1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/list_sort.h> 6 #include <linux/libnvdimm.h> 7 #include <linux/module.h> 8 #include <linux/mutex.h> 9 #include <linux/ndctl.h> 10 #include <linux/sysfs.h> 11 #include <linux/delay.h> 12 #include <linux/list.h> 13 #include <linux/acpi.h> 14 #include <linux/sort.h> 15 #include <linux/io.h> 16 #include <linux/nd.h> 17 #include <asm/cacheflush.h> 18 #include <acpi/nfit.h> 19 #include "intel.h" 20 #include "nfit.h" 21 22 /* 23 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 24 * irrelevant. 25 */ 26 #include <linux/io-64-nonatomic-hi-lo.h> 27 28 static bool force_enable_dimms; 29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 31 32 static bool disable_vendor_specific; 33 module_param(disable_vendor_specific, bool, S_IRUGO); 34 MODULE_PARM_DESC(disable_vendor_specific, 35 "Limit commands to the publicly specified set"); 36 37 static unsigned long override_dsm_mask; 38 module_param(override_dsm_mask, ulong, S_IRUGO); 39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 40 41 static int default_dsm_family = -1; 42 module_param(default_dsm_family, int, S_IRUGO); 43 MODULE_PARM_DESC(default_dsm_family, 44 "Try this DSM type first when identifying NVDIMM family"); 45 46 static bool no_init_ars; 47 module_param(no_init_ars, bool, 0644); 48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); 49 50 static bool force_labels; 51 module_param(force_labels, bool, 0444); 52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); 53 54 LIST_HEAD(acpi_descs); 55 DEFINE_MUTEX(acpi_desc_lock); 56 57 static struct workqueue_struct *nfit_wq; 58 59 struct nfit_table_prev { 60 struct list_head spas; 61 struct list_head memdevs; 62 struct list_head dcrs; 63 struct list_head bdws; 64 struct list_head idts; 65 struct list_head flushes; 66 }; 67 68 static guid_t nfit_uuid[NFIT_UUID_MAX]; 69 70 const guid_t *to_nfit_uuid(enum nfit_uuids id) 71 { 72 return &nfit_uuid[id]; 73 } 74 EXPORT_SYMBOL(to_nfit_uuid); 75 76 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 77 { 78 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 79 80 /* 81 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 82 * acpi_device. 83 */ 84 if (!nd_desc->provider_name 85 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 86 return NULL; 87 88 return to_acpi_device(acpi_desc->dev); 89 } 90 91 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 92 { 93 struct nd_cmd_clear_error *clear_err; 94 struct nd_cmd_ars_status *ars_status; 95 u16 flags; 96 97 switch (cmd) { 98 case ND_CMD_ARS_CAP: 99 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 100 return -ENOTTY; 101 102 /* Command failed */ 103 if (status & 0xffff) 104 return -EIO; 105 106 /* No supported scan types for this range */ 107 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 108 if ((status >> 16 & flags) == 0) 109 return -ENOTTY; 110 return 0; 111 case ND_CMD_ARS_START: 112 /* ARS is in progress */ 113 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 114 return -EBUSY; 115 116 /* Command failed */ 117 if (status & 0xffff) 118 return -EIO; 119 return 0; 120 case ND_CMD_ARS_STATUS: 121 ars_status = buf; 122 /* Command failed */ 123 if (status & 0xffff) 124 return -EIO; 125 /* Check extended status (Upper two bytes) */ 126 if (status == NFIT_ARS_STATUS_DONE) 127 return 0; 128 129 /* ARS is in progress */ 130 if (status == NFIT_ARS_STATUS_BUSY) 131 return -EBUSY; 132 133 /* No ARS performed for the current boot */ 134 if (status == NFIT_ARS_STATUS_NONE) 135 return -EAGAIN; 136 137 /* 138 * ARS interrupted, either we overflowed or some other 139 * agent wants the scan to stop. If we didn't overflow 140 * then just continue with the returned results. 141 */ 142 if (status == NFIT_ARS_STATUS_INTR) { 143 if (ars_status->out_length >= 40 && (ars_status->flags 144 & NFIT_ARS_F_OVERFLOW)) 145 return -ENOSPC; 146 return 0; 147 } 148 149 /* Unknown status */ 150 if (status >> 16) 151 return -EIO; 152 return 0; 153 case ND_CMD_CLEAR_ERROR: 154 clear_err = buf; 155 if (status & 0xffff) 156 return -EIO; 157 if (!clear_err->cleared) 158 return -EIO; 159 if (clear_err->length > clear_err->cleared) 160 return clear_err->cleared; 161 return 0; 162 default: 163 break; 164 } 165 166 /* all other non-zero status results in an error */ 167 if (status) 168 return -EIO; 169 return 0; 170 } 171 172 #define ACPI_LABELS_LOCKED 3 173 174 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 175 u32 status) 176 { 177 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 178 179 switch (cmd) { 180 case ND_CMD_GET_CONFIG_SIZE: 181 /* 182 * In the _LSI, _LSR, _LSW case the locked status is 183 * communicated via the read/write commands 184 */ 185 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 186 break; 187 188 if (status >> 16 & ND_CONFIG_LOCKED) 189 return -EACCES; 190 break; 191 case ND_CMD_GET_CONFIG_DATA: 192 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 193 && status == ACPI_LABELS_LOCKED) 194 return -EACCES; 195 break; 196 case ND_CMD_SET_CONFIG_DATA: 197 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 198 && status == ACPI_LABELS_LOCKED) 199 return -EACCES; 200 break; 201 default: 202 break; 203 } 204 205 /* all other non-zero status results in an error */ 206 if (status) 207 return -EIO; 208 return 0; 209 } 210 211 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 212 u32 status) 213 { 214 if (!nvdimm) 215 return xlat_bus_status(buf, cmd, status); 216 return xlat_nvdimm_status(nvdimm, buf, cmd, status); 217 } 218 219 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ 220 static union acpi_object *pkg_to_buf(union acpi_object *pkg) 221 { 222 int i; 223 void *dst; 224 size_t size = 0; 225 union acpi_object *buf = NULL; 226 227 if (pkg->type != ACPI_TYPE_PACKAGE) { 228 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 229 pkg->type); 230 goto err; 231 } 232 233 for (i = 0; i < pkg->package.count; i++) { 234 union acpi_object *obj = &pkg->package.elements[i]; 235 236 if (obj->type == ACPI_TYPE_INTEGER) 237 size += 4; 238 else if (obj->type == ACPI_TYPE_BUFFER) 239 size += obj->buffer.length; 240 else { 241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 242 obj->type); 243 goto err; 244 } 245 } 246 247 buf = ACPI_ALLOCATE(sizeof(*buf) + size); 248 if (!buf) 249 goto err; 250 251 dst = buf + 1; 252 buf->type = ACPI_TYPE_BUFFER; 253 buf->buffer.length = size; 254 buf->buffer.pointer = dst; 255 for (i = 0; i < pkg->package.count; i++) { 256 union acpi_object *obj = &pkg->package.elements[i]; 257 258 if (obj->type == ACPI_TYPE_INTEGER) { 259 memcpy(dst, &obj->integer.value, 4); 260 dst += 4; 261 } else if (obj->type == ACPI_TYPE_BUFFER) { 262 memcpy(dst, obj->buffer.pointer, obj->buffer.length); 263 dst += obj->buffer.length; 264 } 265 } 266 err: 267 ACPI_FREE(pkg); 268 return buf; 269 } 270 271 static union acpi_object *int_to_buf(union acpi_object *integer) 272 { 273 union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4); 274 void *dst = NULL; 275 276 if (!buf) 277 goto err; 278 279 if (integer->type != ACPI_TYPE_INTEGER) { 280 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 281 integer->type); 282 goto err; 283 } 284 285 dst = buf + 1; 286 buf->type = ACPI_TYPE_BUFFER; 287 buf->buffer.length = 4; 288 buf->buffer.pointer = dst; 289 memcpy(dst, &integer->integer.value, 4); 290 err: 291 ACPI_FREE(integer); 292 return buf; 293 } 294 295 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, 296 u32 len, void *data) 297 { 298 acpi_status rc; 299 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 300 struct acpi_object_list input = { 301 .count = 3, 302 .pointer = (union acpi_object []) { 303 [0] = { 304 .integer.type = ACPI_TYPE_INTEGER, 305 .integer.value = offset, 306 }, 307 [1] = { 308 .integer.type = ACPI_TYPE_INTEGER, 309 .integer.value = len, 310 }, 311 [2] = { 312 .buffer.type = ACPI_TYPE_BUFFER, 313 .buffer.pointer = data, 314 .buffer.length = len, 315 }, 316 }, 317 }; 318 319 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); 320 if (ACPI_FAILURE(rc)) 321 return NULL; 322 return int_to_buf(buf.pointer); 323 } 324 325 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, 326 u32 len) 327 { 328 acpi_status rc; 329 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 330 struct acpi_object_list input = { 331 .count = 2, 332 .pointer = (union acpi_object []) { 333 [0] = { 334 .integer.type = ACPI_TYPE_INTEGER, 335 .integer.value = offset, 336 }, 337 [1] = { 338 .integer.type = ACPI_TYPE_INTEGER, 339 .integer.value = len, 340 }, 341 }, 342 }; 343 344 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); 345 if (ACPI_FAILURE(rc)) 346 return NULL; 347 return pkg_to_buf(buf.pointer); 348 } 349 350 static union acpi_object *acpi_label_info(acpi_handle handle) 351 { 352 acpi_status rc; 353 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 354 355 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); 356 if (ACPI_FAILURE(rc)) 357 return NULL; 358 return pkg_to_buf(buf.pointer); 359 } 360 361 static u8 nfit_dsm_revid(unsigned family, unsigned func) 362 { 363 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = { 364 [NVDIMM_FAMILY_INTEL] = { 365 [NVDIMM_INTEL_GET_MODES] = 2, 366 [NVDIMM_INTEL_GET_FWINFO] = 2, 367 [NVDIMM_INTEL_START_FWUPDATE] = 2, 368 [NVDIMM_INTEL_SEND_FWUPDATE] = 2, 369 [NVDIMM_INTEL_FINISH_FWUPDATE] = 2, 370 [NVDIMM_INTEL_QUERY_FWUPDATE] = 2, 371 [NVDIMM_INTEL_SET_THRESHOLD] = 2, 372 [NVDIMM_INTEL_INJECT_ERROR] = 2, 373 [NVDIMM_INTEL_GET_SECURITY_STATE] = 2, 374 [NVDIMM_INTEL_SET_PASSPHRASE] = 2, 375 [NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2, 376 [NVDIMM_INTEL_UNLOCK_UNIT] = 2, 377 [NVDIMM_INTEL_FREEZE_LOCK] = 2, 378 [NVDIMM_INTEL_SECURE_ERASE] = 2, 379 [NVDIMM_INTEL_OVERWRITE] = 2, 380 [NVDIMM_INTEL_QUERY_OVERWRITE] = 2, 381 [NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2, 382 [NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2, 383 }, 384 }; 385 u8 id; 386 387 if (family > NVDIMM_FAMILY_MAX) 388 return 0; 389 if (func > NVDIMM_CMD_MAX) 390 return 0; 391 id = revid_table[family][func]; 392 if (id == 0) 393 return 1; /* default */ 394 return id; 395 } 396 397 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) 398 { 399 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 400 401 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL 402 && func >= NVDIMM_INTEL_GET_SECURITY_STATE 403 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) 404 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); 405 return true; 406 } 407 408 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, 409 struct nd_cmd_pkg *call_pkg) 410 { 411 if (call_pkg) { 412 int i; 413 414 if (nfit_mem && nfit_mem->family != call_pkg->nd_family) 415 return -ENOTTY; 416 417 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) 418 if (call_pkg->nd_reserved2[i]) 419 return -EINVAL; 420 return call_pkg->nd_command; 421 } 422 423 /* In the !call_pkg case, bus commands == bus functions */ 424 if (!nfit_mem) 425 return cmd; 426 427 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ 428 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 429 return cmd; 430 431 /* 432 * Force function number validation to fail since 0 is never 433 * published as a valid function in dsm_mask. 434 */ 435 return 0; 436 } 437 438 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 439 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 440 { 441 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 442 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 443 union acpi_object in_obj, in_buf, *out_obj; 444 const struct nd_cmd_desc *desc = NULL; 445 struct device *dev = acpi_desc->dev; 446 struct nd_cmd_pkg *call_pkg = NULL; 447 const char *cmd_name, *dimm_name; 448 unsigned long cmd_mask, dsm_mask; 449 u32 offset, fw_status = 0; 450 acpi_handle handle; 451 const guid_t *guid; 452 int func, rc, i; 453 454 if (cmd_rc) 455 *cmd_rc = -EINVAL; 456 457 if (cmd == ND_CMD_CALL) 458 call_pkg = buf; 459 func = cmd_to_func(nfit_mem, cmd, call_pkg); 460 if (func < 0) 461 return func; 462 463 if (nvdimm) { 464 struct acpi_device *adev = nfit_mem->adev; 465 466 if (!adev) 467 return -ENOTTY; 468 469 dimm_name = nvdimm_name(nvdimm); 470 cmd_name = nvdimm_cmd_name(cmd); 471 cmd_mask = nvdimm_cmd_mask(nvdimm); 472 dsm_mask = nfit_mem->dsm_mask; 473 desc = nd_cmd_dimm_desc(cmd); 474 guid = to_nfit_uuid(nfit_mem->family); 475 handle = adev->handle; 476 } else { 477 struct acpi_device *adev = to_acpi_dev(acpi_desc); 478 479 cmd_name = nvdimm_bus_cmd_name(cmd); 480 cmd_mask = nd_desc->cmd_mask; 481 dsm_mask = nd_desc->bus_dsm_mask; 482 desc = nd_cmd_bus_desc(cmd); 483 guid = to_nfit_uuid(NFIT_DEV_BUS); 484 handle = adev->handle; 485 dimm_name = "bus"; 486 } 487 488 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 489 return -ENOTTY; 490 491 /* 492 * Check for a valid command. For ND_CMD_CALL, we also have to 493 * make sure that the DSM function is supported. 494 */ 495 if (cmd == ND_CMD_CALL && 496 (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask))) 497 return -ENOTTY; 498 else if (!test_bit(cmd, &cmd_mask)) 499 return -ENOTTY; 500 501 in_obj.type = ACPI_TYPE_PACKAGE; 502 in_obj.package.count = 1; 503 in_obj.package.elements = &in_buf; 504 in_buf.type = ACPI_TYPE_BUFFER; 505 in_buf.buffer.pointer = buf; 506 in_buf.buffer.length = 0; 507 508 /* libnvdimm has already validated the input envelope */ 509 for (i = 0; i < desc->in_num; i++) 510 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 511 i, buf); 512 513 if (call_pkg) { 514 /* skip over package wrapper */ 515 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 516 in_buf.buffer.length = call_pkg->nd_size_in; 517 } 518 519 dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n", 520 dimm_name, cmd, func, in_buf.buffer.length); 521 if (payload_dumpable(nvdimm, func)) 522 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 523 in_buf.buffer.pointer, 524 min_t(u32, 256, in_buf.buffer.length), true); 525 526 /* call the BIOS, prefer the named methods over _DSM if available */ 527 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE 528 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 529 out_obj = acpi_label_info(handle); 530 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA 531 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 532 struct nd_cmd_get_config_data_hdr *p = buf; 533 534 out_obj = acpi_label_read(handle, p->in_offset, p->in_length); 535 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA 536 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { 537 struct nd_cmd_set_config_hdr *p = buf; 538 539 out_obj = acpi_label_write(handle, p->in_offset, p->in_length, 540 p->in_buf); 541 } else { 542 u8 revid; 543 544 if (nvdimm) 545 revid = nfit_dsm_revid(nfit_mem->family, func); 546 else 547 revid = 1; 548 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 549 } 550 551 if (!out_obj) { 552 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); 553 return -EINVAL; 554 } 555 556 if (out_obj->type != ACPI_TYPE_BUFFER) { 557 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", 558 dimm_name, cmd_name, out_obj->type); 559 rc = -EINVAL; 560 goto out; 561 } 562 563 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, 564 cmd_name, out_obj->buffer.length); 565 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 566 out_obj->buffer.pointer, 567 min_t(u32, 128, out_obj->buffer.length), true); 568 569 if (call_pkg) { 570 call_pkg->nd_fw_size = out_obj->buffer.length; 571 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 572 out_obj->buffer.pointer, 573 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 574 575 ACPI_FREE(out_obj); 576 /* 577 * Need to support FW function w/o known size in advance. 578 * Caller can determine required size based upon nd_fw_size. 579 * If we return an error (like elsewhere) then caller wouldn't 580 * be able to rely upon data returned to make calculation. 581 */ 582 if (cmd_rc) 583 *cmd_rc = 0; 584 return 0; 585 } 586 587 for (i = 0, offset = 0; i < desc->out_num; i++) { 588 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 589 (u32 *) out_obj->buffer.pointer, 590 out_obj->buffer.length - offset); 591 592 if (offset + out_size > out_obj->buffer.length) { 593 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", 594 dimm_name, cmd_name, i); 595 break; 596 } 597 598 if (in_buf.buffer.length + offset + out_size > buf_len) { 599 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", 600 dimm_name, cmd_name, i); 601 rc = -ENXIO; 602 goto out; 603 } 604 memcpy(buf + in_buf.buffer.length + offset, 605 out_obj->buffer.pointer + offset, out_size); 606 offset += out_size; 607 } 608 609 /* 610 * Set fw_status for all the commands with a known format to be 611 * later interpreted by xlat_status(). 612 */ 613 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP 614 && cmd <= ND_CMD_CLEAR_ERROR) 615 || (nvdimm && cmd >= ND_CMD_SMART 616 && cmd <= ND_CMD_VENDOR))) 617 fw_status = *(u32 *) out_obj->buffer.pointer; 618 619 if (offset + in_buf.buffer.length < buf_len) { 620 if (i >= 1) { 621 /* 622 * status valid, return the number of bytes left 623 * unfilled in the output buffer 624 */ 625 rc = buf_len - offset - in_buf.buffer.length; 626 if (cmd_rc) 627 *cmd_rc = xlat_status(nvdimm, buf, cmd, 628 fw_status); 629 } else { 630 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 631 __func__, dimm_name, cmd_name, buf_len, 632 offset); 633 rc = -ENXIO; 634 } 635 } else { 636 rc = 0; 637 if (cmd_rc) 638 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 639 } 640 641 out: 642 ACPI_FREE(out_obj); 643 644 return rc; 645 } 646 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 647 648 static const char *spa_type_name(u16 type) 649 { 650 static const char *to_name[] = { 651 [NFIT_SPA_VOLATILE] = "volatile", 652 [NFIT_SPA_PM] = "pmem", 653 [NFIT_SPA_DCR] = "dimm-control-region", 654 [NFIT_SPA_BDW] = "block-data-window", 655 [NFIT_SPA_VDISK] = "volatile-disk", 656 [NFIT_SPA_VCD] = "volatile-cd", 657 [NFIT_SPA_PDISK] = "persistent-disk", 658 [NFIT_SPA_PCD] = "persistent-cd", 659 660 }; 661 662 if (type > NFIT_SPA_PCD) 663 return "unknown"; 664 665 return to_name[type]; 666 } 667 668 int nfit_spa_type(struct acpi_nfit_system_address *spa) 669 { 670 int i; 671 672 for (i = 0; i < NFIT_UUID_MAX; i++) 673 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 674 return i; 675 return -1; 676 } 677 678 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 679 struct nfit_table_prev *prev, 680 struct acpi_nfit_system_address *spa) 681 { 682 struct device *dev = acpi_desc->dev; 683 struct nfit_spa *nfit_spa; 684 685 if (spa->header.length != sizeof(*spa)) 686 return false; 687 688 list_for_each_entry(nfit_spa, &prev->spas, list) { 689 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { 690 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 691 return true; 692 } 693 } 694 695 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), 696 GFP_KERNEL); 697 if (!nfit_spa) 698 return false; 699 INIT_LIST_HEAD(&nfit_spa->list); 700 memcpy(nfit_spa->spa, spa, sizeof(*spa)); 701 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 702 dev_dbg(dev, "spa index: %d type: %s\n", 703 spa->range_index, 704 spa_type_name(nfit_spa_type(spa))); 705 return true; 706 } 707 708 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 709 struct nfit_table_prev *prev, 710 struct acpi_nfit_memory_map *memdev) 711 { 712 struct device *dev = acpi_desc->dev; 713 struct nfit_memdev *nfit_memdev; 714 715 if (memdev->header.length != sizeof(*memdev)) 716 return false; 717 718 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 719 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 720 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 721 return true; 722 } 723 724 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 725 GFP_KERNEL); 726 if (!nfit_memdev) 727 return false; 728 INIT_LIST_HEAD(&nfit_memdev->list); 729 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 730 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 731 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 732 memdev->device_handle, memdev->range_index, 733 memdev->region_index, memdev->flags); 734 return true; 735 } 736 737 int nfit_get_smbios_id(u32 device_handle, u16 *flags) 738 { 739 struct acpi_nfit_memory_map *memdev; 740 struct acpi_nfit_desc *acpi_desc; 741 struct nfit_mem *nfit_mem; 742 u16 physical_id; 743 744 mutex_lock(&acpi_desc_lock); 745 list_for_each_entry(acpi_desc, &acpi_descs, list) { 746 mutex_lock(&acpi_desc->init_mutex); 747 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 748 memdev = __to_nfit_memdev(nfit_mem); 749 if (memdev->device_handle == device_handle) { 750 *flags = memdev->flags; 751 physical_id = memdev->physical_id; 752 mutex_unlock(&acpi_desc->init_mutex); 753 mutex_unlock(&acpi_desc_lock); 754 return physical_id; 755 } 756 } 757 mutex_unlock(&acpi_desc->init_mutex); 758 } 759 mutex_unlock(&acpi_desc_lock); 760 761 return -ENODEV; 762 } 763 EXPORT_SYMBOL_GPL(nfit_get_smbios_id); 764 765 /* 766 * An implementation may provide a truncated control region if no block windows 767 * are defined. 768 */ 769 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 770 { 771 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 772 window_size)) 773 return 0; 774 if (dcr->windows) 775 return sizeof(*dcr); 776 return offsetof(struct acpi_nfit_control_region, window_size); 777 } 778 779 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 780 struct nfit_table_prev *prev, 781 struct acpi_nfit_control_region *dcr) 782 { 783 struct device *dev = acpi_desc->dev; 784 struct nfit_dcr *nfit_dcr; 785 786 if (!sizeof_dcr(dcr)) 787 return false; 788 789 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 790 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 791 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 792 return true; 793 } 794 795 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 796 GFP_KERNEL); 797 if (!nfit_dcr) 798 return false; 799 INIT_LIST_HEAD(&nfit_dcr->list); 800 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 801 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 802 dev_dbg(dev, "dcr index: %d windows: %d\n", 803 dcr->region_index, dcr->windows); 804 return true; 805 } 806 807 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 808 struct nfit_table_prev *prev, 809 struct acpi_nfit_data_region *bdw) 810 { 811 struct device *dev = acpi_desc->dev; 812 struct nfit_bdw *nfit_bdw; 813 814 if (bdw->header.length != sizeof(*bdw)) 815 return false; 816 list_for_each_entry(nfit_bdw, &prev->bdws, list) 817 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 818 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 819 return true; 820 } 821 822 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 823 GFP_KERNEL); 824 if (!nfit_bdw) 825 return false; 826 INIT_LIST_HEAD(&nfit_bdw->list); 827 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 828 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 829 dev_dbg(dev, "bdw dcr: %d windows: %d\n", 830 bdw->region_index, bdw->windows); 831 return true; 832 } 833 834 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 835 { 836 if (idt->header.length < sizeof(*idt)) 837 return 0; 838 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 839 } 840 841 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 842 struct nfit_table_prev *prev, 843 struct acpi_nfit_interleave *idt) 844 { 845 struct device *dev = acpi_desc->dev; 846 struct nfit_idt *nfit_idt; 847 848 if (!sizeof_idt(idt)) 849 return false; 850 851 list_for_each_entry(nfit_idt, &prev->idts, list) { 852 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 853 continue; 854 855 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 856 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 857 return true; 858 } 859 } 860 861 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 862 GFP_KERNEL); 863 if (!nfit_idt) 864 return false; 865 INIT_LIST_HEAD(&nfit_idt->list); 866 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 867 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 868 dev_dbg(dev, "idt index: %d num_lines: %d\n", 869 idt->interleave_index, idt->line_count); 870 return true; 871 } 872 873 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 874 { 875 if (flush->header.length < sizeof(*flush)) 876 return 0; 877 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 878 } 879 880 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 881 struct nfit_table_prev *prev, 882 struct acpi_nfit_flush_address *flush) 883 { 884 struct device *dev = acpi_desc->dev; 885 struct nfit_flush *nfit_flush; 886 887 if (!sizeof_flush(flush)) 888 return false; 889 890 list_for_each_entry(nfit_flush, &prev->flushes, list) { 891 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 892 continue; 893 894 if (memcmp(nfit_flush->flush, flush, 895 sizeof_flush(flush)) == 0) { 896 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 897 return true; 898 } 899 } 900 901 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 902 + sizeof_flush(flush), GFP_KERNEL); 903 if (!nfit_flush) 904 return false; 905 INIT_LIST_HEAD(&nfit_flush->list); 906 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 907 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 908 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", 909 flush->device_handle, flush->hint_count); 910 return true; 911 } 912 913 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, 914 struct acpi_nfit_capabilities *pcap) 915 { 916 struct device *dev = acpi_desc->dev; 917 u32 mask; 918 919 mask = (1 << (pcap->highest_capability + 1)) - 1; 920 acpi_desc->platform_cap = pcap->capabilities & mask; 921 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); 922 return true; 923 } 924 925 static void *add_table(struct acpi_nfit_desc *acpi_desc, 926 struct nfit_table_prev *prev, void *table, const void *end) 927 { 928 struct device *dev = acpi_desc->dev; 929 struct acpi_nfit_header *hdr; 930 void *err = ERR_PTR(-ENOMEM); 931 932 if (table >= end) 933 return NULL; 934 935 hdr = table; 936 if (!hdr->length) { 937 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 938 hdr->type); 939 return NULL; 940 } 941 942 switch (hdr->type) { 943 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 944 if (!add_spa(acpi_desc, prev, table)) 945 return err; 946 break; 947 case ACPI_NFIT_TYPE_MEMORY_MAP: 948 if (!add_memdev(acpi_desc, prev, table)) 949 return err; 950 break; 951 case ACPI_NFIT_TYPE_CONTROL_REGION: 952 if (!add_dcr(acpi_desc, prev, table)) 953 return err; 954 break; 955 case ACPI_NFIT_TYPE_DATA_REGION: 956 if (!add_bdw(acpi_desc, prev, table)) 957 return err; 958 break; 959 case ACPI_NFIT_TYPE_INTERLEAVE: 960 if (!add_idt(acpi_desc, prev, table)) 961 return err; 962 break; 963 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 964 if (!add_flush(acpi_desc, prev, table)) 965 return err; 966 break; 967 case ACPI_NFIT_TYPE_SMBIOS: 968 dev_dbg(dev, "smbios\n"); 969 break; 970 case ACPI_NFIT_TYPE_CAPABILITIES: 971 if (!add_platform_cap(acpi_desc, table)) 972 return err; 973 break; 974 default: 975 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 976 break; 977 } 978 979 return table + hdr->length; 980 } 981 982 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 983 struct nfit_mem *nfit_mem) 984 { 985 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 986 u16 dcr = nfit_mem->dcr->region_index; 987 struct nfit_spa *nfit_spa; 988 989 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 990 u16 range_index = nfit_spa->spa->range_index; 991 int type = nfit_spa_type(nfit_spa->spa); 992 struct nfit_memdev *nfit_memdev; 993 994 if (type != NFIT_SPA_BDW) 995 continue; 996 997 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 998 if (nfit_memdev->memdev->range_index != range_index) 999 continue; 1000 if (nfit_memdev->memdev->device_handle != device_handle) 1001 continue; 1002 if (nfit_memdev->memdev->region_index != dcr) 1003 continue; 1004 1005 nfit_mem->spa_bdw = nfit_spa->spa; 1006 return; 1007 } 1008 } 1009 1010 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 1011 nfit_mem->spa_dcr->range_index); 1012 nfit_mem->bdw = NULL; 1013 } 1014 1015 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 1016 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 1017 { 1018 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 1019 struct nfit_memdev *nfit_memdev; 1020 struct nfit_bdw *nfit_bdw; 1021 struct nfit_idt *nfit_idt; 1022 u16 idt_idx, range_index; 1023 1024 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 1025 if (nfit_bdw->bdw->region_index != dcr) 1026 continue; 1027 nfit_mem->bdw = nfit_bdw->bdw; 1028 break; 1029 } 1030 1031 if (!nfit_mem->bdw) 1032 return; 1033 1034 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 1035 1036 if (!nfit_mem->spa_bdw) 1037 return; 1038 1039 range_index = nfit_mem->spa_bdw->range_index; 1040 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1041 if (nfit_memdev->memdev->range_index != range_index || 1042 nfit_memdev->memdev->region_index != dcr) 1043 continue; 1044 nfit_mem->memdev_bdw = nfit_memdev->memdev; 1045 idt_idx = nfit_memdev->memdev->interleave_index; 1046 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1047 if (nfit_idt->idt->interleave_index != idt_idx) 1048 continue; 1049 nfit_mem->idt_bdw = nfit_idt->idt; 1050 break; 1051 } 1052 break; 1053 } 1054 } 1055 1056 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 1057 struct acpi_nfit_system_address *spa) 1058 { 1059 struct nfit_mem *nfit_mem, *found; 1060 struct nfit_memdev *nfit_memdev; 1061 int type = spa ? nfit_spa_type(spa) : 0; 1062 1063 switch (type) { 1064 case NFIT_SPA_DCR: 1065 case NFIT_SPA_PM: 1066 break; 1067 default: 1068 if (spa) 1069 return 0; 1070 } 1071 1072 /* 1073 * This loop runs in two modes, when a dimm is mapped the loop 1074 * adds memdev associations to an existing dimm, or creates a 1075 * dimm. In the unmapped dimm case this loop sweeps for memdev 1076 * instances with an invalid / zero range_index and adds those 1077 * dimms without spa associations. 1078 */ 1079 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1080 struct nfit_flush *nfit_flush; 1081 struct nfit_dcr *nfit_dcr; 1082 u32 device_handle; 1083 u16 dcr; 1084 1085 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 1086 continue; 1087 if (!spa && nfit_memdev->memdev->range_index) 1088 continue; 1089 found = NULL; 1090 dcr = nfit_memdev->memdev->region_index; 1091 device_handle = nfit_memdev->memdev->device_handle; 1092 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1093 if (__to_nfit_memdev(nfit_mem)->device_handle 1094 == device_handle) { 1095 found = nfit_mem; 1096 break; 1097 } 1098 1099 if (found) 1100 nfit_mem = found; 1101 else { 1102 nfit_mem = devm_kzalloc(acpi_desc->dev, 1103 sizeof(*nfit_mem), GFP_KERNEL); 1104 if (!nfit_mem) 1105 return -ENOMEM; 1106 INIT_LIST_HEAD(&nfit_mem->list); 1107 nfit_mem->acpi_desc = acpi_desc; 1108 list_add(&nfit_mem->list, &acpi_desc->dimms); 1109 } 1110 1111 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1112 if (nfit_dcr->dcr->region_index != dcr) 1113 continue; 1114 /* 1115 * Record the control region for the dimm. For 1116 * the ACPI 6.1 case, where there are separate 1117 * control regions for the pmem vs blk 1118 * interfaces, be sure to record the extended 1119 * blk details. 1120 */ 1121 if (!nfit_mem->dcr) 1122 nfit_mem->dcr = nfit_dcr->dcr; 1123 else if (nfit_mem->dcr->windows == 0 1124 && nfit_dcr->dcr->windows) 1125 nfit_mem->dcr = nfit_dcr->dcr; 1126 break; 1127 } 1128 1129 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 1130 struct acpi_nfit_flush_address *flush; 1131 u16 i; 1132 1133 if (nfit_flush->flush->device_handle != device_handle) 1134 continue; 1135 nfit_mem->nfit_flush = nfit_flush; 1136 flush = nfit_flush->flush; 1137 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, 1138 flush->hint_count, 1139 sizeof(struct resource), 1140 GFP_KERNEL); 1141 if (!nfit_mem->flush_wpq) 1142 return -ENOMEM; 1143 for (i = 0; i < flush->hint_count; i++) { 1144 struct resource *res = &nfit_mem->flush_wpq[i]; 1145 1146 res->start = flush->hint_address[i]; 1147 res->end = res->start + 8 - 1; 1148 } 1149 break; 1150 } 1151 1152 if (dcr && !nfit_mem->dcr) { 1153 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 1154 spa->range_index, dcr); 1155 return -ENODEV; 1156 } 1157 1158 if (type == NFIT_SPA_DCR) { 1159 struct nfit_idt *nfit_idt; 1160 u16 idt_idx; 1161 1162 /* multiple dimms may share a SPA when interleaved */ 1163 nfit_mem->spa_dcr = spa; 1164 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1165 idt_idx = nfit_memdev->memdev->interleave_index; 1166 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1167 if (nfit_idt->idt->interleave_index != idt_idx) 1168 continue; 1169 nfit_mem->idt_dcr = nfit_idt->idt; 1170 break; 1171 } 1172 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 1173 } else if (type == NFIT_SPA_PM) { 1174 /* 1175 * A single dimm may belong to multiple SPA-PM 1176 * ranges, record at least one in addition to 1177 * any SPA-DCR range. 1178 */ 1179 nfit_mem->memdev_pmem = nfit_memdev->memdev; 1180 } else 1181 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1182 } 1183 1184 return 0; 1185 } 1186 1187 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) 1188 { 1189 struct nfit_mem *a = container_of(_a, typeof(*a), list); 1190 struct nfit_mem *b = container_of(_b, typeof(*b), list); 1191 u32 handleA, handleB; 1192 1193 handleA = __to_nfit_memdev(a)->device_handle; 1194 handleB = __to_nfit_memdev(b)->device_handle; 1195 if (handleA < handleB) 1196 return -1; 1197 else if (handleA > handleB) 1198 return 1; 1199 return 0; 1200 } 1201 1202 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 1203 { 1204 struct nfit_spa *nfit_spa; 1205 int rc; 1206 1207 1208 /* 1209 * For each SPA-DCR or SPA-PMEM address range find its 1210 * corresponding MEMDEV(s). From each MEMDEV find the 1211 * corresponding DCR. Then, if we're operating on a SPA-DCR, 1212 * try to find a SPA-BDW and a corresponding BDW that references 1213 * the DCR. Throw it all into an nfit_mem object. Note, that 1214 * BDWs are optional. 1215 */ 1216 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1217 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 1218 if (rc) 1219 return rc; 1220 } 1221 1222 /* 1223 * If a DIMM has failed to be mapped into SPA there will be no 1224 * SPA entries above. Find and register all the unmapped DIMMs 1225 * for reporting and recovery purposes. 1226 */ 1227 rc = __nfit_mem_init(acpi_desc, NULL); 1228 if (rc) 1229 return rc; 1230 1231 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 1232 1233 return 0; 1234 } 1235 1236 static ssize_t bus_dsm_mask_show(struct device *dev, 1237 struct device_attribute *attr, char *buf) 1238 { 1239 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1240 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1241 1242 return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask); 1243 } 1244 static struct device_attribute dev_attr_bus_dsm_mask = 1245 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 1246 1247 static ssize_t revision_show(struct device *dev, 1248 struct device_attribute *attr, char *buf) 1249 { 1250 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1251 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1252 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1253 1254 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 1255 } 1256 static DEVICE_ATTR_RO(revision); 1257 1258 static ssize_t hw_error_scrub_show(struct device *dev, 1259 struct device_attribute *attr, char *buf) 1260 { 1261 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1262 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1263 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1264 1265 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 1266 } 1267 1268 /* 1269 * The 'hw_error_scrub' attribute can have the following values written to it: 1270 * '0': Switch to the default mode where an exception will only insert 1271 * the address of the memory error into the poison and badblocks lists. 1272 * '1': Enable a full scrub to happen if an exception for a memory error is 1273 * received. 1274 */ 1275 static ssize_t hw_error_scrub_store(struct device *dev, 1276 struct device_attribute *attr, const char *buf, size_t size) 1277 { 1278 struct nvdimm_bus_descriptor *nd_desc; 1279 ssize_t rc; 1280 long val; 1281 1282 rc = kstrtol(buf, 0, &val); 1283 if (rc) 1284 return rc; 1285 1286 nfit_device_lock(dev); 1287 nd_desc = dev_get_drvdata(dev); 1288 if (nd_desc) { 1289 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1290 1291 switch (val) { 1292 case HW_ERROR_SCRUB_ON: 1293 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 1294 break; 1295 case HW_ERROR_SCRUB_OFF: 1296 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 1297 break; 1298 default: 1299 rc = -EINVAL; 1300 break; 1301 } 1302 } 1303 nfit_device_unlock(dev); 1304 if (rc) 1305 return rc; 1306 return size; 1307 } 1308 static DEVICE_ATTR_RW(hw_error_scrub); 1309 1310 /* 1311 * This shows the number of full Address Range Scrubs that have been 1312 * completed since driver load time. Userspace can wait on this using 1313 * select/poll etc. A '+' at the end indicates an ARS is in progress 1314 */ 1315 static ssize_t scrub_show(struct device *dev, 1316 struct device_attribute *attr, char *buf) 1317 { 1318 struct nvdimm_bus_descriptor *nd_desc; 1319 struct acpi_nfit_desc *acpi_desc; 1320 ssize_t rc = -ENXIO; 1321 bool busy; 1322 1323 nfit_device_lock(dev); 1324 nd_desc = dev_get_drvdata(dev); 1325 if (!nd_desc) { 1326 nfit_device_unlock(dev); 1327 return rc; 1328 } 1329 acpi_desc = to_acpi_desc(nd_desc); 1330 1331 mutex_lock(&acpi_desc->init_mutex); 1332 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) 1333 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 1334 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); 1335 /* Allow an admin to poll the busy state at a higher rate */ 1336 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, 1337 &acpi_desc->scrub_flags)) { 1338 acpi_desc->scrub_tmo = 1; 1339 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); 1340 } 1341 1342 mutex_unlock(&acpi_desc->init_mutex); 1343 nfit_device_unlock(dev); 1344 return rc; 1345 } 1346 1347 static ssize_t scrub_store(struct device *dev, 1348 struct device_attribute *attr, const char *buf, size_t size) 1349 { 1350 struct nvdimm_bus_descriptor *nd_desc; 1351 ssize_t rc; 1352 long val; 1353 1354 rc = kstrtol(buf, 0, &val); 1355 if (rc) 1356 return rc; 1357 if (val != 1) 1358 return -EINVAL; 1359 1360 nfit_device_lock(dev); 1361 nd_desc = dev_get_drvdata(dev); 1362 if (nd_desc) { 1363 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1364 1365 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 1366 } 1367 nfit_device_unlock(dev); 1368 if (rc) 1369 return rc; 1370 return size; 1371 } 1372 static DEVICE_ATTR_RW(scrub); 1373 1374 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1375 { 1376 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1377 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1378 | 1 << ND_CMD_ARS_STATUS; 1379 1380 return (nd_desc->cmd_mask & mask) == mask; 1381 } 1382 1383 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1384 { 1385 struct device *dev = container_of(kobj, struct device, kobj); 1386 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1387 1388 if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus)) 1389 return 0; 1390 return a->mode; 1391 } 1392 1393 static struct attribute *acpi_nfit_attributes[] = { 1394 &dev_attr_revision.attr, 1395 &dev_attr_scrub.attr, 1396 &dev_attr_hw_error_scrub.attr, 1397 &dev_attr_bus_dsm_mask.attr, 1398 NULL, 1399 }; 1400 1401 static const struct attribute_group acpi_nfit_attribute_group = { 1402 .name = "nfit", 1403 .attrs = acpi_nfit_attributes, 1404 .is_visible = nfit_visible, 1405 }; 1406 1407 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1408 &acpi_nfit_attribute_group, 1409 NULL, 1410 }; 1411 1412 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1413 { 1414 struct nvdimm *nvdimm = to_nvdimm(dev); 1415 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1416 1417 return __to_nfit_memdev(nfit_mem); 1418 } 1419 1420 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1421 { 1422 struct nvdimm *nvdimm = to_nvdimm(dev); 1423 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1424 1425 return nfit_mem->dcr; 1426 } 1427 1428 static ssize_t handle_show(struct device *dev, 1429 struct device_attribute *attr, char *buf) 1430 { 1431 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1432 1433 return sprintf(buf, "%#x\n", memdev->device_handle); 1434 } 1435 static DEVICE_ATTR_RO(handle); 1436 1437 static ssize_t phys_id_show(struct device *dev, 1438 struct device_attribute *attr, char *buf) 1439 { 1440 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1441 1442 return sprintf(buf, "%#x\n", memdev->physical_id); 1443 } 1444 static DEVICE_ATTR_RO(phys_id); 1445 1446 static ssize_t vendor_show(struct device *dev, 1447 struct device_attribute *attr, char *buf) 1448 { 1449 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1450 1451 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1452 } 1453 static DEVICE_ATTR_RO(vendor); 1454 1455 static ssize_t rev_id_show(struct device *dev, 1456 struct device_attribute *attr, char *buf) 1457 { 1458 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1459 1460 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1461 } 1462 static DEVICE_ATTR_RO(rev_id); 1463 1464 static ssize_t device_show(struct device *dev, 1465 struct device_attribute *attr, char *buf) 1466 { 1467 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1468 1469 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1470 } 1471 static DEVICE_ATTR_RO(device); 1472 1473 static ssize_t subsystem_vendor_show(struct device *dev, 1474 struct device_attribute *attr, char *buf) 1475 { 1476 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1477 1478 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1479 } 1480 static DEVICE_ATTR_RO(subsystem_vendor); 1481 1482 static ssize_t subsystem_rev_id_show(struct device *dev, 1483 struct device_attribute *attr, char *buf) 1484 { 1485 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1486 1487 return sprintf(buf, "0x%04x\n", 1488 be16_to_cpu(dcr->subsystem_revision_id)); 1489 } 1490 static DEVICE_ATTR_RO(subsystem_rev_id); 1491 1492 static ssize_t subsystem_device_show(struct device *dev, 1493 struct device_attribute *attr, char *buf) 1494 { 1495 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1496 1497 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1498 } 1499 static DEVICE_ATTR_RO(subsystem_device); 1500 1501 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1502 { 1503 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1504 int formats = 0; 1505 1506 if (nfit_mem->memdev_pmem) 1507 formats++; 1508 if (nfit_mem->memdev_bdw) 1509 formats++; 1510 return formats; 1511 } 1512 1513 static ssize_t format_show(struct device *dev, 1514 struct device_attribute *attr, char *buf) 1515 { 1516 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1517 1518 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1519 } 1520 static DEVICE_ATTR_RO(format); 1521 1522 static ssize_t format1_show(struct device *dev, 1523 struct device_attribute *attr, char *buf) 1524 { 1525 u32 handle; 1526 ssize_t rc = -ENXIO; 1527 struct nfit_mem *nfit_mem; 1528 struct nfit_memdev *nfit_memdev; 1529 struct acpi_nfit_desc *acpi_desc; 1530 struct nvdimm *nvdimm = to_nvdimm(dev); 1531 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1532 1533 nfit_mem = nvdimm_provider_data(nvdimm); 1534 acpi_desc = nfit_mem->acpi_desc; 1535 handle = to_nfit_memdev(dev)->device_handle; 1536 1537 /* assumes DIMMs have at most 2 published interface codes */ 1538 mutex_lock(&acpi_desc->init_mutex); 1539 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1540 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1541 struct nfit_dcr *nfit_dcr; 1542 1543 if (memdev->device_handle != handle) 1544 continue; 1545 1546 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1547 if (nfit_dcr->dcr->region_index != memdev->region_index) 1548 continue; 1549 if (nfit_dcr->dcr->code == dcr->code) 1550 continue; 1551 rc = sprintf(buf, "0x%04x\n", 1552 le16_to_cpu(nfit_dcr->dcr->code)); 1553 break; 1554 } 1555 if (rc != ENXIO) 1556 break; 1557 } 1558 mutex_unlock(&acpi_desc->init_mutex); 1559 return rc; 1560 } 1561 static DEVICE_ATTR_RO(format1); 1562 1563 static ssize_t formats_show(struct device *dev, 1564 struct device_attribute *attr, char *buf) 1565 { 1566 struct nvdimm *nvdimm = to_nvdimm(dev); 1567 1568 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1569 } 1570 static DEVICE_ATTR_RO(formats); 1571 1572 static ssize_t serial_show(struct device *dev, 1573 struct device_attribute *attr, char *buf) 1574 { 1575 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1576 1577 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1578 } 1579 static DEVICE_ATTR_RO(serial); 1580 1581 static ssize_t family_show(struct device *dev, 1582 struct device_attribute *attr, char *buf) 1583 { 1584 struct nvdimm *nvdimm = to_nvdimm(dev); 1585 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1586 1587 if (nfit_mem->family < 0) 1588 return -ENXIO; 1589 return sprintf(buf, "%d\n", nfit_mem->family); 1590 } 1591 static DEVICE_ATTR_RO(family); 1592 1593 static ssize_t dsm_mask_show(struct device *dev, 1594 struct device_attribute *attr, char *buf) 1595 { 1596 struct nvdimm *nvdimm = to_nvdimm(dev); 1597 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1598 1599 if (nfit_mem->family < 0) 1600 return -ENXIO; 1601 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1602 } 1603 static DEVICE_ATTR_RO(dsm_mask); 1604 1605 static ssize_t flags_show(struct device *dev, 1606 struct device_attribute *attr, char *buf) 1607 { 1608 struct nvdimm *nvdimm = to_nvdimm(dev); 1609 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1610 u16 flags = __to_nfit_memdev(nfit_mem)->flags; 1611 1612 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) 1613 flags |= ACPI_NFIT_MEM_FLUSH_FAILED; 1614 1615 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1616 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1617 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1618 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1619 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1620 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1621 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1622 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1623 } 1624 static DEVICE_ATTR_RO(flags); 1625 1626 static ssize_t id_show(struct device *dev, 1627 struct device_attribute *attr, char *buf) 1628 { 1629 struct nvdimm *nvdimm = to_nvdimm(dev); 1630 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1631 1632 return sprintf(buf, "%s\n", nfit_mem->id); 1633 } 1634 static DEVICE_ATTR_RO(id); 1635 1636 static ssize_t dirty_shutdown_show(struct device *dev, 1637 struct device_attribute *attr, char *buf) 1638 { 1639 struct nvdimm *nvdimm = to_nvdimm(dev); 1640 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1641 1642 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); 1643 } 1644 static DEVICE_ATTR_RO(dirty_shutdown); 1645 1646 static struct attribute *acpi_nfit_dimm_attributes[] = { 1647 &dev_attr_handle.attr, 1648 &dev_attr_phys_id.attr, 1649 &dev_attr_vendor.attr, 1650 &dev_attr_device.attr, 1651 &dev_attr_rev_id.attr, 1652 &dev_attr_subsystem_vendor.attr, 1653 &dev_attr_subsystem_device.attr, 1654 &dev_attr_subsystem_rev_id.attr, 1655 &dev_attr_format.attr, 1656 &dev_attr_formats.attr, 1657 &dev_attr_format1.attr, 1658 &dev_attr_serial.attr, 1659 &dev_attr_flags.attr, 1660 &dev_attr_id.attr, 1661 &dev_attr_family.attr, 1662 &dev_attr_dsm_mask.attr, 1663 &dev_attr_dirty_shutdown.attr, 1664 NULL, 1665 }; 1666 1667 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1668 struct attribute *a, int n) 1669 { 1670 struct device *dev = container_of(kobj, struct device, kobj); 1671 struct nvdimm *nvdimm = to_nvdimm(dev); 1672 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1673 1674 if (!to_nfit_dcr(dev)) { 1675 /* Without a dcr only the memdev attributes can be surfaced */ 1676 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1677 || a == &dev_attr_flags.attr 1678 || a == &dev_attr_family.attr 1679 || a == &dev_attr_dsm_mask.attr) 1680 return a->mode; 1681 return 0; 1682 } 1683 1684 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1685 return 0; 1686 1687 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) 1688 && a == &dev_attr_dirty_shutdown.attr) 1689 return 0; 1690 1691 return a->mode; 1692 } 1693 1694 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1695 .name = "nfit", 1696 .attrs = acpi_nfit_dimm_attributes, 1697 .is_visible = acpi_nfit_dimm_attr_visible, 1698 }; 1699 1700 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1701 &acpi_nfit_dimm_attribute_group, 1702 NULL, 1703 }; 1704 1705 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1706 u32 device_handle) 1707 { 1708 struct nfit_mem *nfit_mem; 1709 1710 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1711 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1712 return nfit_mem->nvdimm; 1713 1714 return NULL; 1715 } 1716 1717 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1718 { 1719 struct nfit_mem *nfit_mem; 1720 struct acpi_nfit_desc *acpi_desc; 1721 1722 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), 1723 event); 1724 1725 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1726 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1727 event); 1728 return; 1729 } 1730 1731 acpi_desc = dev_get_drvdata(dev->parent); 1732 if (!acpi_desc) 1733 return; 1734 1735 /* 1736 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1737 * is still valid. 1738 */ 1739 nfit_mem = dev_get_drvdata(dev); 1740 if (nfit_mem && nfit_mem->flags_attr) 1741 sysfs_notify_dirent(nfit_mem->flags_attr); 1742 } 1743 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1744 1745 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1746 { 1747 struct acpi_device *adev = data; 1748 struct device *dev = &adev->dev; 1749 1750 nfit_device_lock(dev->parent); 1751 __acpi_nvdimm_notify(dev, event); 1752 nfit_device_unlock(dev->parent); 1753 } 1754 1755 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) 1756 { 1757 acpi_handle handle; 1758 acpi_status status; 1759 1760 status = acpi_get_handle(adev->handle, method, &handle); 1761 1762 if (ACPI_SUCCESS(status)) 1763 return true; 1764 return false; 1765 } 1766 1767 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) 1768 { 1769 struct device *dev = &nfit_mem->adev->dev; 1770 struct nd_intel_smart smart = { 0 }; 1771 union acpi_object in_buf = { 1772 .buffer.type = ACPI_TYPE_BUFFER, 1773 .buffer.length = 0, 1774 }; 1775 union acpi_object in_obj = { 1776 .package.type = ACPI_TYPE_PACKAGE, 1777 .package.count = 1, 1778 .package.elements = &in_buf, 1779 }; 1780 const u8 func = ND_INTEL_SMART; 1781 const guid_t *guid = to_nfit_uuid(nfit_mem->family); 1782 u8 revid = nfit_dsm_revid(nfit_mem->family, func); 1783 struct acpi_device *adev = nfit_mem->adev; 1784 acpi_handle handle = adev->handle; 1785 union acpi_object *out_obj; 1786 1787 if ((nfit_mem->dsm_mask & (1 << func)) == 0) 1788 return; 1789 1790 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 1791 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER 1792 || out_obj->buffer.length < sizeof(smart)) { 1793 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", 1794 dev_name(dev)); 1795 ACPI_FREE(out_obj); 1796 return; 1797 } 1798 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); 1799 ACPI_FREE(out_obj); 1800 1801 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { 1802 if (smart.shutdown_state) 1803 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); 1804 } 1805 1806 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { 1807 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); 1808 nfit_mem->dirty_shutdown = smart.shutdown_count; 1809 } 1810 } 1811 1812 static void populate_shutdown_status(struct nfit_mem *nfit_mem) 1813 { 1814 /* 1815 * For DIMMs that provide a dynamic facility to retrieve a 1816 * dirty-shutdown status and/or a dirty-shutdown count, cache 1817 * these values in nfit_mem. 1818 */ 1819 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1820 nfit_intel_shutdown_status(nfit_mem); 1821 } 1822 1823 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1824 struct nfit_mem *nfit_mem, u32 device_handle) 1825 { 1826 struct acpi_device *adev, *adev_dimm; 1827 struct device *dev = acpi_desc->dev; 1828 unsigned long dsm_mask, label_mask; 1829 const guid_t *guid; 1830 int i; 1831 int family = -1; 1832 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 1833 1834 /* nfit test assumes 1:1 relationship between commands and dsms */ 1835 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1836 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1837 1838 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1839 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", 1840 be16_to_cpu(dcr->vendor_id), 1841 dcr->manufacturing_location, 1842 be16_to_cpu(dcr->manufacturing_date), 1843 be32_to_cpu(dcr->serial_number)); 1844 else 1845 sprintf(nfit_mem->id, "%04x-%08x", 1846 be16_to_cpu(dcr->vendor_id), 1847 be32_to_cpu(dcr->serial_number)); 1848 1849 adev = to_acpi_dev(acpi_desc); 1850 if (!adev) { 1851 /* unit test case */ 1852 populate_shutdown_status(nfit_mem); 1853 return 0; 1854 } 1855 1856 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1857 nfit_mem->adev = adev_dimm; 1858 if (!adev_dimm) { 1859 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1860 device_handle); 1861 return force_enable_dimms ? 0 : -ENODEV; 1862 } 1863 1864 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1865 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1866 dev_err(dev, "%s: notification registration failed\n", 1867 dev_name(&adev_dimm->dev)); 1868 return -ENXIO; 1869 } 1870 /* 1871 * Record nfit_mem for the notification path to track back to 1872 * the nfit sysfs attributes for this dimm device object. 1873 */ 1874 dev_set_drvdata(&adev_dimm->dev, nfit_mem); 1875 1876 /* 1877 * There are 4 "legacy" NVDIMM command sets 1878 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before 1879 * an EFI working group was established to constrain this 1880 * proliferation. The nfit driver probes for the supported command 1881 * set by GUID. Note, if you're a platform developer looking to add 1882 * a new command set to this probe, consider using an existing set, 1883 * or otherwise seek approval to publish the command set at 1884 * http://www.uefi.org/RFIC_LIST. 1885 * 1886 * Note, that checking for function0 (bit0) tells us if any commands 1887 * are reachable through this GUID. 1888 */ 1889 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) 1890 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) 1891 if (family < 0 || i == default_dsm_family) 1892 family = i; 1893 1894 /* limit the supported commands to those that are publicly documented */ 1895 nfit_mem->family = family; 1896 if (override_dsm_mask && !disable_vendor_specific) 1897 dsm_mask = override_dsm_mask; 1898 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1899 dsm_mask = NVDIMM_INTEL_CMDMASK; 1900 if (disable_vendor_specific) 1901 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1902 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1903 dsm_mask = 0x1c3c76; 1904 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1905 dsm_mask = 0x1fe; 1906 if (disable_vendor_specific) 1907 dsm_mask &= ~(1 << 8); 1908 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1909 dsm_mask = 0xffffffff; 1910 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { 1911 dsm_mask = 0x1f; 1912 } else { 1913 dev_dbg(dev, "unknown dimm command family\n"); 1914 nfit_mem->family = -1; 1915 /* DSMs are optional, continue loading the driver... */ 1916 return 0; 1917 } 1918 1919 /* 1920 * Function 0 is the command interrogation function, don't 1921 * export it to potential userspace use, and enable it to be 1922 * used as an error value in acpi_nfit_ctl(). 1923 */ 1924 dsm_mask &= ~1UL; 1925 1926 guid = to_nfit_uuid(nfit_mem->family); 1927 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1928 if (acpi_check_dsm(adev_dimm->handle, guid, 1929 nfit_dsm_revid(nfit_mem->family, i), 1930 1ULL << i)) 1931 set_bit(i, &nfit_mem->dsm_mask); 1932 1933 /* 1934 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present 1935 * due to their better semantics handling locked capacity. 1936 */ 1937 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA 1938 | 1 << ND_CMD_SET_CONFIG_DATA; 1939 if (family == NVDIMM_FAMILY_INTEL 1940 && (dsm_mask & label_mask) == label_mask) 1941 /* skip _LS{I,R,W} enabling */; 1942 else { 1943 if (acpi_nvdimm_has_method(adev_dimm, "_LSI") 1944 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { 1945 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); 1946 set_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1947 } 1948 1949 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 1950 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { 1951 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); 1952 set_bit(NFIT_MEM_LSW, &nfit_mem->flags); 1953 } 1954 1955 /* 1956 * Quirk read-only label configurations to preserve 1957 * access to label-less namespaces by default. 1958 */ 1959 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 1960 && !force_labels) { 1961 dev_dbg(dev, "%s: No _LSW, disable labels\n", 1962 dev_name(&adev_dimm->dev)); 1963 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1964 } else 1965 dev_dbg(dev, "%s: Force enable labels\n", 1966 dev_name(&adev_dimm->dev)); 1967 } 1968 1969 populate_shutdown_status(nfit_mem); 1970 1971 return 0; 1972 } 1973 1974 static void shutdown_dimm_notify(void *data) 1975 { 1976 struct acpi_nfit_desc *acpi_desc = data; 1977 struct nfit_mem *nfit_mem; 1978 1979 mutex_lock(&acpi_desc->init_mutex); 1980 /* 1981 * Clear out the nfit_mem->flags_attr and shut down dimm event 1982 * notifications. 1983 */ 1984 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 1985 struct acpi_device *adev_dimm = nfit_mem->adev; 1986 1987 if (nfit_mem->flags_attr) { 1988 sysfs_put(nfit_mem->flags_attr); 1989 nfit_mem->flags_attr = NULL; 1990 } 1991 if (adev_dimm) { 1992 acpi_remove_notify_handler(adev_dimm->handle, 1993 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 1994 dev_set_drvdata(&adev_dimm->dev, NULL); 1995 } 1996 } 1997 mutex_unlock(&acpi_desc->init_mutex); 1998 } 1999 2000 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) 2001 { 2002 switch (family) { 2003 case NVDIMM_FAMILY_INTEL: 2004 return intel_security_ops; 2005 default: 2006 return NULL; 2007 } 2008 } 2009 2010 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 2011 { 2012 struct nfit_mem *nfit_mem; 2013 int dimm_count = 0, rc; 2014 struct nvdimm *nvdimm; 2015 2016 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2017 struct acpi_nfit_flush_address *flush; 2018 unsigned long flags = 0, cmd_mask; 2019 struct nfit_memdev *nfit_memdev; 2020 u32 device_handle; 2021 u16 mem_flags; 2022 2023 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 2024 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 2025 if (nvdimm) { 2026 dimm_count++; 2027 continue; 2028 } 2029 2030 if (nfit_mem->bdw && nfit_mem->memdev_pmem) { 2031 set_bit(NDD_ALIASING, &flags); 2032 set_bit(NDD_LABELING, &flags); 2033 } 2034 2035 /* collate flags across all memdevs for this dimm */ 2036 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2037 struct acpi_nfit_memory_map *dimm_memdev; 2038 2039 dimm_memdev = __to_nfit_memdev(nfit_mem); 2040 if (dimm_memdev->device_handle 2041 != nfit_memdev->memdev->device_handle) 2042 continue; 2043 dimm_memdev->flags |= nfit_memdev->memdev->flags; 2044 } 2045 2046 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 2047 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 2048 set_bit(NDD_UNARMED, &flags); 2049 2050 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 2051 if (rc) 2052 continue; 2053 2054 /* 2055 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 2056 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 2057 * userspace interface. 2058 */ 2059 cmd_mask = 1UL << ND_CMD_CALL; 2060 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 2061 /* 2062 * These commands have a 1:1 correspondence 2063 * between DSM payload and libnvdimm ioctl 2064 * payload format. 2065 */ 2066 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; 2067 } 2068 2069 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */ 2070 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) 2071 set_bit(NDD_NOBLK, &flags); 2072 2073 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 2074 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); 2075 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); 2076 } 2077 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) 2078 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); 2079 2080 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 2081 : NULL; 2082 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 2083 acpi_nfit_dimm_attribute_groups, 2084 flags, cmd_mask, flush ? flush->hint_count : 0, 2085 nfit_mem->flush_wpq, &nfit_mem->id[0], 2086 acpi_nfit_get_security_ops(nfit_mem->family)); 2087 if (!nvdimm) 2088 return -ENOMEM; 2089 2090 nfit_mem->nvdimm = nvdimm; 2091 dimm_count++; 2092 2093 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 2094 continue; 2095 2096 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", 2097 nvdimm_name(nvdimm), 2098 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 2099 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 2100 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 2101 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 2102 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 2103 2104 } 2105 2106 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 2107 if (rc) 2108 return rc; 2109 2110 /* 2111 * Now that dimms are successfully registered, and async registration 2112 * is flushed, attempt to enable event notification. 2113 */ 2114 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2115 struct kernfs_node *nfit_kernfs; 2116 2117 nvdimm = nfit_mem->nvdimm; 2118 if (!nvdimm) 2119 continue; 2120 2121 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 2122 if (nfit_kernfs) 2123 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 2124 "flags"); 2125 sysfs_put(nfit_kernfs); 2126 if (!nfit_mem->flags_attr) 2127 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 2128 nvdimm_name(nvdimm)); 2129 } 2130 2131 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 2132 acpi_desc); 2133 } 2134 2135 /* 2136 * These constants are private because there are no kernel consumers of 2137 * these commands. 2138 */ 2139 enum nfit_aux_cmds { 2140 NFIT_CMD_TRANSLATE_SPA = 5, 2141 NFIT_CMD_ARS_INJECT_SET = 7, 2142 NFIT_CMD_ARS_INJECT_CLEAR = 8, 2143 NFIT_CMD_ARS_INJECT_GET = 9, 2144 }; 2145 2146 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 2147 { 2148 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2149 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 2150 struct acpi_device *adev; 2151 unsigned long dsm_mask; 2152 int i; 2153 2154 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 2155 nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en; 2156 adev = to_acpi_dev(acpi_desc); 2157 if (!adev) 2158 return; 2159 2160 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 2161 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2162 set_bit(i, &nd_desc->cmd_mask); 2163 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 2164 2165 dsm_mask = 2166 (1 << ND_CMD_ARS_CAP) | 2167 (1 << ND_CMD_ARS_START) | 2168 (1 << ND_CMD_ARS_STATUS) | 2169 (1 << ND_CMD_CLEAR_ERROR) | 2170 (1 << NFIT_CMD_TRANSLATE_SPA) | 2171 (1 << NFIT_CMD_ARS_INJECT_SET) | 2172 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 2173 (1 << NFIT_CMD_ARS_INJECT_GET); 2174 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2175 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2176 set_bit(i, &nd_desc->bus_dsm_mask); 2177 } 2178 2179 static ssize_t range_index_show(struct device *dev, 2180 struct device_attribute *attr, char *buf) 2181 { 2182 struct nd_region *nd_region = to_nd_region(dev); 2183 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 2184 2185 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 2186 } 2187 static DEVICE_ATTR_RO(range_index); 2188 2189 static struct attribute *acpi_nfit_region_attributes[] = { 2190 &dev_attr_range_index.attr, 2191 NULL, 2192 }; 2193 2194 static const struct attribute_group acpi_nfit_region_attribute_group = { 2195 .name = "nfit", 2196 .attrs = acpi_nfit_region_attributes, 2197 }; 2198 2199 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 2200 &acpi_nfit_region_attribute_group, 2201 NULL, 2202 }; 2203 2204 /* enough info to uniquely specify an interleave set */ 2205 struct nfit_set_info { 2206 struct nfit_set_info_map { 2207 u64 region_offset; 2208 u32 serial_number; 2209 u32 pad; 2210 } mapping[0]; 2211 }; 2212 2213 struct nfit_set_info2 { 2214 struct nfit_set_info_map2 { 2215 u64 region_offset; 2216 u32 serial_number; 2217 u16 vendor_id; 2218 u16 manufacturing_date; 2219 u8 manufacturing_location; 2220 u8 reserved[31]; 2221 } mapping[0]; 2222 }; 2223 2224 static size_t sizeof_nfit_set_info(int num_mappings) 2225 { 2226 return sizeof(struct nfit_set_info) 2227 + num_mappings * sizeof(struct nfit_set_info_map); 2228 } 2229 2230 static size_t sizeof_nfit_set_info2(int num_mappings) 2231 { 2232 return sizeof(struct nfit_set_info2) 2233 + num_mappings * sizeof(struct nfit_set_info_map2); 2234 } 2235 2236 static int cmp_map_compat(const void *m0, const void *m1) 2237 { 2238 const struct nfit_set_info_map *map0 = m0; 2239 const struct nfit_set_info_map *map1 = m1; 2240 2241 return memcmp(&map0->region_offset, &map1->region_offset, 2242 sizeof(u64)); 2243 } 2244 2245 static int cmp_map(const void *m0, const void *m1) 2246 { 2247 const struct nfit_set_info_map *map0 = m0; 2248 const struct nfit_set_info_map *map1 = m1; 2249 2250 if (map0->region_offset < map1->region_offset) 2251 return -1; 2252 else if (map0->region_offset > map1->region_offset) 2253 return 1; 2254 return 0; 2255 } 2256 2257 static int cmp_map2(const void *m0, const void *m1) 2258 { 2259 const struct nfit_set_info_map2 *map0 = m0; 2260 const struct nfit_set_info_map2 *map1 = m1; 2261 2262 if (map0->region_offset < map1->region_offset) 2263 return -1; 2264 else if (map0->region_offset > map1->region_offset) 2265 return 1; 2266 return 0; 2267 } 2268 2269 /* Retrieve the nth entry referencing this spa */ 2270 static struct acpi_nfit_memory_map *memdev_from_spa( 2271 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 2272 { 2273 struct nfit_memdev *nfit_memdev; 2274 2275 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 2276 if (nfit_memdev->memdev->range_index == range_index) 2277 if (n-- == 0) 2278 return nfit_memdev->memdev; 2279 return NULL; 2280 } 2281 2282 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 2283 struct nd_region_desc *ndr_desc, 2284 struct acpi_nfit_system_address *spa) 2285 { 2286 struct device *dev = acpi_desc->dev; 2287 struct nd_interleave_set *nd_set; 2288 u16 nr = ndr_desc->num_mappings; 2289 struct nfit_set_info2 *info2; 2290 struct nfit_set_info *info; 2291 int i; 2292 2293 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 2294 if (!nd_set) 2295 return -ENOMEM; 2296 guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid); 2297 2298 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); 2299 if (!info) 2300 return -ENOMEM; 2301 2302 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL); 2303 if (!info2) 2304 return -ENOMEM; 2305 2306 for (i = 0; i < nr; i++) { 2307 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 2308 struct nfit_set_info_map *map = &info->mapping[i]; 2309 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2310 struct nvdimm *nvdimm = mapping->nvdimm; 2311 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2312 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, 2313 spa->range_index, i); 2314 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2315 2316 if (!memdev || !nfit_mem->dcr) { 2317 dev_err(dev, "%s: failed to find DCR\n", __func__); 2318 return -ENODEV; 2319 } 2320 2321 map->region_offset = memdev->region_offset; 2322 map->serial_number = dcr->serial_number; 2323 2324 map2->region_offset = memdev->region_offset; 2325 map2->serial_number = dcr->serial_number; 2326 map2->vendor_id = dcr->vendor_id; 2327 map2->manufacturing_date = dcr->manufacturing_date; 2328 map2->manufacturing_location = dcr->manufacturing_location; 2329 } 2330 2331 /* v1.1 namespaces */ 2332 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2333 cmp_map, NULL); 2334 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2335 2336 /* v1.2 namespaces */ 2337 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2), 2338 cmp_map2, NULL); 2339 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0); 2340 2341 /* support v1.1 namespaces created with the wrong sort order */ 2342 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2343 cmp_map_compat, NULL); 2344 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2345 2346 /* record the result of the sort for the mapping position */ 2347 for (i = 0; i < nr; i++) { 2348 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2349 int j; 2350 2351 for (j = 0; j < nr; j++) { 2352 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; 2353 struct nvdimm *nvdimm = mapping->nvdimm; 2354 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2355 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2356 2357 if (map2->serial_number == dcr->serial_number && 2358 map2->vendor_id == dcr->vendor_id && 2359 map2->manufacturing_date == dcr->manufacturing_date && 2360 map2->manufacturing_location 2361 == dcr->manufacturing_location) { 2362 mapping->position = i; 2363 break; 2364 } 2365 } 2366 } 2367 2368 ndr_desc->nd_set = nd_set; 2369 devm_kfree(dev, info); 2370 devm_kfree(dev, info2); 2371 2372 return 0; 2373 } 2374 2375 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 2376 { 2377 struct acpi_nfit_interleave *idt = mmio->idt; 2378 u32 sub_line_offset, line_index, line_offset; 2379 u64 line_no, table_skip_count, table_offset; 2380 2381 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 2382 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 2383 line_offset = idt->line_offset[line_index] 2384 * mmio->line_size; 2385 table_offset = table_skip_count * mmio->table_size; 2386 2387 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 2388 } 2389 2390 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 2391 { 2392 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2393 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 2394 const u32 STATUS_MASK = 0x80000037; 2395 2396 if (mmio->num_lines) 2397 offset = to_interleave_offset(offset, mmio); 2398 2399 return readl(mmio->addr.base + offset) & STATUS_MASK; 2400 } 2401 2402 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 2403 resource_size_t dpa, unsigned int len, unsigned int write) 2404 { 2405 u64 cmd, offset; 2406 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2407 2408 enum { 2409 BCW_OFFSET_MASK = (1ULL << 48)-1, 2410 BCW_LEN_SHIFT = 48, 2411 BCW_LEN_MASK = (1ULL << 8) - 1, 2412 BCW_CMD_SHIFT = 56, 2413 }; 2414 2415 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 2416 len = len >> L1_CACHE_SHIFT; 2417 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 2418 cmd |= ((u64) write) << BCW_CMD_SHIFT; 2419 2420 offset = nfit_blk->cmd_offset + mmio->size * bw; 2421 if (mmio->num_lines) 2422 offset = to_interleave_offset(offset, mmio); 2423 2424 writeq(cmd, mmio->addr.base + offset); 2425 nvdimm_flush(nfit_blk->nd_region, NULL); 2426 2427 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 2428 readq(mmio->addr.base + offset); 2429 } 2430 2431 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 2432 resource_size_t dpa, void *iobuf, size_t len, int rw, 2433 unsigned int lane) 2434 { 2435 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2436 unsigned int copied = 0; 2437 u64 base_offset; 2438 int rc; 2439 2440 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 2441 + lane * mmio->size; 2442 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 2443 while (len) { 2444 unsigned int c; 2445 u64 offset; 2446 2447 if (mmio->num_lines) { 2448 u32 line_offset; 2449 2450 offset = to_interleave_offset(base_offset + copied, 2451 mmio); 2452 div_u64_rem(offset, mmio->line_size, &line_offset); 2453 c = min_t(size_t, len, mmio->line_size - line_offset); 2454 } else { 2455 offset = base_offset + nfit_blk->bdw_offset; 2456 c = len; 2457 } 2458 2459 if (rw) 2460 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 2461 else { 2462 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 2463 arch_invalidate_pmem((void __force *) 2464 mmio->addr.aperture + offset, c); 2465 2466 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 2467 } 2468 2469 copied += c; 2470 len -= c; 2471 } 2472 2473 if (rw) 2474 nvdimm_flush(nfit_blk->nd_region, NULL); 2475 2476 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 2477 return rc; 2478 } 2479 2480 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 2481 resource_size_t dpa, void *iobuf, u64 len, int rw) 2482 { 2483 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 2484 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2485 struct nd_region *nd_region = nfit_blk->nd_region; 2486 unsigned int lane, copied = 0; 2487 int rc = 0; 2488 2489 lane = nd_region_acquire_lane(nd_region); 2490 while (len) { 2491 u64 c = min(len, mmio->size); 2492 2493 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 2494 iobuf + copied, c, rw, lane); 2495 if (rc) 2496 break; 2497 2498 copied += c; 2499 len -= c; 2500 } 2501 nd_region_release_lane(nd_region, lane); 2502 2503 return rc; 2504 } 2505 2506 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 2507 struct acpi_nfit_interleave *idt, u16 interleave_ways) 2508 { 2509 if (idt) { 2510 mmio->num_lines = idt->line_count; 2511 mmio->line_size = idt->line_size; 2512 if (interleave_ways == 0) 2513 return -ENXIO; 2514 mmio->table_size = mmio->num_lines * interleave_ways 2515 * mmio->line_size; 2516 } 2517 2518 return 0; 2519 } 2520 2521 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 2522 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 2523 { 2524 struct nd_cmd_dimm_flags flags; 2525 int rc; 2526 2527 memset(&flags, 0, sizeof(flags)); 2528 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 2529 sizeof(flags), NULL); 2530 2531 if (rc >= 0 && flags.status == 0) 2532 nfit_blk->dimm_flags = flags.flags; 2533 else if (rc == -ENOTTY) { 2534 /* fall back to a conservative default */ 2535 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2536 rc = 0; 2537 } else 2538 rc = -ENXIO; 2539 2540 return rc; 2541 } 2542 2543 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2544 struct device *dev) 2545 { 2546 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2547 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2548 struct nfit_blk_mmio *mmio; 2549 struct nfit_blk *nfit_blk; 2550 struct nfit_mem *nfit_mem; 2551 struct nvdimm *nvdimm; 2552 int rc; 2553 2554 nvdimm = nd_blk_region_to_dimm(ndbr); 2555 nfit_mem = nvdimm_provider_data(nvdimm); 2556 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2557 dev_dbg(dev, "missing%s%s%s\n", 2558 nfit_mem ? "" : " nfit_mem", 2559 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2560 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2561 return -ENXIO; 2562 } 2563 2564 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2565 if (!nfit_blk) 2566 return -ENOMEM; 2567 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2568 nfit_blk->nd_region = to_nd_region(dev); 2569 2570 /* map block aperture memory */ 2571 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2572 mmio = &nfit_blk->mmio[BDW]; 2573 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2574 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2575 if (!mmio->addr.base) { 2576 dev_dbg(dev, "%s failed to map bdw\n", 2577 nvdimm_name(nvdimm)); 2578 return -ENOMEM; 2579 } 2580 mmio->size = nfit_mem->bdw->size; 2581 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2582 mmio->idt = nfit_mem->idt_bdw; 2583 mmio->spa = nfit_mem->spa_bdw; 2584 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2585 nfit_mem->memdev_bdw->interleave_ways); 2586 if (rc) { 2587 dev_dbg(dev, "%s failed to init bdw interleave\n", 2588 nvdimm_name(nvdimm)); 2589 return rc; 2590 } 2591 2592 /* map block control memory */ 2593 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2594 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2595 mmio = &nfit_blk->mmio[DCR]; 2596 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2597 nfit_mem->spa_dcr->length); 2598 if (!mmio->addr.base) { 2599 dev_dbg(dev, "%s failed to map dcr\n", 2600 nvdimm_name(nvdimm)); 2601 return -ENOMEM; 2602 } 2603 mmio->size = nfit_mem->dcr->window_size; 2604 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2605 mmio->idt = nfit_mem->idt_dcr; 2606 mmio->spa = nfit_mem->spa_dcr; 2607 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2608 nfit_mem->memdev_dcr->interleave_ways); 2609 if (rc) { 2610 dev_dbg(dev, "%s failed to init dcr interleave\n", 2611 nvdimm_name(nvdimm)); 2612 return rc; 2613 } 2614 2615 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2616 if (rc < 0) { 2617 dev_dbg(dev, "%s failed get DIMM flags\n", 2618 nvdimm_name(nvdimm)); 2619 return rc; 2620 } 2621 2622 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2623 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2624 2625 if (mmio->line_size == 0) 2626 return 0; 2627 2628 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2629 + 8 > mmio->line_size) { 2630 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2631 return -ENXIO; 2632 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2633 + 8 > mmio->line_size) { 2634 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2635 return -ENXIO; 2636 } 2637 2638 return 0; 2639 } 2640 2641 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2642 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2643 { 2644 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2645 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2646 int cmd_rc, rc; 2647 2648 cmd->address = spa->address; 2649 cmd->length = spa->length; 2650 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2651 sizeof(*cmd), &cmd_rc); 2652 if (rc < 0) 2653 return rc; 2654 return cmd_rc; 2655 } 2656 2657 static int ars_start(struct acpi_nfit_desc *acpi_desc, 2658 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) 2659 { 2660 int rc; 2661 int cmd_rc; 2662 struct nd_cmd_ars_start ars_start; 2663 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2664 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2665 2666 memset(&ars_start, 0, sizeof(ars_start)); 2667 ars_start.address = spa->address; 2668 ars_start.length = spa->length; 2669 if (req_type == ARS_REQ_SHORT) 2670 ars_start.flags = ND_ARS_RETURN_PREV_DATA; 2671 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2672 ars_start.type = ND_ARS_PERSISTENT; 2673 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2674 ars_start.type = ND_ARS_VOLATILE; 2675 else 2676 return -ENOTTY; 2677 2678 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2679 sizeof(ars_start), &cmd_rc); 2680 2681 if (rc < 0) 2682 return rc; 2683 if (cmd_rc < 0) 2684 return cmd_rc; 2685 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 2686 return 0; 2687 } 2688 2689 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2690 { 2691 int rc, cmd_rc; 2692 struct nd_cmd_ars_start ars_start; 2693 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2694 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2695 2696 ars_start = (struct nd_cmd_ars_start) { 2697 .address = ars_status->restart_address, 2698 .length = ars_status->restart_length, 2699 .type = ars_status->type, 2700 }; 2701 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2702 sizeof(ars_start), &cmd_rc); 2703 if (rc < 0) 2704 return rc; 2705 return cmd_rc; 2706 } 2707 2708 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2709 { 2710 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2711 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2712 int rc, cmd_rc; 2713 2714 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2715 acpi_desc->max_ars, &cmd_rc); 2716 if (rc < 0) 2717 return rc; 2718 return cmd_rc; 2719 } 2720 2721 static void ars_complete(struct acpi_nfit_desc *acpi_desc, 2722 struct nfit_spa *nfit_spa) 2723 { 2724 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2725 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2726 struct nd_region *nd_region = nfit_spa->nd_region; 2727 struct device *dev; 2728 2729 lockdep_assert_held(&acpi_desc->init_mutex); 2730 /* 2731 * Only advance the ARS state for ARS runs initiated by the 2732 * kernel, ignore ARS results from BIOS initiated runs for scrub 2733 * completion tracking. 2734 */ 2735 if (acpi_desc->scrub_spa != nfit_spa) 2736 return; 2737 2738 if ((ars_status->address >= spa->address && ars_status->address 2739 < spa->address + spa->length) 2740 || (ars_status->address < spa->address)) { 2741 /* 2742 * Assume that if a scrub starts at an offset from the 2743 * start of nfit_spa that we are in the continuation 2744 * case. 2745 * 2746 * Otherwise, if the scrub covers the spa range, mark 2747 * any pending request complete. 2748 */ 2749 if (ars_status->address + ars_status->length 2750 >= spa->address + spa->length) 2751 /* complete */; 2752 else 2753 return; 2754 } else 2755 return; 2756 2757 acpi_desc->scrub_spa = NULL; 2758 if (nd_region) { 2759 dev = nd_region_dev(nd_region); 2760 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); 2761 } else 2762 dev = acpi_desc->dev; 2763 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); 2764 } 2765 2766 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) 2767 { 2768 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2769 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2770 int rc; 2771 u32 i; 2772 2773 /* 2774 * First record starts at 44 byte offset from the start of the 2775 * payload. 2776 */ 2777 if (ars_status->out_length < 44) 2778 return 0; 2779 2780 /* 2781 * Ignore potentially stale results that are only refreshed 2782 * after a start-ARS event. 2783 */ 2784 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { 2785 dev_dbg(acpi_desc->dev, "skip %d stale records\n", 2786 ars_status->num_records); 2787 return 0; 2788 } 2789 2790 for (i = 0; i < ars_status->num_records; i++) { 2791 /* only process full records */ 2792 if (ars_status->out_length 2793 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2794 break; 2795 rc = nvdimm_bus_add_badrange(nvdimm_bus, 2796 ars_status->records[i].err_address, 2797 ars_status->records[i].length); 2798 if (rc) 2799 return rc; 2800 } 2801 if (i < ars_status->num_records) 2802 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2803 2804 return 0; 2805 } 2806 2807 static void acpi_nfit_remove_resource(void *data) 2808 { 2809 struct resource *res = data; 2810 2811 remove_resource(res); 2812 } 2813 2814 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2815 struct nd_region_desc *ndr_desc) 2816 { 2817 struct resource *res, *nd_res = ndr_desc->res; 2818 int is_pmem, ret; 2819 2820 /* No operation if the region is already registered as PMEM */ 2821 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2822 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2823 if (is_pmem == REGION_INTERSECTS) 2824 return 0; 2825 2826 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2827 if (!res) 2828 return -ENOMEM; 2829 2830 res->name = "Persistent Memory"; 2831 res->start = nd_res->start; 2832 res->end = nd_res->end; 2833 res->flags = IORESOURCE_MEM; 2834 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2835 2836 ret = insert_resource(&iomem_resource, res); 2837 if (ret) 2838 return ret; 2839 2840 ret = devm_add_action_or_reset(acpi_desc->dev, 2841 acpi_nfit_remove_resource, 2842 res); 2843 if (ret) 2844 return ret; 2845 2846 return 0; 2847 } 2848 2849 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2850 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2851 struct acpi_nfit_memory_map *memdev, 2852 struct nfit_spa *nfit_spa) 2853 { 2854 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2855 memdev->device_handle); 2856 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2857 struct nd_blk_region_desc *ndbr_desc; 2858 struct nfit_mem *nfit_mem; 2859 int rc; 2860 2861 if (!nvdimm) { 2862 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2863 spa->range_index, memdev->device_handle); 2864 return -ENODEV; 2865 } 2866 2867 mapping->nvdimm = nvdimm; 2868 switch (nfit_spa_type(spa)) { 2869 case NFIT_SPA_PM: 2870 case NFIT_SPA_VOLATILE: 2871 mapping->start = memdev->address; 2872 mapping->size = memdev->region_size; 2873 break; 2874 case NFIT_SPA_DCR: 2875 nfit_mem = nvdimm_provider_data(nvdimm); 2876 if (!nfit_mem || !nfit_mem->bdw) { 2877 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2878 spa->range_index, nvdimm_name(nvdimm)); 2879 break; 2880 } 2881 2882 mapping->size = nfit_mem->bdw->capacity; 2883 mapping->start = nfit_mem->bdw->start_address; 2884 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2885 ndr_desc->mapping = mapping; 2886 ndr_desc->num_mappings = 1; 2887 ndbr_desc = to_blk_region_desc(ndr_desc); 2888 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2889 ndbr_desc->do_io = acpi_desc->blk_do_io; 2890 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2891 if (rc) 2892 return rc; 2893 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2894 ndr_desc); 2895 if (!nfit_spa->nd_region) 2896 return -ENOMEM; 2897 break; 2898 } 2899 2900 return 0; 2901 } 2902 2903 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2904 { 2905 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2906 nfit_spa_type(spa) == NFIT_SPA_VCD || 2907 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2908 nfit_spa_type(spa) == NFIT_SPA_PCD); 2909 } 2910 2911 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2912 { 2913 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2914 nfit_spa_type(spa) == NFIT_SPA_VCD || 2915 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2916 } 2917 2918 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2919 struct nfit_spa *nfit_spa) 2920 { 2921 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2922 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2923 struct nd_blk_region_desc ndbr_desc; 2924 struct nd_region_desc *ndr_desc; 2925 struct nfit_memdev *nfit_memdev; 2926 struct nvdimm_bus *nvdimm_bus; 2927 struct resource res; 2928 int count = 0, rc; 2929 2930 if (nfit_spa->nd_region) 2931 return 0; 2932 2933 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2934 dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); 2935 return 0; 2936 } 2937 2938 memset(&res, 0, sizeof(res)); 2939 memset(&mappings, 0, sizeof(mappings)); 2940 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2941 res.start = spa->address; 2942 res.end = res.start + spa->length - 1; 2943 ndr_desc = &ndbr_desc.ndr_desc; 2944 ndr_desc->res = &res; 2945 ndr_desc->provider_data = nfit_spa; 2946 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 2947 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { 2948 ndr_desc->numa_node = acpi_map_pxm_to_online_node( 2949 spa->proximity_domain); 2950 ndr_desc->target_node = acpi_map_pxm_to_node( 2951 spa->proximity_domain); 2952 } else { 2953 ndr_desc->numa_node = NUMA_NO_NODE; 2954 ndr_desc->target_node = NUMA_NO_NODE; 2955 } 2956 2957 /* 2958 * Persistence domain bits are hierarchical, if 2959 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then 2960 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. 2961 */ 2962 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) 2963 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); 2964 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) 2965 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); 2966 2967 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2968 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 2969 struct nd_mapping_desc *mapping; 2970 2971 if (memdev->range_index != spa->range_index) 2972 continue; 2973 if (count >= ND_MAX_MAPPINGS) { 2974 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 2975 spa->range_index, ND_MAX_MAPPINGS); 2976 return -ENXIO; 2977 } 2978 mapping = &mappings[count++]; 2979 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 2980 memdev, nfit_spa); 2981 if (rc) 2982 goto out; 2983 } 2984 2985 ndr_desc->mapping = mappings; 2986 ndr_desc->num_mappings = count; 2987 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2988 if (rc) 2989 goto out; 2990 2991 nvdimm_bus = acpi_desc->nvdimm_bus; 2992 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 2993 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 2994 if (rc) { 2995 dev_warn(acpi_desc->dev, 2996 "failed to insert pmem resource to iomem: %d\n", 2997 rc); 2998 goto out; 2999 } 3000 3001 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3002 ndr_desc); 3003 if (!nfit_spa->nd_region) 3004 rc = -ENOMEM; 3005 } else if (nfit_spa_is_volatile(spa)) { 3006 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 3007 ndr_desc); 3008 if (!nfit_spa->nd_region) 3009 rc = -ENOMEM; 3010 } else if (nfit_spa_is_virtual(spa)) { 3011 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3012 ndr_desc); 3013 if (!nfit_spa->nd_region) 3014 rc = -ENOMEM; 3015 } 3016 3017 out: 3018 if (rc) 3019 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 3020 nfit_spa->spa->range_index); 3021 return rc; 3022 } 3023 3024 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) 3025 { 3026 struct device *dev = acpi_desc->dev; 3027 struct nd_cmd_ars_status *ars_status; 3028 3029 if (acpi_desc->ars_status) { 3030 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3031 return 0; 3032 } 3033 3034 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); 3035 if (!ars_status) 3036 return -ENOMEM; 3037 acpi_desc->ars_status = ars_status; 3038 return 0; 3039 } 3040 3041 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) 3042 { 3043 int rc; 3044 3045 if (ars_status_alloc(acpi_desc)) 3046 return -ENOMEM; 3047 3048 rc = ars_get_status(acpi_desc); 3049 3050 if (rc < 0 && rc != -ENOSPC) 3051 return rc; 3052 3053 if (ars_status_process_records(acpi_desc)) 3054 dev_err(acpi_desc->dev, "Failed to process ARS records\n"); 3055 3056 return rc; 3057 } 3058 3059 static int ars_register(struct acpi_nfit_desc *acpi_desc, 3060 struct nfit_spa *nfit_spa) 3061 { 3062 int rc; 3063 3064 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3065 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3066 3067 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3068 if (!no_init_ars) 3069 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); 3070 3071 switch (acpi_nfit_query_poison(acpi_desc)) { 3072 case 0: 3073 case -ENOSPC: 3074 case -EAGAIN: 3075 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); 3076 /* shouldn't happen, try again later */ 3077 if (rc == -EBUSY) 3078 break; 3079 if (rc) { 3080 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3081 break; 3082 } 3083 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3084 rc = acpi_nfit_query_poison(acpi_desc); 3085 if (rc) 3086 break; 3087 acpi_desc->scrub_spa = nfit_spa; 3088 ars_complete(acpi_desc, nfit_spa); 3089 /* 3090 * If ars_complete() says we didn't complete the 3091 * short scrub, we'll try again with a long 3092 * request. 3093 */ 3094 acpi_desc->scrub_spa = NULL; 3095 break; 3096 case -EBUSY: 3097 case -ENOMEM: 3098 /* 3099 * BIOS was using ARS, wait for it to complete (or 3100 * resources to become available) and then perform our 3101 * own scrubs. 3102 */ 3103 break; 3104 default: 3105 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3106 break; 3107 } 3108 3109 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3110 } 3111 3112 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) 3113 { 3114 struct nfit_spa *nfit_spa; 3115 3116 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3117 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3118 continue; 3119 ars_complete(acpi_desc, nfit_spa); 3120 } 3121 } 3122 3123 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, 3124 int query_rc) 3125 { 3126 unsigned int tmo = acpi_desc->scrub_tmo; 3127 struct device *dev = acpi_desc->dev; 3128 struct nfit_spa *nfit_spa; 3129 3130 lockdep_assert_held(&acpi_desc->init_mutex); 3131 3132 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) 3133 return 0; 3134 3135 if (query_rc == -EBUSY) { 3136 dev_dbg(dev, "ARS: ARS busy\n"); 3137 return min(30U * 60U, tmo * 2); 3138 } 3139 if (query_rc == -ENOSPC) { 3140 dev_dbg(dev, "ARS: ARS continue\n"); 3141 ars_continue(acpi_desc); 3142 return 1; 3143 } 3144 if (query_rc && query_rc != -EAGAIN) { 3145 unsigned long long addr, end; 3146 3147 addr = acpi_desc->ars_status->address; 3148 end = addr + acpi_desc->ars_status->length; 3149 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, 3150 query_rc); 3151 } 3152 3153 ars_complete_all(acpi_desc); 3154 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3155 enum nfit_ars_state req_type; 3156 int rc; 3157 3158 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3159 continue; 3160 3161 /* prefer short ARS requests first */ 3162 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) 3163 req_type = ARS_REQ_SHORT; 3164 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) 3165 req_type = ARS_REQ_LONG; 3166 else 3167 continue; 3168 rc = ars_start(acpi_desc, nfit_spa, req_type); 3169 3170 dev = nd_region_dev(nfit_spa->nd_region); 3171 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", 3172 nfit_spa->spa->range_index, 3173 req_type == ARS_REQ_SHORT ? "short" : "long", 3174 rc); 3175 /* 3176 * Hmm, we raced someone else starting ARS? Try again in 3177 * a bit. 3178 */ 3179 if (rc == -EBUSY) 3180 return 1; 3181 if (rc == 0) { 3182 dev_WARN_ONCE(dev, acpi_desc->scrub_spa, 3183 "scrub start while range %d active\n", 3184 acpi_desc->scrub_spa->spa->range_index); 3185 clear_bit(req_type, &nfit_spa->ars_state); 3186 acpi_desc->scrub_spa = nfit_spa; 3187 /* 3188 * Consider this spa last for future scrub 3189 * requests 3190 */ 3191 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 3192 return 1; 3193 } 3194 3195 dev_err(dev, "ARS: range %d ARS failed (%d)\n", 3196 nfit_spa->spa->range_index, rc); 3197 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3198 } 3199 return 0; 3200 } 3201 3202 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) 3203 { 3204 lockdep_assert_held(&acpi_desc->init_mutex); 3205 3206 set_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3207 /* note this should only be set from within the workqueue */ 3208 if (tmo) 3209 acpi_desc->scrub_tmo = tmo; 3210 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); 3211 } 3212 3213 static void sched_ars(struct acpi_nfit_desc *acpi_desc) 3214 { 3215 __sched_ars(acpi_desc, 0); 3216 } 3217 3218 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) 3219 { 3220 lockdep_assert_held(&acpi_desc->init_mutex); 3221 3222 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3223 acpi_desc->scrub_count++; 3224 if (acpi_desc->scrub_count_state) 3225 sysfs_notify_dirent(acpi_desc->scrub_count_state); 3226 } 3227 3228 static void acpi_nfit_scrub(struct work_struct *work) 3229 { 3230 struct acpi_nfit_desc *acpi_desc; 3231 unsigned int tmo; 3232 int query_rc; 3233 3234 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); 3235 mutex_lock(&acpi_desc->init_mutex); 3236 query_rc = acpi_nfit_query_poison(acpi_desc); 3237 tmo = __acpi_nfit_scrub(acpi_desc, query_rc); 3238 if (tmo) 3239 __sched_ars(acpi_desc, tmo); 3240 else 3241 notify_ars_done(acpi_desc); 3242 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3243 clear_bit(ARS_POLL, &acpi_desc->scrub_flags); 3244 mutex_unlock(&acpi_desc->init_mutex); 3245 } 3246 3247 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, 3248 struct nfit_spa *nfit_spa) 3249 { 3250 int type = nfit_spa_type(nfit_spa->spa); 3251 struct nd_cmd_ars_cap ars_cap; 3252 int rc; 3253 3254 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3255 memset(&ars_cap, 0, sizeof(ars_cap)); 3256 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 3257 if (rc < 0) 3258 return; 3259 /* check that the supported scrub types match the spa type */ 3260 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) 3261 & ND_ARS_VOLATILE) == 0) 3262 return; 3263 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) 3264 & ND_ARS_PERSISTENT) == 0) 3265 return; 3266 3267 nfit_spa->max_ars = ars_cap.max_ars_out; 3268 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 3269 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); 3270 clear_bit(ARS_FAILED, &nfit_spa->ars_state); 3271 } 3272 3273 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 3274 { 3275 struct nfit_spa *nfit_spa; 3276 int rc; 3277 3278 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 3279 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3280 switch (nfit_spa_type(nfit_spa->spa)) { 3281 case NFIT_SPA_VOLATILE: 3282 case NFIT_SPA_PM: 3283 acpi_nfit_init_ars(acpi_desc, nfit_spa); 3284 break; 3285 } 3286 } 3287 3288 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) 3289 switch (nfit_spa_type(nfit_spa->spa)) { 3290 case NFIT_SPA_VOLATILE: 3291 case NFIT_SPA_PM: 3292 /* register regions and kick off initial ARS run */ 3293 rc = ars_register(acpi_desc, nfit_spa); 3294 if (rc) 3295 return rc; 3296 break; 3297 case NFIT_SPA_BDW: 3298 /* nothing to register */ 3299 break; 3300 case NFIT_SPA_DCR: 3301 case NFIT_SPA_VDISK: 3302 case NFIT_SPA_VCD: 3303 case NFIT_SPA_PDISK: 3304 case NFIT_SPA_PCD: 3305 /* register known regions that don't support ARS */ 3306 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 3307 if (rc) 3308 return rc; 3309 break; 3310 default: 3311 /* don't register unknown regions */ 3312 break; 3313 } 3314 3315 sched_ars(acpi_desc); 3316 return 0; 3317 } 3318 3319 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 3320 struct nfit_table_prev *prev) 3321 { 3322 struct device *dev = acpi_desc->dev; 3323 3324 if (!list_empty(&prev->spas) || 3325 !list_empty(&prev->memdevs) || 3326 !list_empty(&prev->dcrs) || 3327 !list_empty(&prev->bdws) || 3328 !list_empty(&prev->idts) || 3329 !list_empty(&prev->flushes)) { 3330 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 3331 return -ENXIO; 3332 } 3333 return 0; 3334 } 3335 3336 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 3337 { 3338 struct device *dev = acpi_desc->dev; 3339 struct kernfs_node *nfit; 3340 struct device *bus_dev; 3341 3342 if (!ars_supported(acpi_desc->nvdimm_bus)) 3343 return 0; 3344 3345 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3346 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 3347 if (!nfit) { 3348 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 3349 return -ENODEV; 3350 } 3351 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 3352 sysfs_put(nfit); 3353 if (!acpi_desc->scrub_count_state) { 3354 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 3355 return -ENODEV; 3356 } 3357 3358 return 0; 3359 } 3360 3361 static void acpi_nfit_unregister(void *data) 3362 { 3363 struct acpi_nfit_desc *acpi_desc = data; 3364 3365 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 3366 } 3367 3368 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 3369 { 3370 struct device *dev = acpi_desc->dev; 3371 struct nfit_table_prev prev; 3372 const void *end; 3373 int rc; 3374 3375 if (!acpi_desc->nvdimm_bus) { 3376 acpi_nfit_init_dsms(acpi_desc); 3377 3378 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 3379 &acpi_desc->nd_desc); 3380 if (!acpi_desc->nvdimm_bus) 3381 return -ENOMEM; 3382 3383 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 3384 acpi_desc); 3385 if (rc) 3386 return rc; 3387 3388 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 3389 if (rc) 3390 return rc; 3391 3392 /* register this acpi_desc for mce notifications */ 3393 mutex_lock(&acpi_desc_lock); 3394 list_add_tail(&acpi_desc->list, &acpi_descs); 3395 mutex_unlock(&acpi_desc_lock); 3396 } 3397 3398 mutex_lock(&acpi_desc->init_mutex); 3399 3400 INIT_LIST_HEAD(&prev.spas); 3401 INIT_LIST_HEAD(&prev.memdevs); 3402 INIT_LIST_HEAD(&prev.dcrs); 3403 INIT_LIST_HEAD(&prev.bdws); 3404 INIT_LIST_HEAD(&prev.idts); 3405 INIT_LIST_HEAD(&prev.flushes); 3406 3407 list_cut_position(&prev.spas, &acpi_desc->spas, 3408 acpi_desc->spas.prev); 3409 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 3410 acpi_desc->memdevs.prev); 3411 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 3412 acpi_desc->dcrs.prev); 3413 list_cut_position(&prev.bdws, &acpi_desc->bdws, 3414 acpi_desc->bdws.prev); 3415 list_cut_position(&prev.idts, &acpi_desc->idts, 3416 acpi_desc->idts.prev); 3417 list_cut_position(&prev.flushes, &acpi_desc->flushes, 3418 acpi_desc->flushes.prev); 3419 3420 end = data + sz; 3421 while (!IS_ERR_OR_NULL(data)) 3422 data = add_table(acpi_desc, &prev, data, end); 3423 3424 if (IS_ERR(data)) { 3425 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); 3426 rc = PTR_ERR(data); 3427 goto out_unlock; 3428 } 3429 3430 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 3431 if (rc) 3432 goto out_unlock; 3433 3434 rc = nfit_mem_init(acpi_desc); 3435 if (rc) 3436 goto out_unlock; 3437 3438 rc = acpi_nfit_register_dimms(acpi_desc); 3439 if (rc) 3440 goto out_unlock; 3441 3442 rc = acpi_nfit_register_regions(acpi_desc); 3443 3444 out_unlock: 3445 mutex_unlock(&acpi_desc->init_mutex); 3446 return rc; 3447 } 3448 EXPORT_SYMBOL_GPL(acpi_nfit_init); 3449 3450 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 3451 { 3452 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3453 struct device *dev = acpi_desc->dev; 3454 3455 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 3456 nfit_device_lock(dev); 3457 nfit_device_unlock(dev); 3458 3459 /* Bounce the init_mutex to complete initial registration */ 3460 mutex_lock(&acpi_desc->init_mutex); 3461 mutex_unlock(&acpi_desc->init_mutex); 3462 3463 return 0; 3464 } 3465 3466 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3467 struct nvdimm *nvdimm, unsigned int cmd) 3468 { 3469 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3470 3471 if (nvdimm) 3472 return 0; 3473 if (cmd != ND_CMD_ARS_START) 3474 return 0; 3475 3476 /* 3477 * The kernel and userspace may race to initiate a scrub, but 3478 * the scrub thread is prepared to lose that initial race. It 3479 * just needs guarantees that any ARS it initiates are not 3480 * interrupted by any intervening start requests from userspace. 3481 */ 3482 if (work_busy(&acpi_desc->dwork.work)) 3483 return -EBUSY; 3484 3485 return 0; 3486 } 3487 3488 /* prevent security commands from being issued via ioctl */ 3489 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3490 struct nvdimm *nvdimm, unsigned int cmd, void *buf) 3491 { 3492 struct nd_cmd_pkg *call_pkg = buf; 3493 unsigned int func; 3494 3495 if (nvdimm && cmd == ND_CMD_CALL && 3496 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { 3497 func = call_pkg->nd_command; 3498 if (func > NVDIMM_CMD_MAX || 3499 (1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK) 3500 return -EOPNOTSUPP; 3501 } 3502 3503 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); 3504 } 3505 3506 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, 3507 enum nfit_ars_state req_type) 3508 { 3509 struct device *dev = acpi_desc->dev; 3510 int scheduled = 0, busy = 0; 3511 struct nfit_spa *nfit_spa; 3512 3513 mutex_lock(&acpi_desc->init_mutex); 3514 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { 3515 mutex_unlock(&acpi_desc->init_mutex); 3516 return 0; 3517 } 3518 3519 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3520 int type = nfit_spa_type(nfit_spa->spa); 3521 3522 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) 3523 continue; 3524 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3525 continue; 3526 3527 if (test_and_set_bit(req_type, &nfit_spa->ars_state)) 3528 busy++; 3529 else 3530 scheduled++; 3531 } 3532 if (scheduled) { 3533 sched_ars(acpi_desc); 3534 dev_dbg(dev, "ars_scan triggered\n"); 3535 } 3536 mutex_unlock(&acpi_desc->init_mutex); 3537 3538 if (scheduled) 3539 return 0; 3540 if (busy) 3541 return -EBUSY; 3542 return -ENOTTY; 3543 } 3544 3545 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 3546 { 3547 struct nvdimm_bus_descriptor *nd_desc; 3548 3549 dev_set_drvdata(dev, acpi_desc); 3550 acpi_desc->dev = dev; 3551 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 3552 nd_desc = &acpi_desc->nd_desc; 3553 nd_desc->provider_name = "ACPI.NFIT"; 3554 nd_desc->module = THIS_MODULE; 3555 nd_desc->ndctl = acpi_nfit_ctl; 3556 nd_desc->flush_probe = acpi_nfit_flush_probe; 3557 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 3558 nd_desc->attr_groups = acpi_nfit_attribute_groups; 3559 3560 INIT_LIST_HEAD(&acpi_desc->spas); 3561 INIT_LIST_HEAD(&acpi_desc->dcrs); 3562 INIT_LIST_HEAD(&acpi_desc->bdws); 3563 INIT_LIST_HEAD(&acpi_desc->idts); 3564 INIT_LIST_HEAD(&acpi_desc->flushes); 3565 INIT_LIST_HEAD(&acpi_desc->memdevs); 3566 INIT_LIST_HEAD(&acpi_desc->dimms); 3567 INIT_LIST_HEAD(&acpi_desc->list); 3568 mutex_init(&acpi_desc->init_mutex); 3569 acpi_desc->scrub_tmo = 1; 3570 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); 3571 } 3572 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 3573 3574 static void acpi_nfit_put_table(void *table) 3575 { 3576 acpi_put_table(table); 3577 } 3578 3579 void acpi_nfit_shutdown(void *data) 3580 { 3581 struct acpi_nfit_desc *acpi_desc = data; 3582 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3583 3584 /* 3585 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 3586 * race teardown 3587 */ 3588 mutex_lock(&acpi_desc_lock); 3589 list_del(&acpi_desc->list); 3590 mutex_unlock(&acpi_desc_lock); 3591 3592 mutex_lock(&acpi_desc->init_mutex); 3593 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 3594 cancel_delayed_work_sync(&acpi_desc->dwork); 3595 mutex_unlock(&acpi_desc->init_mutex); 3596 3597 /* 3598 * Bounce the nvdimm bus lock to make sure any in-flight 3599 * acpi_nfit_ars_rescan() submissions have had a chance to 3600 * either submit or see ->cancel set. 3601 */ 3602 nfit_device_lock(bus_dev); 3603 nfit_device_unlock(bus_dev); 3604 3605 flush_workqueue(nfit_wq); 3606 } 3607 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3608 3609 static int acpi_nfit_add(struct acpi_device *adev) 3610 { 3611 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3612 struct acpi_nfit_desc *acpi_desc; 3613 struct device *dev = &adev->dev; 3614 struct acpi_table_header *tbl; 3615 acpi_status status = AE_OK; 3616 acpi_size sz; 3617 int rc = 0; 3618 3619 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3620 if (ACPI_FAILURE(status)) { 3621 /* The NVDIMM root device allows OS to trigger enumeration of 3622 * NVDIMMs through NFIT at boot time and re-enumeration at 3623 * root level via the _FIT method during runtime. 3624 * This is ok to return 0 here, we could have an nvdimm 3625 * hotplugged later and evaluate _FIT method which returns 3626 * data in the format of a series of NFIT Structures. 3627 */ 3628 dev_dbg(dev, "failed to find NFIT at startup\n"); 3629 return 0; 3630 } 3631 3632 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3633 if (rc) 3634 return rc; 3635 sz = tbl->length; 3636 3637 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3638 if (!acpi_desc) 3639 return -ENOMEM; 3640 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3641 3642 /* Save the acpi header for exporting the revision via sysfs */ 3643 acpi_desc->acpi_header = *tbl; 3644 3645 /* Evaluate _FIT and override with that if present */ 3646 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3647 if (ACPI_SUCCESS(status) && buf.length > 0) { 3648 union acpi_object *obj = buf.pointer; 3649 3650 if (obj->type == ACPI_TYPE_BUFFER) 3651 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3652 obj->buffer.length); 3653 else 3654 dev_dbg(dev, "invalid type %d, ignoring _FIT\n", 3655 (int) obj->type); 3656 kfree(buf.pointer); 3657 } else 3658 /* skip over the lead-in header table */ 3659 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3660 + sizeof(struct acpi_table_nfit), 3661 sz - sizeof(struct acpi_table_nfit)); 3662 3663 if (rc) 3664 return rc; 3665 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3666 } 3667 3668 static int acpi_nfit_remove(struct acpi_device *adev) 3669 { 3670 /* see acpi_nfit_unregister */ 3671 return 0; 3672 } 3673 3674 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3675 { 3676 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3677 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3678 union acpi_object *obj; 3679 acpi_status status; 3680 int ret; 3681 3682 if (!dev->driver) { 3683 /* dev->driver may be null if we're being removed */ 3684 dev_dbg(dev, "no driver found for dev\n"); 3685 return; 3686 } 3687 3688 if (!acpi_desc) { 3689 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3690 if (!acpi_desc) 3691 return; 3692 acpi_nfit_desc_init(acpi_desc, dev); 3693 } else { 3694 /* 3695 * Finish previous registration before considering new 3696 * regions. 3697 */ 3698 flush_workqueue(nfit_wq); 3699 } 3700 3701 /* Evaluate _FIT */ 3702 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3703 if (ACPI_FAILURE(status)) { 3704 dev_err(dev, "failed to evaluate _FIT\n"); 3705 return; 3706 } 3707 3708 obj = buf.pointer; 3709 if (obj->type == ACPI_TYPE_BUFFER) { 3710 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3711 obj->buffer.length); 3712 if (ret) 3713 dev_err(dev, "failed to merge updated NFIT\n"); 3714 } else 3715 dev_err(dev, "Invalid _FIT\n"); 3716 kfree(buf.pointer); 3717 } 3718 3719 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3720 { 3721 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3722 3723 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) 3724 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 3725 else 3726 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); 3727 } 3728 3729 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3730 { 3731 dev_dbg(dev, "event: 0x%x\n", event); 3732 3733 switch (event) { 3734 case NFIT_NOTIFY_UPDATE: 3735 return acpi_nfit_update_notify(dev, handle); 3736 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3737 return acpi_nfit_uc_error_notify(dev, handle); 3738 default: 3739 return; 3740 } 3741 } 3742 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3743 3744 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3745 { 3746 nfit_device_lock(&adev->dev); 3747 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3748 nfit_device_unlock(&adev->dev); 3749 } 3750 3751 static const struct acpi_device_id acpi_nfit_ids[] = { 3752 { "ACPI0012", 0 }, 3753 { "", 0 }, 3754 }; 3755 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3756 3757 static struct acpi_driver acpi_nfit_driver = { 3758 .name = KBUILD_MODNAME, 3759 .ids = acpi_nfit_ids, 3760 .ops = { 3761 .add = acpi_nfit_add, 3762 .remove = acpi_nfit_remove, 3763 .notify = acpi_nfit_notify, 3764 }, 3765 }; 3766 3767 static __init int nfit_init(void) 3768 { 3769 int ret; 3770 3771 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3772 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); 3773 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3774 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3775 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3776 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3777 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3778 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); 3779 3780 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3781 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3782 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3783 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3784 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3785 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3786 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3787 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3788 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3789 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3790 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3791 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3792 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3793 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); 3794 3795 nfit_wq = create_singlethread_workqueue("nfit"); 3796 if (!nfit_wq) 3797 return -ENOMEM; 3798 3799 nfit_mce_register(); 3800 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3801 if (ret) { 3802 nfit_mce_unregister(); 3803 destroy_workqueue(nfit_wq); 3804 } 3805 3806 return ret; 3807 3808 } 3809 3810 static __exit void nfit_exit(void) 3811 { 3812 nfit_mce_unregister(); 3813 acpi_bus_unregister_driver(&acpi_nfit_driver); 3814 destroy_workqueue(nfit_wq); 3815 WARN_ON(!list_empty(&acpi_descs)); 3816 } 3817 3818 module_init(nfit_init); 3819 module_exit(nfit_exit); 3820 MODULE_LICENSE("GPL v2"); 3821 MODULE_AUTHOR("Intel Corporation"); 3822