buffer.pointer, 531 min_t(u32, 256, in_buf.buffer.length), true); 532 533 /* call the BIOS, prefer the named methods over _DSM if available */ 534 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE 535 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 536 out_obj = acpi_label_info(handle); 537 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA 538 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 539 struct nd_cmd_get_config_data_hdr *p = buf; 540 541 out_obj = acpi_label_read(handle, p->in_offset, p->in_length); 542 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA 543 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { 544 struct nd_cmd_set_config_hdr *p = buf; 545 546 out_obj = acpi_label_write(handle, p->in_offset, p->in_length, 547 p->in_buf); 548 } else { 549 u8 revid; 550 551 if (nvdimm) 552 revid = nfit_dsm_revid(nfit_mem->family, func); 553 else 554 revid = 1; 555 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 556 } 557 558 if (!out_obj) { 559 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); 560 return -EINVAL; 561 } 562 563 if (out_obj->type != ACPI_TYPE_BUFFER) { 564 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", 565 dimm_name, cmd_name, out_obj->type); 566 rc = -EINVAL; 567 goto out; 568 } 569 570 if (call_pkg) { 571 call_pkg->nd_fw_size = out_obj->buffer.length; 572 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 573 out_obj->buffer.pointer, 574 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 575 576 ACPI_FREE(out_obj); 577 /* 578 * Need to support FW function w/o known size in advance. 579 * Caller can determine required size based upon nd_fw_size. 580 * If we return an error (like elsewhere) then caller wouldn't 581 * be able to rely upon data returned to make calculation. 582 */ 583 if (cmd_rc) 584 *cmd_rc = 0; 585 return 0; 586 } 587 588 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, 589 cmd_name, out_obj->buffer.length); 590 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 591 out_obj->buffer.pointer, 592 min_t(u32, 128, out_obj->buffer.length), true); 593 594 for (i = 0, offset = 0; i < desc->out_num; i++) { 595 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 596 (u32 *) out_obj->buffer.pointer, 597 out_obj->buffer.length - offset); 598 599 if (offset + out_size > out_obj->buffer.length) { 600 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", 601 dimm_name, cmd_name, i); 602 break; 603 } 604 605 if (in_buf.buffer.length + offset + out_size > buf_len) { 606 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", 607 dimm_name, cmd_name, i); 608 rc = -ENXIO; 609 goto out; 610 } 611 memcpy(buf + in_buf.buffer.length + offset, 612 out_obj->buffer.pointer + offset, out_size); 613 offset += out_size; 614 } 615 616 /* 617 * Set fw_status for all the commands with a known format to be 618 * later interpreted by xlat_status(). 619 */ 620 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP 621 && cmd <= ND_CMD_CLEAR_ERROR) 622 || (nvdimm && cmd >= ND_CMD_SMART 623 && cmd <= ND_CMD_VENDOR))) 624 fw_status = *(u32 *) out_obj->buffer.pointer; 625 626 if (offset + in_buf.buffer.length < buf_len) { 627 if (i >= 1) { 628 /* 629 * status valid, return the number of bytes left 630 * unfilled in the output buffer 631 */ 632 rc = buf_len - offset - in_buf.buffer.length; 633 if (cmd_rc) 634 *cmd_rc = xlat_status(nvdimm, buf, cmd, 635 fw_status); 636 } else { 637 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 638 __func__, dimm_name, cmd_name, buf_len, 639 offset); 640 rc = -ENXIO; 641 } 642 } else { 643 rc = 0; 644 if (cmd_rc) 645 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 646 } 647 648 out: 649 ACPI_FREE(out_obj); 650 651 return rc; 652 } 653 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 654 655 static const char *spa_type_name(u16 type) 656 { 657 static const char *to_name[] = { 658 [NFIT_SPA_VOLATILE] = "volatile", 659 [NFIT_SPA_PM] = "pmem", 660 [NFIT_SPA_DCR] = "dimm-control-region", 661 [NFIT_SPA_BDW] = "block-data-window", 662 [NFIT_SPA_VDISK] = "volatile-disk", 663 [NFIT_SPA_VCD] = "volatile-cd", 664 [NFIT_SPA_PDISK] = "persistent-disk", 665 [NFIT_SPA_PCD] = "persistent-cd", 666 667 }; 668 669 if (type > NFIT_SPA_PCD) 670 return "unknown"; 671 672 return to_name[type]; 673 } 674 675 int nfit_spa_type(struct acpi_nfit_system_address *spa) 676 { 677 int i; 678 679 for (i = 0; i < NFIT_UUID_MAX; i++) 680 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 681 return i; 682 return -1; 683 } 684 685 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 686 struct nfit_table_prev *prev, 687 struct acpi_nfit_system_address *spa) 688 { 689 struct device *dev = acpi_desc->dev; 690 struct nfit_spa *nfit_spa; 691 692 if (spa->header.length != sizeof(*spa)) 693 return false; 694 695 list_for_each_entry(nfit_spa, &prev->spas, list) { 696 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { 697 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 698 return true; 699 } 700 } 701 702 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), 703 GFP_KERNEL); 704 if (!nfit_spa) 705 return false; 706 INIT_LIST_HEAD(&nfit_spa->list); 707 memcpy(nfit_spa->spa, spa, sizeof(*spa)); 708 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 709 dev_dbg(dev, "spa index: %d type: %s\n", 710 spa->range_index, 711 spa_type_name(nfit_spa_type(spa))); 712 return true; 713 } 714 715 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 716 struct nfit_table_prev *prev, 717 struct acpi_nfit_memory_map *memdev) 718 { 719 struct device *dev = acpi_desc->dev; 720 struct nfit_memdev *nfit_memdev; 721 722 if (memdev->header.length != sizeof(*memdev)) 723 return false; 724 725 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 726 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 727 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 728 return true; 729 } 730 731 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 732 GFP_KERNEL); 733 if (!nfit_memdev) 734 return false; 735 INIT_LIST_HEAD(&nfit_memdev->list); 736 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 737 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 738 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 739 memdev->device_handle, memdev->range_index, 740 memdev->region_index, memdev->flags); 741 return true; 742 } 743 744 int nfit_get_smbios_id(u32 device_handle, u16 *flags) 745 { 746 struct acpi_nfit_memory_map *memdev; 747 struct acpi_nfit_desc *acpi_desc; 748 struct nfit_mem *nfit_mem; 749 u16 physical_id; 750 751 mutex_lock(&acpi_desc_lock); 752 list_for_each_entry(acpi_desc, &acpi_descs, list) { 753 mutex_lock(&acpi_desc->init_mutex); 754 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 755 memdev = __to_nfit_memdev(nfit_mem); 756 if (memdev->device_handle == device_handle) { 757 *flags = memdev->flags; 758 physical_id = memdev->physical_id; 759 mutex_unlock(&acpi_desc->init_mutex); 760 mutex_unlock(&acpi_desc_lock); 761 return physical_id; 762 } 763 } 764 mutex_unlock(&acpi_desc->init_mutex); 765 } 766 mutex_unlock(&acpi_desc_lock); 767 768 return -ENODEV; 769 } 770 EXPORT_SYMBOL_GPL(nfit_get_smbios_id); 771 772 /* 773 * An implementation may provide a truncated control region if no block windows 774 * are defined. 775 */ 776 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 777 { 778 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 779 window_size)) 780 return 0; 781 if (dcr->windows) 782 return sizeof(*dcr); 783 return offsetof(struct acpi_nfit_control_region, window_size); 784 } 785 786 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 787 struct nfit_table_prev *prev, 788 struct acpi_nfit_control_region *dcr) 789 { 790 struct device *dev = acpi_desc->dev; 791 struct nfit_dcr *nfit_dcr; 792 793 if (!sizeof_dcr(dcr)) 794 return false; 795 796 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 797 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 798 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 799 return true; 800 } 801 802 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 803 GFP_KERNEL); 804 if (!nfit_dcr) 805 return false; 806 INIT_LIST_HEAD(&nfit_dcr->list); 807 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 808 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 809 dev_dbg(dev, "dcr index: %d windows: %d\n", 810 dcr->region_index, dcr->windows); 811 return true; 812 } 813 814 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 815 struct nfit_table_prev *prev, 816 struct acpi_nfit_data_region *bdw) 817 { 818 struct device *dev = acpi_desc->dev; 819 struct nfit_bdw *nfit_bdw; 820 821 if (bdw->header.length != sizeof(*bdw)) 822 return false; 823 list_for_each_entry(nfit_bdw, &prev->bdws, list) 824 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 825 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 826 return true; 827 } 828 829 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 830 GFP_KERNEL); 831 if (!nfit_bdw) 832 return false; 833 INIT_LIST_HEAD(&nfit_bdw->list); 834 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 835 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 836 dev_dbg(dev, "bdw dcr: %d windows: %d\n", 837 bdw->region_index, bdw->windows); 838 return true; 839 } 840 841 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 842 { 843 if (idt->header.length < sizeof(*idt)) 844 return 0; 845 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 846 } 847 848 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 849 struct nfit_table_prev *prev, 850 struct acpi_nfit_interleave *idt) 851 { 852 struct device *dev = acpi_desc->dev; 853 struct nfit_idt *nfit_idt; 854 855 if (!sizeof_idt(idt)) 856 return false; 857 858 list_for_each_entry(nfit_idt, &prev->idts, list) { 859 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 860 continue; 861 862 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 863 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 864 return true; 865 } 866 } 867 868 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 869 GFP_KERNEL); 870 if (!nfit_idt) 871 return false; 872 INIT_LIST_HEAD(&nfit_idt->list); 873 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 874 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 875 dev_dbg(dev, "idt index: %d num_lines: %d\n", 876 idt->interleave_index, idt->line_count); 877 return true; 878 } 879 880 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 881 { 882 if (flush->header.length < sizeof(*flush)) 883 return 0; 884 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 885 } 886 887 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 888 struct nfit_table_prev *prev, 889 struct acpi_nfit_flush_address *flush) 890 { 891 struct device *dev = acpi_desc->dev; 892 struct nfit_flush *nfit_flush; 893 894 if (!sizeof_flush(flush)) 895 return false; 896 897 list_for_each_entry(nfit_flush, &prev->flushes, list) { 898 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 899 continue; 900 901 if (memcmp(nfit_flush->flush, flush, 902 sizeof_flush(flush)) == 0) { 903 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 904 return true; 905 } 906 } 907 908 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 909 + sizeof_flush(flush), GFP_KERNEL); 910 if (!nfit_flush) 911 return false; 912 INIT_LIST_HEAD(&nfit_flush->list); 913 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 914 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 915 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", 916 flush->device_handle, flush->hint_count); 917 return true; 918 } 919 920 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, 921 struct acpi_nfit_capabilities *pcap) 922 { 923 struct device *dev = acpi_desc->dev; 924 u32 mask; 925 926 mask = (1 << (pcap->highest_capability + 1)) - 1; 927 acpi_desc->platform_cap = pcap->capabilities & mask; 928 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); 929 return true; 930 } 931 932 static void *add_table(struct acpi_nfit_desc *acpi_desc, 933 struct nfit_table_prev *prev, void *table, const void *end) 934 { 935 struct device *dev = acpi_desc->dev; 936 struct acpi_nfit_header *hdr; 937 void *err = ERR_PTR(-ENOMEM); 938 939 if (table >= end) 940 return NULL; 941 942 hdr = table; 943 if (!hdr->length) { 944 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 945 hdr->type); 946 return NULL; 947 } 948 949 switch (hdr->type) { 950 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 951 if (!add_spa(acpi_desc, prev, table)) 952 return err; 953 break; 954 case ACPI_NFIT_TYPE_MEMORY_MAP: 955 if (!add_memdev(acpi_desc, prev, table)) 956 return err; 957 break; 958 case ACPI_NFIT_TYPE_CONTROL_REGION: 959 if (!add_dcr(acpi_desc, prev, table)) 960 return err; 961 break; 962 case ACPI_NFIT_TYPE_DATA_REGION: 963 if (!add_bdw(acpi_desc, prev, table)) 964 return err; 965 break; 966 case ACPI_NFIT_TYPE_INTERLEAVE: 967 if (!add_idt(acpi_desc, prev, table)) 968 return err; 969 break; 970 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 971 if (!add_flush(acpi_desc, prev, table)) 972 return err; 973 break; 974 case ACPI_NFIT_TYPE_SMBIOS: 975 dev_dbg(dev, "smbios\n"); 976 break; 977 case ACPI_NFIT_TYPE_CAPABILITIES: 978 if (!add_platform_cap(acpi_desc, table)) 979 return err; 980 break; 981 default: 982 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 983 break; 984 } 985 986 return table + hdr->length; 987 } 988 989 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 990 struct nfit_mem *nfit_mem) 991 { 992 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 993 u16 dcr = nfit_mem->dcr->region_index; 994 struct nfit_spa *nfit_spa; 995 996 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 997 u16 range_index = nfit_spa->spa->range_index; 998 int type = nfit_spa_type(nfit_spa->spa); 999 struct nfit_memdev *nfit_memdev; 1000 1001 if (type != NFIT_SPA_BDW) 1002 continue; 1003 1004 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1005 if (nfit_memdev->memdev->range_index != range_index) 1006 continue; 1007 if (nfit_memdev->memdev->device_handle != device_handle) 1008 continue; 1009 if (nfit_memdev->memdev->region_index != dcr) 1010 continue; 1011 1012 nfit_mem->spa_bdw = nfit_spa->spa; 1013 return; 1014 } 1015 } 1016 1017 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 1018 nfit_mem->spa_dcr->range_index); 1019 nfit_mem->bdw = NULL; 1020 } 1021 1022 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 1023 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 1024 { 1025 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 1026 struct nfit_memdev *nfit_memdev; 1027 struct nfit_bdw *nfit_bdw; 1028 struct nfit_idt *nfit_idt; 1029 u16 idt_idx, range_index; 1030 1031 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 1032 if (nfit_bdw->bdw->region_index != dcr) 1033 continue; 1034 nfit_mem->bdw = nfit_bdw->bdw; 1035 break; 1036 } 1037 1038 if (!nfit_mem->bdw) 1039 return; 1040 1041 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 1042 1043 if (!nfit_mem->spa_bdw) 1044 return; 1045 1046 range_index = nfit_mem->spa_bdw->range_index; 1047 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1048 if (nfit_memdev->memdev->range_index != range_index || 1049 nfit_memdev->memdev->region_index != dcr) 1050 continue; 1051 nfit_mem->memdev_bdw = nfit_memdev->memdev; 1052 idt_idx = nfit_memdev->memdev->interleave_index; 1053 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1054 if (nfit_idt->idt->interleave_index != idt_idx) 1055 continue; 1056 nfit_mem->idt_bdw = nfit_idt->idt; 1057 break; 1058 } 1059 break; 1060 } 1061 } 1062 1063 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 1064 struct acpi_nfit_system_address *spa) 1065 { 1066 struct nfit_mem *nfit_mem, *found; 1067 struct nfit_memdev *nfit_memdev; 1068 int type = spa ? nfit_spa_type(spa) : 0; 1069 1070 switch (type) { 1071 case NFIT_SPA_DCR: 1072 case NFIT_SPA_PM: 1073 break; 1074 default: 1075 if (spa) 1076 return 0; 1077 } 1078 1079 /* 1080 * This loop runs in two modes, when a dimm is mapped the loop 1081 * adds memdev associations to an existing dimm, or creates a 1082 * dimm. In the unmapped dimm case this loop sweeps for memdev 1083 * instances with an invalid / zero range_index and adds those 1084 * dimms without spa associations. 1085 */ 1086 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1087 struct nfit_flush *nfit_flush; 1088 struct nfit_dcr *nfit_dcr; 1089 u32 device_handle; 1090 u16 dcr; 1091 1092 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 1093 continue; 1094 if (!spa && nfit_memdev->memdev->range_index) 1095 continue; 1096 found = NULL; 1097 dcr = nfit_memdev->memdev->region_index; 1098 device_handle = nfit_memdev->memdev->device_handle; 1099 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1100 if (__to_nfit_memdev(nfit_mem)->device_handle 1101 == device_handle) { 1102 found = nfit_mem; 1103 break; 1104 } 1105 1106 if (found) 1107 nfit_mem = found; 1108 else { 1109 nfit_mem = devm_kzalloc(acpi_desc->dev, 1110 sizeof(*nfit_mem), GFP_KERNEL); 1111 if (!nfit_mem) 1112 return -ENOMEM; 1113 INIT_LIST_HEAD(&nfit_mem->list); 1114 nfit_mem->acpi_desc = acpi_desc; 1115 list_add(&nfit_mem->list, &acpi_desc->dimms); 1116 } 1117 1118 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1119 if (nfit_dcr->dcr->region_index != dcr) 1120 continue; 1121 /* 1122 * Record the control region for the dimm. For 1123 * the ACPI 6.1 case, where there are separate 1124 * control regions for the pmem vs blk 1125 * interfaces, be sure to record the extended 1126 * blk details. 1127 */ 1128 if (!nfit_mem->dcr) 1129 nfit_mem->dcr = nfit_dcr->dcr; 1130 else if (nfit_mem->dcr->windows == 0 1131 && nfit_dcr->dcr->windows) 1132 nfit_mem->dcr = nfit_dcr->dcr; 1133 break; 1134 } 1135 1136 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 1137 struct acpi_nfit_flush_address *flush; 1138 u16 i; 1139 1140 if (nfit_flush->flush->device_handle != device_handle) 1141 continue; 1142 nfit_mem->nfit_flush = nfit_flush; 1143 flush = nfit_flush->flush; 1144 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, 1145 flush->hint_count, 1146 sizeof(struct resource), 1147 GFP_KERNEL); 1148 if (!nfit_mem->flush_wpq) 1149 return -ENOMEM; 1150 for (i = 0; i < flush->hint_count; i++) { 1151 struct resource *res = &nfit_mem->flush_wpq[i]; 1152 1153 res->start = flush->hint_address[i]; 1154 res->end = res->start + 8 - 1; 1155 } 1156 break; 1157 } 1158 1159 if (dcr && !nfit_mem->dcr) { 1160 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 1161 spa->range_index, dcr); 1162 return -ENODEV; 1163 } 1164 1165 if (type == NFIT_SPA_DCR) { 1166 struct nfit_idt *nfit_idt; 1167 u16 idt_idx; 1168 1169 /* multiple dimms may share a SPA when interleaved */ 1170 nfit_mem->spa_dcr = spa; 1171 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1172 idt_idx = nfit_memdev->memdev->interleave_index; 1173 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1174 if (nfit_idt->idt->interleave_index != idt_idx) 1175 continue; 1176 nfit_mem->idt_dcr = nfit_idt->idt; 1177 break; 1178 } 1179 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 1180 } else if (type == NFIT_SPA_PM) { 1181 /* 1182 * A single dimm may belong to multiple SPA-PM 1183 * ranges, record at least one in addition to 1184 * any SPA-DCR range. 1185 */ 1186 nfit_mem->memdev_pmem = nfit_memdev->memdev; 1187 } else 1188 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1189 } 1190 1191 return 0; 1192 } 1193 1194 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) 1195 { 1196 struct nfit_mem *a = container_of(_a, typeof(*a), list); 1197 struct nfit_mem *b = container_of(_b, typeof(*b), list); 1198 u32 handleA, handleB; 1199 1200 handleA = __to_nfit_memdev(a)->device_handle; 1201 handleB = __to_nfit_memdev(b)->device_handle; 1202 if (handleA < handleB) 1203 return -1; 1204 else if (handleA > handleB) 1205 return 1; 1206 return 0; 1207 } 1208 1209 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 1210 { 1211 struct nfit_spa *nfit_spa; 1212 int rc; 1213 1214 1215 /* 1216 * For each SPA-DCR or SPA-PMEM address range find its 1217 * corresponding MEMDEV(s). From each MEMDEV find the 1218 * corresponding DCR. Then, if we're operating on a SPA-DCR, 1219 * try to find a SPA-BDW and a corresponding BDW that references 1220 * the DCR. Throw it all into an nfit_mem object. Note, that 1221 * BDWs are optional. 1222 */ 1223 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1224 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 1225 if (rc) 1226 return rc; 1227 } 1228 1229 /* 1230 * If a DIMM has failed to be mapped into SPA there will be no 1231 * SPA entries above. Find and register all the unmapped DIMMs 1232 * for reporting and recovery purposes. 1233 */ 1234 rc = __nfit_mem_init(acpi_desc, NULL); 1235 if (rc) 1236 return rc; 1237 1238 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 1239 1240 return 0; 1241 } 1242 1243 static ssize_t bus_dsm_mask_show(struct device *dev, 1244 struct device_attribute *attr, char *buf) 1245 { 1246 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1247 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1248 1249 return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask); 1250 } 1251 static struct device_attribute dev_attr_bus_dsm_mask = 1252 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 1253 1254 static ssize_t revision_show(struct device *dev, 1255 struct device_attribute *attr, char *buf) 1256 { 1257 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1258 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1259 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1260 1261 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 1262 } 1263 static DEVICE_ATTR_RO(revision); 1264 1265 static ssize_t hw_error_scrub_show(struct device *dev, 1266 struct device_attribute *attr, char *buf) 1267 { 1268 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1269 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1270 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1271 1272 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 1273 } 1274 1275 /* 1276 * The 'hw_error_scrub' attribute can have the following values written to it: 1277 * '0': Switch to the default mode where an exception will only insert 1278 * the address of the memory error into the poison and badblocks lists. 1279 * '1': Enable a full scrub to happen if an exception for a memory error is 1280 * received. 1281 */ 1282 static ssize_t hw_error_scrub_store(struct device *dev, 1283 struct device_attribute *attr, const char *buf, size_t size) 1284 { 1285 struct nvdimm_bus_descriptor *nd_desc; 1286 ssize_t rc; 1287 long val; 1288 1289 rc = kstrtol(buf, 0, &val); 1290 if (rc) 1291 return rc; 1292 1293 device_lock(dev); 1294 nd_desc = dev_get_drvdata(dev); 1295 if (nd_desc) { 1296 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1297 1298 switch (val) { 1299 case HW_ERROR_SCRUB_ON: 1300 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 1301 break; 1302 case HW_ERROR_SCRUB_OFF: 1303 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 1304 break; 1305 default: 1306 rc = -EINVAL; 1307 break; 1308 } 1309 } 1310 device_unlock(dev); 1311 if (rc) 1312 return rc; 1313 return size; 1314 } 1315 static DEVICE_ATTR_RW(hw_error_scrub); 1316 1317 /* 1318 * This shows the number of full Address Range Scrubs that have been 1319 * completed since driver load time. Userspace can wait on this using 1320 * select/poll etc. A '+' at the end indicates an ARS is in progress 1321 */ 1322 static ssize_t scrub_show(struct device *dev, 1323 struct device_attribute *attr, char *buf) 1324 { 1325 struct nvdimm_bus_descriptor *nd_desc; 1326 struct acpi_nfit_desc *acpi_desc; 1327 ssize_t rc = -ENXIO; 1328 bool busy; 1329 1330 device_lock(dev); 1331 nd_desc = dev_get_drvdata(dev); 1332 if (!nd_desc) { 1333 device_unlock(dev); 1334 return rc; 1335 } 1336 acpi_desc = to_acpi_desc(nd_desc); 1337 1338 mutex_lock(&acpi_desc->init_mutex); 1339 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) 1340 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 1341 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); 1342 /* Allow an admin to poll the busy state at a higher rate */ 1343 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, 1344 &acpi_desc->scrub_flags)) { 1345 acpi_desc->scrub_tmo = 1; 1346 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); 1347 } 1348 1349 mutex_unlock(&acpi_desc->init_mutex); 1350 device_unlock(dev); 1351 return rc; 1352 } 1353 1354 static ssize_t scrub_store(struct device *dev, 1355 struct device_attribute *attr, const char *buf, size_t size) 1356 { 1357 struct nvdimm_bus_descriptor *nd_desc; 1358 ssize_t rc; 1359 long val; 1360 1361 rc = kstrtol(buf, 0, &val); 1362 if (rc) 1363 return rc; 1364 if (val != 1) 1365 return -EINVAL; 1366 1367 device_lock(dev); 1368 nd_desc = dev_get_drvdata(dev); 1369 if (nd_desc) { 1370 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1371 1372 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 1373 } 1374 device_unlock(dev); 1375 if (rc) 1376 return rc; 1377 return size; 1378 } 1379 static DEVICE_ATTR_RW(scrub); 1380 1381 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1382 { 1383 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1384 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1385 | 1 << ND_CMD_ARS_STATUS; 1386 1387 return (nd_desc->cmd_mask & mask) == mask; 1388 } 1389 1390 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1391 { 1392 struct device *dev = container_of(kobj, struct device, kobj); 1393 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1394 1395 if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus)) 1396 return 0; 1397 return a->mode; 1398 } 1399 1400 static struct attribute *acpi_nfit_attributes[] = { 1401 &dev_attr_revision.attr, 1402 &dev_attr_scrub.attr, 1403 &dev_attr_hw_error_scrub.attr, 1404 &dev_attr_bus_dsm_mask.attr, 1405 NULL, 1406 }; 1407 1408 static const struct attribute_group acpi_nfit_attribute_group = { 1409 .name = "nfit", 1410 .attrs = acpi_nfit_attributes, 1411 .is_visible = nfit_visible, 1412 }; 1413 1414 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1415 &nvdimm_bus_attribute_group, 1416 &acpi_nfit_attribute_group, 1417 NULL, 1418 }; 1419 1420 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1421 { 1422 struct nvdimm *nvdimm = to_nvdimm(dev); 1423 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1424 1425 return __to_nfit_memdev(nfit_mem); 1426 } 1427 1428 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1429 { 1430 struct nvdimm *nvdimm = to_nvdimm(dev); 1431 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1432 1433 return nfit_mem->dcr; 1434 } 1435 1436 static ssize_t handle_show(struct device *dev, 1437 struct device_attribute *attr, char *buf) 1438 { 1439 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1440 1441 return sprintf(buf, "%#x\n", memdev->device_handle); 1442 } 1443 static DEVICE_ATTR_RO(handle); 1444 1445 static ssize_t phys_id_show(struct device *dev, 1446 struct device_attribute *attr, char *buf) 1447 { 1448 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1449 1450 return sprintf(buf, "%#x\n", memdev->physical_id); 1451 } 1452 static DEVICE_ATTR_RO(phys_id); 1453 1454 static ssize_t vendor_show(struct device *dev, 1455 struct device_attribute *attr, char *buf) 1456 { 1457 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1458 1459 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1460 } 1461 static DEVICE_ATTR_RO(vendor); 1462 1463 static ssize_t rev_id_show(struct device *dev, 1464 struct device_attribute *attr, char *buf) 1465 { 1466 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1467 1468 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1469 } 1470 static DEVICE_ATTR_RO(rev_id); 1471 1472 static ssize_t device_show(struct device *dev, 1473 struct device_attribute *attr, char *buf) 1474 { 1475 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1476 1477 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1478 } 1479 static DEVICE_ATTR_RO(device); 1480 1481 static ssize_t subsystem_vendor_show(struct device *dev, 1482 struct device_attribute *attr, char *buf) 1483 { 1484 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1485 1486 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1487 } 1488 static DEVICE_ATTR_RO(subsystem_vendor); 1489 1490 static ssize_t subsystem_rev_id_show(struct device *dev, 1491 struct device_attribute *attr, char *buf) 1492 { 1493 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1494 1495 return sprintf(buf, "0x%04x\n", 1496 be16_to_cpu(dcr->subsystem_revision_id)); 1497 } 1498 static DEVICE_ATTR_RO(subsystem_rev_id); 1499 1500 static ssize_t subsystem_device_show(struct device *dev, 1501 struct device_attribute *attr, char *buf) 1502 { 1503 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1504 1505 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1506 } 1507 static DEVICE_ATTR_RO(subsystem_device); 1508 1509 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1510 { 1511 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1512 int formats = 0; 1513 1514 if (nfit_mem->memdev_pmem) 1515 formats++; 1516 if (nfit_mem->memdev_bdw) 1517 formats++; 1518 return formats; 1519 } 1520 1521 static ssize_t format_show(struct device *dev, 1522 struct device_attribute *attr, char *buf) 1523 { 1524 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1525 1526 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1527 } 1528 static DEVICE_ATTR_RO(format); 1529 1530 static ssize_t format1_show(struct device *dev, 1531 struct device_attribute *attr, char *buf) 1532 { 1533 u32 handle; 1534 ssize_t rc = -ENXIO; 1535 struct nfit_mem *nfit_mem; 1536 struct nfit_memdev *nfit_memdev; 1537 struct acpi_nfit_desc *acpi_desc; 1538 struct nvdimm *nvdimm = to_nvdimm(dev); 1539 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1540 1541 nfit_mem = nvdimm_provider_data(nvdimm); 1542 acpi_desc = nfit_mem->acpi_desc; 1543 handle = to_nfit_memdev(dev)->device_handle; 1544 1545 /* assumes DIMMs have at most 2 published interface codes */ 1546 mutex_lock(&acpi_desc->init_mutex); 1547 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1548 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1549 struct nfit_dcr *nfit_dcr; 1550 1551 if (memdev->device_handle != handle) 1552 continue; 1553 1554 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1555 if (nfit_dcr->dcr->region_index != memdev->region_index) 1556 continue; 1557 if (nfit_dcr->dcr->code == dcr->code) 1558 continue; 1559 rc = sprintf(buf, "0x%04x\n", 1560 le16_to_cpu(nfit_dcr->dcr->code)); 1561 break; 1562 } 1563 if (rc != ENXIO) 1564 break; 1565 } 1566 mutex_unlock(&acpi_desc->init_mutex); 1567 return rc; 1568 } 1569 static DEVICE_ATTR_RO(format1); 1570 1571 static ssize_t formats_show(struct device *dev, 1572 struct device_attribute *attr, char *buf) 1573 { 1574 struct nvdimm *nvdimm = to_nvdimm(dev); 1575 1576 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1577 } 1578 static DEVICE_ATTR_RO(formats); 1579 1580 static ssize_t serial_show(struct device *dev, 1581 struct device_attribute *attr, char *buf) 1582 { 1583 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1584 1585 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1586 } 1587 static DEVICE_ATTR_RO(serial); 1588 1589 static ssize_t family_show(struct device *dev, 1590 struct device_attribute *attr, char *buf) 1591 { 1592 struct nvdimm *nvdimm = to_nvdimm(dev); 1593 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1594 1595 if (nfit_mem->family < 0) 1596 return -ENXIO; 1597 return sprintf(buf, "%d\n", nfit_mem->family); 1598 } 1599 static DEVICE_ATTR_RO(family); 1600 1601 static ssize_t dsm_mask_show(struct device *dev, 1602 struct device_attribute *attr, char *buf) 1603 { 1604 struct nvdimm *nvdimm = to_nvdimm(dev); 1605 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1606 1607 if (nfit_mem->family < 0) 1608 return -ENXIO; 1609 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1610 } 1611 static DEVICE_ATTR_RO(dsm_mask); 1612 1613 static ssize_t flags_show(struct device *dev, 1614 struct device_attribute *attr, char *buf) 1615 { 1616 struct nvdimm *nvdimm = to_nvdimm(dev); 1617 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1618 u16 flags = __to_nfit_memdev(nfit_mem)->flags; 1619 1620 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) 1621 flags |= ACPI_NFIT_MEM_FLUSH_FAILED; 1622 1623 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1624 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1625 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1626 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1627 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1628 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1629 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1630 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1631 } 1632 static DEVICE_ATTR_RO(flags); 1633 1634 static ssize_t id_show(struct device *dev, 1635 struct device_attribute *attr, char *buf) 1636 { 1637 struct nvdimm *nvdimm = to_nvdimm(dev); 1638 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1639 1640 return sprintf(buf, "%s\n", nfit_mem->id); 1641 } 1642 static DEVICE_ATTR_RO(id); 1643 1644 static ssize_t dirty_shutdown_show(struct device *dev, 1645 struct device_attribute *attr, char *buf) 1646 { 1647 struct nvdimm *nvdimm = to_nvdimm(dev); 1648 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1649 1650 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); 1651 } 1652 static DEVICE_ATTR_RO(dirty_shutdown); 1653 1654 static struct attribute *acpi_nfit_dimm_attributes[] = { 1655 &dev_attr_handle.attr, 1656 &dev_attr_phys_id.attr, 1657 &dev_attr_vendor.attr, 1658 &dev_attr_device.attr, 1659 &dev_attr_rev_id.attr, 1660 &dev_attr_subsystem_vendor.attr, 1661 &dev_attr_subsystem_device.attr, 1662 &dev_attr_subsystem_rev_id.attr, 1663 &dev_attr_format.attr, 1664 &dev_attr_formats.attr, 1665 &dev_attr_format1.attr, 1666 &dev_attr_serial.attr, 1667 &dev_attr_flags.attr, 1668 &dev_attr_id.attr, 1669 &dev_attr_family.attr, 1670 &dev_attr_dsm_mask.attr, 1671 &dev_attr_dirty_shutdown.attr, 1672 NULL, 1673 }; 1674 1675 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1676 struct attribute *a, int n) 1677 { 1678 struct device *dev = container_of(kobj, struct device, kobj); 1679 struct nvdimm *nvdimm = to_nvdimm(dev); 1680 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1681 1682 if (!to_nfit_dcr(dev)) { 1683 /* Without a dcr only the memdev attributes can be surfaced */ 1684 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1685 || a == &dev_attr_flags.attr 1686 || a == &dev_attr_family.attr 1687 || a == &dev_attr_dsm_mask.attr) 1688 return a->mode; 1689 return 0; 1690 } 1691 1692 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1693 return 0; 1694 1695 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) 1696 && a == &dev_attr_dirty_shutdown.attr) 1697 return 0; 1698 1699 return a->mode; 1700 } 1701 1702 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1703 .name = "nfit", 1704 .attrs = acpi_nfit_dimm_attributes, 1705 .is_visible = acpi_nfit_dimm_attr_visible, 1706 }; 1707 1708 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1709 &nvdimm_attribute_group, 1710 &nd_device_attribute_group, 1711 &acpi_nfit_dimm_attribute_group, 1712 NULL, 1713 }; 1714 1715 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1716 u32 device_handle) 1717 { 1718 struct nfit_mem *nfit_mem; 1719 1720 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1721 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1722 return nfit_mem->nvdimm; 1723 1724 return NULL; 1725 } 1726 1727 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1728 { 1729 struct nfit_mem *nfit_mem; 1730 struct acpi_nfit_desc *acpi_desc; 1731 1732 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), 1733 event); 1734 1735 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1736 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1737 event); 1738 return; 1739 } 1740 1741 acpi_desc = dev_get_drvdata(dev->parent); 1742 if (!acpi_desc) 1743 return; 1744 1745 /* 1746 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1747 * is still valid. 1748 */ 1749 nfit_mem = dev_get_drvdata(dev); 1750 if (nfit_mem && nfit_mem->flags_attr) 1751 sysfs_notify_dirent(nfit_mem->flags_attr); 1752 } 1753 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1754 1755 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1756 { 1757 struct acpi_device *adev = data; 1758 struct device *dev = &adev->dev; 1759 1760 device_lock(dev->parent); 1761 __acpi_nvdimm_notify(dev, event); 1762 device_unlock(dev->parent); 1763 } 1764 1765 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) 1766 { 1767 acpi_handle handle; 1768 acpi_status status; 1769 1770 status = acpi_get_handle(adev->handle, method, &handle); 1771 1772 if (ACPI_SUCCESS(status)) 1773 return true; 1774 return false; 1775 } 1776 1777 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) 1778 { 1779 struct device *dev = &nfit_mem->adev->dev; 1780 struct nd_intel_smart smart = { 0 }; 1781 union acpi_object in_buf = { 1782 .buffer.type = ACPI_TYPE_BUFFER, 1783 .buffer.length = 0, 1784 }; 1785 union acpi_object in_obj = { 1786 .package.type = ACPI_TYPE_PACKAGE, 1787 .package.count = 1, 1788 .package.elements = &in_buf, 1789 }; 1790 const u8 func = ND_INTEL_SMART; 1791 const guid_t *guid = to_nfit_uuid(nfit_mem->family); 1792 u8 revid = nfit_dsm_revid(nfit_mem->family, func); 1793 struct acpi_device *adev = nfit_mem->adev; 1794 acpi_handle handle = adev->handle; 1795 union acpi_object *out_obj; 1796 1797 if ((nfit_mem->dsm_mask & (1 << func)) == 0) 1798 return; 1799 1800 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 1801 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER 1802 || out_obj->buffer.length < sizeof(smart)) { 1803 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", 1804 dev_name(dev)); 1805 ACPI_FREE(out_obj); 1806 return; 1807 } 1808 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); 1809 ACPI_FREE(out_obj); 1810 1811 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { 1812 if (smart.shutdown_state) 1813 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); 1814 } 1815 1816 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { 1817 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); 1818 nfit_mem->dirty_shutdown = smart.shutdown_count; 1819 } 1820 } 1821 1822 static void populate_shutdown_status(struct nfit_mem *nfit_mem) 1823 { 1824 /* 1825 * For DIMMs that provide a dynamic facility to retrieve a 1826 * dirty-shutdown status and/or a dirty-shutdown count, cache 1827 * these values in nfit_mem. 1828 */ 1829 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1830 nfit_intel_shutdown_status(nfit_mem); 1831 } 1832 1833 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1834 struct nfit_mem *nfit_mem, u32 device_handle) 1835 { 1836 struct acpi_device *adev, *adev_dimm; 1837 struct device *dev = acpi_desc->dev; 1838 unsigned long dsm_mask, label_mask; 1839 const guid_t *guid; 1840 int i; 1841 int family = -1; 1842 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 1843 1844 /* nfit test assumes 1:1 relationship between commands and dsms */ 1845 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1846 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1847 1848 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1849 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", 1850 be16_to_cpu(dcr->vendor_id), 1851 dcr->manufacturing_location, 1852 be16_to_cpu(dcr->manufacturing_date), 1853 be32_to_cpu(dcr->serial_number)); 1854 else 1855 sprintf(nfit_mem->id, "%04x-%08x", 1856 be16_to_cpu(dcr->vendor_id), 1857 be32_to_cpu(dcr->serial_number)); 1858 1859 adev = to_acpi_dev(acpi_desc); 1860 if (!adev) { 1861 /* unit test case */ 1862 populate_shutdown_status(nfit_mem); 1863 return 0; 1864 } 1865 1866 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1867 nfit_mem->adev = adev_dimm; 1868 if (!adev_dimm) { 1869 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1870 device_handle); 1871 return force_enable_dimms ? 0 : -ENODEV; 1872 } 1873 1874 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1875 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1876 dev_err(dev, "%s: notification registration failed\n", 1877 dev_name(&adev_dimm->dev)); 1878 return -ENXIO; 1879 } 1880 /* 1881 * Record nfit_mem for the notification path to track back to 1882 * the nfit sysfs attributes for this dimm device object. 1883 */ 1884 dev_set_drvdata(&adev_dimm->dev, nfit_mem); 1885 1886 /* 1887 * There are 4 "legacy" NVDIMM command sets 1888 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before 1889 * an EFI working group was established to constrain this 1890 * proliferation. The nfit driver probes for the supported command 1891 * set by GUID. Note, if you're a platform developer looking to add 1892 * a new command set to this probe, consider using an existing set, 1893 * or otherwise seek approval to publish the command set at 1894 * http://www.uefi.org/RFIC_LIST. 1895 * 1896 * Note, that checking for function0 (bit0) tells us if any commands 1897 * are reachable through this GUID. 1898 */ 1899 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) 1900 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) 1901 if (family < 0 || i == default_dsm_family) 1902 family = i; 1903 1904 /* limit the supported commands to those that are publicly documented */ 1905 nfit_mem->family = family; 1906 if (override_dsm_mask && !disable_vendor_specific) 1907 dsm_mask = override_dsm_mask; 1908 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1909 dsm_mask = NVDIMM_INTEL_CMDMASK; 1910 if (disable_vendor_specific) 1911 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1912 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1913 dsm_mask = 0x1c3c76; 1914 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1915 dsm_mask = 0x1fe; 1916 if (disable_vendor_specific) 1917 dsm_mask &= ~(1 << 8); 1918 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1919 dsm_mask = 0xffffffff; 1920 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { 1921 dsm_mask = 0x1f; 1922 } else { 1923 dev_dbg(dev, "unknown dimm command family\n"); 1924 nfit_mem->family = -1; 1925 /* DSMs are optional, continue loading the driver... */ 1926 return 0; 1927 } 1928 1929 /* 1930 * Function 0 is the command interrogation function, don't 1931 * export it to potential userspace use, and enable it to be 1932 * used as an error value in acpi_nfit_ctl(). 1933 */ 1934 dsm_mask &= ~1UL; 1935 1936 guid = to_nfit_uuid(nfit_mem->family); 1937 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1938 if (acpi_check_dsm(adev_dimm->handle, guid, 1939 nfit_dsm_revid(nfit_mem->family, i), 1940 1ULL << i)) 1941 set_bit(i, &nfit_mem->dsm_mask); 1942 1943 /* 1944 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present 1945 * due to their better semantics handling locked capacity. 1946 */ 1947 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA 1948 | 1 << ND_CMD_SET_CONFIG_DATA; 1949 if (family == NVDIMM_FAMILY_INTEL 1950 && (dsm_mask & label_mask) == label_mask) 1951 /* skip _LS{I,R,W} enabling */; 1952 else { 1953 if (acpi_nvdimm_has_method(adev_dimm, "_LSI") 1954 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { 1955 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); 1956 set_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1957 } 1958 1959 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 1960 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { 1961 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); 1962 set_bit(NFIT_MEM_LSW, &nfit_mem->flags); 1963 } 1964 1965 /* 1966 * Quirk read-only label configurations to preserve 1967 * access to label-less namespaces by default. 1968 */ 1969 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 1970 && !force_labels) { 1971 dev_dbg(dev, "%s: No _LSW, disable labels\n", 1972 dev_name(&adev_dimm->dev)); 1973 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1974 } else 1975 dev_dbg(dev, "%s: Force enable labels\n", 1976 dev_name(&adev_dimm->dev)); 1977 } 1978 1979 populate_shutdown_status(nfit_mem); 1980 1981 return 0; 1982 } 1983 1984 static void shutdown_dimm_notify(void *data) 1985 { 1986 struct acpi_nfit_desc *acpi_desc = data; 1987 struct nfit_mem *nfit_mem; 1988 1989 mutex_lock(&acpi_desc->init_mutex); 1990 /* 1991 * Clear out the nfit_mem->flags_attr and shut down dimm event 1992 * notifications. 1993 */ 1994 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 1995 struct acpi_device *adev_dimm = nfit_mem->adev; 1996 1997 if (nfit_mem->flags_attr) { 1998 sysfs_put(nfit_mem->flags_attr); 1999 nfit_mem->flags_attr = NULL; 2000 } 2001 if (adev_dimm) { 2002 acpi_remove_notify_handler(adev_dimm->handle, 2003 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 2004 dev_set_drvdata(&adev_dimm->dev, NULL); 2005 } 2006 } 2007 mutex_unlock(&acpi_desc->init_mutex); 2008 } 2009 2010 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) 2011 { 2012 switch (family) { 2013 case NVDIMM_FAMILY_INTEL: 2014 return intel_security_ops; 2015 default: 2016 return NULL; 2017 } 2018 } 2019 2020 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 2021 { 2022 struct nfit_mem *nfit_mem; 2023 int dimm_count = 0, rc; 2024 struct nvdimm *nvdimm; 2025 2026 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2027 struct acpi_nfit_flush_address *flush; 2028 unsigned long flags = 0, cmd_mask; 2029 struct nfit_memdev *nfit_memdev; 2030 u32 device_handle; 2031 u16 mem_flags; 2032 2033 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 2034 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 2035 if (nvdimm) { 2036 dimm_count++; 2037 continue; 2038 } 2039 2040 if (nfit_mem->bdw && nfit_mem->memdev_pmem) 2041 set_bit(NDD_ALIASING, &flags); 2042 2043 /* collate flags across all memdevs for this dimm */ 2044 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2045 struct acpi_nfit_memory_map *dimm_memdev; 2046 2047 dimm_memdev = __to_nfit_memdev(nfit_mem); 2048 if (dimm_memdev->device_handle 2049 != nfit_memdev->memdev->device_handle) 2050 continue; 2051 dimm_memdev->flags |= nfit_memdev->memdev->flags; 2052 } 2053 2054 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 2055 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 2056 set_bit(NDD_UNARMED, &flags); 2057 2058 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 2059 if (rc) 2060 continue; 2061 2062 /* 2063 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 2064 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 2065 * userspace interface. 2066 */ 2067 cmd_mask = 1UL << ND_CMD_CALL; 2068 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 2069 /* 2070 * These commands have a 1:1 correspondence 2071 * between DSM payload and libnvdimm ioctl 2072 * payload format. 2073 */ 2074 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; 2075 } 2076 2077 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */ 2078 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) 2079 set_bit(NDD_NOBLK, &flags); 2080 2081 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 2082 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); 2083 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); 2084 } 2085 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) 2086 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); 2087 2088 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 2089 : NULL; 2090 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 2091 acpi_nfit_dimm_attribute_groups, 2092 flags, cmd_mask, flush ? flush->hint_count : 0, 2093 nfit_mem->flush_wpq, &nfit_mem->id[0], 2094 acpi_nfit_get_security_ops(nfit_mem->family)); 2095 if (!nvdimm) 2096 return -ENOMEM; 2097 2098 nfit_mem->nvdimm = nvdimm; 2099 dimm_count++; 2100 2101 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 2102 continue; 2103 2104 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", 2105 nvdimm_name(nvdimm), 2106 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 2107 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 2108 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 2109 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 2110 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 2111 2112 } 2113 2114 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 2115 if (rc) 2116 return rc; 2117 2118 /* 2119 * Now that dimms are successfully registered, and async registration 2120 * is flushed, attempt to enable event notification. 2121 */ 2122 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2123 struct kernfs_node *nfit_kernfs; 2124 2125 nvdimm = nfit_mem->nvdimm; 2126 if (!nvdimm) 2127 continue; 2128 2129 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 2130 if (nfit_kernfs) 2131 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 2132 "flags"); 2133 sysfs_put(nfit_kernfs); 2134 if (!nfit_mem->flags_attr) 2135 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 2136 nvdimm_name(nvdimm)); 2137 } 2138 2139 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 2140 acpi_desc); 2141 } 2142 2143 /* 2144 * These constants are private because there are no kernel consumers of 2145 * these commands. 2146 */ 2147 enum nfit_aux_cmds { 2148 NFIT_CMD_TRANSLATE_SPA = 5, 2149 NFIT_CMD_ARS_INJECT_SET = 7, 2150 NFIT_CMD_ARS_INJECT_CLEAR = 8, 2151 NFIT_CMD_ARS_INJECT_GET = 9, 2152 }; 2153 2154 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 2155 { 2156 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2157 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 2158 struct acpi_device *adev; 2159 unsigned long dsm_mask; 2160 int i; 2161 2162 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 2163 nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en; 2164 adev = to_acpi_dev(acpi_desc); 2165 if (!adev) 2166 return; 2167 2168 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 2169 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2170 set_bit(i, &nd_desc->cmd_mask); 2171 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 2172 2173 dsm_mask = 2174 (1 << ND_CMD_ARS_CAP) | 2175 (1 << ND_CMD_ARS_START) | 2176 (1 << ND_CMD_ARS_STATUS) | 2177 (1 << ND_CMD_CLEAR_ERROR) | 2178 (1 << NFIT_CMD_TRANSLATE_SPA) | 2179 (1 << NFIT_CMD_ARS_INJECT_SET) | 2180 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 2181 (1 << NFIT_CMD_ARS_INJECT_GET); 2182 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2183 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2184 set_bit(i, &nd_desc->bus_dsm_mask); 2185 } 2186 2187 static ssize_t range_index_show(struct device *dev, 2188 struct device_attribute *attr, char *buf) 2189 { 2190 struct nd_region *nd_region = to_nd_region(dev); 2191 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 2192 2193 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 2194 } 2195 static DEVICE_ATTR_RO(range_index); 2196 2197 static struct attribute *acpi_nfit_region_attributes[] = { 2198 &dev_attr_range_index.attr, 2199 NULL, 2200 }; 2201 2202 static const struct attribute_group acpi_nfit_region_attribute_group = { 2203 .name = "nfit", 2204 .attrs = acpi_nfit_region_attributes, 2205 }; 2206 2207 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 2208 &nd_region_attribute_group, 2209 &nd_mapping_attribute_group, 2210 &nd_device_attribute_group, 2211 &nd_numa_attribute_group, 2212 &acpi_nfit_region_attribute_group, 2213 NULL, 2214 }; 2215 2216 /* enough info to uniquely specify an interleave set */ 2217 struct nfit_set_info { 2218 struct nfit_set_info_map { 2219 u64 region_offset; 2220 u32 serial_number; 2221 u32 pad; 2222 } mapping[0]; 2223 }; 2224 2225 struct nfit_set_info2 { 2226 struct nfit_set_info_map2 { 2227 u64 region_offset; 2228 u32 serial_number; 2229 u16 vendor_id; 2230 u16 manufacturing_date; 2231 u8 manufacturing_location; 2232 u8 reserved[31]; 2233 } mapping[0]; 2234 }; 2235 2236 static size_t sizeof_nfit_set_info(int num_mappings) 2237 { 2238 return sizeof(struct nfit_set_info) 2239 + num_mappings * sizeof(struct nfit_set_info_map); 2240 } 2241 2242 static size_t sizeof_nfit_set_info2(int num_mappings) 2243 { 2244 return sizeof(struct nfit_set_info2) 2245 + num_mappings * sizeof(struct nfit_set_info_map2); 2246 } 2247 2248 static int cmp_map_compat(const void *m0, const void *m1) 2249 { 2250 const struct nfit_set_info_map *map0 = m0; 2251 const struct nfit_set_info_map *map1 = m1; 2252 2253 return memcmp(&map0->region_offset, &map1->region_offset, 2254 sizeof(u64)); 2255 } 2256 2257 static int cmp_map(const void *m0, const void *m1) 2258 { 2259 const struct nfit_set_info_map *map0 = m0; 2260 const struct nfit_set_info_map *map1 = m1; 2261 2262 if (map0->region_offset < map1->region_offset) 2263 return -1; 2264 else if (map0->region_offset > map1->region_offset) 2265 return 1; 2266 return 0; 2267 } 2268 2269 static int cmp_map2(const void *m0, const void *m1) 2270 { 2271 const struct nfit_set_info_map2 *map0 = m0; 2272 const struct nfit_set_info_map2 *map1 = m1; 2273 2274 if (map0->region_offset < map1->region_offset) 2275 return -1; 2276 else if (map0->region_offset > map1->region_offset) 2277 return 1; 2278 return 0; 2279 } 2280 2281 /* Retrieve the nth entry referencing this spa */ 2282 static struct acpi_nfit_memory_map *memdev_from_spa( 2283 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 2284 { 2285 struct nfit_memdev *nfit_memdev; 2286 2287 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 2288 if (nfit_memdev->memdev->range_index == range_index) 2289 if (n-- == 0) 2290 return nfit_memdev->memdev; 2291 return NULL; 2292 } 2293 2294 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 2295 struct nd_region_desc *ndr_desc, 2296 struct acpi_nfit_system_address *spa) 2297 { 2298 struct device *dev = acpi_desc->dev; 2299 struct nd_interleave_set *nd_set; 2300 u16 nr = ndr_desc->num_mappings; 2301 struct nfit_set_info2 *info2; 2302 struct nfit_set_info *info; 2303 int i; 2304 2305 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 2306 if (!nd_set) 2307 return -ENOMEM; 2308 guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid); 2309 2310 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); 2311 if (!info) 2312 return -ENOMEM; 2313 2314 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL); 2315 if (!info2) 2316 return -ENOMEM; 2317 2318 for (i = 0; i < nr; i++) { 2319 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 2320 struct nfit_set_info_map *map = &info->mapping[i]; 2321 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2322 struct nvdimm *nvdimm = mapping->nvdimm; 2323 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2324 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, 2325 spa->range_index, i); 2326 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2327 2328 if (!memdev || !nfit_mem->dcr) { 2329 dev_err(dev, "%s: failed to find DCR\n", __func__); 2330 return -ENODEV; 2331 } 2332 2333 map->region_offset = memdev->region_offset; 2334 map->serial_number = dcr->serial_number; 2335 2336 map2->region_offset = memdev->region_offset; 2337 map2->serial_number = dcr->serial_number; 2338 map2->vendor_id = dcr->vendor_id; 2339 map2->manufacturing_date = dcr->manufacturing_date; 2340 map2->manufacturing_location = dcr->manufacturing_location; 2341 } 2342 2343 /* v1.1 namespaces */ 2344 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2345 cmp_map, NULL); 2346 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2347 2348 /* v1.2 namespaces */ 2349 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2), 2350 cmp_map2, NULL); 2351 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0); 2352 2353 /* support v1.1 namespaces created with the wrong sort order */ 2354 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2355 cmp_map_compat, NULL); 2356 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2357 2358 /* record the result of the sort for the mapping position */ 2359 for (i = 0; i < nr; i++) { 2360 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2361 int j; 2362 2363 for (j = 0; j < nr; j++) { 2364 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; 2365 struct nvdimm *nvdimm = mapping->nvdimm; 2366 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2367 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2368 2369 if (map2->serial_number == dcr->serial_number && 2370 map2->vendor_id == dcr->vendor_id && 2371 map2->manufacturing_date == dcr->manufacturing_date && 2372 map2->manufacturing_location 2373 == dcr->manufacturing_location) { 2374 mapping->position = i; 2375 break; 2376 } 2377 } 2378 } 2379 2380 ndr_desc->nd_set = nd_set; 2381 devm_kfree(dev, info); 2382 devm_kfree(dev, info2); 2383 2384 return 0; 2385 } 2386 2387 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 2388 { 2389 struct acpi_nfit_interleave *idt = mmio->idt; 2390 u32 sub_line_offset, line_index, line_offset; 2391 u64 line_no, table_skip_count, table_offset; 2392 2393 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 2394 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 2395 line_offset = idt->line_offset[line_index] 2396 * mmio->line_size; 2397 table_offset = table_skip_count * mmio->table_size; 2398 2399 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 2400 } 2401 2402 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 2403 { 2404 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2405 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 2406 const u32 STATUS_MASK = 0x80000037; 2407 2408 if (mmio->num_lines) 2409 offset = to_interleave_offset(offset, mmio); 2410 2411 return readl(mmio->addr.base + offset) & STATUS_MASK; 2412 } 2413 2414 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 2415 resource_size_t dpa, unsigned int len, unsigned int write) 2416 { 2417 u64 cmd, offset; 2418 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2419 2420 enum { 2421 BCW_OFFSET_MASK = (1ULL << 48)-1, 2422 BCW_LEN_SHIFT = 48, 2423 BCW_LEN_MASK = (1ULL << 8) - 1, 2424 BCW_CMD_SHIFT = 56, 2425 }; 2426 2427 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 2428 len = len >> L1_CACHE_SHIFT; 2429 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 2430 cmd |= ((u64) write) << BCW_CMD_SHIFT; 2431 2432 offset = nfit_blk->cmd_offset + mmio->size * bw; 2433 if (mmio->num_lines) 2434 offset = to_interleave_offset(offset, mmio); 2435 2436 writeq(cmd, mmio->addr.base + offset); 2437 nvdimm_flush(nfit_blk->nd_region); 2438 2439 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 2440 readq(mmio->addr.base + offset); 2441 } 2442 2443 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 2444 resource_size_t dpa, void *iobuf, size_t len, int rw, 2445 unsigned int lane) 2446 { 2447 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2448 unsigned int copied = 0; 2449 u64 base_offset; 2450 int rc; 2451 2452 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 2453 + lane * mmio->size; 2454 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 2455 while (len) { 2456 unsigned int c; 2457 u64 offset; 2458 2459 if (mmio->num_lines) { 2460 u32 line_offset; 2461 2462 offset = to_interleave_offset(base_offset + copied, 2463 mmio); 2464 div_u64_rem(offset, mmio->line_size, &line_offset); 2465 c = min_t(size_t, len, mmio->line_size - line_offset); 2466 } else { 2467 offset = base_offset + nfit_blk->bdw_offset; 2468 c = len; 2469 } 2470 2471 if (rw) 2472 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 2473 else { 2474 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 2475 arch_invalidate_pmem((void __force *) 2476 mmio->addr.aperture + offset, c); 2477 2478 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 2479 } 2480 2481 copied += c; 2482 len -= c; 2483 } 2484 2485 if (rw) 2486 nvdimm_flush(nfit_blk->nd_region); 2487 2488 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 2489 return rc; 2490 } 2491 2492 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 2493 resource_size_t dpa, void *iobuf, u64 len, int rw) 2494 { 2495 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 2496 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2497 struct nd_region *nd_region = nfit_blk->nd_region; 2498 unsigned int lane, copied = 0; 2499 int rc = 0; 2500 2501 lane = nd_region_acquire_lane(nd_region); 2502 while (len) { 2503 u64 c = min(len, mmio->size); 2504 2505 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 2506 iobuf + copied, c, rw, lane); 2507 if (rc) 2508 break; 2509 2510 copied += c; 2511 len -= c; 2512 } 2513 nd_region_release_lane(nd_region, lane); 2514 2515 return rc; 2516 } 2517 2518 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 2519 struct acpi_nfit_interleave *idt, u16 interleave_ways) 2520 { 2521 if (idt) { 2522 mmio->num_lines = idt->line_count; 2523 mmio->line_size = idt->line_size; 2524 if (interleave_ways == 0) 2525 return -ENXIO; 2526 mmio->table_size = mmio->num_lines * interleave_ways 2527 * mmio->line_size; 2528 } 2529 2530 return 0; 2531 } 2532 2533 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 2534 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 2535 { 2536 struct nd_cmd_dimm_flags flags; 2537 int rc; 2538 2539 memset(&flags, 0, sizeof(flags)); 2540 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 2541 sizeof(flags), NULL); 2542 2543 if (rc >= 0 && flags.status == 0) 2544 nfit_blk->dimm_flags = flags.flags; 2545 else if (rc == -ENOTTY) { 2546 /* fall back to a conservative default */ 2547 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2548 rc = 0; 2549 } else 2550 rc = -ENXIO; 2551 2552 return rc; 2553 } 2554 2555 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2556 struct device *dev) 2557 { 2558 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2559 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2560 struct nfit_blk_mmio *mmio; 2561 struct nfit_blk *nfit_blk; 2562 struct nfit_mem *nfit_mem; 2563 struct nvdimm *nvdimm; 2564 int rc; 2565 2566 nvdimm = nd_blk_region_to_dimm(ndbr); 2567 nfit_mem = nvdimm_provider_data(nvdimm); 2568 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2569 dev_dbg(dev, "missing%s%s%s\n", 2570 nfit_mem ? "" : " nfit_mem", 2571 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2572 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2573 return -ENXIO; 2574 } 2575 2576 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2577 if (!nfit_blk) 2578 return -ENOMEM; 2579 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2580 nfit_blk->nd_region = to_nd_region(dev); 2581 2582 /* map block aperture memory */ 2583 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2584 mmio = &nfit_blk->mmio[BDW]; 2585 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2586 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2587 if (!mmio->addr.base) { 2588 dev_dbg(dev, "%s failed to map bdw\n", 2589 nvdimm_name(nvdimm)); 2590 return -ENOMEM; 2591 } 2592 mmio->size = nfit_mem->bdw->size; 2593 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2594 mmio->idt = nfit_mem->idt_bdw; 2595 mmio->spa = nfit_mem->spa_bdw; 2596 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2597 nfit_mem->memdev_bdw->interleave_ways); 2598 if (rc) { 2599 dev_dbg(dev, "%s failed to init bdw interleave\n", 2600 nvdimm_name(nvdimm)); 2601 return rc; 2602 } 2603 2604 /* map block control memory */ 2605 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2606 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2607 mmio = &nfit_blk->mmio[DCR]; 2608 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2609 nfit_mem->spa_dcr->length); 2610 if (!mmio->addr.base) { 2611 dev_dbg(dev, "%s failed to map dcr\n", 2612 nvdimm_name(nvdimm)); 2613 return -ENOMEM; 2614 } 2615 mmio->size = nfit_mem->dcr->window_size; 2616 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2617 mmio->idt = nfit_mem->idt_dcr; 2618 mmio->spa = nfit_mem->spa_dcr; 2619 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2620 nfit_mem->memdev_dcr->interleave_ways); 2621 if (rc) { 2622 dev_dbg(dev, "%s failed to init dcr interleave\n", 2623 nvdimm_name(nvdimm)); 2624 return rc; 2625 } 2626 2627 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2628 if (rc < 0) { 2629 dev_dbg(dev, "%s failed get DIMM flags\n", 2630 nvdimm_name(nvdimm)); 2631 return rc; 2632 } 2633 2634 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2635 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2636 2637 if (mmio->line_size == 0) 2638 return 0; 2639 2640 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2641 + 8 > mmio->line_size) { 2642 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2643 return -ENXIO; 2644 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2645 + 8 > mmio->line_size) { 2646 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2647 return -ENXIO; 2648 } 2649 2650 return 0; 2651 } 2652 2653 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2654 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2655 { 2656 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2657 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2658 int cmd_rc, rc; 2659 2660 cmd->address = spa->address; 2661 cmd->length = spa->length; 2662 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2663 sizeof(*cmd), &cmd_rc); 2664 if (rc < 0) 2665 return rc; 2666 return cmd_rc; 2667 } 2668 2669 static int ars_start(struct acpi_nfit_desc *acpi_desc, 2670 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) 2671 { 2672 int rc; 2673 int cmd_rc; 2674 struct nd_cmd_ars_start ars_start; 2675 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2676 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2677 2678 memset(&ars_start, 0, sizeof(ars_start)); 2679 ars_start.address = spa->address; 2680 ars_start.length = spa->length; 2681 if (req_type == ARS_REQ_SHORT) 2682 ars_start.flags = ND_ARS_RETURN_PREV_DATA; 2683 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2684 ars_start.type = ND_ARS_PERSISTENT; 2685 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2686 ars_start.type = ND_ARS_VOLATILE; 2687 else 2688 return -ENOTTY; 2689 2690 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2691 sizeof(ars_start), &cmd_rc); 2692 2693 if (rc < 0) 2694 return rc; 2695 if (cmd_rc < 0) 2696 return cmd_rc; 2697 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 2698 return 0; 2699 } 2700 2701 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2702 { 2703 int rc, cmd_rc; 2704 struct nd_cmd_ars_start ars_start; 2705 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2706 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2707 2708 ars_start = (struct nd_cmd_ars_start) { 2709 .address = ars_status->restart_address, 2710 .length = ars_status->restart_length, 2711 .type = ars_status->type, 2712 }; 2713 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2714 sizeof(ars_start), &cmd_rc); 2715 if (rc < 0) 2716 return rc; 2717 return cmd_rc; 2718 } 2719 2720 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2721 { 2722 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2723 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2724 int rc, cmd_rc; 2725 2726 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2727 acpi_desc->max_ars, &cmd_rc); 2728 if (rc < 0) 2729 return rc; 2730 return cmd_rc; 2731 } 2732 2733 static void ars_complete(struct acpi_nfit_desc *acpi_desc, 2734 struct nfit_spa *nfit_spa) 2735 { 2736 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2737 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2738 struct nd_region *nd_region = nfit_spa->nd_region; 2739 struct device *dev; 2740 2741 lockdep_assert_held(&acpi_desc->init_mutex); 2742 /* 2743 * Only advance the ARS state for ARS runs initiated by the 2744 * kernel, ignore ARS results from BIOS initiated runs for scrub 2745 * completion tracking. 2746 */ 2747 if (acpi_desc->scrub_spa != nfit_spa) 2748 return; 2749 2750 if ((ars_status->address >= spa->address && ars_status->address 2751 < spa->address + spa->length) 2752 || (ars_status->address < spa->address)) { 2753 /* 2754 * Assume that if a scrub starts at an offset from the 2755 * start of nfit_spa that we are in the continuation 2756 * case. 2757 * 2758 * Otherwise, if the scrub covers the spa range, mark 2759 * any pending request complete. 2760 */ 2761 if (ars_status->address + ars_status->length 2762 >= spa->address + spa->length) 2763 /* complete */; 2764 else 2765 return; 2766 } else 2767 return; 2768 2769 acpi_desc->scrub_spa = NULL; 2770 if (nd_region) { 2771 dev = nd_region_dev(nd_region); 2772 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); 2773 } else 2774 dev = acpi_desc->dev; 2775 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); 2776 } 2777 2778 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) 2779 { 2780 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2781 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2782 int rc; 2783 u32 i; 2784 2785 /* 2786 * First record starts at 44 byte offset from the start of the 2787 * payload. 2788 */ 2789 if (ars_status->out_length < 44) 2790 return 0; 2791 2792 /* 2793 * Ignore potentially stale results that are only refreshed 2794 * after a start-ARS event. 2795 */ 2796 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { 2797 dev_dbg(acpi_desc->dev, "skip %d stale records\n", 2798 ars_status->num_records); 2799 return 0; 2800 } 2801 2802 for (i = 0; i < ars_status->num_records; i++) { 2803 /* only process full records */ 2804 if (ars_status->out_length 2805 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2806 break; 2807 rc = nvdimm_bus_add_badrange(nvdimm_bus, 2808 ars_status->records[i].err_address, 2809 ars_status->records[i].length); 2810 if (rc) 2811 return rc; 2812 } 2813 if (i < ars_status->num_records) 2814 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2815 2816 return 0; 2817 } 2818 2819 static void acpi_nfit_remove_resource(void *data) 2820 { 2821 struct resource *res = data; 2822 2823 remove_resource(res); 2824 } 2825 2826 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2827 struct nd_region_desc *ndr_desc) 2828 { 2829 struct resource *res, *nd_res = ndr_desc->res; 2830 int is_pmem, ret; 2831 2832 /* No operation if the region is already registered as PMEM */ 2833 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2834 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2835 if (is_pmem == REGION_INTERSECTS) 2836 return 0; 2837 2838 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2839 if (!res) 2840 return -ENOMEM; 2841 2842 res->name = "Persistent Memory"; 2843 res->start = nd_res->start; 2844 res->end = nd_res->end; 2845 res->flags = IORESOURCE_MEM; 2846 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2847 2848 ret = insert_resource(&iomem_resource, res); 2849 if (ret) 2850 return ret; 2851 2852 ret = devm_add_action_or_reset(acpi_desc->dev, 2853 acpi_nfit_remove_resource, 2854 res); 2855 if (ret) 2856 return ret; 2857 2858 return 0; 2859 } 2860 2861 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2862 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2863 struct acpi_nfit_memory_map *memdev, 2864 struct nfit_spa *nfit_spa) 2865 { 2866 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2867 memdev->device_handle); 2868 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2869 struct nd_blk_region_desc *ndbr_desc; 2870 struct nfit_mem *nfit_mem; 2871 int rc; 2872 2873 if (!nvdimm) { 2874 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2875 spa->range_index, memdev->device_handle); 2876 return -ENODEV; 2877 } 2878 2879 mapping->nvdimm = nvdimm; 2880 switch (nfit_spa_type(spa)) { 2881 case NFIT_SPA_PM: 2882 case NFIT_SPA_VOLATILE: 2883 mapping->start = memdev->address; 2884 mapping->size = memdev->region_size; 2885 break; 2886 case NFIT_SPA_DCR: 2887 nfit_mem = nvdimm_provider_data(nvdimm); 2888 if (!nfit_mem || !nfit_mem->bdw) { 2889 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2890 spa->range_index, nvdimm_name(nvdimm)); 2891 break; 2892 } 2893 2894 mapping->size = nfit_mem->bdw->capacity; 2895 mapping->start = nfit_mem->bdw->start_address; 2896 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2897 ndr_desc->mapping = mapping; 2898 ndr_desc->num_mappings = 1; 2899 ndbr_desc = to_blk_region_desc(ndr_desc); 2900 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2901 ndbr_desc->do_io = acpi_desc->blk_do_io; 2902 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2903 if (rc) 2904 return rc; 2905 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2906 ndr_desc); 2907 if (!nfit_spa->nd_region) 2908 return -ENOMEM; 2909 break; 2910 } 2911 2912 return 0; 2913 } 2914 2915 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2916 { 2917 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2918 nfit_spa_type(spa) == NFIT_SPA_VCD || 2919 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2920 nfit_spa_type(spa) == NFIT_SPA_PCD); 2921 } 2922 2923 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2924 { 2925 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2926 nfit_spa_type(spa) == NFIT_SPA_VCD || 2927 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2928 } 2929 2930 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2931 struct nfit_spa *nfit_spa) 2932 { 2933 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2934 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2935 struct nd_blk_region_desc ndbr_desc; 2936 struct nd_region_desc *ndr_desc; 2937 struct nfit_memdev *nfit_memdev; 2938 struct nvdimm_bus *nvdimm_bus; 2939 struct resource res; 2940 int count = 0, rc; 2941 2942 if (nfit_spa->nd_region) 2943 return 0; 2944 2945 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2946 dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); 2947 return 0; 2948 } 2949 2950 memset(&res, 0, sizeof(res)); 2951 memset(&mappings, 0, sizeof(mappings)); 2952 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2953 res.start = spa->address; 2954 res.end = res.start + spa->length - 1; 2955 ndr_desc = &ndbr_desc.ndr_desc; 2956 ndr_desc->res = &res; 2957 ndr_desc->provider_data = nfit_spa; 2958 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 2959 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { 2960 ndr_desc->numa_node = acpi_map_pxm_to_online_node( 2961 spa->proximity_domain); 2962 ndr_desc->target_node = acpi_map_pxm_to_node( 2963 spa->proximity_domain); 2964 } else { 2965 ndr_desc->numa_node = NUMA_NO_NODE; 2966 ndr_desc->target_node = NUMA_NO_NODE; 2967 } 2968 2969 /* 2970 * Persistence domain bits are hierarchical, if 2971 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then 2972 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. 2973 */ 2974 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) 2975 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); 2976 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) 2977 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); 2978 2979 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2980 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 2981 struct nd_mapping_desc *mapping; 2982 2983 if (memdev->range_index != spa->range_index) 2984 continue; 2985 if (count >= ND_MAX_MAPPINGS) { 2986 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 2987 spa->range_index, ND_MAX_MAPPINGS); 2988 return -ENXIO; 2989 } 2990 mapping = &mappings[count++]; 2991 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 2992 memdev, nfit_spa); 2993 if (rc) 2994 goto out; 2995 } 2996 2997 ndr_desc->mapping = mappings; 2998 ndr_desc->num_mappings = count; 2999 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 3000 if (rc) 3001 goto out; 3002 3003 nvdimm_bus = acpi_desc->nvdimm_bus; 3004 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 3005 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 3006 if (rc) { 3007 dev_warn(acpi_desc->dev, 3008 "failed to insert pmem resource to iomem: %d\n", 3009 rc); 3010 goto out; 3011 } 3012 3013 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3014 ndr_desc); 3015 if (!nfit_spa->nd_region) 3016 rc = -ENOMEM; 3017 } else if (nfit_spa_is_volatile(spa)) { 3018 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 3019 ndr_desc); 3020 if (!nfit_spa->nd_region) 3021 rc = -ENOMEM; 3022 } else if (nfit_spa_is_virtual(spa)) { 3023 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3024 ndr_desc); 3025 if (!nfit_spa->nd_region) 3026 rc = -ENOMEM; 3027 } 3028 3029 out: 3030 if (rc) 3031 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 3032 nfit_spa->spa->range_index); 3033 return rc; 3034 } 3035 3036 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) 3037 { 3038 struct device *dev = acpi_desc->dev; 3039 struct nd_cmd_ars_status *ars_status; 3040 3041 if (acpi_desc->ars_status) { 3042 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3043 return 0; 3044 } 3045 3046 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); 3047 if (!ars_status) 3048 return -ENOMEM; 3049 acpi_desc->ars_status = ars_status; 3050 return 0; 3051 } 3052 3053 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) 3054 { 3055 int rc; 3056 3057 if (ars_status_alloc(acpi_desc)) 3058 return -ENOMEM; 3059 3060 rc = ars_get_status(acpi_desc); 3061 3062 if (rc < 0 && rc != -ENOSPC) 3063 return rc; 3064 3065 if (ars_status_process_records(acpi_desc)) 3066 dev_err(acpi_desc->dev, "Failed to process ARS records\n"); 3067 3068 return rc; 3069 } 3070 3071 static int ars_register(struct acpi_nfit_desc *acpi_desc, 3072 struct nfit_spa *nfit_spa) 3073 { 3074 int rc; 3075 3076 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3077 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3078 3079 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3080 if (!no_init_ars) 3081 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); 3082 3083 switch (acpi_nfit_query_poison(acpi_desc)) { 3084 case 0: 3085 case -ENOSPC: 3086 case -EAGAIN: 3087 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); 3088 /* shouldn't happen, try again later */ 3089 if (rc == -EBUSY) 3090 break; 3091 if (rc) { 3092 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3093 break; 3094 } 3095 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3096 rc = acpi_nfit_query_poison(acpi_desc); 3097 if (rc) 3098 break; 3099 acpi_desc->scrub_spa = nfit_spa; 3100 ars_complete(acpi_desc, nfit_spa); 3101 /* 3102 * If ars_complete() says we didn't complete the 3103 * short scrub, we'll try again with a long 3104 * request. 3105 */ 3106 acpi_desc->scrub_spa = NULL; 3107 break; 3108 case -EBUSY: 3109 case -ENOMEM: 3110 /* 3111 * BIOS was using ARS, wait for it to complete (or 3112 * resources to become available) and then perform our 3113 * own scrubs. 3114 */ 3115 break; 3116 default: 3117 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3118 break; 3119 } 3120 3121 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3122 } 3123 3124 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) 3125 { 3126 struct nfit_spa *nfit_spa; 3127 3128 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3129 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3130 continue; 3131 ars_complete(acpi_desc, nfit_spa); 3132 } 3133 } 3134 3135 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, 3136 int query_rc) 3137 { 3138 unsigned int tmo = acpi_desc->scrub_tmo; 3139 struct device *dev = acpi_desc->dev; 3140 struct nfit_spa *nfit_spa; 3141 3142 lockdep_assert_held(&acpi_desc->init_mutex); 3143 3144 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) 3145 return 0; 3146 3147 if (query_rc == -EBUSY) { 3148 dev_dbg(dev, "ARS: ARS busy\n"); 3149 return min(30U * 60U, tmo * 2); 3150 } 3151 if (query_rc == -ENOSPC) { 3152 dev_dbg(dev, "ARS: ARS continue\n"); 3153 ars_continue(acpi_desc); 3154 return 1; 3155 } 3156 if (query_rc && query_rc != -EAGAIN) { 3157 unsigned long long addr, end; 3158 3159 addr = acpi_desc->ars_status->address; 3160 end = addr + acpi_desc->ars_status->length; 3161 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, 3162 query_rc); 3163 } 3164 3165 ars_complete_all(acpi_desc); 3166 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3167 enum nfit_ars_state req_type; 3168 int rc; 3169 3170 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3171 continue; 3172 3173 /* prefer short ARS requests first */ 3174 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) 3175 req_type = ARS_REQ_SHORT; 3176 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) 3177 req_type = ARS_REQ_LONG; 3178 else 3179 continue; 3180 rc = ars_start(acpi_desc, nfit_spa, req_type); 3181 3182 dev = nd_region_dev(nfit_spa->nd_region); 3183 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", 3184 nfit_spa->spa->range_index, 3185 req_type == ARS_REQ_SHORT ? "short" : "long", 3186 rc); 3187 /* 3188 * Hmm, we raced someone else starting ARS? Try again in 3189 * a bit. 3190 */ 3191 if (rc == -EBUSY) 3192 return 1; 3193 if (rc == 0) { 3194 dev_WARN_ONCE(dev, acpi_desc->scrub_spa, 3195 "scrub start while range %d active\n", 3196 acpi_desc->scrub_spa->spa->range_index); 3197 clear_bit(req_type, &nfit_spa->ars_state); 3198 acpi_desc->scrub_spa = nfit_spa; 3199 /* 3200 * Consider this spa last for future scrub 3201 * requests 3202 */ 3203 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 3204 return 1; 3205 } 3206 3207 dev_err(dev, "ARS: range %d ARS failed (%d)\n", 3208 nfit_spa->spa->range_index, rc); 3209 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3210 } 3211 return 0; 3212 } 3213 3214 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) 3215 { 3216 lockdep_assert_held(&acpi_desc->init_mutex); 3217 3218 set_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3219 /* note this should only be set from within the workqueue */ 3220 if (tmo) 3221 acpi_desc->scrub_tmo = tmo; 3222 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); 3223 } 3224 3225 static void sched_ars(struct acpi_nfit_desc *acpi_desc) 3226 { 3227 __sched_ars(acpi_desc, 0); 3228 } 3229 3230 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) 3231 { 3232 lockdep_assert_held(&acpi_desc->init_mutex); 3233 3234 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3235 acpi_desc->scrub_count++; 3236 if (acpi_desc->scrub_count_state) 3237 sysfs_notify_dirent(acpi_desc->scrub_count_state); 3238 } 3239 3240 static void acpi_nfit_scrub(struct work_struct *work) 3241 { 3242 struct acpi_nfit_desc *acpi_desc; 3243 unsigned int tmo; 3244 int query_rc; 3245 3246 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); 3247 mutex_lock(&acpi_desc->init_mutex); 3248 query_rc = acpi_nfit_query_poison(acpi_desc); 3249 tmo = __acpi_nfit_scrub(acpi_desc, query_rc); 3250 if (tmo) 3251 __sched_ars(acpi_desc, tmo); 3252 else 3253 notify_ars_done(acpi_desc); 3254 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3255 clear_bit(ARS_POLL, &acpi_desc->scrub_flags); 3256 mutex_unlock(&acpi_desc->init_mutex); 3257 } 3258 3259 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, 3260 struct nfit_spa *nfit_spa) 3261 { 3262 int type = nfit_spa_type(nfit_spa->spa); 3263 struct nd_cmd_ars_cap ars_cap; 3264 int rc; 3265 3266 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3267 memset(&ars_cap, 0, sizeof(ars_cap)); 3268 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 3269 if (rc < 0) 3270 return; 3271 /* check that the supported scrub types match the spa type */ 3272 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) 3273 & ND_ARS_VOLATILE) == 0) 3274 return; 3275 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) 3276 & ND_ARS_PERSISTENT) == 0) 3277 return; 3278 3279 nfit_spa->max_ars = ars_cap.max_ars_out; 3280 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 3281 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); 3282 clear_bit(ARS_FAILED, &nfit_spa->ars_state); 3283 } 3284 3285 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 3286 { 3287 struct nfit_spa *nfit_spa; 3288 int rc; 3289 3290 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 3291 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3292 switch (nfit_spa_type(nfit_spa->spa)) { 3293 case NFIT_SPA_VOLATILE: 3294 case NFIT_SPA_PM: 3295 acpi_nfit_init_ars(acpi_desc, nfit_spa); 3296 break; 3297 } 3298 } 3299 3300 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) 3301 switch (nfit_spa_type(nfit_spa->spa)) { 3302 case NFIT_SPA_VOLATILE: 3303 case NFIT_SPA_PM: 3304 /* register regions and kick off initial ARS run */ 3305 rc = ars_register(acpi_desc, nfit_spa); 3306 if (rc) 3307 return rc; 3308 break; 3309 case NFIT_SPA_BDW: 3310 /* nothing to register */ 3311 break; 3312 case NFIT_SPA_DCR: 3313 case NFIT_SPA_VDISK: 3314 case NFIT_SPA_VCD: 3315 case NFIT_SPA_PDISK: 3316 case NFIT_SPA_PCD: 3317 /* register known regions that don't support ARS */ 3318 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 3319 if (rc) 3320 return rc; 3321 break; 3322 default: 3323 /* don't register unknown regions */ 3324 break; 3325 } 3326 3327 sched_ars(acpi_desc); 3328 return 0; 3329 } 3330 3331 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 3332 struct nfit_table_prev *prev) 3333 { 3334 struct device *dev = acpi_desc->dev; 3335 3336 if (!list_empty(&prev->spas) || 3337 !list_empty(&prev->memdevs) || 3338 !list_empty(&prev->dcrs) || 3339 !list_empty(&prev->bdws) || 3340 !list_empty(&prev->idts) || 3341 !list_empty(&prev->flushes)) { 3342 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 3343 return -ENXIO; 3344 } 3345 return 0; 3346 } 3347 3348 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 3349 { 3350 struct device *dev = acpi_desc->dev; 3351 struct kernfs_node *nfit; 3352 struct device *bus_dev; 3353 3354 if (!ars_supported(acpi_desc->nvdimm_bus)) 3355 return 0; 3356 3357 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3358 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 3359 if (!nfit) { 3360 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 3361 return -ENODEV; 3362 } 3363 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 3364 sysfs_put(nfit); 3365 if (!acpi_desc->scrub_count_state) { 3366 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 3367 return -ENODEV; 3368 } 3369 3370 return 0; 3371 } 3372 3373 static void acpi_nfit_unregister(void *data) 3374 { 3375 struct acpi_nfit_desc *acpi_desc = data; 3376 3377 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 3378 } 3379 3380 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 3381 { 3382 struct device *dev = acpi_desc->dev; 3383 struct nfit_table_prev prev; 3384 const void *end; 3385 int rc; 3386 3387 if (!acpi_desc->nvdimm_bus) { 3388 acpi_nfit_init_dsms(acpi_desc); 3389 3390 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 3391 &acpi_desc->nd_desc); 3392 if (!acpi_desc->nvdimm_bus) 3393 return -ENOMEM; 3394 3395 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 3396 acpi_desc); 3397 if (rc) 3398 return rc; 3399 3400 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 3401 if (rc) 3402 return rc; 3403 3404 /* register this acpi_desc for mce notifications */ 3405 mutex_lock(&acpi_desc_lock); 3406 list_add_tail(&acpi_desc->list, &acpi_descs); 3407 mutex_unlock(&acpi_desc_lock); 3408 } 3409 3410 mutex_lock(&acpi_desc->init_mutex); 3411 3412 INIT_LIST_HEAD(&prev.spas); 3413 INIT_LIST_HEAD(&prev.memdevs); 3414 INIT_LIST_HEAD(&prev.dcrs); 3415 INIT_LIST_HEAD(&prev.bdws); 3416 INIT_LIST_HEAD(&prev.idts); 3417 INIT_LIST_HEAD(&prev.flushes); 3418 3419 list_cut_position(&prev.spas, &acpi_desc->spas, 3420 acpi_desc->spas.prev); 3421 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 3422 acpi_desc->memdevs.prev); 3423 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 3424 acpi_desc->dcrs.prev); 3425 list_cut_position(&prev.bdws, &acpi_desc->bdws, 3426 acpi_desc->bdws.prev); 3427 list_cut_position(&prev.idts, &acpi_desc->idts, 3428 acpi_desc->idts.prev); 3429 list_cut_position(&prev.flushes, &acpi_desc->flushes, 3430 acpi_desc->flushes.prev); 3431 3432 end = data + sz; 3433 while (!IS_ERR_OR_NULL(data)) 3434 data = add_table(acpi_desc, &prev, data, end); 3435 3436 if (IS_ERR(data)) { 3437 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); 3438 rc = PTR_ERR(data); 3439 goto out_unlock; 3440 } 3441 3442 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 3443 if (rc) 3444 goto out_unlock; 3445 3446 rc = nfit_mem_init(acpi_desc); 3447 if (rc) 3448 goto out_unlock; 3449 3450 rc = acpi_nfit_register_dimms(acpi_desc); 3451 if (rc) 3452 goto out_unlock; 3453 3454 rc = acpi_nfit_register_regions(acpi_desc); 3455 3456 out_unlock: 3457 mutex_unlock(&acpi_desc->init_mutex); 3458 return rc; 3459 } 3460 EXPORT_SYMBOL_GPL(acpi_nfit_init); 3461 3462 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 3463 { 3464 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3465 struct device *dev = acpi_desc->dev; 3466 3467 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 3468 device_lock(dev); 3469 device_unlock(dev); 3470 3471 /* Bounce the init_mutex to complete initial registration */ 3472 mutex_lock(&acpi_desc->init_mutex); 3473 mutex_unlock(&acpi_desc->init_mutex); 3474 3475 return 0; 3476 } 3477 3478 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3479 struct nvdimm *nvdimm, unsigned int cmd) 3480 { 3481 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3482 3483 if (nvdimm) 3484 return 0; 3485 if (cmd != ND_CMD_ARS_START) 3486 return 0; 3487 3488 /* 3489 * The kernel and userspace may race to initiate a scrub, but 3490 * the scrub thread is prepared to lose that initial race. It 3491 * just needs guarantees that any ARS it initiates are not 3492 * interrupted by any intervening start requests from userspace. 3493 */ 3494 if (work_busy(&acpi_desc->dwork.work)) 3495 return -EBUSY; 3496 3497 return 0; 3498 } 3499 3500 /* prevent security commands from being issued via ioctl */ 3501 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3502 struct nvdimm *nvdimm, unsigned int cmd, void *buf) 3503 { 3504 struct nd_cmd_pkg *call_pkg = buf; 3505 unsigned int func; 3506 3507 if (nvdimm && cmd == ND_CMD_CALL && 3508 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { 3509 func = call_pkg->nd_command; 3510 if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK) 3511 return -EOPNOTSUPP; 3512 } 3513 3514 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); 3515 } 3516 3517 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, 3518 enum nfit_ars_state req_type) 3519 { 3520 struct device *dev = acpi_desc->dev; 3521 int scheduled = 0, busy = 0; 3522 struct nfit_spa *nfit_spa; 3523 3524 mutex_lock(&acpi_desc->init_mutex); 3525 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { 3526 mutex_unlock(&acpi_desc->init_mutex); 3527 return 0; 3528 } 3529 3530 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3531 int type = nfit_spa_type(nfit_spa->spa); 3532 3533 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) 3534 continue; 3535 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3536 continue; 3537 3538 if (test_and_set_bit(req_type, &nfit_spa->ars_state)) 3539 busy++; 3540 else 3541 scheduled++; 3542 } 3543 if (scheduled) { 3544 sched_ars(acpi_desc); 3545 dev_dbg(dev, "ars_scan triggered\n"); 3546 } 3547 mutex_unlock(&acpi_desc->init_mutex); 3548 3549 if (scheduled) 3550 return 0; 3551 if (busy) 3552 return -EBUSY; 3553 return -ENOTTY; 3554 } 3555 3556 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 3557 { 3558 struct nvdimm_bus_descriptor *nd_desc; 3559 3560 dev_set_drvdata(dev, acpi_desc); 3561 acpi_desc->dev = dev; 3562 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 3563 nd_desc = &acpi_desc->nd_desc; 3564 nd_desc->provider_name = "ACPI.NFIT"; 3565 nd_desc->module = THIS_MODULE; 3566 nd_desc->ndctl = acpi_nfit_ctl; 3567 nd_desc->flush_probe = acpi_nfit_flush_probe; 3568 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 3569 nd_desc->attr_groups = acpi_nfit_attribute_groups; 3570 3571 INIT_LIST_HEAD(&acpi_desc->spas); 3572 INIT_LIST_HEAD(&acpi_desc->dcrs); 3573 INIT_LIST_HEAD(&acpi_desc->bdws); 3574 INIT_LIST_HEAD(&acpi_desc->idts); 3575 INIT_LIST_HEAD(&acpi_desc->flushes); 3576 INIT_LIST_HEAD(&acpi_desc->memdevs); 3577 INIT_LIST_HEAD(&acpi_desc->dimms); 3578 INIT_LIST_HEAD(&acpi_desc->list); 3579 mutex_init(&acpi_desc->init_mutex); 3580 acpi_desc->scrub_tmo = 1; 3581 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); 3582 } 3583 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 3584 3585 static void acpi_nfit_put_table(void *table) 3586 { 3587 acpi_put_table(table); 3588 } 3589 3590 void acpi_nfit_shutdown(void *data) 3591 { 3592 struct acpi_nfit_desc *acpi_desc = data; 3593 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3594 3595 /* 3596 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 3597 * race teardown 3598 */ 3599 mutex_lock(&acpi_desc_lock); 3600 list_del(&acpi_desc->list); 3601 mutex_unlock(&acpi_desc_lock); 3602 3603 mutex_lock(&acpi_desc->init_mutex); 3604 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 3605 cancel_delayed_work_sync(&acpi_desc->dwork); 3606 mutex_unlock(&acpi_desc->init_mutex); 3607 3608 /* 3609 * Bounce the nvdimm bus lock to make sure any in-flight 3610 * acpi_nfit_ars_rescan() submissions have had a chance to 3611 * either submit or see ->cancel set. 3612 */ 3613 device_lock(bus_dev); 3614 device_unlock(bus_dev); 3615 3616 flush_workqueue(nfit_wq); 3617 } 3618 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3619 3620 static int acpi_nfit_add(struct acpi_device *adev) 3621 { 3622 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3623 struct acpi_nfit_desc *acpi_desc; 3624 struct device *dev = &adev->dev; 3625 struct acpi_table_header *tbl; 3626 acpi_status status = AE_OK; 3627 acpi_size sz; 3628 int rc = 0; 3629 3630 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3631 if (ACPI_FAILURE(status)) { 3632 /* The NVDIMM root device allows OS to trigger enumeration of 3633 * NVDIMMs through NFIT at boot time and re-enumeration at 3634 * root level via the _FIT method during runtime. 3635 * This is ok to return 0 here, we could have an nvdimm 3636 * hotplugged later and evaluate _FIT method which returns 3637 * data in the format of a series of NFIT Structures. 3638 */ 3639 dev_dbg(dev, "failed to find NFIT at startup\n"); 3640 return 0; 3641 } 3642 3643 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3644 if (rc) 3645 return rc; 3646 sz = tbl->length; 3647 3648 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3649 if (!acpi_desc) 3650 return -ENOMEM; 3651 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3652 3653 /* Save the acpi header for exporting the revision via sysfs */ 3654 acpi_desc->acpi_header = *tbl; 3655 3656 /* Evaluate _FIT and override with that if present */ 3657 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3658 if (ACPI_SUCCESS(status) && buf.length > 0) { 3659 union acpi_object *obj = buf.pointer; 3660 3661 if (obj->type == ACPI_TYPE_BUFFER) 3662 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3663 obj->buffer.length); 3664 else 3665 dev_dbg(dev, "invalid type %d, ignoring _FIT\n", 3666 (int) obj->type); 3667 kfree(buf.pointer); 3668 } else 3669 /* skip over the lead-in header table */ 3670 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3671 + sizeof(struct acpi_table_nfit), 3672 sz - sizeof(struct acpi_table_nfit)); 3673 3674 if (rc) 3675 return rc; 3676 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3677 } 3678 3679 static int acpi_nfit_remove(struct acpi_device *adev) 3680 { 3681 /* see acpi_nfit_unregister */ 3682 return 0; 3683 } 3684 3685 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3686 { 3687 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3688 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3689 union acpi_object *obj; 3690 acpi_status status; 3691 int ret; 3692 3693 if (!dev->driver) { 3694 /* dev->driver may be null if we're being removed */ 3695 dev_dbg(dev, "no driver found for dev\n"); 3696 return; 3697 } 3698 3699 if (!acpi_desc) { 3700 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3701 if (!acpi_desc) 3702 return; 3703 acpi_nfit_desc_init(acpi_desc, dev); 3704 } else { 3705 /* 3706 * Finish previous registration before considering new 3707 * regions. 3708 */ 3709 flush_workqueue(nfit_wq); 3710 } 3711 3712 /* Evaluate _FIT */ 3713 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3714 if (ACPI_FAILURE(status)) { 3715 dev_err(dev, "failed to evaluate _FIT\n"); 3716 return; 3717 } 3718 3719 obj = buf.pointer; 3720 if (obj->type == ACPI_TYPE_BUFFER) { 3721 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3722 obj->buffer.length); 3723 if (ret) 3724 dev_err(dev, "failed to merge updated NFIT\n"); 3725 } else 3726 dev_err(dev, "Invalid _FIT\n"); 3727 kfree(buf.pointer); 3728 } 3729 3730 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3731 { 3732 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3733 3734 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) 3735 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 3736 else 3737 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); 3738 } 3739 3740 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3741 { 3742 dev_dbg(dev, "event: 0x%x\n", event); 3743 3744 switch (event) { 3745 case NFIT_NOTIFY_UPDATE: 3746 return acpi_nfit_update_notify(dev, handle); 3747 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3748 return acpi_nfit_uc_error_notify(dev, handle); 3749 default: 3750 return; 3751 } 3752 } 3753 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3754 3755 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3756 { 3757 device_lock(&adev->dev); 3758 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3759 device_unlock(&adev->dev); 3760 } 3761 3762 static const struct acpi_device_id acpi_nfit_ids[] = { 3763 { "ACPI0012", 0 }, 3764 { "", 0 }, 3765 }; 3766 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3767 3768 static struct acpi_driver acpi_nfit_driver = { 3769 .name = KBUILD_MODNAME, 3770 .ids = acpi_nfit_ids, 3771 .ops = { 3772 .add = acpi_nfit_add, 3773 .remove = acpi_nfit_remove, 3774 .notify = acpi_nfit_notify, 3775 }, 3776 }; 3777 3778 static __init int nfit_init(void) 3779 { 3780 int ret; 3781 3782 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3783 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); 3784 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3785 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3786 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3787 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3788 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3789 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); 3790 3791 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3792 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3793 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3794 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3795 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3796 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3797 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3798 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3799 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3800 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3801 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3802 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3803 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3804 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); 3805 3806 nfit_wq = create_singlethread_workqueue("nfit"); 3807 if (!nfit_wq) 3808 return -ENOMEM; 3809 3810 nfit_mce_register(); 3811 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3812 if (ret) { 3813 nfit_mce_unregister(); 3814 destroy_workqueue(nfit_wq); 3815 } 3816 3817 return ret; 3818 3819 } 3820 3821 static __exit void nfit_exit(void) 3822 { 3823 nfit_mce_unregister(); 3824 acpi_bus_unregister_driver(&acpi_nfit_driver); 3825 destroy_workqueue(nfit_wq); 3826 WARN_ON(!list_empty(&acpi_descs)); 3827 } 3828 3829 module_init(nfit_init); 3830 module_exit(nfit_exit); 3831 MODULE_LICENSE("GPL v2"); 3832 MODULE_AUTHOR("Intel Corporation"); 3833