1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/list_sort.h> 6 #include <linux/libnvdimm.h> 7 #include <linux/module.h> 8 #include <linux/mutex.h> 9 #include <linux/ndctl.h> 10 #include <linux/sysfs.h> 11 #include <linux/delay.h> 12 #include <linux/list.h> 13 #include <linux/acpi.h> 14 #include <linux/sort.h> 15 #include <linux/io.h> 16 #include <linux/nd.h> 17 #include <asm/cacheflush.h> 18 #include <acpi/nfit.h> 19 #include "intel.h" 20 #include "nfit.h" 21 22 /* 23 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 24 * irrelevant. 25 */ 26 #include <linux/io-64-nonatomic-hi-lo.h> 27 28 static bool force_enable_dimms; 29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 31 32 static bool disable_vendor_specific; 33 module_param(disable_vendor_specific, bool, S_IRUGO); 34 MODULE_PARM_DESC(disable_vendor_specific, 35 "Limit commands to the publicly specified set"); 36 37 static unsigned long override_dsm_mask; 38 module_param(override_dsm_mask, ulong, S_IRUGO); 39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 40 41 static int default_dsm_family = -1; 42 module_param(default_dsm_family, int, S_IRUGO); 43 MODULE_PARM_DESC(default_dsm_family, 44 "Try this DSM type first when identifying NVDIMM family"); 45 46 static bool no_init_ars; 47 module_param(no_init_ars, bool, 0644); 48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); 49 50 static bool force_labels; 51 module_param(force_labels, bool, 0444); 52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); 53 54 LIST_HEAD(acpi_descs); 55 DEFINE_MUTEX(acpi_desc_lock); 56 57 static struct workqueue_struct *nfit_wq; 58 59 struct nfit_table_prev { 60 struct list_head spas; 61 struct list_head memdevs; 62 struct list_head dcrs; 63 struct list_head bdws; 64 struct list_head idts; 65 struct list_head flushes; 66 }; 67 68 static guid_t nfit_uuid[NFIT_UUID_MAX]; 69 70 const guid_t *to_nfit_uuid(enum nfit_uuids id) 71 { 72 return &nfit_uuid[id]; 73 } 74 EXPORT_SYMBOL(to_nfit_uuid); 75 76 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 77 { 78 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 79 80 /* 81 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 82 * acpi_device. 83 */ 84 if (!nd_desc->provider_name 85 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 86 return NULL; 87 88 return to_acpi_device(acpi_desc->dev); 89 } 90 91 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 92 { 93 struct nd_cmd_clear_error *clear_err; 94 struct nd_cmd_ars_status *ars_status; 95 u16 flags; 96 97 switch (cmd) { 98 case ND_CMD_ARS_CAP: 99 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 100 return -ENOTTY; 101 102 /* Command failed */ 103 if (status & 0xffff) 104 return -EIO; 105 106 /* No supported scan types for this range */ 107 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 108 if ((status >> 16 & flags) == 0) 109 return -ENOTTY; 110 return 0; 111 case ND_CMD_ARS_START: 112 /* ARS is in progress */ 113 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 114 return -EBUSY; 115 116 /* Command failed */ 117 if (status & 0xffff) 118 return -EIO; 119 return 0; 120 case ND_CMD_ARS_STATUS: 121 ars_status = buf; 122 /* Command failed */ 123 if (status & 0xffff) 124 return -EIO; 125 /* Check extended status (Upper two bytes) */ 126 if (status == NFIT_ARS_STATUS_DONE) 127 return 0; 128 129 /* ARS is in progress */ 130 if (status == NFIT_ARS_STATUS_BUSY) 131 return -EBUSY; 132 133 /* No ARS performed for the current boot */ 134 if (status == NFIT_ARS_STATUS_NONE) 135 return -EAGAIN; 136 137 /* 138 * ARS interrupted, either we overflowed or some other 139 * agent wants the scan to stop. If we didn't overflow 140 * then just continue with the returned results. 141 */ 142 if (status == NFIT_ARS_STATUS_INTR) { 143 if (ars_status->out_length >= 40 && (ars_status->flags 144 & NFIT_ARS_F_OVERFLOW)) 145 return -ENOSPC; 146 return 0; 147 } 148 149 /* Unknown status */ 150 if (status >> 16) 151 return -EIO; 152 return 0; 153 case ND_CMD_CLEAR_ERROR: 154 clear_err = buf; 155 if (status & 0xffff) 156 return -EIO; 157 if (!clear_err->cleared) 158 return -EIO; 159 if (clear_err->length > clear_err->cleared) 160 return clear_err->cleared; 161 return 0; 162 default: 163 break; 164 } 165 166 /* all other non-zero status results in an error */ 167 if (status) 168 return -EIO; 169 return 0; 170 } 171 172 #define ACPI_LABELS_LOCKED 3 173 174 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 175 u32 status) 176 { 177 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 178 179 switch (cmd) { 180 case ND_CMD_GET_CONFIG_SIZE: 181 /* 182 * In the _LSI, _LSR, _LSW case the locked status is 183 * communicated via the read/write commands 184 */ 185 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 186 break; 187 188 if (status >> 16 & ND_CONFIG_LOCKED) 189 return -EACCES; 190 break; 191 case ND_CMD_GET_CONFIG_DATA: 192 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 193 && status == ACPI_LABELS_LOCKED) 194 return -EACCES; 195 break; 196 case ND_CMD_SET_CONFIG_DATA: 197 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 198 && status == ACPI_LABELS_LOCKED) 199 return -EACCES; 200 break; 201 default: 202 break; 203 } 204 205 /* all other non-zero status results in an error */ 206 if (status) 207 return -EIO; 208 return 0; 209 } 210 211 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 212 u32 status) 213 { 214 if (!nvdimm) 215 return xlat_bus_status(buf, cmd, status); 216 return xlat_nvdimm_status(nvdimm, buf, cmd, status); 217 } 218 219 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ 220 static union acpi_object *pkg_to_buf(union acpi_object *pkg) 221 { 222 int i; 223 void *dst; 224 size_t size = 0; 225 union acpi_object *buf = NULL; 226 227 if (pkg->type != ACPI_TYPE_PACKAGE) { 228 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 229 pkg->type); 230 goto err; 231 } 232 233 for (i = 0; i < pkg->package.count; i++) { 234 union acpi_object *obj = &pkg->package.elements[i]; 235 236 if (obj->type == ACPI_TYPE_INTEGER) 237 size += 4; 238 else if (obj->type == ACPI_TYPE_BUFFER) 239 size += obj->buffer.length; 240 else { 241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 242 obj->type); 243 goto err; 244 } 245 } 246 247 buf = ACPI_ALLOCATE(sizeof(*buf) + size); 248 if (!buf) 249 goto err; 250 251 dst = buf + 1; 252 buf->type = ACPI_TYPE_BUFFER; 253 buf->buffer.length = size; 254 buf->buffer.pointer = dst; 255 for (i = 0; i < pkg->package.count; i++) { 256 union acpi_object *obj = &pkg->package.elements[i]; 257 258 if (obj->type == ACPI_TYPE_INTEGER) { 259 memcpy(dst, &obj->integer.value, 4); 260 dst += 4; 261 } else if (obj->type == ACPI_TYPE_BUFFER) { 262 memcpy(dst, obj->buffer.pointer, obj->buffer.length); 263 dst += obj->buffer.length; 264 } 265 } 266 err: 267 ACPI_FREE(pkg); 268 return buf; 269 } 270 271 static union acpi_object *int_to_buf(union acpi_object *integer) 272 { 273 union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4); 274 void *dst = NULL; 275 276 if (!buf) 277 goto err; 278 279 if (integer->type != ACPI_TYPE_INTEGER) { 280 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 281 integer->type); 282 goto err; 283 } 284 285 dst = buf + 1; 286 buf->type = ACPI_TYPE_BUFFER; 287 buf->buffer.length = 4; 288 buf->buffer.pointer = dst; 289 memcpy(dst, &integer->integer.value, 4); 290 err: 291 ACPI_FREE(integer); 292 return buf; 293 } 294 295 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, 296 u32 len, void *data) 297 { 298 acpi_status rc; 299 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 300 struct acpi_object_list input = { 301 .count = 3, 302 .pointer = (union acpi_object []) { 303 [0] = { 304 .integer.type = ACPI_TYPE_INTEGER, 305 .integer.value = offset, 306 }, 307 [1] = { 308 .integer.type = ACPI_TYPE_INTEGER, 309 .integer.value = len, 310 }, 311 [2] = { 312 .buffer.type = ACPI_TYPE_BUFFER, 313 .buffer.pointer = data, 314 .buffer.length = len, 315 }, 316 }, 317 }; 318 319 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); 320 if (ACPI_FAILURE(rc)) 321 return NULL; 322 return int_to_buf(buf.pointer); 323 } 324 325 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, 326 u32 len) 327 { 328 acpi_status rc; 329 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 330 struct acpi_object_list input = { 331 .count = 2, 332 .pointer = (union acpi_object []) { 333 [0] = { 334 .integer.type = ACPI_TYPE_INTEGER, 335 .integer.value = offset, 336 }, 337 [1] = { 338 .integer.type = ACPI_TYPE_INTEGER, 339 .integer.value = len, 340 }, 341 }, 342 }; 343 344 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); 345 if (ACPI_FAILURE(rc)) 346 return NULL; 347 return pkg_to_buf(buf.pointer); 348 } 349 350 static union acpi_object *acpi_label_info(acpi_handle handle) 351 { 352 acpi_status rc; 353 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 354 355 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); 356 if (ACPI_FAILURE(rc)) 357 return NULL; 358 return pkg_to_buf(buf.pointer); 359 } 360 361 static u8 nfit_dsm_revid(unsigned family, unsigned func) 362 { 363 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = { 364 [NVDIMM_FAMILY_INTEL] = { 365 [NVDIMM_INTEL_GET_MODES] = 2, 366 [NVDIMM_INTEL_GET_FWINFO] = 2, 367 [NVDIMM_INTEL_START_FWUPDATE] = 2, 368 [NVDIMM_INTEL_SEND_FWUPDATE] = 2, 369 [NVDIMM_INTEL_FINISH_FWUPDATE] = 2, 370 [NVDIMM_INTEL_QUERY_FWUPDATE] = 2, 371 [NVDIMM_INTEL_SET_THRESHOLD] = 2, 372 [NVDIMM_INTEL_INJECT_ERROR] = 2, 373 [NVDIMM_INTEL_GET_SECURITY_STATE] = 2, 374 [NVDIMM_INTEL_SET_PASSPHRASE] = 2, 375 [NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2, 376 [NVDIMM_INTEL_UNLOCK_UNIT] = 2, 377 [NVDIMM_INTEL_FREEZE_LOCK] = 2, 378 [NVDIMM_INTEL_SECURE_ERASE] = 2, 379 [NVDIMM_INTEL_OVERWRITE] = 2, 380 [NVDIMM_INTEL_QUERY_OVERWRITE] = 2, 381 [NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2, 382 [NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2, 383 }, 384 }; 385 u8 id; 386 387 if (family > NVDIMM_FAMILY_MAX) 388 return 0; 389 if (func > 31) 390 return 0; 391 id = revid_table[family][func]; 392 if (id == 0) 393 return 1; /* default */ 394 return id; 395 } 396 397 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) 398 { 399 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 400 401 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL 402 && func >= NVDIMM_INTEL_GET_SECURITY_STATE 403 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) 404 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); 405 return true; 406 } 407 408 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, 409 struct nd_cmd_pkg *call_pkg) 410 { 411 if (call_pkg) { 412 int i; 413 414 if (nfit_mem && nfit_mem->family != call_pkg->nd_family) 415 return -ENOTTY; 416 417 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) 418 if (call_pkg->nd_reserved2[i]) 419 return -EINVAL; 420 return call_pkg->nd_command; 421 } 422 423 /* In the !call_pkg case, bus commands == bus functions */ 424 if (!nfit_mem) 425 return cmd; 426 427 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ 428 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 429 return cmd; 430 431 /* 432 * Force function number validation to fail since 0 is never 433 * published as a valid function in dsm_mask. 434 */ 435 return 0; 436 } 437 438 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 439 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 440 { 441 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 442 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 443 union acpi_object in_obj, in_buf, *out_obj; 444 const struct nd_cmd_desc *desc = NULL; 445 struct device *dev = acpi_desc->dev; 446 struct nd_cmd_pkg *call_pkg = NULL; 447 const char *cmd_name, *dimm_name; 448 unsigned long cmd_mask, dsm_mask; 449 u32 offset, fw_status = 0; 450 acpi_handle handle; 451 const guid_t *guid; 452 int func, rc, i; 453 454 if (cmd_rc) 455 *cmd_rc = -EINVAL; 456 457 if (cmd == ND_CMD_CALL) 458 call_pkg = buf; 459 func = cmd_to_func(nfit_mem, cmd, call_pkg); 460 if (func < 0) 461 return func; 462 463 if (nvdimm) { 464 struct acpi_device *adev = nfit_mem->adev; 465 466 if (!adev) 467 return -ENOTTY; 468 469 dimm_name = nvdimm_name(nvdimm); 470 cmd_name = nvdimm_cmd_name(cmd); 471 cmd_mask = nvdimm_cmd_mask(nvdimm); 472 dsm_mask = nfit_mem->dsm_mask; 473 desc = nd_cmd_dimm_desc(cmd); 474 guid = to_nfit_uuid(nfit_mem->family); 475 handle = adev->handle; 476 } else { 477 struct acpi_device *adev = to_acpi_dev(acpi_desc); 478 479 cmd_name = nvdimm_bus_cmd_name(cmd); 480 cmd_mask = nd_desc->cmd_mask; 481 dsm_mask = nd_desc->bus_dsm_mask; 482 desc = nd_cmd_bus_desc(cmd); 483 guid = to_nfit_uuid(NFIT_DEV_BUS); 484 handle = adev->handle; 485 dimm_name = "bus"; 486 } 487 488 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 489 return -ENOTTY; 490 491 /* 492 * Check for a valid command. For ND_CMD_CALL, we also have to 493 * make sure that the DSM function is supported. 494 */ 495 if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask)) 496 return -ENOTTY; 497 else if (!test_bit(cmd, &cmd_mask)) 498 return -ENOTTY; 499 500 in_obj.type = ACPI_TYPE_PACKAGE; 501 in_obj.package.count = 1; 502 in_obj.package.elements = &in_buf; 503 in_buf.type = ACPI_TYPE_BUFFER; 504 in_buf.buffer.pointer = buf; 505 in_buf.buffer.length = 0; 506 507 /* libnvdimm has already validated the input envelope */ 508 for (i = 0; i < desc->in_num; i++) 509 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 510 i, buf); 511 512 if (call_pkg) { 513 /* skip over package wrapper */ 514 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 515 in_buf.buffer.length = call_pkg->nd_size_in; 516 } 517 518 dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n", 519 dimm_name, cmd, func, in_buf.buffer.length); 520 if (payload_dumpable(nvdimm, func)) 521 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 522 in_buf.buffer.pointer, 523 min_t(u32, 256, in_buf.buffer.length), true); 524 525 /* call the BIOS, prefer the named methods over _DSM if available */ 526 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE 527 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 528 out_obj = acpi_label_info(handle); 529 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA 530 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 531 struct nd_cmd_get_config_data_hdr *p = buf; 532 533 out_obj = acpi_label_read(handle, p->in_offset, p->in_length); 534 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA 535 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { 536 struct nd_cmd_set_config_hdr *p = buf; 537 538 out_obj = acpi_label_write(handle, p->in_offset, p->in_length, 539 p->in_buf); 540 } else { 541 u8 revid; 542 543 if (nvdimm) 544 revid = nfit_dsm_revid(nfit_mem->family, func); 545 else 546 revid = 1; 547 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 548 } 549 550 if (!out_obj) { 551 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); 552 return -EINVAL; 553 } 554 555 if (out_obj->type != ACPI_TYPE_BUFFER) { 556 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", 557 dimm_name, cmd_name, out_obj->type); 558 rc = -EINVAL; 559 goto out; 560 } 561 562 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, 563 cmd_name, out_obj->buffer.length); 564 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 565 out_obj->buffer.pointer, 566 min_t(u32, 128, out_obj->buffer.length), true); 567 568 if (call_pkg) { 569 call_pkg->nd_fw_size = out_obj->buffer.length; 570 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 571 out_obj->buffer.pointer, 572 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 573 574 ACPI_FREE(out_obj); 575 /* 576 * Need to support FW function w/o known size in advance. 577 * Caller can determine required size based upon nd_fw_size. 578 * If we return an error (like elsewhere) then caller wouldn't 579 * be able to rely upon data returned to make calculation. 580 */ 581 if (cmd_rc) 582 *cmd_rc = 0; 583 return 0; 584 } 585 586 for (i = 0, offset = 0; i < desc->out_num; i++) { 587 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 588 (u32 *) out_obj->buffer.pointer, 589 out_obj->buffer.length - offset); 590 591 if (offset + out_size > out_obj->buffer.length) { 592 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", 593 dimm_name, cmd_name, i); 594 break; 595 } 596 597 if (in_buf.buffer.length + offset + out_size > buf_len) { 598 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", 599 dimm_name, cmd_name, i); 600 rc = -ENXIO; 601 goto out; 602 } 603 memcpy(buf + in_buf.buffer.length + offset, 604 out_obj->buffer.pointer + offset, out_size); 605 offset += out_size; 606 } 607 608 /* 609 * Set fw_status for all the commands with a known format to be 610 * later interpreted by xlat_status(). 611 */ 612 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP 613 && cmd <= ND_CMD_CLEAR_ERROR) 614 || (nvdimm && cmd >= ND_CMD_SMART 615 && cmd <= ND_CMD_VENDOR))) 616 fw_status = *(u32 *) out_obj->buffer.pointer; 617 618 if (offset + in_buf.buffer.length < buf_len) { 619 if (i >= 1) { 620 /* 621 * status valid, return the number of bytes left 622 * unfilled in the output buffer 623 */ 624 rc = buf_len - offset - in_buf.buffer.length; 625 if (cmd_rc) 626 *cmd_rc = xlat_status(nvdimm, buf, cmd, 627 fw_status); 628 } else { 629 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 630 __func__, dimm_name, cmd_name, buf_len, 631 offset); 632 rc = -ENXIO; 633 } 634 } else { 635 rc = 0; 636 if (cmd_rc) 637 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 638 } 639 640 out: 641 ACPI_FREE(out_obj); 642 643 return rc; 644 } 645 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 646 647 static const char *spa_type_name(u16 type) 648 { 649 static const char *to_name[] = { 650 [NFIT_SPA_VOLATILE] = "volatile", 651 [NFIT_SPA_PM] = "pmem", 652 [NFIT_SPA_DCR] = "dimm-control-region", 653 [NFIT_SPA_BDW] = "block-data-window", 654 [NFIT_SPA_VDISK] = "volatile-disk", 655 [NFIT_SPA_VCD] = "volatile-cd", 656 [NFIT_SPA_PDISK] = "persistent-disk", 657 [NFIT_SPA_PCD] = "persistent-cd", 658 659 }; 660 661 if (type > NFIT_SPA_PCD) 662 return "unknown"; 663 664 return to_name[type]; 665 } 666 667 int nfit_spa_type(struct acpi_nfit_system_address *spa) 668 { 669 int i; 670 671 for (i = 0; i < NFIT_UUID_MAX; i++) 672 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 673 return i; 674 return -1; 675 } 676 677 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 678 struct nfit_table_prev *prev, 679 struct acpi_nfit_system_address *spa) 680 { 681 struct device *dev = acpi_desc->dev; 682 struct nfit_spa *nfit_spa; 683 684 if (spa->header.length != sizeof(*spa)) 685 return false; 686 687 list_for_each_entry(nfit_spa, &prev->spas, list) { 688 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { 689 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 690 return true; 691 } 692 } 693 694 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), 695 GFP_KERNEL); 696 if (!nfit_spa) 697 return false; 698 INIT_LIST_HEAD(&nfit_spa->list); 699 memcpy(nfit_spa->spa, spa, sizeof(*spa)); 700 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 701 dev_dbg(dev, "spa index: %d type: %s\n", 702 spa->range_index, 703 spa_type_name(nfit_spa_type(spa))); 704 return true; 705 } 706 707 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 708 struct nfit_table_prev *prev, 709 struct acpi_nfit_memory_map *memdev) 710 { 711 struct device *dev = acpi_desc->dev; 712 struct nfit_memdev *nfit_memdev; 713 714 if (memdev->header.length != sizeof(*memdev)) 715 return false; 716 717 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 718 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 719 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 720 return true; 721 } 722 723 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 724 GFP_KERNEL); 725 if (!nfit_memdev) 726 return false; 727 INIT_LIST_HEAD(&nfit_memdev->list); 728 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 729 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 730 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 731 memdev->device_handle, memdev->range_index, 732 memdev->region_index, memdev->flags); 733 return true; 734 } 735 736 int nfit_get_smbios_id(u32 device_handle, u16 *flags) 737 { 738 struct acpi_nfit_memory_map *memdev; 739 struct acpi_nfit_desc *acpi_desc; 740 struct nfit_mem *nfit_mem; 741 u16 physical_id; 742 743 mutex_lock(&acpi_desc_lock); 744 list_for_each_entry(acpi_desc, &acpi_descs, list) { 745 mutex_lock(&acpi_desc->init_mutex); 746 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 747 memdev = __to_nfit_memdev(nfit_mem); 748 if (memdev->device_handle == device_handle) { 749 *flags = memdev->flags; 750 physical_id = memdev->physical_id; 751 mutex_unlock(&acpi_desc->init_mutex); 752 mutex_unlock(&acpi_desc_lock); 753 return physical_id; 754 } 755 } 756 mutex_unlock(&acpi_desc->init_mutex); 757 } 758 mutex_unlock(&acpi_desc_lock); 759 760 return -ENODEV; 761 } 762 EXPORT_SYMBOL_GPL(nfit_get_smbios_id); 763 764 /* 765 * An implementation may provide a truncated control region if no block windows 766 * are defined. 767 */ 768 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 769 { 770 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 771 window_size)) 772 return 0; 773 if (dcr->windows) 774 return sizeof(*dcr); 775 return offsetof(struct acpi_nfit_control_region, window_size); 776 } 777 778 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 779 struct nfit_table_prev *prev, 780 struct acpi_nfit_control_region *dcr) 781 { 782 struct device *dev = acpi_desc->dev; 783 struct nfit_dcr *nfit_dcr; 784 785 if (!sizeof_dcr(dcr)) 786 return false; 787 788 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 789 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 790 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 791 return true; 792 } 793 794 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 795 GFP_KERNEL); 796 if (!nfit_dcr) 797 return false; 798 INIT_LIST_HEAD(&nfit_dcr->list); 799 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 800 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 801 dev_dbg(dev, "dcr index: %d windows: %d\n", 802 dcr->region_index, dcr->windows); 803 return true; 804 } 805 806 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 807 struct nfit_table_prev *prev, 808 struct acpi_nfit_data_region *bdw) 809 { 810 struct device *dev = acpi_desc->dev; 811 struct nfit_bdw *nfit_bdw; 812 813 if (bdw->header.length != sizeof(*bdw)) 814 return false; 815 list_for_each_entry(nfit_bdw, &prev->bdws, list) 816 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 817 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 818 return true; 819 } 820 821 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 822 GFP_KERNEL); 823 if (!nfit_bdw) 824 return false; 825 INIT_LIST_HEAD(&nfit_bdw->list); 826 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 827 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 828 dev_dbg(dev, "bdw dcr: %d windows: %d\n", 829 bdw->region_index, bdw->windows); 830 return true; 831 } 832 833 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 834 { 835 if (idt->header.length < sizeof(*idt)) 836 return 0; 837 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 838 } 839 840 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 841 struct nfit_table_prev *prev, 842 struct acpi_nfit_interleave *idt) 843 { 844 struct device *dev = acpi_desc->dev; 845 struct nfit_idt *nfit_idt; 846 847 if (!sizeof_idt(idt)) 848 return false; 849 850 list_for_each_entry(nfit_idt, &prev->idts, list) { 851 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 852 continue; 853 854 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 855 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 856 return true; 857 } 858 } 859 860 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 861 GFP_KERNEL); 862 if (!nfit_idt) 863 return false; 864 INIT_LIST_HEAD(&nfit_idt->list); 865 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 866 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 867 dev_dbg(dev, "idt index: %d num_lines: %d\n", 868 idt->interleave_index, idt->line_count); 869 return true; 870 } 871 872 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 873 { 874 if (flush->header.length < sizeof(*flush)) 875 return 0; 876 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 877 } 878 879 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 880 struct nfit_table_prev *prev, 881 struct acpi_nfit_flush_address *flush) 882 { 883 struct device *dev = acpi_desc->dev; 884 struct nfit_flush *nfit_flush; 885 886 if (!sizeof_flush(flush)) 887 return false; 888 889 list_for_each_entry(nfit_flush, &prev->flushes, list) { 890 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 891 continue; 892 893 if (memcmp(nfit_flush->flush, flush, 894 sizeof_flush(flush)) == 0) { 895 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 896 return true; 897 } 898 } 899 900 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 901 + sizeof_flush(flush), GFP_KERNEL); 902 if (!nfit_flush) 903 return false; 904 INIT_LIST_HEAD(&nfit_flush->list); 905 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 906 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 907 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", 908 flush->device_handle, flush->hint_count); 909 return true; 910 } 911 912 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, 913 struct acpi_nfit_capabilities *pcap) 914 { 915 struct device *dev = acpi_desc->dev; 916 u32 mask; 917 918 mask = (1 << (pcap->highest_capability + 1)) - 1; 919 acpi_desc->platform_cap = pcap->capabilities & mask; 920 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); 921 return true; 922 } 923 924 static void *add_table(struct acpi_nfit_desc *acpi_desc, 925 struct nfit_table_prev *prev, void *table, const void *end) 926 { 927 struct device *dev = acpi_desc->dev; 928 struct acpi_nfit_header *hdr; 929 void *err = ERR_PTR(-ENOMEM); 930 931 if (table >= end) 932 return NULL; 933 934 hdr = table; 935 if (!hdr->length) { 936 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 937 hdr->type); 938 return NULL; 939 } 940 941 switch (hdr->type) { 942 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 943 if (!add_spa(acpi_desc, prev, table)) 944 return err; 945 break; 946 case ACPI_NFIT_TYPE_MEMORY_MAP: 947 if (!add_memdev(acpi_desc, prev, table)) 948 return err; 949 break; 950 case ACPI_NFIT_TYPE_CONTROL_REGION: 951 if (!add_dcr(acpi_desc, prev, table)) 952 return err; 953 break; 954 case ACPI_NFIT_TYPE_DATA_REGION: 955 if (!add_bdw(acpi_desc, prev, table)) 956 return err; 957 break; 958 case ACPI_NFIT_TYPE_INTERLEAVE: 959 if (!add_idt(acpi_desc, prev, table)) 960 return err; 961 break; 962 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 963 if (!add_flush(acpi_desc, prev, table)) 964 return err; 965 break; 966 case ACPI_NFIT_TYPE_SMBIOS: 967 dev_dbg(dev, "smbios\n"); 968 break; 969 case ACPI_NFIT_TYPE_CAPABILITIES: 970 if (!add_platform_cap(acpi_desc, table)) 971 return err; 972 break; 973 default: 974 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 975 break; 976 } 977 978 return table + hdr->length; 979 } 980 981 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 982 struct nfit_mem *nfit_mem) 983 { 984 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 985 u16 dcr = nfit_mem->dcr->region_index; 986 struct nfit_spa *nfit_spa; 987 988 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 989 u16 range_index = nfit_spa->spa->range_index; 990 int type = nfit_spa_type(nfit_spa->spa); 991 struct nfit_memdev *nfit_memdev; 992 993 if (type != NFIT_SPA_BDW) 994 continue; 995 996 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 997 if (nfit_memdev->memdev->range_index != range_index) 998 continue; 999 if (nfit_memdev->memdev->device_handle != device_handle) 1000 continue; 1001 if (nfit_memdev->memdev->region_index != dcr) 1002 continue; 1003 1004 nfit_mem->spa_bdw = nfit_spa->spa; 1005 return; 1006 } 1007 } 1008 1009 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 1010 nfit_mem->spa_dcr->range_index); 1011 nfit_mem->bdw = NULL; 1012 } 1013 1014 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 1015 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 1016 { 1017 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 1018 struct nfit_memdev *nfit_memdev; 1019 struct nfit_bdw *nfit_bdw; 1020 struct nfit_idt *nfit_idt; 1021 u16 idt_idx, range_index; 1022 1023 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 1024 if (nfit_bdw->bdw->region_index != dcr) 1025 continue; 1026 nfit_mem->bdw = nfit_bdw->bdw; 1027 break; 1028 } 1029 1030 if (!nfit_mem->bdw) 1031 return; 1032 1033 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 1034 1035 if (!nfit_mem->spa_bdw) 1036 return; 1037 1038 range_index = nfit_mem->spa_bdw->range_index; 1039 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1040 if (nfit_memdev->memdev->range_index != range_index || 1041 nfit_memdev->memdev->region_index != dcr) 1042 continue; 1043 nfit_mem->memdev_bdw = nfit_memdev->memdev; 1044 idt_idx = nfit_memdev->memdev->interleave_index; 1045 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1046 if (nfit_idt->idt->interleave_index != idt_idx) 1047 continue; 1048 nfit_mem->idt_bdw = nfit_idt->idt; 1049 break; 1050 } 1051 break; 1052 } 1053 } 1054 1055 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 1056 struct acpi_nfit_system_address *spa) 1057 { 1058 struct nfit_mem *nfit_mem, *found; 1059 struct nfit_memdev *nfit_memdev; 1060 int type = spa ? nfit_spa_type(spa) : 0; 1061 1062 switch (type) { 1063 case NFIT_SPA_DCR: 1064 case NFIT_SPA_PM: 1065 break; 1066 default: 1067 if (spa) 1068 return 0; 1069 } 1070 1071 /* 1072 * This loop runs in two modes, when a dimm is mapped the loop 1073 * adds memdev associations to an existing dimm, or creates a 1074 * dimm. In the unmapped dimm case this loop sweeps for memdev 1075 * instances with an invalid / zero range_index and adds those 1076 * dimms without spa associations. 1077 */ 1078 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1079 struct nfit_flush *nfit_flush; 1080 struct nfit_dcr *nfit_dcr; 1081 u32 device_handle; 1082 u16 dcr; 1083 1084 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 1085 continue; 1086 if (!spa && nfit_memdev->memdev->range_index) 1087 continue; 1088 found = NULL; 1089 dcr = nfit_memdev->memdev->region_index; 1090 device_handle = nfit_memdev->memdev->device_handle; 1091 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1092 if (__to_nfit_memdev(nfit_mem)->device_handle 1093 == device_handle) { 1094 found = nfit_mem; 1095 break; 1096 } 1097 1098 if (found) 1099 nfit_mem = found; 1100 else { 1101 nfit_mem = devm_kzalloc(acpi_desc->dev, 1102 sizeof(*nfit_mem), GFP_KERNEL); 1103 if (!nfit_mem) 1104 return -ENOMEM; 1105 INIT_LIST_HEAD(&nfit_mem->list); 1106 nfit_mem->acpi_desc = acpi_desc; 1107 list_add(&nfit_mem->list, &acpi_desc->dimms); 1108 } 1109 1110 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1111 if (nfit_dcr->dcr->region_index != dcr) 1112 continue; 1113 /* 1114 * Record the control region for the dimm. For 1115 * the ACPI 6.1 case, where there are separate 1116 * control regions for the pmem vs blk 1117 * interfaces, be sure to record the extended 1118 * blk details. 1119 */ 1120 if (!nfit_mem->dcr) 1121 nfit_mem->dcr = nfit_dcr->dcr; 1122 else if (nfit_mem->dcr->windows == 0 1123 && nfit_dcr->dcr->windows) 1124 nfit_mem->dcr = nfit_dcr->dcr; 1125 break; 1126 } 1127 1128 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 1129 struct acpi_nfit_flush_address *flush; 1130 u16 i; 1131 1132 if (nfit_flush->flush->device_handle != device_handle) 1133 continue; 1134 nfit_mem->nfit_flush = nfit_flush; 1135 flush = nfit_flush->flush; 1136 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, 1137 flush->hint_count, 1138 sizeof(struct resource), 1139 GFP_KERNEL); 1140 if (!nfit_mem->flush_wpq) 1141 return -ENOMEM; 1142 for (i = 0; i < flush->hint_count; i++) { 1143 struct resource *res = &nfit_mem->flush_wpq[i]; 1144 1145 res->start = flush->hint_address[i]; 1146 res->end = res->start + 8 - 1; 1147 } 1148 break; 1149 } 1150 1151 if (dcr && !nfit_mem->dcr) { 1152 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 1153 spa->range_index, dcr); 1154 return -ENODEV; 1155 } 1156 1157 if (type == NFIT_SPA_DCR) { 1158 struct nfit_idt *nfit_idt; 1159 u16 idt_idx; 1160 1161 /* multiple dimms may share a SPA when interleaved */ 1162 nfit_mem->spa_dcr = spa; 1163 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1164 idt_idx = nfit_memdev->memdev->interleave_index; 1165 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1166 if (nfit_idt->idt->interleave_index != idt_idx) 1167 continue; 1168 nfit_mem->idt_dcr = nfit_idt->idt; 1169 break; 1170 } 1171 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 1172 } else if (type == NFIT_SPA_PM) { 1173 /* 1174 * A single dimm may belong to multiple SPA-PM 1175 * ranges, record at least one in addition to 1176 * any SPA-DCR range. 1177 */ 1178 nfit_mem->memdev_pmem = nfit_memdev->memdev; 1179 } else 1180 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1181 } 1182 1183 return 0; 1184 } 1185 1186 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) 1187 { 1188 struct nfit_mem *a = container_of(_a, typeof(*a), list); 1189 struct nfit_mem *b = container_of(_b, typeof(*b), list); 1190 u32 handleA, handleB; 1191 1192 handleA = __to_nfit_memdev(a)->device_handle; 1193 handleB = __to_nfit_memdev(b)->device_handle; 1194 if (handleA < handleB) 1195 return -1; 1196 else if (handleA > handleB) 1197 return 1; 1198 return 0; 1199 } 1200 1201 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 1202 { 1203 struct nfit_spa *nfit_spa; 1204 int rc; 1205 1206 1207 /* 1208 * For each SPA-DCR or SPA-PMEM address range find its 1209 * corresponding MEMDEV(s). From each MEMDEV find the 1210 * corresponding DCR. Then, if we're operating on a SPA-DCR, 1211 * try to find a SPA-BDW and a corresponding BDW that references 1212 * the DCR. Throw it all into an nfit_mem object. Note, that 1213 * BDWs are optional. 1214 */ 1215 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1216 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 1217 if (rc) 1218 return rc; 1219 } 1220 1221 /* 1222 * If a DIMM has failed to be mapped into SPA there will be no 1223 * SPA entries above. Find and register all the unmapped DIMMs 1224 * for reporting and recovery purposes. 1225 */ 1226 rc = __nfit_mem_init(acpi_desc, NULL); 1227 if (rc) 1228 return rc; 1229 1230 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 1231 1232 return 0; 1233 } 1234 1235 static ssize_t bus_dsm_mask_show(struct device *dev, 1236 struct device_attribute *attr, char *buf) 1237 { 1238 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1239 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1240 1241 return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask); 1242 } 1243 static struct device_attribute dev_attr_bus_dsm_mask = 1244 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 1245 1246 static ssize_t revision_show(struct device *dev, 1247 struct device_attribute *attr, char *buf) 1248 { 1249 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1250 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1251 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1252 1253 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 1254 } 1255 static DEVICE_ATTR_RO(revision); 1256 1257 static ssize_t hw_error_scrub_show(struct device *dev, 1258 struct device_attribute *attr, char *buf) 1259 { 1260 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1261 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1262 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1263 1264 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 1265 } 1266 1267 /* 1268 * The 'hw_error_scrub' attribute can have the following values written to it: 1269 * '0': Switch to the default mode where an exception will only insert 1270 * the address of the memory error into the poison and badblocks lists. 1271 * '1': Enable a full scrub to happen if an exception for a memory error is 1272 * received. 1273 */ 1274 static ssize_t hw_error_scrub_store(struct device *dev, 1275 struct device_attribute *attr, const char *buf, size_t size) 1276 { 1277 struct nvdimm_bus_descriptor *nd_desc; 1278 ssize_t rc; 1279 long val; 1280 1281 rc = kstrtol(buf, 0, &val); 1282 if (rc) 1283 return rc; 1284 1285 nfit_device_lock(dev); 1286 nd_desc = dev_get_drvdata(dev); 1287 if (nd_desc) { 1288 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1289 1290 switch (val) { 1291 case HW_ERROR_SCRUB_ON: 1292 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 1293 break; 1294 case HW_ERROR_SCRUB_OFF: 1295 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 1296 break; 1297 default: 1298 rc = -EINVAL; 1299 break; 1300 } 1301 } 1302 nfit_device_unlock(dev); 1303 if (rc) 1304 return rc; 1305 return size; 1306 } 1307 static DEVICE_ATTR_RW(hw_error_scrub); 1308 1309 /* 1310 * This shows the number of full Address Range Scrubs that have been 1311 * completed since driver load time. Userspace can wait on this using 1312 * select/poll etc. A '+' at the end indicates an ARS is in progress 1313 */ 1314 static ssize_t scrub_show(struct device *dev, 1315 struct device_attribute *attr, char *buf) 1316 { 1317 struct nvdimm_bus_descriptor *nd_desc; 1318 struct acpi_nfit_desc *acpi_desc; 1319 ssize_t rc = -ENXIO; 1320 bool busy; 1321 1322 nfit_device_lock(dev); 1323 nd_desc = dev_get_drvdata(dev); 1324 if (!nd_desc) { 1325 device_unlock(dev); 1326 return rc; 1327 } 1328 acpi_desc = to_acpi_desc(nd_desc); 1329 1330 mutex_lock(&acpi_desc->init_mutex); 1331 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) 1332 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 1333 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); 1334 /* Allow an admin to poll the busy state at a higher rate */ 1335 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, 1336 &acpi_desc->scrub_flags)) { 1337 acpi_desc->scrub_tmo = 1; 1338 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); 1339 } 1340 1341 mutex_unlock(&acpi_desc->init_mutex); 1342 nfit_device_unlock(dev); 1343 return rc; 1344 } 1345 1346 static ssize_t scrub_store(struct device *dev, 1347 struct device_attribute *attr, const char *buf, size_t size) 1348 { 1349 struct nvdimm_bus_descriptor *nd_desc; 1350 ssize_t rc; 1351 long val; 1352 1353 rc = kstrtol(buf, 0, &val); 1354 if (rc) 1355 return rc; 1356 if (val != 1) 1357 return -EINVAL; 1358 1359 nfit_device_lock(dev); 1360 nd_desc = dev_get_drvdata(dev); 1361 if (nd_desc) { 1362 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1363 1364 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 1365 } 1366 nfit_device_unlock(dev); 1367 if (rc) 1368 return rc; 1369 return size; 1370 } 1371 static DEVICE_ATTR_RW(scrub); 1372 1373 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1374 { 1375 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1376 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1377 | 1 << ND_CMD_ARS_STATUS; 1378 1379 return (nd_desc->cmd_mask & mask) == mask; 1380 } 1381 1382 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1383 { 1384 struct device *dev = container_of(kobj, struct device, kobj); 1385 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1386 1387 if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus)) 1388 return 0; 1389 return a->mode; 1390 } 1391 1392 static struct attribute *acpi_nfit_attributes[] = { 1393 &dev_attr_revision.attr, 1394 &dev_attr_scrub.attr, 1395 &dev_attr_hw_error_scrub.attr, 1396 &dev_attr_bus_dsm_mask.attr, 1397 NULL, 1398 }; 1399 1400 static const struct attribute_group acpi_nfit_attribute_group = { 1401 .name = "nfit", 1402 .attrs = acpi_nfit_attributes, 1403 .is_visible = nfit_visible, 1404 }; 1405 1406 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1407 &nvdimm_bus_attribute_group, 1408 &acpi_nfit_attribute_group, 1409 NULL, 1410 }; 1411 1412 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1413 { 1414 struct nvdimm *nvdimm = to_nvdimm(dev); 1415 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1416 1417 return __to_nfit_memdev(nfit_mem); 1418 } 1419 1420 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1421 { 1422 struct nvdimm *nvdimm = to_nvdimm(dev); 1423 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1424 1425 return nfit_mem->dcr; 1426 } 1427 1428 static ssize_t handle_show(struct device *dev, 1429 struct device_attribute *attr, char *buf) 1430 { 1431 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1432 1433 return sprintf(buf, "%#x\n", memdev->device_handle); 1434 } 1435 static DEVICE_ATTR_RO(handle); 1436 1437 static ssize_t phys_id_show(struct device *dev, 1438 struct device_attribute *attr, char *buf) 1439 { 1440 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1441 1442 return sprintf(buf, "%#x\n", memdev->physical_id); 1443 } 1444 static DEVICE_ATTR_RO(phys_id); 1445 1446 static ssize_t vendor_show(struct device *dev, 1447 struct device_attribute *attr, char *buf) 1448 { 1449 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1450 1451 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1452 } 1453 static DEVICE_ATTR_RO(vendor); 1454 1455 static ssize_t rev_id_show(struct device *dev, 1456 struct device_attribute *attr, char *buf) 1457 { 1458 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1459 1460 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1461 } 1462 static DEVICE_ATTR_RO(rev_id); 1463 1464 static ssize_t device_show(struct device *dev, 1465 struct device_attribute *attr, char *buf) 1466 { 1467 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1468 1469 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1470 } 1471 static DEVICE_ATTR_RO(device); 1472 1473 static ssize_t subsystem_vendor_show(struct device *dev, 1474 struct device_attribute *attr, char *buf) 1475 { 1476 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1477 1478 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1479 } 1480 static DEVICE_ATTR_RO(subsystem_vendor); 1481 1482 static ssize_t subsystem_rev_id_show(struct device *dev, 1483 struct device_attribute *attr, char *buf) 1484 { 1485 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1486 1487 return sprintf(buf, "0x%04x\n", 1488 be16_to_cpu(dcr->subsystem_revision_id)); 1489 } 1490 static DEVICE_ATTR_RO(subsystem_rev_id); 1491 1492 static ssize_t subsystem_device_show(struct device *dev, 1493 struct device_attribute *attr, char *buf) 1494 { 1495 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1496 1497 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1498 } 1499 static DEVICE_ATTR_RO(subsystem_device); 1500 1501 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1502 { 1503 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1504 int formats = 0; 1505 1506 if (nfit_mem->memdev_pmem) 1507 formats++; 1508 if (nfit_mem->memdev_bdw) 1509 formats++; 1510 return formats; 1511 } 1512 1513 static ssize_t format_show(struct device *dev, 1514 struct device_attribute *attr, char *buf) 1515 { 1516 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1517 1518 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1519 } 1520 static DEVICE_ATTR_RO(format); 1521 1522 static ssize_t format1_show(struct device *dev, 1523 struct device_attribute *attr, char *buf) 1524 { 1525 u32 handle; 1526 ssize_t rc = -ENXIO; 1527 struct nfit_mem *nfit_mem; 1528 struct nfit_memdev *nfit_memdev; 1529 struct acpi_nfit_desc *acpi_desc; 1530 struct nvdimm *nvdimm = to_nvdimm(dev); 1531 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1532 1533 nfit_mem = nvdimm_provider_data(nvdimm); 1534 acpi_desc = nfit_mem->acpi_desc; 1535 handle = to_nfit_memdev(dev)->device_handle; 1536 1537 /* assumes DIMMs have at most 2 published interface codes */ 1538 mutex_lock(&acpi_desc->init_mutex); 1539 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1540 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1541 struct nfit_dcr *nfit_dcr; 1542 1543 if (memdev->device_handle != handle) 1544 continue; 1545 1546 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1547 if (nfit_dcr->dcr->region_index != memdev->region_index) 1548 continue; 1549 if (nfit_dcr->dcr->code == dcr->code) 1550 continue; 1551 rc = sprintf(buf, "0x%04x\n", 1552 le16_to_cpu(nfit_dcr->dcr->code)); 1553 break; 1554 } 1555 if (rc != ENXIO) 1556 break; 1557 } 1558 mutex_unlock(&acpi_desc->init_mutex); 1559 return rc; 1560 } 1561 static DEVICE_ATTR_RO(format1); 1562 1563 static ssize_t formats_show(struct device *dev, 1564 struct device_attribute *attr, char *buf) 1565 { 1566 struct nvdimm *nvdimm = to_nvdimm(dev); 1567 1568 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1569 } 1570 static DEVICE_ATTR_RO(formats); 1571 1572 static ssize_t serial_show(struct device *dev, 1573 struct device_attribute *attr, char *buf) 1574 { 1575 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1576 1577 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1578 } 1579 static DEVICE_ATTR_RO(serial); 1580 1581 static ssize_t family_show(struct device *dev, 1582 struct device_attribute *attr, char *buf) 1583 { 1584 struct nvdimm *nvdimm = to_nvdimm(dev); 1585 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1586 1587 if (nfit_mem->family < 0) 1588 return -ENXIO; 1589 return sprintf(buf, "%d\n", nfit_mem->family); 1590 } 1591 static DEVICE_ATTR_RO(family); 1592 1593 static ssize_t dsm_mask_show(struct device *dev, 1594 struct device_attribute *attr, char *buf) 1595 { 1596 struct nvdimm *nvdimm = to_nvdimm(dev); 1597 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1598 1599 if (nfit_mem->family < 0) 1600 return -ENXIO; 1601 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1602 } 1603 static DEVICE_ATTR_RO(dsm_mask); 1604 1605 static ssize_t flags_show(struct device *dev, 1606 struct device_attribute *attr, char *buf) 1607 { 1608 struct nvdimm *nvdimm = to_nvdimm(dev); 1609 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1610 u16 flags = __to_nfit_memdev(nfit_mem)->flags; 1611 1612 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) 1613 flags |= ACPI_NFIT_MEM_FLUSH_FAILED; 1614 1615 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1616 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1617 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1618 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1619 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1620 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1621 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1622 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1623 } 1624 static DEVICE_ATTR_RO(flags); 1625 1626 static ssize_t id_show(struct device *dev, 1627 struct device_attribute *attr, char *buf) 1628 { 1629 struct nvdimm *nvdimm = to_nvdimm(dev); 1630 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1631 1632 return sprintf(buf, "%s\n", nfit_mem->id); 1633 } 1634 static DEVICE_ATTR_RO(id); 1635 1636 static ssize_t dirty_shutdown_show(struct device *dev, 1637 struct device_attribute *attr, char *buf) 1638 { 1639 struct nvdimm *nvdimm = to_nvdimm(dev); 1640 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1641 1642 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); 1643 } 1644 static DEVICE_ATTR_RO(dirty_shutdown); 1645 1646 static struct attribute *acpi_nfit_dimm_attributes[] = { 1647 &dev_attr_handle.attr, 1648 &dev_attr_phys_id.attr, 1649 &dev_attr_vendor.attr, 1650 &dev_attr_device.attr, 1651 &dev_attr_rev_id.attr, 1652 &dev_attr_subsystem_vendor.attr, 1653 &dev_attr_subsystem_device.attr, 1654 &dev_attr_subsystem_rev_id.attr, 1655 &dev_attr_format.attr, 1656 &dev_attr_formats.attr, 1657 &dev_attr_format1.attr, 1658 &dev_attr_serial.attr, 1659 &dev_attr_flags.attr, 1660 &dev_attr_id.attr, 1661 &dev_attr_family.attr, 1662 &dev_attr_dsm_mask.attr, 1663 &dev_attr_dirty_shutdown.attr, 1664 NULL, 1665 }; 1666 1667 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1668 struct attribute *a, int n) 1669 { 1670 struct device *dev = container_of(kobj, struct device, kobj); 1671 struct nvdimm *nvdimm = to_nvdimm(dev); 1672 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1673 1674 if (!to_nfit_dcr(dev)) { 1675 /* Without a dcr only the memdev attributes can be surfaced */ 1676 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1677 || a == &dev_attr_flags.attr 1678 || a == &dev_attr_family.attr 1679 || a == &dev_attr_dsm_mask.attr) 1680 return a->mode; 1681 return 0; 1682 } 1683 1684 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1685 return 0; 1686 1687 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) 1688 && a == &dev_attr_dirty_shutdown.attr) 1689 return 0; 1690 1691 return a->mode; 1692 } 1693 1694 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1695 .name = "nfit", 1696 .attrs = acpi_nfit_dimm_attributes, 1697 .is_visible = acpi_nfit_dimm_attr_visible, 1698 }; 1699 1700 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1701 &nvdimm_attribute_group, 1702 &nd_device_attribute_group, 1703 &acpi_nfit_dimm_attribute_group, 1704 NULL, 1705 }; 1706 1707 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1708 u32 device_handle) 1709 { 1710 struct nfit_mem *nfit_mem; 1711 1712 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1713 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1714 return nfit_mem->nvdimm; 1715 1716 return NULL; 1717 } 1718 1719 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1720 { 1721 struct nfit_mem *nfit_mem; 1722 struct acpi_nfit_desc *acpi_desc; 1723 1724 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), 1725 event); 1726 1727 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1728 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1729 event); 1730 return; 1731 } 1732 1733 acpi_desc = dev_get_drvdata(dev->parent); 1734 if (!acpi_desc) 1735 return; 1736 1737 /* 1738 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1739 * is still valid. 1740 */ 1741 nfit_mem = dev_get_drvdata(dev); 1742 if (nfit_mem && nfit_mem->flags_attr) 1743 sysfs_notify_dirent(nfit_mem->flags_attr); 1744 } 1745 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1746 1747 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1748 { 1749 struct acpi_device *adev = data; 1750 struct device *dev = &adev->dev; 1751 1752 nfit_device_lock(dev->parent); 1753 __acpi_nvdimm_notify(dev, event); 1754 nfit_device_unlock(dev->parent); 1755 } 1756 1757 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) 1758 { 1759 acpi_handle handle; 1760 acpi_status status; 1761 1762 status = acpi_get_handle(adev->handle, method, &handle); 1763 1764 if (ACPI_SUCCESS(status)) 1765 return true; 1766 return false; 1767 } 1768 1769 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) 1770 { 1771 struct device *dev = &nfit_mem->adev->dev; 1772 struct nd_intel_smart smart = { 0 }; 1773 union acpi_object in_buf = { 1774 .buffer.type = ACPI_TYPE_BUFFER, 1775 .buffer.length = 0, 1776 }; 1777 union acpi_object in_obj = { 1778 .package.type = ACPI_TYPE_PACKAGE, 1779 .package.count = 1, 1780 .package.elements = &in_buf, 1781 }; 1782 const u8 func = ND_INTEL_SMART; 1783 const guid_t *guid = to_nfit_uuid(nfit_mem->family); 1784 u8 revid = nfit_dsm_revid(nfit_mem->family, func); 1785 struct acpi_device *adev = nfit_mem->adev; 1786 acpi_handle handle = adev->handle; 1787 union acpi_object *out_obj; 1788 1789 if ((nfit_mem->dsm_mask & (1 << func)) == 0) 1790 return; 1791 1792 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 1793 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER 1794 || out_obj->buffer.length < sizeof(smart)) { 1795 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", 1796 dev_name(dev)); 1797 ACPI_FREE(out_obj); 1798 return; 1799 } 1800 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); 1801 ACPI_FREE(out_obj); 1802 1803 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { 1804 if (smart.shutdown_state) 1805 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); 1806 } 1807 1808 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { 1809 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); 1810 nfit_mem->dirty_shutdown = smart.shutdown_count; 1811 } 1812 } 1813 1814 static void populate_shutdown_status(struct nfit_mem *nfit_mem) 1815 { 1816 /* 1817 * For DIMMs that provide a dynamic facility to retrieve a 1818 * dirty-shutdown status and/or a dirty-shutdown count, cache 1819 * these values in nfit_mem. 1820 */ 1821 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1822 nfit_intel_shutdown_status(nfit_mem); 1823 } 1824 1825 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1826 struct nfit_mem *nfit_mem, u32 device_handle) 1827 { 1828 struct acpi_device *adev, *adev_dimm; 1829 struct device *dev = acpi_desc->dev; 1830 unsigned long dsm_mask, label_mask; 1831 const guid_t *guid; 1832 int i; 1833 int family = -1; 1834 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 1835 1836 /* nfit test assumes 1:1 relationship between commands and dsms */ 1837 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1838 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1839 1840 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1841 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", 1842 be16_to_cpu(dcr->vendor_id), 1843 dcr->manufacturing_location, 1844 be16_to_cpu(dcr->manufacturing_date), 1845 be32_to_cpu(dcr->serial_number)); 1846 else 1847 sprintf(nfit_mem->id, "%04x-%08x", 1848 be16_to_cpu(dcr->vendor_id), 1849 be32_to_cpu(dcr->serial_number)); 1850 1851 adev = to_acpi_dev(acpi_desc); 1852 if (!adev) { 1853 /* unit test case */ 1854 populate_shutdown_status(nfit_mem); 1855 return 0; 1856 } 1857 1858 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1859 nfit_mem->adev = adev_dimm; 1860 if (!adev_dimm) { 1861 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1862 device_handle); 1863 return force_enable_dimms ? 0 : -ENODEV; 1864 } 1865 1866 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1867 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1868 dev_err(dev, "%s: notification registration failed\n", 1869 dev_name(&adev_dimm->dev)); 1870 return -ENXIO; 1871 } 1872 /* 1873 * Record nfit_mem for the notification path to track back to 1874 * the nfit sysfs attributes for this dimm device object. 1875 */ 1876 dev_set_drvdata(&adev_dimm->dev, nfit_mem); 1877 1878 /* 1879 * There are 4 "legacy" NVDIMM command sets 1880 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before 1881 * an EFI working group was established to constrain this 1882 * proliferation. The nfit driver probes for the supported command 1883 * set by GUID. Note, if you're a platform developer looking to add 1884 * a new command set to this probe, consider using an existing set, 1885 * or otherwise seek approval to publish the command set at 1886 * http://www.uefi.org/RFIC_LIST. 1887 * 1888 * Note, that checking for function0 (bit0) tells us if any commands 1889 * are reachable through this GUID. 1890 */ 1891 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) 1892 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) 1893 if (family < 0 || i == default_dsm_family) 1894 family = i; 1895 1896 /* limit the supported commands to those that are publicly documented */ 1897 nfit_mem->family = family; 1898 if (override_dsm_mask && !disable_vendor_specific) 1899 dsm_mask = override_dsm_mask; 1900 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1901 dsm_mask = NVDIMM_INTEL_CMDMASK; 1902 if (disable_vendor_specific) 1903 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1904 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1905 dsm_mask = 0x1c3c76; 1906 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1907 dsm_mask = 0x1fe; 1908 if (disable_vendor_specific) 1909 dsm_mask &= ~(1 << 8); 1910 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1911 dsm_mask = 0xffffffff; 1912 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { 1913 dsm_mask = 0x1f; 1914 } else { 1915 dev_dbg(dev, "unknown dimm command family\n"); 1916 nfit_mem->family = -1; 1917 /* DSMs are optional, continue loading the driver... */ 1918 return 0; 1919 } 1920 1921 /* 1922 * Function 0 is the command interrogation function, don't 1923 * export it to potential userspace use, and enable it to be 1924 * used as an error value in acpi_nfit_ctl(). 1925 */ 1926 dsm_mask &= ~1UL; 1927 1928 guid = to_nfit_uuid(nfit_mem->family); 1929 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1930 if (acpi_check_dsm(adev_dimm->handle, guid, 1931 nfit_dsm_revid(nfit_mem->family, i), 1932 1ULL << i)) 1933 set_bit(i, &nfit_mem->dsm_mask); 1934 1935 /* 1936 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present 1937 * due to their better semantics handling locked capacity. 1938 */ 1939 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA 1940 | 1 << ND_CMD_SET_CONFIG_DATA; 1941 if (family == NVDIMM_FAMILY_INTEL 1942 && (dsm_mask & label_mask) == label_mask) 1943 /* skip _LS{I,R,W} enabling */; 1944 else { 1945 if (acpi_nvdimm_has_method(adev_dimm, "_LSI") 1946 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { 1947 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); 1948 set_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1949 } 1950 1951 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 1952 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { 1953 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); 1954 set_bit(NFIT_MEM_LSW, &nfit_mem->flags); 1955 } 1956 1957 /* 1958 * Quirk read-only label configurations to preserve 1959 * access to label-less namespaces by default. 1960 */ 1961 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 1962 && !force_labels) { 1963 dev_dbg(dev, "%s: No _LSW, disable labels\n", 1964 dev_name(&adev_dimm->dev)); 1965 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1966 } else 1967 dev_dbg(dev, "%s: Force enable labels\n", 1968 dev_name(&adev_dimm->dev)); 1969 } 1970 1971 populate_shutdown_status(nfit_mem); 1972 1973 return 0; 1974 } 1975 1976 static void shutdown_dimm_notify(void *data) 1977 { 1978 struct acpi_nfit_desc *acpi_desc = data; 1979 struct nfit_mem *nfit_mem; 1980 1981 mutex_lock(&acpi_desc->init_mutex); 1982 /* 1983 * Clear out the nfit_mem->flags_attr and shut down dimm event 1984 * notifications. 1985 */ 1986 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 1987 struct acpi_device *adev_dimm = nfit_mem->adev; 1988 1989 if (nfit_mem->flags_attr) { 1990 sysfs_put(nfit_mem->flags_attr); 1991 nfit_mem->flags_attr = NULL; 1992 } 1993 if (adev_dimm) { 1994 acpi_remove_notify_handler(adev_dimm->handle, 1995 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 1996 dev_set_drvdata(&adev_dimm->dev, NULL); 1997 } 1998 } 1999 mutex_unlock(&acpi_desc->init_mutex); 2000 } 2001 2002 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) 2003 { 2004 switch (family) { 2005 case NVDIMM_FAMILY_INTEL: 2006 return intel_security_ops; 2007 default: 2008 return NULL; 2009 } 2010 } 2011 2012 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 2013 { 2014 struct nfit_mem *nfit_mem; 2015 int dimm_count = 0, rc; 2016 struct nvdimm *nvdimm; 2017 2018 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2019 struct acpi_nfit_flush_address *flush; 2020 unsigned long flags = 0, cmd_mask; 2021 struct nfit_memdev *nfit_memdev; 2022 u32 device_handle; 2023 u16 mem_flags; 2024 2025 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 2026 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 2027 if (nvdimm) { 2028 dimm_count++; 2029 continue; 2030 } 2031 2032 if (nfit_mem->bdw && nfit_mem->memdev_pmem) 2033 set_bit(NDD_ALIASING, &flags); 2034 2035 /* collate flags across all memdevs for this dimm */ 2036 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2037 struct acpi_nfit_memory_map *dimm_memdev; 2038 2039 dimm_memdev = __to_nfit_memdev(nfit_mem); 2040 if (dimm_memdev->device_handle 2041 != nfit_memdev->memdev->device_handle) 2042 continue; 2043 dimm_memdev->flags |= nfit_memdev->memdev->flags; 2044 } 2045 2046 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 2047 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 2048 set_bit(NDD_UNARMED, &flags); 2049 2050 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 2051 if (rc) 2052 continue; 2053 2054 /* 2055 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 2056 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 2057 * userspace interface. 2058 */ 2059 cmd_mask = 1UL << ND_CMD_CALL; 2060 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 2061 /* 2062 * These commands have a 1:1 correspondence 2063 * between DSM payload and libnvdimm ioctl 2064 * payload format. 2065 */ 2066 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; 2067 } 2068 2069 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */ 2070 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) 2071 set_bit(NDD_NOBLK, &flags); 2072 2073 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 2074 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); 2075 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); 2076 } 2077 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) 2078 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); 2079 2080 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 2081 : NULL; 2082 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 2083 acpi_nfit_dimm_attribute_groups, 2084 flags, cmd_mask, flush ? flush->hint_count : 0, 2085 nfit_mem->flush_wpq, &nfit_mem->id[0], 2086 acpi_nfit_get_security_ops(nfit_mem->family)); 2087 if (!nvdimm) 2088 return -ENOMEM; 2089 2090 nfit_mem->nvdimm = nvdimm; 2091 dimm_count++; 2092 2093 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 2094 continue; 2095 2096 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", 2097 nvdimm_name(nvdimm), 2098 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 2099 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 2100 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 2101 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 2102 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 2103 2104 } 2105 2106 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 2107 if (rc) 2108 return rc; 2109 2110 /* 2111 * Now that dimms are successfully registered, and async registration 2112 * is flushed, attempt to enable event notification. 2113 */ 2114 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2115 struct kernfs_node *nfit_kernfs; 2116 2117 nvdimm = nfit_mem->nvdimm; 2118 if (!nvdimm) 2119 continue; 2120 2121 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 2122 if (nfit_kernfs) 2123 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 2124 "flags"); 2125 sysfs_put(nfit_kernfs); 2126 if (!nfit_mem->flags_attr) 2127 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 2128 nvdimm_name(nvdimm)); 2129 } 2130 2131 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 2132 acpi_desc); 2133 } 2134 2135 /* 2136 * These constants are private because there are no kernel consumers of 2137 * these commands. 2138 */ 2139 enum nfit_aux_cmds { 2140 NFIT_CMD_TRANSLATE_SPA = 5, 2141 NFIT_CMD_ARS_INJECT_SET = 7, 2142 NFIT_CMD_ARS_INJECT_CLEAR = 8, 2143 NFIT_CMD_ARS_INJECT_GET = 9, 2144 }; 2145 2146 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 2147 { 2148 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2149 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 2150 struct acpi_device *adev; 2151 unsigned long dsm_mask; 2152 int i; 2153 2154 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 2155 nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en; 2156 adev = to_acpi_dev(acpi_desc); 2157 if (!adev) 2158 return; 2159 2160 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 2161 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2162 set_bit(i, &nd_desc->cmd_mask); 2163 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 2164 2165 dsm_mask = 2166 (1 << ND_CMD_ARS_CAP) | 2167 (1 << ND_CMD_ARS_START) | 2168 (1 << ND_CMD_ARS_STATUS) | 2169 (1 << ND_CMD_CLEAR_ERROR) | 2170 (1 << NFIT_CMD_TRANSLATE_SPA) | 2171 (1 << NFIT_CMD_ARS_INJECT_SET) | 2172 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 2173 (1 << NFIT_CMD_ARS_INJECT_GET); 2174 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2175 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2176 set_bit(i, &nd_desc->bus_dsm_mask); 2177 } 2178 2179 static ssize_t range_index_show(struct device *dev, 2180 struct device_attribute *attr, char *buf) 2181 { 2182 struct nd_region *nd_region = to_nd_region(dev); 2183 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 2184 2185 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 2186 } 2187 static DEVICE_ATTR_RO(range_index); 2188 2189 static struct attribute *acpi_nfit_region_attributes[] = { 2190 &dev_attr_range_index.attr, 2191 NULL, 2192 }; 2193 2194 static const struct attribute_group acpi_nfit_region_attribute_group = { 2195 .name = "nfit", 2196 .attrs = acpi_nfit_region_attributes, 2197 }; 2198 2199 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 2200 &nd_region_attribute_group, 2201 &nd_mapping_attribute_group, 2202 &nd_device_attribute_group, 2203 &nd_numa_attribute_group, 2204 &acpi_nfit_region_attribute_group, 2205 NULL, 2206 }; 2207 2208 /* enough info to uniquely specify an interleave set */ 2209 struct nfit_set_info { 2210 struct nfit_set_info_map { 2211 u64 region_offset; 2212 u32 serial_number; 2213 u32 pad; 2214 } mapping[0]; 2215 }; 2216 2217 struct nfit_set_info2 { 2218 struct nfit_set_info_map2 { 2219 u64 region_offset; 2220 u32 serial_number; 2221 u16 vendor_id; 2222 u16 manufacturing_date; 2223 u8 manufacturing_location; 2224 u8 reserved[31]; 2225 } mapping[0]; 2226 }; 2227 2228 static size_t sizeof_nfit_set_info(int num_mappings) 2229 { 2230 return sizeof(struct nfit_set_info) 2231 + num_mappings * sizeof(struct nfit_set_info_map); 2232 } 2233 2234 static size_t sizeof_nfit_set_info2(int num_mappings) 2235 { 2236 return sizeof(struct nfit_set_info2) 2237 + num_mappings * sizeof(struct nfit_set_info_map2); 2238 } 2239 2240 static int cmp_map_compat(const void *m0, const void *m1) 2241 { 2242 const struct nfit_set_info_map *map0 = m0; 2243 const struct nfit_set_info_map *map1 = m1; 2244 2245 return memcmp(&map0->region_offset, &map1->region_offset, 2246 sizeof(u64)); 2247 } 2248 2249 static int cmp_map(const void *m0, const void *m1) 2250 { 2251 const struct nfit_set_info_map *map0 = m0; 2252 const struct nfit_set_info_map *map1 = m1; 2253 2254 if (map0->region_offset < map1->region_offset) 2255 return -1; 2256 else if (map0->region_offset > map1->region_offset) 2257 return 1; 2258 return 0; 2259 } 2260 2261 static int cmp_map2(const void *m0, const void *m1) 2262 { 2263 const struct nfit_set_info_map2 *map0 = m0; 2264 const struct nfit_set_info_map2 *map1 = m1; 2265 2266 if (map0->region_offset < map1->region_offset) 2267 return -1; 2268 else if (map0->region_offset > map1->region_offset) 2269 return 1; 2270 return 0; 2271 } 2272 2273 /* Retrieve the nth entry referencing this spa */ 2274 static struct acpi_nfit_memory_map *memdev_from_spa( 2275 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 2276 { 2277 struct nfit_memdev *nfit_memdev; 2278 2279 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 2280 if (nfit_memdev->memdev->range_index == range_index) 2281 if (n-- == 0) 2282 return nfit_memdev->memdev; 2283 return NULL; 2284 } 2285 2286 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 2287 struct nd_region_desc *ndr_desc, 2288 struct acpi_nfit_system_address *spa) 2289 { 2290 struct device *dev = acpi_desc->dev; 2291 struct nd_interleave_set *nd_set; 2292 u16 nr = ndr_desc->num_mappings; 2293 struct nfit_set_info2 *info2; 2294 struct nfit_set_info *info; 2295 int i; 2296 2297 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 2298 if (!nd_set) 2299 return -ENOMEM; 2300 guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid); 2301 2302 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); 2303 if (!info) 2304 return -ENOMEM; 2305 2306 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL); 2307 if (!info2) 2308 return -ENOMEM; 2309 2310 for (i = 0; i < nr; i++) { 2311 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 2312 struct nfit_set_info_map *map = &info->mapping[i]; 2313 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2314 struct nvdimm *nvdimm = mapping->nvdimm; 2315 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2316 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, 2317 spa->range_index, i); 2318 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2319 2320 if (!memdev || !nfit_mem->dcr) { 2321 dev_err(dev, "%s: failed to find DCR\n", __func__); 2322 return -ENODEV; 2323 } 2324 2325 map->region_offset = memdev->region_offset; 2326 map->serial_number = dcr->serial_number; 2327 2328 map2->region_offset = memdev->region_offset; 2329 map2->serial_number = dcr->serial_number; 2330 map2->vendor_id = dcr->vendor_id; 2331 map2->manufacturing_date = dcr->manufacturing_date; 2332 map2->manufacturing_location = dcr->manufacturing_location; 2333 } 2334 2335 /* v1.1 namespaces */ 2336 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2337 cmp_map, NULL); 2338 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2339 2340 /* v1.2 namespaces */ 2341 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2), 2342 cmp_map2, NULL); 2343 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0); 2344 2345 /* support v1.1 namespaces created with the wrong sort order */ 2346 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), 2347 cmp_map_compat, NULL); 2348 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); 2349 2350 /* record the result of the sort for the mapping position */ 2351 for (i = 0; i < nr; i++) { 2352 struct nfit_set_info_map2 *map2 = &info2->mapping[i]; 2353 int j; 2354 2355 for (j = 0; j < nr; j++) { 2356 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; 2357 struct nvdimm *nvdimm = mapping->nvdimm; 2358 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2359 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2360 2361 if (map2->serial_number == dcr->serial_number && 2362 map2->vendor_id == dcr->vendor_id && 2363 map2->manufacturing_date == dcr->manufacturing_date && 2364 map2->manufacturing_location 2365 == dcr->manufacturing_location) { 2366 mapping->position = i; 2367 break; 2368 } 2369 } 2370 } 2371 2372 ndr_desc->nd_set = nd_set; 2373 devm_kfree(dev, info); 2374 devm_kfree(dev, info2); 2375 2376 return 0; 2377 } 2378 2379 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 2380 { 2381 struct acpi_nfit_interleave *idt = mmio->idt; 2382 u32 sub_line_offset, line_index, line_offset; 2383 u64 line_no, table_skip_count, table_offset; 2384 2385 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 2386 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 2387 line_offset = idt->line_offset[line_index] 2388 * mmio->line_size; 2389 table_offset = table_skip_count * mmio->table_size; 2390 2391 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 2392 } 2393 2394 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 2395 { 2396 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2397 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 2398 const u32 STATUS_MASK = 0x80000037; 2399 2400 if (mmio->num_lines) 2401 offset = to_interleave_offset(offset, mmio); 2402 2403 return readl(mmio->addr.base + offset) & STATUS_MASK; 2404 } 2405 2406 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 2407 resource_size_t dpa, unsigned int len, unsigned int write) 2408 { 2409 u64 cmd, offset; 2410 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2411 2412 enum { 2413 BCW_OFFSET_MASK = (1ULL << 48)-1, 2414 BCW_LEN_SHIFT = 48, 2415 BCW_LEN_MASK = (1ULL << 8) - 1, 2416 BCW_CMD_SHIFT = 56, 2417 }; 2418 2419 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 2420 len = len >> L1_CACHE_SHIFT; 2421 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 2422 cmd |= ((u64) write) << BCW_CMD_SHIFT; 2423 2424 offset = nfit_blk->cmd_offset + mmio->size * bw; 2425 if (mmio->num_lines) 2426 offset = to_interleave_offset(offset, mmio); 2427 2428 writeq(cmd, mmio->addr.base + offset); 2429 nvdimm_flush(nfit_blk->nd_region, NULL); 2430 2431 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 2432 readq(mmio->addr.base + offset); 2433 } 2434 2435 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 2436 resource_size_t dpa, void *iobuf, size_t len, int rw, 2437 unsigned int lane) 2438 { 2439 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2440 unsigned int copied = 0; 2441 u64 base_offset; 2442 int rc; 2443 2444 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 2445 + lane * mmio->size; 2446 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 2447 while (len) { 2448 unsigned int c; 2449 u64 offset; 2450 2451 if (mmio->num_lines) { 2452 u32 line_offset; 2453 2454 offset = to_interleave_offset(base_offset + copied, 2455 mmio); 2456 div_u64_rem(offset, mmio->line_size, &line_offset); 2457 c = min_t(size_t, len, mmio->line_size - line_offset); 2458 } else { 2459 offset = base_offset + nfit_blk->bdw_offset; 2460 c = len; 2461 } 2462 2463 if (rw) 2464 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 2465 else { 2466 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 2467 arch_invalidate_pmem((void __force *) 2468 mmio->addr.aperture + offset, c); 2469 2470 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 2471 } 2472 2473 copied += c; 2474 len -= c; 2475 } 2476 2477 if (rw) 2478 nvdimm_flush(nfit_blk->nd_region, NULL); 2479 2480 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 2481 return rc; 2482 } 2483 2484 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 2485 resource_size_t dpa, void *iobuf, u64 len, int rw) 2486 { 2487 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 2488 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2489 struct nd_region *nd_region = nfit_blk->nd_region; 2490 unsigned int lane, copied = 0; 2491 int rc = 0; 2492 2493 lane = nd_region_acquire_lane(nd_region); 2494 while (len) { 2495 u64 c = min(len, mmio->size); 2496 2497 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 2498 iobuf + copied, c, rw, lane); 2499 if (rc) 2500 break; 2501 2502 copied += c; 2503 len -= c; 2504 } 2505 nd_region_release_lane(nd_region, lane); 2506 2507 return rc; 2508 } 2509 2510 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 2511 struct acpi_nfit_interleave *idt, u16 interleave_ways) 2512 { 2513 if (idt) { 2514 mmio->num_lines = idt->line_count; 2515 mmio->line_size = idt->line_size; 2516 if (interleave_ways == 0) 2517 return -ENXIO; 2518 mmio->table_size = mmio->num_lines * interleave_ways 2519 * mmio->line_size; 2520 } 2521 2522 return 0; 2523 } 2524 2525 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 2526 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 2527 { 2528 struct nd_cmd_dimm_flags flags; 2529 int rc; 2530 2531 memset(&flags, 0, sizeof(flags)); 2532 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 2533 sizeof(flags), NULL); 2534 2535 if (rc >= 0 && flags.status == 0) 2536 nfit_blk->dimm_flags = flags.flags; 2537 else if (rc == -ENOTTY) { 2538 /* fall back to a conservative default */ 2539 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2540 rc = 0; 2541 } else 2542 rc = -ENXIO; 2543 2544 return rc; 2545 } 2546 2547 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2548 struct device *dev) 2549 { 2550 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2551 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2552 struct nfit_blk_mmio *mmio; 2553 struct nfit_blk *nfit_blk; 2554 struct nfit_mem *nfit_mem; 2555 struct nvdimm *nvdimm; 2556 int rc; 2557 2558 nvdimm = nd_blk_region_to_dimm(ndbr); 2559 nfit_mem = nvdimm_provider_data(nvdimm); 2560 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2561 dev_dbg(dev, "missing%s%s%s\n", 2562 nfit_mem ? "" : " nfit_mem", 2563 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2564 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2565 return -ENXIO; 2566 } 2567 2568 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2569 if (!nfit_blk) 2570 return -ENOMEM; 2571 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2572 nfit_blk->nd_region = to_nd_region(dev); 2573 2574 /* map block aperture memory */ 2575 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2576 mmio = &nfit_blk->mmio[BDW]; 2577 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2578 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2579 if (!mmio->addr.base) { 2580 dev_dbg(dev, "%s failed to map bdw\n", 2581 nvdimm_name(nvdimm)); 2582 return -ENOMEM; 2583 } 2584 mmio->size = nfit_mem->bdw->size; 2585 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2586 mmio->idt = nfit_mem->idt_bdw; 2587 mmio->spa = nfit_mem->spa_bdw; 2588 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2589 nfit_mem->memdev_bdw->interleave_ways); 2590 if (rc) { 2591 dev_dbg(dev, "%s failed to init bdw interleave\n", 2592 nvdimm_name(nvdimm)); 2593 return rc; 2594 } 2595 2596 /* map block control memory */ 2597 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2598 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2599 mmio = &nfit_blk->mmio[DCR]; 2600 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2601 nfit_mem->spa_dcr->length); 2602 if (!mmio->addr.base) { 2603 dev_dbg(dev, "%s failed to map dcr\n", 2604 nvdimm_name(nvdimm)); 2605 return -ENOMEM; 2606 } 2607 mmio->size = nfit_mem->dcr->window_size; 2608 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2609 mmio->idt = nfit_mem->idt_dcr; 2610 mmio->spa = nfit_mem->spa_dcr; 2611 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2612 nfit_mem->memdev_dcr->interleave_ways); 2613 if (rc) { 2614 dev_dbg(dev, "%s failed to init dcr interleave\n", 2615 nvdimm_name(nvdimm)); 2616 return rc; 2617 } 2618 2619 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2620 if (rc < 0) { 2621 dev_dbg(dev, "%s failed get DIMM flags\n", 2622 nvdimm_name(nvdimm)); 2623 return rc; 2624 } 2625 2626 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2627 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2628 2629 if (mmio->line_size == 0) 2630 return 0; 2631 2632 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2633 + 8 > mmio->line_size) { 2634 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2635 return -ENXIO; 2636 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2637 + 8 > mmio->line_size) { 2638 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2639 return -ENXIO; 2640 } 2641 2642 return 0; 2643 } 2644 2645 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2646 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2647 { 2648 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2649 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2650 int cmd_rc, rc; 2651 2652 cmd->address = spa->address; 2653 cmd->length = spa->length; 2654 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2655 sizeof(*cmd), &cmd_rc); 2656 if (rc < 0) 2657 return rc; 2658 return cmd_rc; 2659 } 2660 2661 static int ars_start(struct acpi_nfit_desc *acpi_desc, 2662 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) 2663 { 2664 int rc; 2665 int cmd_rc; 2666 struct nd_cmd_ars_start ars_start; 2667 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2668 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2669 2670 memset(&ars_start, 0, sizeof(ars_start)); 2671 ars_start.address = spa->address; 2672 ars_start.length = spa->length; 2673 if (req_type == ARS_REQ_SHORT) 2674 ars_start.flags = ND_ARS_RETURN_PREV_DATA; 2675 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2676 ars_start.type = ND_ARS_PERSISTENT; 2677 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2678 ars_start.type = ND_ARS_VOLATILE; 2679 else 2680 return -ENOTTY; 2681 2682 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2683 sizeof(ars_start), &cmd_rc); 2684 2685 if (rc < 0) 2686 return rc; 2687 if (cmd_rc < 0) 2688 return cmd_rc; 2689 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 2690 return 0; 2691 } 2692 2693 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2694 { 2695 int rc, cmd_rc; 2696 struct nd_cmd_ars_start ars_start; 2697 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2698 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2699 2700 ars_start = (struct nd_cmd_ars_start) { 2701 .address = ars_status->restart_address, 2702 .length = ars_status->restart_length, 2703 .type = ars_status->type, 2704 }; 2705 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2706 sizeof(ars_start), &cmd_rc); 2707 if (rc < 0) 2708 return rc; 2709 return cmd_rc; 2710 } 2711 2712 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2713 { 2714 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2715 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2716 int rc, cmd_rc; 2717 2718 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2719 acpi_desc->max_ars, &cmd_rc); 2720 if (rc < 0) 2721 return rc; 2722 return cmd_rc; 2723 } 2724 2725 static void ars_complete(struct acpi_nfit_desc *acpi_desc, 2726 struct nfit_spa *nfit_spa) 2727 { 2728 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2729 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2730 struct nd_region *nd_region = nfit_spa->nd_region; 2731 struct device *dev; 2732 2733 lockdep_assert_held(&acpi_desc->init_mutex); 2734 /* 2735 * Only advance the ARS state for ARS runs initiated by the 2736 * kernel, ignore ARS results from BIOS initiated runs for scrub 2737 * completion tracking. 2738 */ 2739 if (acpi_desc->scrub_spa != nfit_spa) 2740 return; 2741 2742 if ((ars_status->address >= spa->address && ars_status->address 2743 < spa->address + spa->length) 2744 || (ars_status->address < spa->address)) { 2745 /* 2746 * Assume that if a scrub starts at an offset from the 2747 * start of nfit_spa that we are in the continuation 2748 * case. 2749 * 2750 * Otherwise, if the scrub covers the spa range, mark 2751 * any pending request complete. 2752 */ 2753 if (ars_status->address + ars_status->length 2754 >= spa->address + spa->length) 2755 /* complete */; 2756 else 2757 return; 2758 } else 2759 return; 2760 2761 acpi_desc->scrub_spa = NULL; 2762 if (nd_region) { 2763 dev = nd_region_dev(nd_region); 2764 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); 2765 } else 2766 dev = acpi_desc->dev; 2767 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); 2768 } 2769 2770 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) 2771 { 2772 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2773 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2774 int rc; 2775 u32 i; 2776 2777 /* 2778 * First record starts at 44 byte offset from the start of the 2779 * payload. 2780 */ 2781 if (ars_status->out_length < 44) 2782 return 0; 2783 2784 /* 2785 * Ignore potentially stale results that are only refreshed 2786 * after a start-ARS event. 2787 */ 2788 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { 2789 dev_dbg(acpi_desc->dev, "skip %d stale records\n", 2790 ars_status->num_records); 2791 return 0; 2792 } 2793 2794 for (i = 0; i < ars_status->num_records; i++) { 2795 /* only process full records */ 2796 if (ars_status->out_length 2797 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2798 break; 2799 rc = nvdimm_bus_add_badrange(nvdimm_bus, 2800 ars_status->records[i].err_address, 2801 ars_status->records[i].length); 2802 if (rc) 2803 return rc; 2804 } 2805 if (i < ars_status->num_records) 2806 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2807 2808 return 0; 2809 } 2810 2811 static void acpi_nfit_remove_resource(void *data) 2812 { 2813 struct resource *res = data; 2814 2815 remove_resource(res); 2816 } 2817 2818 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2819 struct nd_region_desc *ndr_desc) 2820 { 2821 struct resource *res, *nd_res = ndr_desc->res; 2822 int is_pmem, ret; 2823 2824 /* No operation if the region is already registered as PMEM */ 2825 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2826 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2827 if (is_pmem == REGION_INTERSECTS) 2828 return 0; 2829 2830 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2831 if (!res) 2832 return -ENOMEM; 2833 2834 res->name = "Persistent Memory"; 2835 res->start = nd_res->start; 2836 res->end = nd_res->end; 2837 res->flags = IORESOURCE_MEM; 2838 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2839 2840 ret = insert_resource(&iomem_resource, res); 2841 if (ret) 2842 return ret; 2843 2844 ret = devm_add_action_or_reset(acpi_desc->dev, 2845 acpi_nfit_remove_resource, 2846 res); 2847 if (ret) 2848 return ret; 2849 2850 return 0; 2851 } 2852 2853 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2854 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2855 struct acpi_nfit_memory_map *memdev, 2856 struct nfit_spa *nfit_spa) 2857 { 2858 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2859 memdev->device_handle); 2860 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2861 struct nd_blk_region_desc *ndbr_desc; 2862 struct nfit_mem *nfit_mem; 2863 int rc; 2864 2865 if (!nvdimm) { 2866 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2867 spa->range_index, memdev->device_handle); 2868 return -ENODEV; 2869 } 2870 2871 mapping->nvdimm = nvdimm; 2872 switch (nfit_spa_type(spa)) { 2873 case NFIT_SPA_PM: 2874 case NFIT_SPA_VOLATILE: 2875 mapping->start = memdev->address; 2876 mapping->size = memdev->region_size; 2877 break; 2878 case NFIT_SPA_DCR: 2879 nfit_mem = nvdimm_provider_data(nvdimm); 2880 if (!nfit_mem || !nfit_mem->bdw) { 2881 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2882 spa->range_index, nvdimm_name(nvdimm)); 2883 break; 2884 } 2885 2886 mapping->size = nfit_mem->bdw->capacity; 2887 mapping->start = nfit_mem->bdw->start_address; 2888 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2889 ndr_desc->mapping = mapping; 2890 ndr_desc->num_mappings = 1; 2891 ndbr_desc = to_blk_region_desc(ndr_desc); 2892 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2893 ndbr_desc->do_io = acpi_desc->blk_do_io; 2894 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2895 if (rc) 2896 return rc; 2897 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2898 ndr_desc); 2899 if (!nfit_spa->nd_region) 2900 return -ENOMEM; 2901 break; 2902 } 2903 2904 return 0; 2905 } 2906 2907 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2908 { 2909 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2910 nfit_spa_type(spa) == NFIT_SPA_VCD || 2911 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2912 nfit_spa_type(spa) == NFIT_SPA_PCD); 2913 } 2914 2915 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2916 { 2917 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2918 nfit_spa_type(spa) == NFIT_SPA_VCD || 2919 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2920 } 2921 2922 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2923 struct nfit_spa *nfit_spa) 2924 { 2925 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2926 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2927 struct nd_blk_region_desc ndbr_desc; 2928 struct nd_region_desc *ndr_desc; 2929 struct nfit_memdev *nfit_memdev; 2930 struct nvdimm_bus *nvdimm_bus; 2931 struct resource res; 2932 int count = 0, rc; 2933 2934 if (nfit_spa->nd_region) 2935 return 0; 2936 2937 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2938 dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); 2939 return 0; 2940 } 2941 2942 memset(&res, 0, sizeof(res)); 2943 memset(&mappings, 0, sizeof(mappings)); 2944 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2945 res.start = spa->address; 2946 res.end = res.start + spa->length - 1; 2947 ndr_desc = &ndbr_desc.ndr_desc; 2948 ndr_desc->res = &res; 2949 ndr_desc->provider_data = nfit_spa; 2950 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 2951 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { 2952 ndr_desc->numa_node = acpi_map_pxm_to_online_node( 2953 spa->proximity_domain); 2954 ndr_desc->target_node = acpi_map_pxm_to_node( 2955 spa->proximity_domain); 2956 } else { 2957 ndr_desc->numa_node = NUMA_NO_NODE; 2958 ndr_desc->target_node = NUMA_NO_NODE; 2959 } 2960 2961 /* 2962 * Persistence domain bits are hierarchical, if 2963 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then 2964 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. 2965 */ 2966 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) 2967 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); 2968 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) 2969 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); 2970 2971 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2972 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 2973 struct nd_mapping_desc *mapping; 2974 2975 if (memdev->range_index != spa->range_index) 2976 continue; 2977 if (count >= ND_MAX_MAPPINGS) { 2978 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 2979 spa->range_index, ND_MAX_MAPPINGS); 2980 return -ENXIO; 2981 } 2982 mapping = &mappings[count++]; 2983 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 2984 memdev, nfit_spa); 2985 if (rc) 2986 goto out; 2987 } 2988 2989 ndr_desc->mapping = mappings; 2990 ndr_desc->num_mappings = count; 2991 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2992 if (rc) 2993 goto out; 2994 2995 nvdimm_bus = acpi_desc->nvdimm_bus; 2996 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 2997 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 2998 if (rc) { 2999 dev_warn(acpi_desc->dev, 3000 "failed to insert pmem resource to iomem: %d\n", 3001 rc); 3002 goto out; 3003 } 3004 3005 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3006 ndr_desc); 3007 if (!nfit_spa->nd_region) 3008 rc = -ENOMEM; 3009 } else if (nfit_spa_is_volatile(spa)) { 3010 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 3011 ndr_desc); 3012 if (!nfit_spa->nd_region) 3013 rc = -ENOMEM; 3014 } else if (nfit_spa_is_virtual(spa)) { 3015 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3016 ndr_desc); 3017 if (!nfit_spa->nd_region) 3018 rc = -ENOMEM; 3019 } 3020 3021 out: 3022 if (rc) 3023 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 3024 nfit_spa->spa->range_index); 3025 return rc; 3026 } 3027 3028 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) 3029 { 3030 struct device *dev = acpi_desc->dev; 3031 struct nd_cmd_ars_status *ars_status; 3032 3033 if (acpi_desc->ars_status) { 3034 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3035 return 0; 3036 } 3037 3038 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); 3039 if (!ars_status) 3040 return -ENOMEM; 3041 acpi_desc->ars_status = ars_status; 3042 return 0; 3043 } 3044 3045 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) 3046 { 3047 int rc; 3048 3049 if (ars_status_alloc(acpi_desc)) 3050 return -ENOMEM; 3051 3052 rc = ars_get_status(acpi_desc); 3053 3054 if (rc < 0 && rc != -ENOSPC) 3055 return rc; 3056 3057 if (ars_status_process_records(acpi_desc)) 3058 dev_err(acpi_desc->dev, "Failed to process ARS records\n"); 3059 3060 return rc; 3061 } 3062 3063 static int ars_register(struct acpi_nfit_desc *acpi_desc, 3064 struct nfit_spa *nfit_spa) 3065 { 3066 int rc; 3067 3068 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3069 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3070 3071 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3072 if (!no_init_ars) 3073 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); 3074 3075 switch (acpi_nfit_query_poison(acpi_desc)) { 3076 case 0: 3077 case -ENOSPC: 3078 case -EAGAIN: 3079 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); 3080 /* shouldn't happen, try again later */ 3081 if (rc == -EBUSY) 3082 break; 3083 if (rc) { 3084 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3085 break; 3086 } 3087 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3088 rc = acpi_nfit_query_poison(acpi_desc); 3089 if (rc) 3090 break; 3091 acpi_desc->scrub_spa = nfit_spa; 3092 ars_complete(acpi_desc, nfit_spa); 3093 /* 3094 * If ars_complete() says we didn't complete the 3095 * short scrub, we'll try again with a long 3096 * request. 3097 */ 3098 acpi_desc->scrub_spa = NULL; 3099 break; 3100 case -EBUSY: 3101 case -ENOMEM: 3102 /* 3103 * BIOS was using ARS, wait for it to complete (or 3104 * resources to become available) and then perform our 3105 * own scrubs. 3106 */ 3107 break; 3108 default: 3109 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3110 break; 3111 } 3112 3113 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3114 } 3115 3116 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) 3117 { 3118 struct nfit_spa *nfit_spa; 3119 3120 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3121 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3122 continue; 3123 ars_complete(acpi_desc, nfit_spa); 3124 } 3125 } 3126 3127 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, 3128 int query_rc) 3129 { 3130 unsigned int tmo = acpi_desc->scrub_tmo; 3131 struct device *dev = acpi_desc->dev; 3132 struct nfit_spa *nfit_spa; 3133 3134 lockdep_assert_held(&acpi_desc->init_mutex); 3135 3136 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) 3137 return 0; 3138 3139 if (query_rc == -EBUSY) { 3140 dev_dbg(dev, "ARS: ARS busy\n"); 3141 return min(30U * 60U, tmo * 2); 3142 } 3143 if (query_rc == -ENOSPC) { 3144 dev_dbg(dev, "ARS: ARS continue\n"); 3145 ars_continue(acpi_desc); 3146 return 1; 3147 } 3148 if (query_rc && query_rc != -EAGAIN) { 3149 unsigned long long addr, end; 3150 3151 addr = acpi_desc->ars_status->address; 3152 end = addr + acpi_desc->ars_status->length; 3153 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, 3154 query_rc); 3155 } 3156 3157 ars_complete_all(acpi_desc); 3158 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3159 enum nfit_ars_state req_type; 3160 int rc; 3161 3162 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3163 continue; 3164 3165 /* prefer short ARS requests first */ 3166 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) 3167 req_type = ARS_REQ_SHORT; 3168 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) 3169 req_type = ARS_REQ_LONG; 3170 else 3171 continue; 3172 rc = ars_start(acpi_desc, nfit_spa, req_type); 3173 3174 dev = nd_region_dev(nfit_spa->nd_region); 3175 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", 3176 nfit_spa->spa->range_index, 3177 req_type == ARS_REQ_SHORT ? "short" : "long", 3178 rc); 3179 /* 3180 * Hmm, we raced someone else starting ARS? Try again in 3181 * a bit. 3182 */ 3183 if (rc == -EBUSY) 3184 return 1; 3185 if (rc == 0) { 3186 dev_WARN_ONCE(dev, acpi_desc->scrub_spa, 3187 "scrub start while range %d active\n", 3188 acpi_desc->scrub_spa->spa->range_index); 3189 clear_bit(req_type, &nfit_spa->ars_state); 3190 acpi_desc->scrub_spa = nfit_spa; 3191 /* 3192 * Consider this spa last for future scrub 3193 * requests 3194 */ 3195 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 3196 return 1; 3197 } 3198 3199 dev_err(dev, "ARS: range %d ARS failed (%d)\n", 3200 nfit_spa->spa->range_index, rc); 3201 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3202 } 3203 return 0; 3204 } 3205 3206 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) 3207 { 3208 lockdep_assert_held(&acpi_desc->init_mutex); 3209 3210 set_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3211 /* note this should only be set from within the workqueue */ 3212 if (tmo) 3213 acpi_desc->scrub_tmo = tmo; 3214 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); 3215 } 3216 3217 static void sched_ars(struct acpi_nfit_desc *acpi_desc) 3218 { 3219 __sched_ars(acpi_desc, 0); 3220 } 3221 3222 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) 3223 { 3224 lockdep_assert_held(&acpi_desc->init_mutex); 3225 3226 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3227 acpi_desc->scrub_count++; 3228 if (acpi_desc->scrub_count_state) 3229 sysfs_notify_dirent(acpi_desc->scrub_count_state); 3230 } 3231 3232 static void acpi_nfit_scrub(struct work_struct *work) 3233 { 3234 struct acpi_nfit_desc *acpi_desc; 3235 unsigned int tmo; 3236 int query_rc; 3237 3238 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); 3239 mutex_lock(&acpi_desc->init_mutex); 3240 query_rc = acpi_nfit_query_poison(acpi_desc); 3241 tmo = __acpi_nfit_scrub(acpi_desc, query_rc); 3242 if (tmo) 3243 __sched_ars(acpi_desc, tmo); 3244 else 3245 notify_ars_done(acpi_desc); 3246 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3247 clear_bit(ARS_POLL, &acpi_desc->scrub_flags); 3248 mutex_unlock(&acpi_desc->init_mutex); 3249 } 3250 3251 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, 3252 struct nfit_spa *nfit_spa) 3253 { 3254 int type = nfit_spa_type(nfit_spa->spa); 3255 struct nd_cmd_ars_cap ars_cap; 3256 int rc; 3257 3258 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3259 memset(&ars_cap, 0, sizeof(ars_cap)); 3260 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 3261 if (rc < 0) 3262 return; 3263 /* check that the supported scrub types match the spa type */ 3264 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) 3265 & ND_ARS_VOLATILE) == 0) 3266 return; 3267 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) 3268 & ND_ARS_PERSISTENT) == 0) 3269 return; 3270 3271 nfit_spa->max_ars = ars_cap.max_ars_out; 3272 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 3273 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); 3274 clear_bit(ARS_FAILED, &nfit_spa->ars_state); 3275 } 3276 3277 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 3278 { 3279 struct nfit_spa *nfit_spa; 3280 int rc; 3281 3282 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 3283 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3284 switch (nfit_spa_type(nfit_spa->spa)) { 3285 case NFIT_SPA_VOLATILE: 3286 case NFIT_SPA_PM: 3287 acpi_nfit_init_ars(acpi_desc, nfit_spa); 3288 break; 3289 } 3290 } 3291 3292 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) 3293 switch (nfit_spa_type(nfit_spa->spa)) { 3294 case NFIT_SPA_VOLATILE: 3295 case NFIT_SPA_PM: 3296 /* register regions and kick off initial ARS run */ 3297 rc = ars_register(acpi_desc, nfit_spa); 3298 if (rc) 3299 return rc; 3300 break; 3301 case NFIT_SPA_BDW: 3302 /* nothing to register */ 3303 break; 3304 case NFIT_SPA_DCR: 3305 case NFIT_SPA_VDISK: 3306 case NFIT_SPA_VCD: 3307 case NFIT_SPA_PDISK: 3308 case NFIT_SPA_PCD: 3309 /* register known regions that don't support ARS */ 3310 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 3311 if (rc) 3312 return rc; 3313 break; 3314 default: 3315 /* don't register unknown regions */ 3316 break; 3317 } 3318 3319 sched_ars(acpi_desc); 3320 return 0; 3321 } 3322 3323 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 3324 struct nfit_table_prev *prev) 3325 { 3326 struct device *dev = acpi_desc->dev; 3327 3328 if (!list_empty(&prev->spas) || 3329 !list_empty(&prev->memdevs) || 3330 !list_empty(&prev->dcrs) || 3331 !list_empty(&prev->bdws) || 3332 !list_empty(&prev->idts) || 3333 !list_empty(&prev->flushes)) { 3334 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 3335 return -ENXIO; 3336 } 3337 return 0; 3338 } 3339 3340 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 3341 { 3342 struct device *dev = acpi_desc->dev; 3343 struct kernfs_node *nfit; 3344 struct device *bus_dev; 3345 3346 if (!ars_supported(acpi_desc->nvdimm_bus)) 3347 return 0; 3348 3349 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3350 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 3351 if (!nfit) { 3352 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 3353 return -ENODEV; 3354 } 3355 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 3356 sysfs_put(nfit); 3357 if (!acpi_desc->scrub_count_state) { 3358 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 3359 return -ENODEV; 3360 } 3361 3362 return 0; 3363 } 3364 3365 static void acpi_nfit_unregister(void *data) 3366 { 3367 struct acpi_nfit_desc *acpi_desc = data; 3368 3369 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 3370 } 3371 3372 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 3373 { 3374 struct device *dev = acpi_desc->dev; 3375 struct nfit_table_prev prev; 3376 const void *end; 3377 int rc; 3378 3379 if (!acpi_desc->nvdimm_bus) { 3380 acpi_nfit_init_dsms(acpi_desc); 3381 3382 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 3383 &acpi_desc->nd_desc); 3384 if (!acpi_desc->nvdimm_bus) 3385 return -ENOMEM; 3386 3387 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 3388 acpi_desc); 3389 if (rc) 3390 return rc; 3391 3392 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 3393 if (rc) 3394 return rc; 3395 3396 /* register this acpi_desc for mce notifications */ 3397 mutex_lock(&acpi_desc_lock); 3398 list_add_tail(&acpi_desc->list, &acpi_descs); 3399 mutex_unlock(&acpi_desc_lock); 3400 } 3401 3402 mutex_lock(&acpi_desc->init_mutex); 3403 3404 INIT_LIST_HEAD(&prev.spas); 3405 INIT_LIST_HEAD(&prev.memdevs); 3406 INIT_LIST_HEAD(&prev.dcrs); 3407 INIT_LIST_HEAD(&prev.bdws); 3408 INIT_LIST_HEAD(&prev.idts); 3409 INIT_LIST_HEAD(&prev.flushes); 3410 3411 list_cut_position(&prev.spas, &acpi_desc->spas, 3412 acpi_desc->spas.prev); 3413 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 3414 acpi_desc->memdevs.prev); 3415 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 3416 acpi_desc->dcrs.prev); 3417 list_cut_position(&prev.bdws, &acpi_desc->bdws, 3418 acpi_desc->bdws.prev); 3419 list_cut_position(&prev.idts, &acpi_desc->idts, 3420 acpi_desc->idts.prev); 3421 list_cut_position(&prev.flushes, &acpi_desc->flushes, 3422 acpi_desc->flushes.prev); 3423 3424 end = data + sz; 3425 while (!IS_ERR_OR_NULL(data)) 3426 data = add_table(acpi_desc, &prev, data, end); 3427 3428 if (IS_ERR(data)) { 3429 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); 3430 rc = PTR_ERR(data); 3431 goto out_unlock; 3432 } 3433 3434 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 3435 if (rc) 3436 goto out_unlock; 3437 3438 rc = nfit_mem_init(acpi_desc); 3439 if (rc) 3440 goto out_unlock; 3441 3442 rc = acpi_nfit_register_dimms(acpi_desc); 3443 if (rc) 3444 goto out_unlock; 3445 3446 rc = acpi_nfit_register_regions(acpi_desc); 3447 3448 out_unlock: 3449 mutex_unlock(&acpi_desc->init_mutex); 3450 return rc; 3451 } 3452 EXPORT_SYMBOL_GPL(acpi_nfit_init); 3453 3454 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 3455 { 3456 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3457 struct device *dev = acpi_desc->dev; 3458 3459 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 3460 nfit_device_lock(dev); 3461 nfit_device_unlock(dev); 3462 3463 /* Bounce the init_mutex to complete initial registration */ 3464 mutex_lock(&acpi_desc->init_mutex); 3465 mutex_unlock(&acpi_desc->init_mutex); 3466 3467 return 0; 3468 } 3469 3470 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3471 struct nvdimm *nvdimm, unsigned int cmd) 3472 { 3473 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3474 3475 if (nvdimm) 3476 return 0; 3477 if (cmd != ND_CMD_ARS_START) 3478 return 0; 3479 3480 /* 3481 * The kernel and userspace may race to initiate a scrub, but 3482 * the scrub thread is prepared to lose that initial race. It 3483 * just needs guarantees that any ARS it initiates are not 3484 * interrupted by any intervening start requests from userspace. 3485 */ 3486 if (work_busy(&acpi_desc->dwork.work)) 3487 return -EBUSY; 3488 3489 return 0; 3490 } 3491 3492 /* prevent security commands from being issued via ioctl */ 3493 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3494 struct nvdimm *nvdimm, unsigned int cmd, void *buf) 3495 { 3496 struct nd_cmd_pkg *call_pkg = buf; 3497 unsigned int func; 3498 3499 if (nvdimm && cmd == ND_CMD_CALL && 3500 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { 3501 func = call_pkg->nd_command; 3502 if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK) 3503 return -EOPNOTSUPP; 3504 } 3505 3506 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); 3507 } 3508 3509 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, 3510 enum nfit_ars_state req_type) 3511 { 3512 struct device *dev = acpi_desc->dev; 3513 int scheduled = 0, busy = 0; 3514 struct nfit_spa *nfit_spa; 3515 3516 mutex_lock(&acpi_desc->init_mutex); 3517 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { 3518 mutex_unlock(&acpi_desc->init_mutex); 3519 return 0; 3520 } 3521 3522 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3523 int type = nfit_spa_type(nfit_spa->spa); 3524 3525 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) 3526 continue; 3527 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3528 continue; 3529 3530 if (test_and_set_bit(req_type, &nfit_spa->ars_state)) 3531 busy++; 3532 else 3533 scheduled++; 3534 } 3535 if (scheduled) { 3536 sched_ars(acpi_desc); 3537 dev_dbg(dev, "ars_scan triggered\n"); 3538 } 3539 mutex_unlock(&acpi_desc->init_mutex); 3540 3541 if (scheduled) 3542 return 0; 3543 if (busy) 3544 return -EBUSY; 3545 return -ENOTTY; 3546 } 3547 3548 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 3549 { 3550 struct nvdimm_bus_descriptor *nd_desc; 3551 3552 dev_set_drvdata(dev, acpi_desc); 3553 acpi_desc->dev = dev; 3554 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 3555 nd_desc = &acpi_desc->nd_desc; 3556 nd_desc->provider_name = "ACPI.NFIT"; 3557 nd_desc->module = THIS_MODULE; 3558 nd_desc->ndctl = acpi_nfit_ctl; 3559 nd_desc->flush_probe = acpi_nfit_flush_probe; 3560 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 3561 nd_desc->attr_groups = acpi_nfit_attribute_groups; 3562 3563 INIT_LIST_HEAD(&acpi_desc->spas); 3564 INIT_LIST_HEAD(&acpi_desc->dcrs); 3565 INIT_LIST_HEAD(&acpi_desc->bdws); 3566 INIT_LIST_HEAD(&acpi_desc->idts); 3567 INIT_LIST_HEAD(&acpi_desc->flushes); 3568 INIT_LIST_HEAD(&acpi_desc->memdevs); 3569 INIT_LIST_HEAD(&acpi_desc->dimms); 3570 INIT_LIST_HEAD(&acpi_desc->list); 3571 mutex_init(&acpi_desc->init_mutex); 3572 acpi_desc->scrub_tmo = 1; 3573 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); 3574 } 3575 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 3576 3577 static void acpi_nfit_put_table(void *table) 3578 { 3579 acpi_put_table(table); 3580 } 3581 3582 void acpi_nfit_shutdown(void *data) 3583 { 3584 struct acpi_nfit_desc *acpi_desc = data; 3585 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3586 3587 /* 3588 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 3589 * race teardown 3590 */ 3591 mutex_lock(&acpi_desc_lock); 3592 list_del(&acpi_desc->list); 3593 mutex_unlock(&acpi_desc_lock); 3594 3595 mutex_lock(&acpi_desc->init_mutex); 3596 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 3597 cancel_delayed_work_sync(&acpi_desc->dwork); 3598 mutex_unlock(&acpi_desc->init_mutex); 3599 3600 /* 3601 * Bounce the nvdimm bus lock to make sure any in-flight 3602 * acpi_nfit_ars_rescan() submissions have had a chance to 3603 * either submit or see ->cancel set. 3604 */ 3605 nfit_device_lock(bus_dev); 3606 nfit_device_unlock(bus_dev); 3607 3608 flush_workqueue(nfit_wq); 3609 } 3610 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3611 3612 static int acpi_nfit_add(struct acpi_device *adev) 3613 { 3614 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3615 struct acpi_nfit_desc *acpi_desc; 3616 struct device *dev = &adev->dev; 3617 struct acpi_table_header *tbl; 3618 acpi_status status = AE_OK; 3619 acpi_size sz; 3620 int rc = 0; 3621 3622 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3623 if (ACPI_FAILURE(status)) { 3624 /* The NVDIMM root device allows OS to trigger enumeration of 3625 * NVDIMMs through NFIT at boot time and re-enumeration at 3626 * root level via the _FIT method during runtime. 3627 * This is ok to return 0 here, we could have an nvdimm 3628 * hotplugged later and evaluate _FIT method which returns 3629 * data in the format of a series of NFIT Structures. 3630 */ 3631 dev_dbg(dev, "failed to find NFIT at startup\n"); 3632 return 0; 3633 } 3634 3635 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3636 if (rc) 3637 return rc; 3638 sz = tbl->length; 3639 3640 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3641 if (!acpi_desc) 3642 return -ENOMEM; 3643 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3644 3645 /* Save the acpi header for exporting the revision via sysfs */ 3646 acpi_desc->acpi_header = *tbl; 3647 3648 /* Evaluate _FIT and override with that if present */ 3649 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3650 if (ACPI_SUCCESS(status) && buf.length > 0) { 3651 union acpi_object *obj = buf.pointer; 3652 3653 if (obj->type == ACPI_TYPE_BUFFER) 3654 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3655 obj->buffer.length); 3656 else 3657 dev_dbg(dev, "invalid type %d, ignoring _FIT\n", 3658 (int) obj->type); 3659 kfree(buf.pointer); 3660 } else 3661 /* skip over the lead-in header table */ 3662 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3663 + sizeof(struct acpi_table_nfit), 3664 sz - sizeof(struct acpi_table_nfit)); 3665 3666 if (rc) 3667 return rc; 3668 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3669 } 3670 3671 static int acpi_nfit_remove(struct acpi_device *adev) 3672 { 3673 /* see acpi_nfit_unregister */ 3674 return 0; 3675 } 3676 3677 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3678 { 3679 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3680 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3681 union acpi_object *obj; 3682 acpi_status status; 3683 int ret; 3684 3685 if (!dev->driver) { 3686 /* dev->driver may be null if we're being removed */ 3687 dev_dbg(dev, "no driver found for dev\n"); 3688 return; 3689 } 3690 3691 if (!acpi_desc) { 3692 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3693 if (!acpi_desc) 3694 return; 3695 acpi_nfit_desc_init(acpi_desc, dev); 3696 } else { 3697 /* 3698 * Finish previous registration before considering new 3699 * regions. 3700 */ 3701 flush_workqueue(nfit_wq); 3702 } 3703 3704 /* Evaluate _FIT */ 3705 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3706 if (ACPI_FAILURE(status)) { 3707 dev_err(dev, "failed to evaluate _FIT\n"); 3708 return; 3709 } 3710 3711 obj = buf.pointer; 3712 if (obj->type == ACPI_TYPE_BUFFER) { 3713 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3714 obj->buffer.length); 3715 if (ret) 3716 dev_err(dev, "failed to merge updated NFIT\n"); 3717 } else 3718 dev_err(dev, "Invalid _FIT\n"); 3719 kfree(buf.pointer); 3720 } 3721 3722 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3723 { 3724 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3725 3726 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) 3727 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 3728 else 3729 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); 3730 } 3731 3732 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3733 { 3734 dev_dbg(dev, "event: 0x%x\n", event); 3735 3736 switch (event) { 3737 case NFIT_NOTIFY_UPDATE: 3738 return acpi_nfit_update_notify(dev, handle); 3739 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3740 return acpi_nfit_uc_error_notify(dev, handle); 3741 default: 3742 return; 3743 } 3744 } 3745 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3746 3747 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3748 { 3749 nfit_device_lock(&adev->dev); 3750 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3751 nfit_device_unlock(&adev->dev); 3752 } 3753 3754 static const struct acpi_device_id acpi_nfit_ids[] = { 3755 { "ACPI0012", 0 }, 3756 { "", 0 }, 3757 }; 3758 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3759 3760 static struct acpi_driver acpi_nfit_driver = { 3761 .name = KBUILD_MODNAME, 3762 .ids = acpi_nfit_ids, 3763 .ops = { 3764 .add = acpi_nfit_add, 3765 .remove = acpi_nfit_remove, 3766 .notify = acpi_nfit_notify, 3767 }, 3768 }; 3769 3770 static __init int nfit_init(void) 3771 { 3772 int ret; 3773 3774 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3775 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); 3776 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3777 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3778 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3779 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3780 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3781 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); 3782 3783 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3784 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3785 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3786 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3787 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3788 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3789 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3790 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3791 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3792 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3793 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3794 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3795 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3796 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); 3797 3798 nfit_wq = create_singlethread_workqueue("nfit"); 3799 if (!nfit_wq) 3800 return -ENOMEM; 3801 3802 nfit_mce_register(); 3803 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3804 if (ret) { 3805 nfit_mce_unregister(); 3806 destroy_workqueue(nfit_wq); 3807 } 3808 3809 return ret; 3810 3811 } 3812 3813 static __exit void nfit_exit(void) 3814 { 3815 nfit_mce_unregister(); 3816 acpi_bus_unregister_driver(&acpi_nfit_driver); 3817 destroy_workqueue(nfit_wq); 3818 WARN_ON(!list_empty(&acpi_descs)); 3819 } 3820 3821 module_init(nfit_init); 3822 module_exit(nfit_exit); 3823 MODULE_LICENSE("GPL v2"); 3824 MODULE_AUTHOR("Intel Corporation"); 3825