1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/list_sort.h> 6 #include <linux/libnvdimm.h> 7 #include <linux/module.h> 8 #include <linux/nospec.h> 9 #include <linux/mutex.h> 10 #include <linux/ndctl.h> 11 #include <linux/sysfs.h> 12 #include <linux/delay.h> 13 #include <linux/list.h> 14 #include <linux/acpi.h> 15 #include <linux/sort.h> 16 #include <linux/io.h> 17 #include <linux/nd.h> 18 #include <asm/cacheflush.h> 19 #include <acpi/nfit.h> 20 #include "intel.h" 21 #include "nfit.h" 22 23 /* 24 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 25 * irrelevant. 26 */ 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 29 static bool force_enable_dimms; 30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); 31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); 32 33 static bool disable_vendor_specific; 34 module_param(disable_vendor_specific, bool, S_IRUGO); 35 MODULE_PARM_DESC(disable_vendor_specific, 36 "Limit commands to the publicly specified set"); 37 38 static unsigned long override_dsm_mask; 39 module_param(override_dsm_mask, ulong, S_IRUGO); 40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); 41 42 static int default_dsm_family = -1; 43 module_param(default_dsm_family, int, S_IRUGO); 44 MODULE_PARM_DESC(default_dsm_family, 45 "Try this DSM type first when identifying NVDIMM family"); 46 47 static bool no_init_ars; 48 module_param(no_init_ars, bool, 0644); 49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); 50 51 static bool force_labels; 52 module_param(force_labels, bool, 0444); 53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods"); 54 55 LIST_HEAD(acpi_descs); 56 DEFINE_MUTEX(acpi_desc_lock); 57 58 static struct workqueue_struct *nfit_wq; 59 60 struct nfit_table_prev { 61 struct list_head spas; 62 struct list_head memdevs; 63 struct list_head dcrs; 64 struct list_head bdws; 65 struct list_head idts; 66 struct list_head flushes; 67 }; 68 69 static guid_t nfit_uuid[NFIT_UUID_MAX]; 70 71 const guid_t *to_nfit_uuid(enum nfit_uuids id) 72 { 73 return &nfit_uuid[id]; 74 } 75 EXPORT_SYMBOL(to_nfit_uuid); 76 77 static const guid_t *to_nfit_bus_uuid(int family) 78 { 79 if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT, 80 "only secondary bus families can be translated\n")) 81 return NULL; 82 /* 83 * The index of bus UUIDs starts immediately following the last 84 * NVDIMM/leaf family. 85 */ 86 return to_nfit_uuid(family + NVDIMM_FAMILY_MAX); 87 } 88 89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) 90 { 91 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 92 93 /* 94 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct 95 * acpi_device. 96 */ 97 if (!nd_desc->provider_name 98 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) 99 return NULL; 100 101 return to_acpi_device(acpi_desc->dev); 102 } 103 104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) 105 { 106 struct nd_cmd_clear_error *clear_err; 107 struct nd_cmd_ars_status *ars_status; 108 u16 flags; 109 110 switch (cmd) { 111 case ND_CMD_ARS_CAP: 112 if ((status & 0xffff) == NFIT_ARS_CAP_NONE) 113 return -ENOTTY; 114 115 /* Command failed */ 116 if (status & 0xffff) 117 return -EIO; 118 119 /* No supported scan types for this range */ 120 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; 121 if ((status >> 16 & flags) == 0) 122 return -ENOTTY; 123 return 0; 124 case ND_CMD_ARS_START: 125 /* ARS is in progress */ 126 if ((status & 0xffff) == NFIT_ARS_START_BUSY) 127 return -EBUSY; 128 129 /* Command failed */ 130 if (status & 0xffff) 131 return -EIO; 132 return 0; 133 case ND_CMD_ARS_STATUS: 134 ars_status = buf; 135 /* Command failed */ 136 if (status & 0xffff) 137 return -EIO; 138 /* Check extended status (Upper two bytes) */ 139 if (status == NFIT_ARS_STATUS_DONE) 140 return 0; 141 142 /* ARS is in progress */ 143 if (status == NFIT_ARS_STATUS_BUSY) 144 return -EBUSY; 145 146 /* No ARS performed for the current boot */ 147 if (status == NFIT_ARS_STATUS_NONE) 148 return -EAGAIN; 149 150 /* 151 * ARS interrupted, either we overflowed or some other 152 * agent wants the scan to stop. If we didn't overflow 153 * then just continue with the returned results. 154 */ 155 if (status == NFIT_ARS_STATUS_INTR) { 156 if (ars_status->out_length >= 40 && (ars_status->flags 157 & NFIT_ARS_F_OVERFLOW)) 158 return -ENOSPC; 159 return 0; 160 } 161 162 /* Unknown status */ 163 if (status >> 16) 164 return -EIO; 165 return 0; 166 case ND_CMD_CLEAR_ERROR: 167 clear_err = buf; 168 if (status & 0xffff) 169 return -EIO; 170 if (!clear_err->cleared) 171 return -EIO; 172 if (clear_err->length > clear_err->cleared) 173 return clear_err->cleared; 174 return 0; 175 default: 176 break; 177 } 178 179 /* all other non-zero status results in an error */ 180 if (status) 181 return -EIO; 182 return 0; 183 } 184 185 #define ACPI_LABELS_LOCKED 3 186 187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 188 u32 status) 189 { 190 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 191 192 switch (cmd) { 193 case ND_CMD_GET_CONFIG_SIZE: 194 /* 195 * In the _LSI, _LSR, _LSW case the locked status is 196 * communicated via the read/write commands 197 */ 198 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 199 break; 200 201 if (status >> 16 & ND_CONFIG_LOCKED) 202 return -EACCES; 203 break; 204 case ND_CMD_GET_CONFIG_DATA: 205 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 206 && status == ACPI_LABELS_LOCKED) 207 return -EACCES; 208 break; 209 case ND_CMD_SET_CONFIG_DATA: 210 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 211 && status == ACPI_LABELS_LOCKED) 212 return -EACCES; 213 break; 214 default: 215 break; 216 } 217 218 /* all other non-zero status results in an error */ 219 if (status) 220 return -EIO; 221 return 0; 222 } 223 224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, 225 u32 status) 226 { 227 if (!nvdimm) 228 return xlat_bus_status(buf, cmd, status); 229 return xlat_nvdimm_status(nvdimm, buf, cmd, status); 230 } 231 232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ 233 static union acpi_object *pkg_to_buf(union acpi_object *pkg) 234 { 235 int i; 236 void *dst; 237 size_t size = 0; 238 union acpi_object *buf = NULL; 239 240 if (pkg->type != ACPI_TYPE_PACKAGE) { 241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 242 pkg->type); 243 goto err; 244 } 245 246 for (i = 0; i < pkg->package.count; i++) { 247 union acpi_object *obj = &pkg->package.elements[i]; 248 249 if (obj->type == ACPI_TYPE_INTEGER) 250 size += 4; 251 else if (obj->type == ACPI_TYPE_BUFFER) 252 size += obj->buffer.length; 253 else { 254 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 255 obj->type); 256 goto err; 257 } 258 } 259 260 buf = ACPI_ALLOCATE(sizeof(*buf) + size); 261 if (!buf) 262 goto err; 263 264 dst = buf + 1; 265 buf->type = ACPI_TYPE_BUFFER; 266 buf->buffer.length = size; 267 buf->buffer.pointer = dst; 268 for (i = 0; i < pkg->package.count; i++) { 269 union acpi_object *obj = &pkg->package.elements[i]; 270 271 if (obj->type == ACPI_TYPE_INTEGER) { 272 memcpy(dst, &obj->integer.value, 4); 273 dst += 4; 274 } else if (obj->type == ACPI_TYPE_BUFFER) { 275 memcpy(dst, obj->buffer.pointer, obj->buffer.length); 276 dst += obj->buffer.length; 277 } 278 } 279 err: 280 ACPI_FREE(pkg); 281 return buf; 282 } 283 284 static union acpi_object *int_to_buf(union acpi_object *integer) 285 { 286 union acpi_object *buf = NULL; 287 void *dst = NULL; 288 289 if (integer->type != ACPI_TYPE_INTEGER) { 290 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", 291 integer->type); 292 goto err; 293 } 294 295 buf = ACPI_ALLOCATE(sizeof(*buf) + 4); 296 if (!buf) 297 goto err; 298 299 dst = buf + 1; 300 buf->type = ACPI_TYPE_BUFFER; 301 buf->buffer.length = 4; 302 buf->buffer.pointer = dst; 303 memcpy(dst, &integer->integer.value, 4); 304 err: 305 ACPI_FREE(integer); 306 return buf; 307 } 308 309 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, 310 u32 len, void *data) 311 { 312 acpi_status rc; 313 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 314 struct acpi_object_list input = { 315 .count = 3, 316 .pointer = (union acpi_object []) { 317 [0] = { 318 .integer.type = ACPI_TYPE_INTEGER, 319 .integer.value = offset, 320 }, 321 [1] = { 322 .integer.type = ACPI_TYPE_INTEGER, 323 .integer.value = len, 324 }, 325 [2] = { 326 .buffer.type = ACPI_TYPE_BUFFER, 327 .buffer.pointer = data, 328 .buffer.length = len, 329 }, 330 }, 331 }; 332 333 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); 334 if (ACPI_FAILURE(rc)) 335 return NULL; 336 return int_to_buf(buf.pointer); 337 } 338 339 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, 340 u32 len) 341 { 342 acpi_status rc; 343 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 344 struct acpi_object_list input = { 345 .count = 2, 346 .pointer = (union acpi_object []) { 347 [0] = { 348 .integer.type = ACPI_TYPE_INTEGER, 349 .integer.value = offset, 350 }, 351 [1] = { 352 .integer.type = ACPI_TYPE_INTEGER, 353 .integer.value = len, 354 }, 355 }, 356 }; 357 358 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); 359 if (ACPI_FAILURE(rc)) 360 return NULL; 361 return pkg_to_buf(buf.pointer); 362 } 363 364 static union acpi_object *acpi_label_info(acpi_handle handle) 365 { 366 acpi_status rc; 367 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 368 369 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); 370 if (ACPI_FAILURE(rc)) 371 return NULL; 372 return pkg_to_buf(buf.pointer); 373 } 374 375 static u8 nfit_dsm_revid(unsigned family, unsigned func) 376 { 377 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = { 378 [NVDIMM_FAMILY_INTEL] = { 379 [NVDIMM_INTEL_GET_MODES ... 380 NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2, 381 }, 382 }; 383 u8 id; 384 385 if (family > NVDIMM_FAMILY_MAX) 386 return 0; 387 if (func > NVDIMM_CMD_MAX) 388 return 0; 389 id = revid_table[family][func]; 390 if (id == 0) 391 return 1; /* default */ 392 return id; 393 } 394 395 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) 396 { 397 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 398 399 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL 400 && func >= NVDIMM_INTEL_GET_SECURITY_STATE 401 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) 402 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); 403 return true; 404 } 405 406 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, 407 struct nd_cmd_pkg *call_pkg, int *family) 408 { 409 if (call_pkg) { 410 int i; 411 412 if (nfit_mem && nfit_mem->family != call_pkg->nd_family) 413 return -ENOTTY; 414 415 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) 416 if (call_pkg->nd_reserved2[i]) 417 return -EINVAL; 418 *family = call_pkg->nd_family; 419 return call_pkg->nd_command; 420 } 421 422 /* In the !call_pkg case, bus commands == bus functions */ 423 if (!nfit_mem) 424 return cmd; 425 426 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ 427 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 428 return cmd; 429 430 /* 431 * Force function number validation to fail since 0 is never 432 * published as a valid function in dsm_mask. 433 */ 434 return 0; 435 } 436 437 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, 438 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) 439 { 440 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 441 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 442 union acpi_object in_obj, in_buf, *out_obj; 443 const struct nd_cmd_desc *desc = NULL; 444 struct device *dev = acpi_desc->dev; 445 struct nd_cmd_pkg *call_pkg = NULL; 446 const char *cmd_name, *dimm_name; 447 unsigned long cmd_mask, dsm_mask; 448 u32 offset, fw_status = 0; 449 acpi_handle handle; 450 const guid_t *guid; 451 int func, rc, i; 452 int family = 0; 453 454 if (cmd_rc) 455 *cmd_rc = -EINVAL; 456 457 if (cmd == ND_CMD_CALL) 458 call_pkg = buf; 459 func = cmd_to_func(nfit_mem, cmd, call_pkg, &family); 460 if (func < 0) 461 return func; 462 463 if (nvdimm) { 464 struct acpi_device *adev = nfit_mem->adev; 465 466 if (!adev) 467 return -ENOTTY; 468 469 dimm_name = nvdimm_name(nvdimm); 470 cmd_name = nvdimm_cmd_name(cmd); 471 cmd_mask = nvdimm_cmd_mask(nvdimm); 472 dsm_mask = nfit_mem->dsm_mask; 473 desc = nd_cmd_dimm_desc(cmd); 474 guid = to_nfit_uuid(nfit_mem->family); 475 handle = adev->handle; 476 } else { 477 struct acpi_device *adev = to_acpi_dev(acpi_desc); 478 479 cmd_name = nvdimm_bus_cmd_name(cmd); 480 cmd_mask = nd_desc->cmd_mask; 481 if (cmd == ND_CMD_CALL && call_pkg->nd_family) { 482 family = call_pkg->nd_family; 483 if (family > NVDIMM_BUS_FAMILY_MAX || 484 !test_bit(family, &nd_desc->bus_family_mask)) 485 return -EINVAL; 486 family = array_index_nospec(family, 487 NVDIMM_BUS_FAMILY_MAX + 1); 488 dsm_mask = acpi_desc->family_dsm_mask[family]; 489 guid = to_nfit_bus_uuid(family); 490 } else { 491 dsm_mask = acpi_desc->bus_dsm_mask; 492 guid = to_nfit_uuid(NFIT_DEV_BUS); 493 } 494 desc = nd_cmd_bus_desc(cmd); 495 handle = adev->handle; 496 dimm_name = "bus"; 497 } 498 499 if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) 500 return -ENOTTY; 501 502 /* 503 * Check for a valid command. For ND_CMD_CALL, we also have to 504 * make sure that the DSM function is supported. 505 */ 506 if (cmd == ND_CMD_CALL && 507 (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask))) 508 return -ENOTTY; 509 else if (!test_bit(cmd, &cmd_mask)) 510 return -ENOTTY; 511 512 in_obj.type = ACPI_TYPE_PACKAGE; 513 in_obj.package.count = 1; 514 in_obj.package.elements = &in_buf; 515 in_buf.type = ACPI_TYPE_BUFFER; 516 in_buf.buffer.pointer = buf; 517 in_buf.buffer.length = 0; 518 519 /* libnvdimm has already validated the input envelope */ 520 for (i = 0; i < desc->in_num; i++) 521 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, 522 i, buf); 523 524 if (call_pkg) { 525 /* skip over package wrapper */ 526 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; 527 in_buf.buffer.length = call_pkg->nd_size_in; 528 } 529 530 dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n", 531 dimm_name, cmd, family, func, in_buf.buffer.length); 532 if (payload_dumpable(nvdimm, func)) 533 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, 534 in_buf.buffer.pointer, 535 min_t(u32, 256, in_buf.buffer.length), true); 536 537 /* call the BIOS, prefer the named methods over _DSM if available */ 538 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE 539 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) 540 out_obj = acpi_label_info(handle); 541 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA 542 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 543 struct nd_cmd_get_config_data_hdr *p = buf; 544 545 out_obj = acpi_label_read(handle, p->in_offset, p->in_length); 546 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA 547 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { 548 struct nd_cmd_set_config_hdr *p = buf; 549 550 out_obj = acpi_label_write(handle, p->in_offset, p->in_length, 551 p->in_buf); 552 } else { 553 u8 revid; 554 555 if (nvdimm) 556 revid = nfit_dsm_revid(nfit_mem->family, func); 557 else 558 revid = 1; 559 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 560 } 561 562 if (!out_obj) { 563 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); 564 return -EINVAL; 565 } 566 567 if (out_obj->type != ACPI_TYPE_BUFFER) { 568 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", 569 dimm_name, cmd_name, out_obj->type); 570 rc = -EINVAL; 571 goto out; 572 } 573 574 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, 575 cmd_name, out_obj->buffer.length); 576 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, 577 out_obj->buffer.pointer, 578 min_t(u32, 128, out_obj->buffer.length), true); 579 580 if (call_pkg) { 581 call_pkg->nd_fw_size = out_obj->buffer.length; 582 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, 583 out_obj->buffer.pointer, 584 min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); 585 586 ACPI_FREE(out_obj); 587 /* 588 * Need to support FW function w/o known size in advance. 589 * Caller can determine required size based upon nd_fw_size. 590 * If we return an error (like elsewhere) then caller wouldn't 591 * be able to rely upon data returned to make calculation. 592 */ 593 if (cmd_rc) 594 *cmd_rc = 0; 595 return 0; 596 } 597 598 for (i = 0, offset = 0; i < desc->out_num; i++) { 599 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, 600 (u32 *) out_obj->buffer.pointer, 601 out_obj->buffer.length - offset); 602 603 if (offset + out_size > out_obj->buffer.length) { 604 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", 605 dimm_name, cmd_name, i); 606 break; 607 } 608 609 if (in_buf.buffer.length + offset + out_size > buf_len) { 610 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", 611 dimm_name, cmd_name, i); 612 rc = -ENXIO; 613 goto out; 614 } 615 memcpy(buf + in_buf.buffer.length + offset, 616 out_obj->buffer.pointer + offset, out_size); 617 offset += out_size; 618 } 619 620 /* 621 * Set fw_status for all the commands with a known format to be 622 * later interpreted by xlat_status(). 623 */ 624 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP 625 && cmd <= ND_CMD_CLEAR_ERROR) 626 || (nvdimm && cmd >= ND_CMD_SMART 627 && cmd <= ND_CMD_VENDOR))) 628 fw_status = *(u32 *) out_obj->buffer.pointer; 629 630 if (offset + in_buf.buffer.length < buf_len) { 631 if (i >= 1) { 632 /* 633 * status valid, return the number of bytes left 634 * unfilled in the output buffer 635 */ 636 rc = buf_len - offset - in_buf.buffer.length; 637 if (cmd_rc) 638 *cmd_rc = xlat_status(nvdimm, buf, cmd, 639 fw_status); 640 } else { 641 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", 642 __func__, dimm_name, cmd_name, buf_len, 643 offset); 644 rc = -ENXIO; 645 } 646 } else { 647 rc = 0; 648 if (cmd_rc) 649 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); 650 } 651 652 out: 653 ACPI_FREE(out_obj); 654 655 return rc; 656 } 657 EXPORT_SYMBOL_GPL(acpi_nfit_ctl); 658 659 static const char *spa_type_name(u16 type) 660 { 661 static const char *to_name[] = { 662 [NFIT_SPA_VOLATILE] = "volatile", 663 [NFIT_SPA_PM] = "pmem", 664 [NFIT_SPA_DCR] = "dimm-control-region", 665 [NFIT_SPA_BDW] = "block-data-window", 666 [NFIT_SPA_VDISK] = "volatile-disk", 667 [NFIT_SPA_VCD] = "volatile-cd", 668 [NFIT_SPA_PDISK] = "persistent-disk", 669 [NFIT_SPA_PCD] = "persistent-cd", 670 671 }; 672 673 if (type > NFIT_SPA_PCD) 674 return "unknown"; 675 676 return to_name[type]; 677 } 678 679 int nfit_spa_type(struct acpi_nfit_system_address *spa) 680 { 681 int i; 682 683 for (i = 0; i < NFIT_UUID_MAX; i++) 684 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) 685 return i; 686 return -1; 687 } 688 689 static bool add_spa(struct acpi_nfit_desc *acpi_desc, 690 struct nfit_table_prev *prev, 691 struct acpi_nfit_system_address *spa) 692 { 693 struct device *dev = acpi_desc->dev; 694 struct nfit_spa *nfit_spa; 695 696 if (spa->header.length != sizeof(*spa)) 697 return false; 698 699 list_for_each_entry(nfit_spa, &prev->spas, list) { 700 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { 701 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 702 return true; 703 } 704 } 705 706 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), 707 GFP_KERNEL); 708 if (!nfit_spa) 709 return false; 710 INIT_LIST_HEAD(&nfit_spa->list); 711 memcpy(nfit_spa->spa, spa, sizeof(*spa)); 712 list_add_tail(&nfit_spa->list, &acpi_desc->spas); 713 dev_dbg(dev, "spa index: %d type: %s\n", 714 spa->range_index, 715 spa_type_name(nfit_spa_type(spa))); 716 return true; 717 } 718 719 static bool add_memdev(struct acpi_nfit_desc *acpi_desc, 720 struct nfit_table_prev *prev, 721 struct acpi_nfit_memory_map *memdev) 722 { 723 struct device *dev = acpi_desc->dev; 724 struct nfit_memdev *nfit_memdev; 725 726 if (memdev->header.length != sizeof(*memdev)) 727 return false; 728 729 list_for_each_entry(nfit_memdev, &prev->memdevs, list) 730 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { 731 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); 732 return true; 733 } 734 735 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), 736 GFP_KERNEL); 737 if (!nfit_memdev) 738 return false; 739 INIT_LIST_HEAD(&nfit_memdev->list); 740 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); 741 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); 742 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", 743 memdev->device_handle, memdev->range_index, 744 memdev->region_index, memdev->flags); 745 return true; 746 } 747 748 int nfit_get_smbios_id(u32 device_handle, u16 *flags) 749 { 750 struct acpi_nfit_memory_map *memdev; 751 struct acpi_nfit_desc *acpi_desc; 752 struct nfit_mem *nfit_mem; 753 u16 physical_id; 754 755 mutex_lock(&acpi_desc_lock); 756 list_for_each_entry(acpi_desc, &acpi_descs, list) { 757 mutex_lock(&acpi_desc->init_mutex); 758 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 759 memdev = __to_nfit_memdev(nfit_mem); 760 if (memdev->device_handle == device_handle) { 761 *flags = memdev->flags; 762 physical_id = memdev->physical_id; 763 mutex_unlock(&acpi_desc->init_mutex); 764 mutex_unlock(&acpi_desc_lock); 765 return physical_id; 766 } 767 } 768 mutex_unlock(&acpi_desc->init_mutex); 769 } 770 mutex_unlock(&acpi_desc_lock); 771 772 return -ENODEV; 773 } 774 EXPORT_SYMBOL_GPL(nfit_get_smbios_id); 775 776 /* 777 * An implementation may provide a truncated control region if no block windows 778 * are defined. 779 */ 780 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) 781 { 782 if (dcr->header.length < offsetof(struct acpi_nfit_control_region, 783 window_size)) 784 return 0; 785 if (dcr->windows) 786 return sizeof(*dcr); 787 return offsetof(struct acpi_nfit_control_region, window_size); 788 } 789 790 static bool add_dcr(struct acpi_nfit_desc *acpi_desc, 791 struct nfit_table_prev *prev, 792 struct acpi_nfit_control_region *dcr) 793 { 794 struct device *dev = acpi_desc->dev; 795 struct nfit_dcr *nfit_dcr; 796 797 if (!sizeof_dcr(dcr)) 798 return false; 799 800 list_for_each_entry(nfit_dcr, &prev->dcrs, list) 801 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { 802 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); 803 return true; 804 } 805 806 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), 807 GFP_KERNEL); 808 if (!nfit_dcr) 809 return false; 810 INIT_LIST_HEAD(&nfit_dcr->list); 811 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); 812 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); 813 dev_dbg(dev, "dcr index: %d windows: %d\n", 814 dcr->region_index, dcr->windows); 815 return true; 816 } 817 818 static bool add_bdw(struct acpi_nfit_desc *acpi_desc, 819 struct nfit_table_prev *prev, 820 struct acpi_nfit_data_region *bdw) 821 { 822 struct device *dev = acpi_desc->dev; 823 struct nfit_bdw *nfit_bdw; 824 825 if (bdw->header.length != sizeof(*bdw)) 826 return false; 827 list_for_each_entry(nfit_bdw, &prev->bdws, list) 828 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { 829 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); 830 return true; 831 } 832 833 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), 834 GFP_KERNEL); 835 if (!nfit_bdw) 836 return false; 837 INIT_LIST_HEAD(&nfit_bdw->list); 838 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); 839 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); 840 dev_dbg(dev, "bdw dcr: %d windows: %d\n", 841 bdw->region_index, bdw->windows); 842 return true; 843 } 844 845 static size_t sizeof_idt(struct acpi_nfit_interleave *idt) 846 { 847 if (idt->header.length < sizeof(*idt)) 848 return 0; 849 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); 850 } 851 852 static bool add_idt(struct acpi_nfit_desc *acpi_desc, 853 struct nfit_table_prev *prev, 854 struct acpi_nfit_interleave *idt) 855 { 856 struct device *dev = acpi_desc->dev; 857 struct nfit_idt *nfit_idt; 858 859 if (!sizeof_idt(idt)) 860 return false; 861 862 list_for_each_entry(nfit_idt, &prev->idts, list) { 863 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) 864 continue; 865 866 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { 867 list_move_tail(&nfit_idt->list, &acpi_desc->idts); 868 return true; 869 } 870 } 871 872 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), 873 GFP_KERNEL); 874 if (!nfit_idt) 875 return false; 876 INIT_LIST_HEAD(&nfit_idt->list); 877 memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); 878 list_add_tail(&nfit_idt->list, &acpi_desc->idts); 879 dev_dbg(dev, "idt index: %d num_lines: %d\n", 880 idt->interleave_index, idt->line_count); 881 return true; 882 } 883 884 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) 885 { 886 if (flush->header.length < sizeof(*flush)) 887 return 0; 888 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); 889 } 890 891 static bool add_flush(struct acpi_nfit_desc *acpi_desc, 892 struct nfit_table_prev *prev, 893 struct acpi_nfit_flush_address *flush) 894 { 895 struct device *dev = acpi_desc->dev; 896 struct nfit_flush *nfit_flush; 897 898 if (!sizeof_flush(flush)) 899 return false; 900 901 list_for_each_entry(nfit_flush, &prev->flushes, list) { 902 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) 903 continue; 904 905 if (memcmp(nfit_flush->flush, flush, 906 sizeof_flush(flush)) == 0) { 907 list_move_tail(&nfit_flush->list, &acpi_desc->flushes); 908 return true; 909 } 910 } 911 912 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) 913 + sizeof_flush(flush), GFP_KERNEL); 914 if (!nfit_flush) 915 return false; 916 INIT_LIST_HEAD(&nfit_flush->list); 917 memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); 918 list_add_tail(&nfit_flush->list, &acpi_desc->flushes); 919 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", 920 flush->device_handle, flush->hint_count); 921 return true; 922 } 923 924 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, 925 struct acpi_nfit_capabilities *pcap) 926 { 927 struct device *dev = acpi_desc->dev; 928 u32 mask; 929 930 mask = (1 << (pcap->highest_capability + 1)) - 1; 931 acpi_desc->platform_cap = pcap->capabilities & mask; 932 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); 933 return true; 934 } 935 936 static void *add_table(struct acpi_nfit_desc *acpi_desc, 937 struct nfit_table_prev *prev, void *table, const void *end) 938 { 939 struct device *dev = acpi_desc->dev; 940 struct acpi_nfit_header *hdr; 941 void *err = ERR_PTR(-ENOMEM); 942 943 if (table >= end) 944 return NULL; 945 946 hdr = table; 947 if (!hdr->length) { 948 dev_warn(dev, "found a zero length table '%d' parsing nfit\n", 949 hdr->type); 950 return NULL; 951 } 952 953 switch (hdr->type) { 954 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: 955 if (!add_spa(acpi_desc, prev, table)) 956 return err; 957 break; 958 case ACPI_NFIT_TYPE_MEMORY_MAP: 959 if (!add_memdev(acpi_desc, prev, table)) 960 return err; 961 break; 962 case ACPI_NFIT_TYPE_CONTROL_REGION: 963 if (!add_dcr(acpi_desc, prev, table)) 964 return err; 965 break; 966 case ACPI_NFIT_TYPE_DATA_REGION: 967 if (!add_bdw(acpi_desc, prev, table)) 968 return err; 969 break; 970 case ACPI_NFIT_TYPE_INTERLEAVE: 971 if (!add_idt(acpi_desc, prev, table)) 972 return err; 973 break; 974 case ACPI_NFIT_TYPE_FLUSH_ADDRESS: 975 if (!add_flush(acpi_desc, prev, table)) 976 return err; 977 break; 978 case ACPI_NFIT_TYPE_SMBIOS: 979 dev_dbg(dev, "smbios\n"); 980 break; 981 case ACPI_NFIT_TYPE_CAPABILITIES: 982 if (!add_platform_cap(acpi_desc, table)) 983 return err; 984 break; 985 default: 986 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); 987 break; 988 } 989 990 return table + hdr->length; 991 } 992 993 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, 994 struct nfit_mem *nfit_mem) 995 { 996 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 997 u16 dcr = nfit_mem->dcr->region_index; 998 struct nfit_spa *nfit_spa; 999 1000 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1001 u16 range_index = nfit_spa->spa->range_index; 1002 int type = nfit_spa_type(nfit_spa->spa); 1003 struct nfit_memdev *nfit_memdev; 1004 1005 if (type != NFIT_SPA_BDW) 1006 continue; 1007 1008 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1009 if (nfit_memdev->memdev->range_index != range_index) 1010 continue; 1011 if (nfit_memdev->memdev->device_handle != device_handle) 1012 continue; 1013 if (nfit_memdev->memdev->region_index != dcr) 1014 continue; 1015 1016 nfit_mem->spa_bdw = nfit_spa->spa; 1017 return; 1018 } 1019 } 1020 1021 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", 1022 nfit_mem->spa_dcr->range_index); 1023 nfit_mem->bdw = NULL; 1024 } 1025 1026 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, 1027 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) 1028 { 1029 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; 1030 struct nfit_memdev *nfit_memdev; 1031 struct nfit_bdw *nfit_bdw; 1032 struct nfit_idt *nfit_idt; 1033 u16 idt_idx, range_index; 1034 1035 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { 1036 if (nfit_bdw->bdw->region_index != dcr) 1037 continue; 1038 nfit_mem->bdw = nfit_bdw->bdw; 1039 break; 1040 } 1041 1042 if (!nfit_mem->bdw) 1043 return; 1044 1045 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); 1046 1047 if (!nfit_mem->spa_bdw) 1048 return; 1049 1050 range_index = nfit_mem->spa_bdw->range_index; 1051 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1052 if (nfit_memdev->memdev->range_index != range_index || 1053 nfit_memdev->memdev->region_index != dcr) 1054 continue; 1055 nfit_mem->memdev_bdw = nfit_memdev->memdev; 1056 idt_idx = nfit_memdev->memdev->interleave_index; 1057 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1058 if (nfit_idt->idt->interleave_index != idt_idx) 1059 continue; 1060 nfit_mem->idt_bdw = nfit_idt->idt; 1061 break; 1062 } 1063 break; 1064 } 1065 } 1066 1067 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, 1068 struct acpi_nfit_system_address *spa) 1069 { 1070 struct nfit_mem *nfit_mem, *found; 1071 struct nfit_memdev *nfit_memdev; 1072 int type = spa ? nfit_spa_type(spa) : 0; 1073 1074 switch (type) { 1075 case NFIT_SPA_DCR: 1076 case NFIT_SPA_PM: 1077 break; 1078 default: 1079 if (spa) 1080 return 0; 1081 } 1082 1083 /* 1084 * This loop runs in two modes, when a dimm is mapped the loop 1085 * adds memdev associations to an existing dimm, or creates a 1086 * dimm. In the unmapped dimm case this loop sweeps for memdev 1087 * instances with an invalid / zero range_index and adds those 1088 * dimms without spa associations. 1089 */ 1090 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1091 struct nfit_flush *nfit_flush; 1092 struct nfit_dcr *nfit_dcr; 1093 u32 device_handle; 1094 u16 dcr; 1095 1096 if (spa && nfit_memdev->memdev->range_index != spa->range_index) 1097 continue; 1098 if (!spa && nfit_memdev->memdev->range_index) 1099 continue; 1100 found = NULL; 1101 dcr = nfit_memdev->memdev->region_index; 1102 device_handle = nfit_memdev->memdev->device_handle; 1103 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1104 if (__to_nfit_memdev(nfit_mem)->device_handle 1105 == device_handle) { 1106 found = nfit_mem; 1107 break; 1108 } 1109 1110 if (found) 1111 nfit_mem = found; 1112 else { 1113 nfit_mem = devm_kzalloc(acpi_desc->dev, 1114 sizeof(*nfit_mem), GFP_KERNEL); 1115 if (!nfit_mem) 1116 return -ENOMEM; 1117 INIT_LIST_HEAD(&nfit_mem->list); 1118 nfit_mem->acpi_desc = acpi_desc; 1119 list_add(&nfit_mem->list, &acpi_desc->dimms); 1120 } 1121 1122 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1123 if (nfit_dcr->dcr->region_index != dcr) 1124 continue; 1125 /* 1126 * Record the control region for the dimm. For 1127 * the ACPI 6.1 case, where there are separate 1128 * control regions for the pmem vs blk 1129 * interfaces, be sure to record the extended 1130 * blk details. 1131 */ 1132 if (!nfit_mem->dcr) 1133 nfit_mem->dcr = nfit_dcr->dcr; 1134 else if (nfit_mem->dcr->windows == 0 1135 && nfit_dcr->dcr->windows) 1136 nfit_mem->dcr = nfit_dcr->dcr; 1137 break; 1138 } 1139 1140 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { 1141 struct acpi_nfit_flush_address *flush; 1142 u16 i; 1143 1144 if (nfit_flush->flush->device_handle != device_handle) 1145 continue; 1146 nfit_mem->nfit_flush = nfit_flush; 1147 flush = nfit_flush->flush; 1148 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, 1149 flush->hint_count, 1150 sizeof(struct resource), 1151 GFP_KERNEL); 1152 if (!nfit_mem->flush_wpq) 1153 return -ENOMEM; 1154 for (i = 0; i < flush->hint_count; i++) { 1155 struct resource *res = &nfit_mem->flush_wpq[i]; 1156 1157 res->start = flush->hint_address[i]; 1158 res->end = res->start + 8 - 1; 1159 } 1160 break; 1161 } 1162 1163 if (dcr && !nfit_mem->dcr) { 1164 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", 1165 spa->range_index, dcr); 1166 return -ENODEV; 1167 } 1168 1169 if (type == NFIT_SPA_DCR) { 1170 struct nfit_idt *nfit_idt; 1171 u16 idt_idx; 1172 1173 /* multiple dimms may share a SPA when interleaved */ 1174 nfit_mem->spa_dcr = spa; 1175 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1176 idt_idx = nfit_memdev->memdev->interleave_index; 1177 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { 1178 if (nfit_idt->idt->interleave_index != idt_idx) 1179 continue; 1180 nfit_mem->idt_dcr = nfit_idt->idt; 1181 break; 1182 } 1183 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); 1184 } else if (type == NFIT_SPA_PM) { 1185 /* 1186 * A single dimm may belong to multiple SPA-PM 1187 * ranges, record at least one in addition to 1188 * any SPA-DCR range. 1189 */ 1190 nfit_mem->memdev_pmem = nfit_memdev->memdev; 1191 } else 1192 nfit_mem->memdev_dcr = nfit_memdev->memdev; 1193 } 1194 1195 return 0; 1196 } 1197 1198 static int nfit_mem_cmp(void *priv, const struct list_head *_a, 1199 const struct list_head *_b) 1200 { 1201 struct nfit_mem *a = container_of(_a, typeof(*a), list); 1202 struct nfit_mem *b = container_of(_b, typeof(*b), list); 1203 u32 handleA, handleB; 1204 1205 handleA = __to_nfit_memdev(a)->device_handle; 1206 handleB = __to_nfit_memdev(b)->device_handle; 1207 if (handleA < handleB) 1208 return -1; 1209 else if (handleA > handleB) 1210 return 1; 1211 return 0; 1212 } 1213 1214 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) 1215 { 1216 struct nfit_spa *nfit_spa; 1217 int rc; 1218 1219 1220 /* 1221 * For each SPA-DCR or SPA-PMEM address range find its 1222 * corresponding MEMDEV(s). From each MEMDEV find the 1223 * corresponding DCR. Then, if we're operating on a SPA-DCR, 1224 * try to find a SPA-BDW and a corresponding BDW that references 1225 * the DCR. Throw it all into an nfit_mem object. Note, that 1226 * BDWs are optional. 1227 */ 1228 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 1229 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); 1230 if (rc) 1231 return rc; 1232 } 1233 1234 /* 1235 * If a DIMM has failed to be mapped into SPA there will be no 1236 * SPA entries above. Find and register all the unmapped DIMMs 1237 * for reporting and recovery purposes. 1238 */ 1239 rc = __nfit_mem_init(acpi_desc, NULL); 1240 if (rc) 1241 return rc; 1242 1243 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); 1244 1245 return 0; 1246 } 1247 1248 static ssize_t bus_dsm_mask_show(struct device *dev, 1249 struct device_attribute *attr, char *buf) 1250 { 1251 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1252 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1253 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1254 1255 return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask); 1256 } 1257 static struct device_attribute dev_attr_bus_dsm_mask = 1258 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); 1259 1260 static ssize_t revision_show(struct device *dev, 1261 struct device_attribute *attr, char *buf) 1262 { 1263 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1264 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1265 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1266 1267 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); 1268 } 1269 static DEVICE_ATTR_RO(revision); 1270 1271 static ssize_t hw_error_scrub_show(struct device *dev, 1272 struct device_attribute *attr, char *buf) 1273 { 1274 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1275 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1276 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1277 1278 return sprintf(buf, "%d\n", acpi_desc->scrub_mode); 1279 } 1280 1281 /* 1282 * The 'hw_error_scrub' attribute can have the following values written to it: 1283 * '0': Switch to the default mode where an exception will only insert 1284 * the address of the memory error into the poison and badblocks lists. 1285 * '1': Enable a full scrub to happen if an exception for a memory error is 1286 * received. 1287 */ 1288 static ssize_t hw_error_scrub_store(struct device *dev, 1289 struct device_attribute *attr, const char *buf, size_t size) 1290 { 1291 struct nvdimm_bus_descriptor *nd_desc; 1292 ssize_t rc; 1293 long val; 1294 1295 rc = kstrtol(buf, 0, &val); 1296 if (rc) 1297 return rc; 1298 1299 nfit_device_lock(dev); 1300 nd_desc = dev_get_drvdata(dev); 1301 if (nd_desc) { 1302 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1303 1304 switch (val) { 1305 case HW_ERROR_SCRUB_ON: 1306 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; 1307 break; 1308 case HW_ERROR_SCRUB_OFF: 1309 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; 1310 break; 1311 default: 1312 rc = -EINVAL; 1313 break; 1314 } 1315 } 1316 nfit_device_unlock(dev); 1317 if (rc) 1318 return rc; 1319 return size; 1320 } 1321 static DEVICE_ATTR_RW(hw_error_scrub); 1322 1323 /* 1324 * This shows the number of full Address Range Scrubs that have been 1325 * completed since driver load time. Userspace can wait on this using 1326 * select/poll etc. A '+' at the end indicates an ARS is in progress 1327 */ 1328 static ssize_t scrub_show(struct device *dev, 1329 struct device_attribute *attr, char *buf) 1330 { 1331 struct nvdimm_bus_descriptor *nd_desc; 1332 struct acpi_nfit_desc *acpi_desc; 1333 ssize_t rc = -ENXIO; 1334 bool busy; 1335 1336 nfit_device_lock(dev); 1337 nd_desc = dev_get_drvdata(dev); 1338 if (!nd_desc) { 1339 nfit_device_unlock(dev); 1340 return rc; 1341 } 1342 acpi_desc = to_acpi_desc(nd_desc); 1343 1344 mutex_lock(&acpi_desc->init_mutex); 1345 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags) 1346 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 1347 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n"); 1348 /* Allow an admin to poll the busy state at a higher rate */ 1349 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL, 1350 &acpi_desc->scrub_flags)) { 1351 acpi_desc->scrub_tmo = 1; 1352 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ); 1353 } 1354 1355 mutex_unlock(&acpi_desc->init_mutex); 1356 nfit_device_unlock(dev); 1357 return rc; 1358 } 1359 1360 static ssize_t scrub_store(struct device *dev, 1361 struct device_attribute *attr, const char *buf, size_t size) 1362 { 1363 struct nvdimm_bus_descriptor *nd_desc; 1364 ssize_t rc; 1365 long val; 1366 1367 rc = kstrtol(buf, 0, &val); 1368 if (rc) 1369 return rc; 1370 if (val != 1) 1371 return -EINVAL; 1372 1373 nfit_device_lock(dev); 1374 nd_desc = dev_get_drvdata(dev); 1375 if (nd_desc) { 1376 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 1377 1378 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 1379 } 1380 nfit_device_unlock(dev); 1381 if (rc) 1382 return rc; 1383 return size; 1384 } 1385 static DEVICE_ATTR_RW(scrub); 1386 1387 static bool ars_supported(struct nvdimm_bus *nvdimm_bus) 1388 { 1389 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 1390 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START 1391 | 1 << ND_CMD_ARS_STATUS; 1392 1393 return (nd_desc->cmd_mask & mask) == mask; 1394 } 1395 1396 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) 1397 { 1398 struct device *dev = kobj_to_dev(kobj); 1399 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); 1400 1401 if (a == &dev_attr_scrub.attr) 1402 return ars_supported(nvdimm_bus) ? a->mode : 0; 1403 1404 if (a == &dev_attr_firmware_activate_noidle.attr) 1405 return intel_fwa_supported(nvdimm_bus) ? a->mode : 0; 1406 1407 return a->mode; 1408 } 1409 1410 static struct attribute *acpi_nfit_attributes[] = { 1411 &dev_attr_revision.attr, 1412 &dev_attr_scrub.attr, 1413 &dev_attr_hw_error_scrub.attr, 1414 &dev_attr_bus_dsm_mask.attr, 1415 &dev_attr_firmware_activate_noidle.attr, 1416 NULL, 1417 }; 1418 1419 static const struct attribute_group acpi_nfit_attribute_group = { 1420 .name = "nfit", 1421 .attrs = acpi_nfit_attributes, 1422 .is_visible = nfit_visible, 1423 }; 1424 1425 static const struct attribute_group *acpi_nfit_attribute_groups[] = { 1426 &acpi_nfit_attribute_group, 1427 NULL, 1428 }; 1429 1430 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) 1431 { 1432 struct nvdimm *nvdimm = to_nvdimm(dev); 1433 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1434 1435 return __to_nfit_memdev(nfit_mem); 1436 } 1437 1438 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) 1439 { 1440 struct nvdimm *nvdimm = to_nvdimm(dev); 1441 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1442 1443 return nfit_mem->dcr; 1444 } 1445 1446 static ssize_t handle_show(struct device *dev, 1447 struct device_attribute *attr, char *buf) 1448 { 1449 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1450 1451 return sprintf(buf, "%#x\n", memdev->device_handle); 1452 } 1453 static DEVICE_ATTR_RO(handle); 1454 1455 static ssize_t phys_id_show(struct device *dev, 1456 struct device_attribute *attr, char *buf) 1457 { 1458 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); 1459 1460 return sprintf(buf, "%#x\n", memdev->physical_id); 1461 } 1462 static DEVICE_ATTR_RO(phys_id); 1463 1464 static ssize_t vendor_show(struct device *dev, 1465 struct device_attribute *attr, char *buf) 1466 { 1467 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1468 1469 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); 1470 } 1471 static DEVICE_ATTR_RO(vendor); 1472 1473 static ssize_t rev_id_show(struct device *dev, 1474 struct device_attribute *attr, char *buf) 1475 { 1476 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1477 1478 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); 1479 } 1480 static DEVICE_ATTR_RO(rev_id); 1481 1482 static ssize_t device_show(struct device *dev, 1483 struct device_attribute *attr, char *buf) 1484 { 1485 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1486 1487 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); 1488 } 1489 static DEVICE_ATTR_RO(device); 1490 1491 static ssize_t subsystem_vendor_show(struct device *dev, 1492 struct device_attribute *attr, char *buf) 1493 { 1494 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1495 1496 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); 1497 } 1498 static DEVICE_ATTR_RO(subsystem_vendor); 1499 1500 static ssize_t subsystem_rev_id_show(struct device *dev, 1501 struct device_attribute *attr, char *buf) 1502 { 1503 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1504 1505 return sprintf(buf, "0x%04x\n", 1506 be16_to_cpu(dcr->subsystem_revision_id)); 1507 } 1508 static DEVICE_ATTR_RO(subsystem_rev_id); 1509 1510 static ssize_t subsystem_device_show(struct device *dev, 1511 struct device_attribute *attr, char *buf) 1512 { 1513 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1514 1515 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); 1516 } 1517 static DEVICE_ATTR_RO(subsystem_device); 1518 1519 static int num_nvdimm_formats(struct nvdimm *nvdimm) 1520 { 1521 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1522 int formats = 0; 1523 1524 if (nfit_mem->memdev_pmem) 1525 formats++; 1526 if (nfit_mem->memdev_bdw) 1527 formats++; 1528 return formats; 1529 } 1530 1531 static ssize_t format_show(struct device *dev, 1532 struct device_attribute *attr, char *buf) 1533 { 1534 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1535 1536 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); 1537 } 1538 static DEVICE_ATTR_RO(format); 1539 1540 static ssize_t format1_show(struct device *dev, 1541 struct device_attribute *attr, char *buf) 1542 { 1543 u32 handle; 1544 ssize_t rc = -ENXIO; 1545 struct nfit_mem *nfit_mem; 1546 struct nfit_memdev *nfit_memdev; 1547 struct acpi_nfit_desc *acpi_desc; 1548 struct nvdimm *nvdimm = to_nvdimm(dev); 1549 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1550 1551 nfit_mem = nvdimm_provider_data(nvdimm); 1552 acpi_desc = nfit_mem->acpi_desc; 1553 handle = to_nfit_memdev(dev)->device_handle; 1554 1555 /* assumes DIMMs have at most 2 published interface codes */ 1556 mutex_lock(&acpi_desc->init_mutex); 1557 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 1558 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 1559 struct nfit_dcr *nfit_dcr; 1560 1561 if (memdev->device_handle != handle) 1562 continue; 1563 1564 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { 1565 if (nfit_dcr->dcr->region_index != memdev->region_index) 1566 continue; 1567 if (nfit_dcr->dcr->code == dcr->code) 1568 continue; 1569 rc = sprintf(buf, "0x%04x\n", 1570 le16_to_cpu(nfit_dcr->dcr->code)); 1571 break; 1572 } 1573 if (rc != -ENXIO) 1574 break; 1575 } 1576 mutex_unlock(&acpi_desc->init_mutex); 1577 return rc; 1578 } 1579 static DEVICE_ATTR_RO(format1); 1580 1581 static ssize_t formats_show(struct device *dev, 1582 struct device_attribute *attr, char *buf) 1583 { 1584 struct nvdimm *nvdimm = to_nvdimm(dev); 1585 1586 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); 1587 } 1588 static DEVICE_ATTR_RO(formats); 1589 1590 static ssize_t serial_show(struct device *dev, 1591 struct device_attribute *attr, char *buf) 1592 { 1593 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); 1594 1595 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); 1596 } 1597 static DEVICE_ATTR_RO(serial); 1598 1599 static ssize_t family_show(struct device *dev, 1600 struct device_attribute *attr, char *buf) 1601 { 1602 struct nvdimm *nvdimm = to_nvdimm(dev); 1603 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1604 1605 if (nfit_mem->family < 0) 1606 return -ENXIO; 1607 return sprintf(buf, "%d\n", nfit_mem->family); 1608 } 1609 static DEVICE_ATTR_RO(family); 1610 1611 static ssize_t dsm_mask_show(struct device *dev, 1612 struct device_attribute *attr, char *buf) 1613 { 1614 struct nvdimm *nvdimm = to_nvdimm(dev); 1615 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1616 1617 if (nfit_mem->family < 0) 1618 return -ENXIO; 1619 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); 1620 } 1621 static DEVICE_ATTR_RO(dsm_mask); 1622 1623 static ssize_t flags_show(struct device *dev, 1624 struct device_attribute *attr, char *buf) 1625 { 1626 struct nvdimm *nvdimm = to_nvdimm(dev); 1627 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1628 u16 flags = __to_nfit_memdev(nfit_mem)->flags; 1629 1630 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) 1631 flags |= ACPI_NFIT_MEM_FLUSH_FAILED; 1632 1633 return sprintf(buf, "%s%s%s%s%s%s%s\n", 1634 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", 1635 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", 1636 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", 1637 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", 1638 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", 1639 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", 1640 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); 1641 } 1642 static DEVICE_ATTR_RO(flags); 1643 1644 static ssize_t id_show(struct device *dev, 1645 struct device_attribute *attr, char *buf) 1646 { 1647 struct nvdimm *nvdimm = to_nvdimm(dev); 1648 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1649 1650 return sprintf(buf, "%s\n", nfit_mem->id); 1651 } 1652 static DEVICE_ATTR_RO(id); 1653 1654 static ssize_t dirty_shutdown_show(struct device *dev, 1655 struct device_attribute *attr, char *buf) 1656 { 1657 struct nvdimm *nvdimm = to_nvdimm(dev); 1658 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1659 1660 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); 1661 } 1662 static DEVICE_ATTR_RO(dirty_shutdown); 1663 1664 static struct attribute *acpi_nfit_dimm_attributes[] = { 1665 &dev_attr_handle.attr, 1666 &dev_attr_phys_id.attr, 1667 &dev_attr_vendor.attr, 1668 &dev_attr_device.attr, 1669 &dev_attr_rev_id.attr, 1670 &dev_attr_subsystem_vendor.attr, 1671 &dev_attr_subsystem_device.attr, 1672 &dev_attr_subsystem_rev_id.attr, 1673 &dev_attr_format.attr, 1674 &dev_attr_formats.attr, 1675 &dev_attr_format1.attr, 1676 &dev_attr_serial.attr, 1677 &dev_attr_flags.attr, 1678 &dev_attr_id.attr, 1679 &dev_attr_family.attr, 1680 &dev_attr_dsm_mask.attr, 1681 &dev_attr_dirty_shutdown.attr, 1682 NULL, 1683 }; 1684 1685 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, 1686 struct attribute *a, int n) 1687 { 1688 struct device *dev = kobj_to_dev(kobj); 1689 struct nvdimm *nvdimm = to_nvdimm(dev); 1690 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 1691 1692 if (!to_nfit_dcr(dev)) { 1693 /* Without a dcr only the memdev attributes can be surfaced */ 1694 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr 1695 || a == &dev_attr_flags.attr 1696 || a == &dev_attr_family.attr 1697 || a == &dev_attr_dsm_mask.attr) 1698 return a->mode; 1699 return 0; 1700 } 1701 1702 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) 1703 return 0; 1704 1705 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) 1706 && a == &dev_attr_dirty_shutdown.attr) 1707 return 0; 1708 1709 return a->mode; 1710 } 1711 1712 static const struct attribute_group acpi_nfit_dimm_attribute_group = { 1713 .name = "nfit", 1714 .attrs = acpi_nfit_dimm_attributes, 1715 .is_visible = acpi_nfit_dimm_attr_visible, 1716 }; 1717 1718 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { 1719 &acpi_nfit_dimm_attribute_group, 1720 NULL, 1721 }; 1722 1723 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, 1724 u32 device_handle) 1725 { 1726 struct nfit_mem *nfit_mem; 1727 1728 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) 1729 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) 1730 return nfit_mem->nvdimm; 1731 1732 return NULL; 1733 } 1734 1735 void __acpi_nvdimm_notify(struct device *dev, u32 event) 1736 { 1737 struct nfit_mem *nfit_mem; 1738 struct acpi_nfit_desc *acpi_desc; 1739 1740 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), 1741 event); 1742 1743 if (event != NFIT_NOTIFY_DIMM_HEALTH) { 1744 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), 1745 event); 1746 return; 1747 } 1748 1749 acpi_desc = dev_get_drvdata(dev->parent); 1750 if (!acpi_desc) 1751 return; 1752 1753 /* 1754 * If we successfully retrieved acpi_desc, then we know nfit_mem data 1755 * is still valid. 1756 */ 1757 nfit_mem = dev_get_drvdata(dev); 1758 if (nfit_mem && nfit_mem->flags_attr) 1759 sysfs_notify_dirent(nfit_mem->flags_attr); 1760 } 1761 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); 1762 1763 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) 1764 { 1765 struct acpi_device *adev = data; 1766 struct device *dev = &adev->dev; 1767 1768 nfit_device_lock(dev->parent); 1769 __acpi_nvdimm_notify(dev, event); 1770 nfit_device_unlock(dev->parent); 1771 } 1772 1773 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) 1774 { 1775 acpi_handle handle; 1776 acpi_status status; 1777 1778 status = acpi_get_handle(adev->handle, method, &handle); 1779 1780 if (ACPI_SUCCESS(status)) 1781 return true; 1782 return false; 1783 } 1784 1785 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) 1786 { 1787 struct device *dev = &nfit_mem->adev->dev; 1788 struct nd_intel_smart smart = { 0 }; 1789 union acpi_object in_buf = { 1790 .buffer.type = ACPI_TYPE_BUFFER, 1791 .buffer.length = 0, 1792 }; 1793 union acpi_object in_obj = { 1794 .package.type = ACPI_TYPE_PACKAGE, 1795 .package.count = 1, 1796 .package.elements = &in_buf, 1797 }; 1798 const u8 func = ND_INTEL_SMART; 1799 const guid_t *guid = to_nfit_uuid(nfit_mem->family); 1800 u8 revid = nfit_dsm_revid(nfit_mem->family, func); 1801 struct acpi_device *adev = nfit_mem->adev; 1802 acpi_handle handle = adev->handle; 1803 union acpi_object *out_obj; 1804 1805 if ((nfit_mem->dsm_mask & (1 << func)) == 0) 1806 return; 1807 1808 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); 1809 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER 1810 || out_obj->buffer.length < sizeof(smart)) { 1811 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n", 1812 dev_name(dev)); 1813 ACPI_FREE(out_obj); 1814 return; 1815 } 1816 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart)); 1817 ACPI_FREE(out_obj); 1818 1819 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { 1820 if (smart.shutdown_state) 1821 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); 1822 } 1823 1824 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { 1825 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); 1826 nfit_mem->dirty_shutdown = smart.shutdown_count; 1827 } 1828 } 1829 1830 static void populate_shutdown_status(struct nfit_mem *nfit_mem) 1831 { 1832 /* 1833 * For DIMMs that provide a dynamic facility to retrieve a 1834 * dirty-shutdown status and/or a dirty-shutdown count, cache 1835 * these values in nfit_mem. 1836 */ 1837 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) 1838 nfit_intel_shutdown_status(nfit_mem); 1839 } 1840 1841 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, 1842 struct nfit_mem *nfit_mem, u32 device_handle) 1843 { 1844 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 1845 struct acpi_device *adev, *adev_dimm; 1846 struct device *dev = acpi_desc->dev; 1847 unsigned long dsm_mask, label_mask; 1848 const guid_t *guid; 1849 int i; 1850 int family = -1; 1851 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 1852 1853 /* nfit test assumes 1:1 relationship between commands and dsms */ 1854 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; 1855 nfit_mem->family = NVDIMM_FAMILY_INTEL; 1856 set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); 1857 1858 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) 1859 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", 1860 be16_to_cpu(dcr->vendor_id), 1861 dcr->manufacturing_location, 1862 be16_to_cpu(dcr->manufacturing_date), 1863 be32_to_cpu(dcr->serial_number)); 1864 else 1865 sprintf(nfit_mem->id, "%04x-%08x", 1866 be16_to_cpu(dcr->vendor_id), 1867 be32_to_cpu(dcr->serial_number)); 1868 1869 adev = to_acpi_dev(acpi_desc); 1870 if (!adev) { 1871 /* unit test case */ 1872 populate_shutdown_status(nfit_mem); 1873 return 0; 1874 } 1875 1876 adev_dimm = acpi_find_child_device(adev, device_handle, false); 1877 nfit_mem->adev = adev_dimm; 1878 if (!adev_dimm) { 1879 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", 1880 device_handle); 1881 return force_enable_dimms ? 0 : -ENODEV; 1882 } 1883 1884 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, 1885 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { 1886 dev_err(dev, "%s: notification registration failed\n", 1887 dev_name(&adev_dimm->dev)); 1888 return -ENXIO; 1889 } 1890 /* 1891 * Record nfit_mem for the notification path to track back to 1892 * the nfit sysfs attributes for this dimm device object. 1893 */ 1894 dev_set_drvdata(&adev_dimm->dev, nfit_mem); 1895 1896 /* 1897 * There are 4 "legacy" NVDIMM command sets 1898 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before 1899 * an EFI working group was established to constrain this 1900 * proliferation. The nfit driver probes for the supported command 1901 * set by GUID. Note, if you're a platform developer looking to add 1902 * a new command set to this probe, consider using an existing set, 1903 * or otherwise seek approval to publish the command set at 1904 * http://www.uefi.org/RFIC_LIST. 1905 * 1906 * Note, that checking for function0 (bit0) tells us if any commands 1907 * are reachable through this GUID. 1908 */ 1909 clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask); 1910 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) 1911 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) { 1912 set_bit(i, &nd_desc->dimm_family_mask); 1913 if (family < 0 || i == default_dsm_family) 1914 family = i; 1915 } 1916 1917 /* limit the supported commands to those that are publicly documented */ 1918 nfit_mem->family = family; 1919 if (override_dsm_mask && !disable_vendor_specific) 1920 dsm_mask = override_dsm_mask; 1921 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 1922 dsm_mask = NVDIMM_INTEL_CMDMASK; 1923 if (disable_vendor_specific) 1924 dsm_mask &= ~(1 << ND_CMD_VENDOR); 1925 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { 1926 dsm_mask = 0x1c3c76; 1927 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { 1928 dsm_mask = 0x1fe; 1929 if (disable_vendor_specific) 1930 dsm_mask &= ~(1 << 8); 1931 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { 1932 dsm_mask = 0xffffffff; 1933 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) { 1934 dsm_mask = 0x1f; 1935 } else { 1936 dev_dbg(dev, "unknown dimm command family\n"); 1937 nfit_mem->family = -1; 1938 /* DSMs are optional, continue loading the driver... */ 1939 return 0; 1940 } 1941 1942 /* 1943 * Function 0 is the command interrogation function, don't 1944 * export it to potential userspace use, and enable it to be 1945 * used as an error value in acpi_nfit_ctl(). 1946 */ 1947 dsm_mask &= ~1UL; 1948 1949 guid = to_nfit_uuid(nfit_mem->family); 1950 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 1951 if (acpi_check_dsm(adev_dimm->handle, guid, 1952 nfit_dsm_revid(nfit_mem->family, i), 1953 1ULL << i)) 1954 set_bit(i, &nfit_mem->dsm_mask); 1955 1956 /* 1957 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present 1958 * due to their better semantics handling locked capacity. 1959 */ 1960 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA 1961 | 1 << ND_CMD_SET_CONFIG_DATA; 1962 if (family == NVDIMM_FAMILY_INTEL 1963 && (dsm_mask & label_mask) == label_mask) 1964 /* skip _LS{I,R,W} enabling */; 1965 else { 1966 if (acpi_nvdimm_has_method(adev_dimm, "_LSI") 1967 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { 1968 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); 1969 set_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1970 } 1971 1972 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) 1973 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { 1974 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); 1975 set_bit(NFIT_MEM_LSW, &nfit_mem->flags); 1976 } 1977 1978 /* 1979 * Quirk read-only label configurations to preserve 1980 * access to label-less namespaces by default. 1981 */ 1982 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags) 1983 && !force_labels) { 1984 dev_dbg(dev, "%s: No _LSW, disable labels\n", 1985 dev_name(&adev_dimm->dev)); 1986 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags); 1987 } else 1988 dev_dbg(dev, "%s: Force enable labels\n", 1989 dev_name(&adev_dimm->dev)); 1990 } 1991 1992 populate_shutdown_status(nfit_mem); 1993 1994 return 0; 1995 } 1996 1997 static void shutdown_dimm_notify(void *data) 1998 { 1999 struct acpi_nfit_desc *acpi_desc = data; 2000 struct nfit_mem *nfit_mem; 2001 2002 mutex_lock(&acpi_desc->init_mutex); 2003 /* 2004 * Clear out the nfit_mem->flags_attr and shut down dimm event 2005 * notifications. 2006 */ 2007 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2008 struct acpi_device *adev_dimm = nfit_mem->adev; 2009 2010 if (nfit_mem->flags_attr) { 2011 sysfs_put(nfit_mem->flags_attr); 2012 nfit_mem->flags_attr = NULL; 2013 } 2014 if (adev_dimm) { 2015 acpi_remove_notify_handler(adev_dimm->handle, 2016 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); 2017 dev_set_drvdata(&adev_dimm->dev, NULL); 2018 } 2019 } 2020 mutex_unlock(&acpi_desc->init_mutex); 2021 } 2022 2023 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) 2024 { 2025 switch (family) { 2026 case NVDIMM_FAMILY_INTEL: 2027 return intel_security_ops; 2028 default: 2029 return NULL; 2030 } 2031 } 2032 2033 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops( 2034 struct nfit_mem *nfit_mem) 2035 { 2036 unsigned long mask; 2037 struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc; 2038 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2039 2040 if (!nd_desc->fw_ops) 2041 return NULL; 2042 2043 if (nfit_mem->family != NVDIMM_FAMILY_INTEL) 2044 return NULL; 2045 2046 mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK; 2047 if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK) 2048 return NULL; 2049 2050 return intel_fw_ops; 2051 } 2052 2053 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) 2054 { 2055 struct nfit_mem *nfit_mem; 2056 int dimm_count = 0, rc; 2057 struct nvdimm *nvdimm; 2058 2059 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2060 struct acpi_nfit_flush_address *flush; 2061 unsigned long flags = 0, cmd_mask; 2062 struct nfit_memdev *nfit_memdev; 2063 u32 device_handle; 2064 u16 mem_flags; 2065 2066 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; 2067 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); 2068 if (nvdimm) { 2069 dimm_count++; 2070 continue; 2071 } 2072 2073 if (nfit_mem->bdw && nfit_mem->memdev_pmem) { 2074 set_bit(NDD_ALIASING, &flags); 2075 set_bit(NDD_LABELING, &flags); 2076 } 2077 2078 /* collate flags across all memdevs for this dimm */ 2079 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 2080 struct acpi_nfit_memory_map *dimm_memdev; 2081 2082 dimm_memdev = __to_nfit_memdev(nfit_mem); 2083 if (dimm_memdev->device_handle 2084 != nfit_memdev->memdev->device_handle) 2085 continue; 2086 dimm_memdev->flags |= nfit_memdev->memdev->flags; 2087 } 2088 2089 mem_flags = __to_nfit_memdev(nfit_mem)->flags; 2090 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) 2091 set_bit(NDD_UNARMED, &flags); 2092 2093 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); 2094 if (rc) 2095 continue; 2096 2097 /* 2098 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL 2099 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the 2100 * userspace interface. 2101 */ 2102 cmd_mask = 1UL << ND_CMD_CALL; 2103 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { 2104 /* 2105 * These commands have a 1:1 correspondence 2106 * between DSM payload and libnvdimm ioctl 2107 * payload format. 2108 */ 2109 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; 2110 } 2111 2112 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */ 2113 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) 2114 set_bit(NDD_NOBLK, &flags); 2115 2116 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { 2117 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); 2118 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); 2119 } 2120 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) 2121 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); 2122 2123 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush 2124 : NULL; 2125 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, 2126 acpi_nfit_dimm_attribute_groups, 2127 flags, cmd_mask, flush ? flush->hint_count : 0, 2128 nfit_mem->flush_wpq, &nfit_mem->id[0], 2129 acpi_nfit_get_security_ops(nfit_mem->family), 2130 acpi_nfit_get_fw_ops(nfit_mem)); 2131 if (!nvdimm) 2132 return -ENOMEM; 2133 2134 nfit_mem->nvdimm = nvdimm; 2135 dimm_count++; 2136 2137 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) 2138 continue; 2139 2140 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n", 2141 nvdimm_name(nvdimm), 2142 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", 2143 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", 2144 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", 2145 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", 2146 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); 2147 2148 } 2149 2150 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); 2151 if (rc) 2152 return rc; 2153 2154 /* 2155 * Now that dimms are successfully registered, and async registration 2156 * is flushed, attempt to enable event notification. 2157 */ 2158 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { 2159 struct kernfs_node *nfit_kernfs; 2160 2161 nvdimm = nfit_mem->nvdimm; 2162 if (!nvdimm) 2163 continue; 2164 2165 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); 2166 if (nfit_kernfs) 2167 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, 2168 "flags"); 2169 sysfs_put(nfit_kernfs); 2170 if (!nfit_mem->flags_attr) 2171 dev_warn(acpi_desc->dev, "%s: notifications disabled\n", 2172 nvdimm_name(nvdimm)); 2173 } 2174 2175 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, 2176 acpi_desc); 2177 } 2178 2179 /* 2180 * These constants are private because there are no kernel consumers of 2181 * these commands. 2182 */ 2183 enum nfit_aux_cmds { 2184 NFIT_CMD_TRANSLATE_SPA = 5, 2185 NFIT_CMD_ARS_INJECT_SET = 7, 2186 NFIT_CMD_ARS_INJECT_CLEAR = 8, 2187 NFIT_CMD_ARS_INJECT_GET = 9, 2188 }; 2189 2190 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) 2191 { 2192 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2193 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); 2194 unsigned long dsm_mask, *mask; 2195 struct acpi_device *adev; 2196 int i; 2197 2198 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); 2199 set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask); 2200 2201 /* enable nfit_test to inject bus command emulation */ 2202 if (acpi_desc->bus_cmd_force_en) { 2203 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; 2204 mask = &nd_desc->bus_family_mask; 2205 if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) { 2206 set_bit(NVDIMM_BUS_FAMILY_INTEL, mask); 2207 nd_desc->fw_ops = intel_bus_fw_ops; 2208 } 2209 } 2210 2211 adev = to_acpi_dev(acpi_desc); 2212 if (!adev) 2213 return; 2214 2215 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) 2216 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2217 set_bit(i, &nd_desc->cmd_mask); 2218 2219 dsm_mask = 2220 (1 << ND_CMD_ARS_CAP) | 2221 (1 << ND_CMD_ARS_START) | 2222 (1 << ND_CMD_ARS_STATUS) | 2223 (1 << ND_CMD_CLEAR_ERROR) | 2224 (1 << NFIT_CMD_TRANSLATE_SPA) | 2225 (1 << NFIT_CMD_ARS_INJECT_SET) | 2226 (1 << NFIT_CMD_ARS_INJECT_CLEAR) | 2227 (1 << NFIT_CMD_ARS_INJECT_GET); 2228 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2229 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2230 set_bit(i, &acpi_desc->bus_dsm_mask); 2231 2232 /* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */ 2233 dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK; 2234 guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL); 2235 mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]; 2236 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) 2237 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) 2238 set_bit(i, mask); 2239 2240 if (*mask == dsm_mask) { 2241 set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask); 2242 nd_desc->fw_ops = intel_bus_fw_ops; 2243 } 2244 } 2245 2246 static ssize_t range_index_show(struct device *dev, 2247 struct device_attribute *attr, char *buf) 2248 { 2249 struct nd_region *nd_region = to_nd_region(dev); 2250 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); 2251 2252 return sprintf(buf, "%d\n", nfit_spa->spa->range_index); 2253 } 2254 static DEVICE_ATTR_RO(range_index); 2255 2256 static struct attribute *acpi_nfit_region_attributes[] = { 2257 &dev_attr_range_index.attr, 2258 NULL, 2259 }; 2260 2261 static const struct attribute_group acpi_nfit_region_attribute_group = { 2262 .name = "nfit", 2263 .attrs = acpi_nfit_region_attributes, 2264 }; 2265 2266 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { 2267 &acpi_nfit_region_attribute_group, 2268 NULL, 2269 }; 2270 2271 /* enough info to uniquely specify an interleave set */ 2272 struct nfit_set_info { 2273 u64 region_offset; 2274 u32 serial_number; 2275 u32 pad; 2276 }; 2277 2278 struct nfit_set_info2 { 2279 u64 region_offset; 2280 u32 serial_number; 2281 u16 vendor_id; 2282 u16 manufacturing_date; 2283 u8 manufacturing_location; 2284 u8 reserved[31]; 2285 }; 2286 2287 static int cmp_map_compat(const void *m0, const void *m1) 2288 { 2289 const struct nfit_set_info *map0 = m0; 2290 const struct nfit_set_info *map1 = m1; 2291 2292 return memcmp(&map0->region_offset, &map1->region_offset, 2293 sizeof(u64)); 2294 } 2295 2296 static int cmp_map(const void *m0, const void *m1) 2297 { 2298 const struct nfit_set_info *map0 = m0; 2299 const struct nfit_set_info *map1 = m1; 2300 2301 if (map0->region_offset < map1->region_offset) 2302 return -1; 2303 else if (map0->region_offset > map1->region_offset) 2304 return 1; 2305 return 0; 2306 } 2307 2308 static int cmp_map2(const void *m0, const void *m1) 2309 { 2310 const struct nfit_set_info2 *map0 = m0; 2311 const struct nfit_set_info2 *map1 = m1; 2312 2313 if (map0->region_offset < map1->region_offset) 2314 return -1; 2315 else if (map0->region_offset > map1->region_offset) 2316 return 1; 2317 return 0; 2318 } 2319 2320 /* Retrieve the nth entry referencing this spa */ 2321 static struct acpi_nfit_memory_map *memdev_from_spa( 2322 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) 2323 { 2324 struct nfit_memdev *nfit_memdev; 2325 2326 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) 2327 if (nfit_memdev->memdev->range_index == range_index) 2328 if (n-- == 0) 2329 return nfit_memdev->memdev; 2330 return NULL; 2331 } 2332 2333 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, 2334 struct nd_region_desc *ndr_desc, 2335 struct acpi_nfit_system_address *spa) 2336 { 2337 struct device *dev = acpi_desc->dev; 2338 struct nd_interleave_set *nd_set; 2339 u16 nr = ndr_desc->num_mappings; 2340 struct nfit_set_info2 *info2; 2341 struct nfit_set_info *info; 2342 int i; 2343 2344 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); 2345 if (!nd_set) 2346 return -ENOMEM; 2347 import_guid(&nd_set->type_guid, spa->range_guid); 2348 2349 info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL); 2350 if (!info) 2351 return -ENOMEM; 2352 2353 info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL); 2354 if (!info2) 2355 return -ENOMEM; 2356 2357 for (i = 0; i < nr; i++) { 2358 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 2359 struct nvdimm *nvdimm = mapping->nvdimm; 2360 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2361 struct nfit_set_info *map = &info[i]; 2362 struct nfit_set_info2 *map2 = &info2[i]; 2363 struct acpi_nfit_memory_map *memdev = 2364 memdev_from_spa(acpi_desc, spa->range_index, i); 2365 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2366 2367 if (!memdev || !nfit_mem->dcr) { 2368 dev_err(dev, "%s: failed to find DCR\n", __func__); 2369 return -ENODEV; 2370 } 2371 2372 map->region_offset = memdev->region_offset; 2373 map->serial_number = dcr->serial_number; 2374 2375 map2->region_offset = memdev->region_offset; 2376 map2->serial_number = dcr->serial_number; 2377 map2->vendor_id = dcr->vendor_id; 2378 map2->manufacturing_date = dcr->manufacturing_date; 2379 map2->manufacturing_location = dcr->manufacturing_location; 2380 } 2381 2382 /* v1.1 namespaces */ 2383 sort(info, nr, sizeof(*info), cmp_map, NULL); 2384 nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0); 2385 2386 /* v1.2 namespaces */ 2387 sort(info2, nr, sizeof(*info2), cmp_map2, NULL); 2388 nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0); 2389 2390 /* support v1.1 namespaces created with the wrong sort order */ 2391 sort(info, nr, sizeof(*info), cmp_map_compat, NULL); 2392 nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0); 2393 2394 /* record the result of the sort for the mapping position */ 2395 for (i = 0; i < nr; i++) { 2396 struct nfit_set_info2 *map2 = &info2[i]; 2397 int j; 2398 2399 for (j = 0; j < nr; j++) { 2400 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; 2401 struct nvdimm *nvdimm = mapping->nvdimm; 2402 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); 2403 struct acpi_nfit_control_region *dcr = nfit_mem->dcr; 2404 2405 if (map2->serial_number == dcr->serial_number && 2406 map2->vendor_id == dcr->vendor_id && 2407 map2->manufacturing_date == dcr->manufacturing_date && 2408 map2->manufacturing_location 2409 == dcr->manufacturing_location) { 2410 mapping->position = i; 2411 break; 2412 } 2413 } 2414 } 2415 2416 ndr_desc->nd_set = nd_set; 2417 devm_kfree(dev, info); 2418 devm_kfree(dev, info2); 2419 2420 return 0; 2421 } 2422 2423 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) 2424 { 2425 struct acpi_nfit_interleave *idt = mmio->idt; 2426 u32 sub_line_offset, line_index, line_offset; 2427 u64 line_no, table_skip_count, table_offset; 2428 2429 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); 2430 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); 2431 line_offset = idt->line_offset[line_index] 2432 * mmio->line_size; 2433 table_offset = table_skip_count * mmio->table_size; 2434 2435 return mmio->base_offset + line_offset + table_offset + sub_line_offset; 2436 } 2437 2438 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) 2439 { 2440 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2441 u64 offset = nfit_blk->stat_offset + mmio->size * bw; 2442 const u32 STATUS_MASK = 0x80000037; 2443 2444 if (mmio->num_lines) 2445 offset = to_interleave_offset(offset, mmio); 2446 2447 return readl(mmio->addr.base + offset) & STATUS_MASK; 2448 } 2449 2450 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, 2451 resource_size_t dpa, unsigned int len, unsigned int write) 2452 { 2453 u64 cmd, offset; 2454 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; 2455 2456 enum { 2457 BCW_OFFSET_MASK = (1ULL << 48)-1, 2458 BCW_LEN_SHIFT = 48, 2459 BCW_LEN_MASK = (1ULL << 8) - 1, 2460 BCW_CMD_SHIFT = 56, 2461 }; 2462 2463 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; 2464 len = len >> L1_CACHE_SHIFT; 2465 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; 2466 cmd |= ((u64) write) << BCW_CMD_SHIFT; 2467 2468 offset = nfit_blk->cmd_offset + mmio->size * bw; 2469 if (mmio->num_lines) 2470 offset = to_interleave_offset(offset, mmio); 2471 2472 writeq(cmd, mmio->addr.base + offset); 2473 nvdimm_flush(nfit_blk->nd_region, NULL); 2474 2475 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) 2476 readq(mmio->addr.base + offset); 2477 } 2478 2479 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, 2480 resource_size_t dpa, void *iobuf, size_t len, int rw, 2481 unsigned int lane) 2482 { 2483 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2484 unsigned int copied = 0; 2485 u64 base_offset; 2486 int rc; 2487 2488 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES 2489 + lane * mmio->size; 2490 write_blk_ctl(nfit_blk, lane, dpa, len, rw); 2491 while (len) { 2492 unsigned int c; 2493 u64 offset; 2494 2495 if (mmio->num_lines) { 2496 u32 line_offset; 2497 2498 offset = to_interleave_offset(base_offset + copied, 2499 mmio); 2500 div_u64_rem(offset, mmio->line_size, &line_offset); 2501 c = min_t(size_t, len, mmio->line_size - line_offset); 2502 } else { 2503 offset = base_offset + nfit_blk->bdw_offset; 2504 c = len; 2505 } 2506 2507 if (rw) 2508 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); 2509 else { 2510 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) 2511 arch_invalidate_pmem((void __force *) 2512 mmio->addr.aperture + offset, c); 2513 2514 memcpy(iobuf + copied, mmio->addr.aperture + offset, c); 2515 } 2516 2517 copied += c; 2518 len -= c; 2519 } 2520 2521 if (rw) 2522 nvdimm_flush(nfit_blk->nd_region, NULL); 2523 2524 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; 2525 return rc; 2526 } 2527 2528 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, 2529 resource_size_t dpa, void *iobuf, u64 len, int rw) 2530 { 2531 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); 2532 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; 2533 struct nd_region *nd_region = nfit_blk->nd_region; 2534 unsigned int lane, copied = 0; 2535 int rc = 0; 2536 2537 lane = nd_region_acquire_lane(nd_region); 2538 while (len) { 2539 u64 c = min(len, mmio->size); 2540 2541 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, 2542 iobuf + copied, c, rw, lane); 2543 if (rc) 2544 break; 2545 2546 copied += c; 2547 len -= c; 2548 } 2549 nd_region_release_lane(nd_region, lane); 2550 2551 return rc; 2552 } 2553 2554 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, 2555 struct acpi_nfit_interleave *idt, u16 interleave_ways) 2556 { 2557 if (idt) { 2558 mmio->num_lines = idt->line_count; 2559 mmio->line_size = idt->line_size; 2560 if (interleave_ways == 0) 2561 return -ENXIO; 2562 mmio->table_size = mmio->num_lines * interleave_ways 2563 * mmio->line_size; 2564 } 2565 2566 return 0; 2567 } 2568 2569 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, 2570 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) 2571 { 2572 struct nd_cmd_dimm_flags flags; 2573 int rc; 2574 2575 memset(&flags, 0, sizeof(flags)); 2576 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, 2577 sizeof(flags), NULL); 2578 2579 if (rc >= 0 && flags.status == 0) 2580 nfit_blk->dimm_flags = flags.flags; 2581 else if (rc == -ENOTTY) { 2582 /* fall back to a conservative default */ 2583 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; 2584 rc = 0; 2585 } else 2586 rc = -ENXIO; 2587 2588 return rc; 2589 } 2590 2591 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, 2592 struct device *dev) 2593 { 2594 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); 2595 struct nd_blk_region *ndbr = to_nd_blk_region(dev); 2596 struct nfit_blk_mmio *mmio; 2597 struct nfit_blk *nfit_blk; 2598 struct nfit_mem *nfit_mem; 2599 struct nvdimm *nvdimm; 2600 int rc; 2601 2602 nvdimm = nd_blk_region_to_dimm(ndbr); 2603 nfit_mem = nvdimm_provider_data(nvdimm); 2604 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { 2605 dev_dbg(dev, "missing%s%s%s\n", 2606 nfit_mem ? "" : " nfit_mem", 2607 (nfit_mem && nfit_mem->dcr) ? "" : " dcr", 2608 (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); 2609 return -ENXIO; 2610 } 2611 2612 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); 2613 if (!nfit_blk) 2614 return -ENOMEM; 2615 nd_blk_region_set_provider_data(ndbr, nfit_blk); 2616 nfit_blk->nd_region = to_nd_region(dev); 2617 2618 /* map block aperture memory */ 2619 nfit_blk->bdw_offset = nfit_mem->bdw->offset; 2620 mmio = &nfit_blk->mmio[BDW]; 2621 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, 2622 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); 2623 if (!mmio->addr.base) { 2624 dev_dbg(dev, "%s failed to map bdw\n", 2625 nvdimm_name(nvdimm)); 2626 return -ENOMEM; 2627 } 2628 mmio->size = nfit_mem->bdw->size; 2629 mmio->base_offset = nfit_mem->memdev_bdw->region_offset; 2630 mmio->idt = nfit_mem->idt_bdw; 2631 mmio->spa = nfit_mem->spa_bdw; 2632 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, 2633 nfit_mem->memdev_bdw->interleave_ways); 2634 if (rc) { 2635 dev_dbg(dev, "%s failed to init bdw interleave\n", 2636 nvdimm_name(nvdimm)); 2637 return rc; 2638 } 2639 2640 /* map block control memory */ 2641 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; 2642 nfit_blk->stat_offset = nfit_mem->dcr->status_offset; 2643 mmio = &nfit_blk->mmio[DCR]; 2644 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, 2645 nfit_mem->spa_dcr->length); 2646 if (!mmio->addr.base) { 2647 dev_dbg(dev, "%s failed to map dcr\n", 2648 nvdimm_name(nvdimm)); 2649 return -ENOMEM; 2650 } 2651 mmio->size = nfit_mem->dcr->window_size; 2652 mmio->base_offset = nfit_mem->memdev_dcr->region_offset; 2653 mmio->idt = nfit_mem->idt_dcr; 2654 mmio->spa = nfit_mem->spa_dcr; 2655 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, 2656 nfit_mem->memdev_dcr->interleave_ways); 2657 if (rc) { 2658 dev_dbg(dev, "%s failed to init dcr interleave\n", 2659 nvdimm_name(nvdimm)); 2660 return rc; 2661 } 2662 2663 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); 2664 if (rc < 0) { 2665 dev_dbg(dev, "%s failed get DIMM flags\n", 2666 nvdimm_name(nvdimm)); 2667 return rc; 2668 } 2669 2670 if (nvdimm_has_flush(nfit_blk->nd_region) < 0) 2671 dev_warn(dev, "unable to guarantee persistence of writes\n"); 2672 2673 if (mmio->line_size == 0) 2674 return 0; 2675 2676 if ((u32) nfit_blk->cmd_offset % mmio->line_size 2677 + 8 > mmio->line_size) { 2678 dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); 2679 return -ENXIO; 2680 } else if ((u32) nfit_blk->stat_offset % mmio->line_size 2681 + 8 > mmio->line_size) { 2682 dev_dbg(dev, "stat_offset crosses interleave boundary\n"); 2683 return -ENXIO; 2684 } 2685 2686 return 0; 2687 } 2688 2689 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, 2690 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) 2691 { 2692 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2693 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2694 int cmd_rc, rc; 2695 2696 cmd->address = spa->address; 2697 cmd->length = spa->length; 2698 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, 2699 sizeof(*cmd), &cmd_rc); 2700 if (rc < 0) 2701 return rc; 2702 return cmd_rc; 2703 } 2704 2705 static int ars_start(struct acpi_nfit_desc *acpi_desc, 2706 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) 2707 { 2708 int rc; 2709 int cmd_rc; 2710 struct nd_cmd_ars_start ars_start; 2711 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2712 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2713 2714 memset(&ars_start, 0, sizeof(ars_start)); 2715 ars_start.address = spa->address; 2716 ars_start.length = spa->length; 2717 if (req_type == ARS_REQ_SHORT) 2718 ars_start.flags = ND_ARS_RETURN_PREV_DATA; 2719 if (nfit_spa_type(spa) == NFIT_SPA_PM) 2720 ars_start.type = ND_ARS_PERSISTENT; 2721 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) 2722 ars_start.type = ND_ARS_VOLATILE; 2723 else 2724 return -ENOTTY; 2725 2726 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2727 sizeof(ars_start), &cmd_rc); 2728 2729 if (rc < 0) 2730 return rc; 2731 if (cmd_rc < 0) 2732 return cmd_rc; 2733 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 2734 return 0; 2735 } 2736 2737 static int ars_continue(struct acpi_nfit_desc *acpi_desc) 2738 { 2739 int rc, cmd_rc; 2740 struct nd_cmd_ars_start ars_start; 2741 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2742 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2743 2744 ars_start = (struct nd_cmd_ars_start) { 2745 .address = ars_status->restart_address, 2746 .length = ars_status->restart_length, 2747 .type = ars_status->type, 2748 }; 2749 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, 2750 sizeof(ars_start), &cmd_rc); 2751 if (rc < 0) 2752 return rc; 2753 return cmd_rc; 2754 } 2755 2756 static int ars_get_status(struct acpi_nfit_desc *acpi_desc) 2757 { 2758 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; 2759 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2760 int rc, cmd_rc; 2761 2762 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, 2763 acpi_desc->max_ars, &cmd_rc); 2764 if (rc < 0) 2765 return rc; 2766 return cmd_rc; 2767 } 2768 2769 static void ars_complete(struct acpi_nfit_desc *acpi_desc, 2770 struct nfit_spa *nfit_spa) 2771 { 2772 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2773 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2774 struct nd_region *nd_region = nfit_spa->nd_region; 2775 struct device *dev; 2776 2777 lockdep_assert_held(&acpi_desc->init_mutex); 2778 /* 2779 * Only advance the ARS state for ARS runs initiated by the 2780 * kernel, ignore ARS results from BIOS initiated runs for scrub 2781 * completion tracking. 2782 */ 2783 if (acpi_desc->scrub_spa != nfit_spa) 2784 return; 2785 2786 if ((ars_status->address >= spa->address && ars_status->address 2787 < spa->address + spa->length) 2788 || (ars_status->address < spa->address)) { 2789 /* 2790 * Assume that if a scrub starts at an offset from the 2791 * start of nfit_spa that we are in the continuation 2792 * case. 2793 * 2794 * Otherwise, if the scrub covers the spa range, mark 2795 * any pending request complete. 2796 */ 2797 if (ars_status->address + ars_status->length 2798 >= spa->address + spa->length) 2799 /* complete */; 2800 else 2801 return; 2802 } else 2803 return; 2804 2805 acpi_desc->scrub_spa = NULL; 2806 if (nd_region) { 2807 dev = nd_region_dev(nd_region); 2808 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); 2809 } else 2810 dev = acpi_desc->dev; 2811 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); 2812 } 2813 2814 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) 2815 { 2816 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; 2817 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; 2818 int rc; 2819 u32 i; 2820 2821 /* 2822 * First record starts at 44 byte offset from the start of the 2823 * payload. 2824 */ 2825 if (ars_status->out_length < 44) 2826 return 0; 2827 2828 /* 2829 * Ignore potentially stale results that are only refreshed 2830 * after a start-ARS event. 2831 */ 2832 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) { 2833 dev_dbg(acpi_desc->dev, "skip %d stale records\n", 2834 ars_status->num_records); 2835 return 0; 2836 } 2837 2838 for (i = 0; i < ars_status->num_records; i++) { 2839 /* only process full records */ 2840 if (ars_status->out_length 2841 < 44 + sizeof(struct nd_ars_record) * (i + 1)) 2842 break; 2843 rc = nvdimm_bus_add_badrange(nvdimm_bus, 2844 ars_status->records[i].err_address, 2845 ars_status->records[i].length); 2846 if (rc) 2847 return rc; 2848 } 2849 if (i < ars_status->num_records) 2850 dev_warn(acpi_desc->dev, "detected truncated ars results\n"); 2851 2852 return 0; 2853 } 2854 2855 static void acpi_nfit_remove_resource(void *data) 2856 { 2857 struct resource *res = data; 2858 2859 remove_resource(res); 2860 } 2861 2862 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, 2863 struct nd_region_desc *ndr_desc) 2864 { 2865 struct resource *res, *nd_res = ndr_desc->res; 2866 int is_pmem, ret; 2867 2868 /* No operation if the region is already registered as PMEM */ 2869 is_pmem = region_intersects(nd_res->start, resource_size(nd_res), 2870 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); 2871 if (is_pmem == REGION_INTERSECTS) 2872 return 0; 2873 2874 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); 2875 if (!res) 2876 return -ENOMEM; 2877 2878 res->name = "Persistent Memory"; 2879 res->start = nd_res->start; 2880 res->end = nd_res->end; 2881 res->flags = IORESOURCE_MEM; 2882 res->desc = IORES_DESC_PERSISTENT_MEMORY; 2883 2884 ret = insert_resource(&iomem_resource, res); 2885 if (ret) 2886 return ret; 2887 2888 ret = devm_add_action_or_reset(acpi_desc->dev, 2889 acpi_nfit_remove_resource, 2890 res); 2891 if (ret) 2892 return ret; 2893 2894 return 0; 2895 } 2896 2897 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, 2898 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, 2899 struct acpi_nfit_memory_map *memdev, 2900 struct nfit_spa *nfit_spa) 2901 { 2902 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, 2903 memdev->device_handle); 2904 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2905 struct nd_blk_region_desc *ndbr_desc; 2906 struct nfit_mem *nfit_mem; 2907 int rc; 2908 2909 if (!nvdimm) { 2910 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", 2911 spa->range_index, memdev->device_handle); 2912 return -ENODEV; 2913 } 2914 2915 mapping->nvdimm = nvdimm; 2916 switch (nfit_spa_type(spa)) { 2917 case NFIT_SPA_PM: 2918 case NFIT_SPA_VOLATILE: 2919 mapping->start = memdev->address; 2920 mapping->size = memdev->region_size; 2921 break; 2922 case NFIT_SPA_DCR: 2923 nfit_mem = nvdimm_provider_data(nvdimm); 2924 if (!nfit_mem || !nfit_mem->bdw) { 2925 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", 2926 spa->range_index, nvdimm_name(nvdimm)); 2927 break; 2928 } 2929 2930 mapping->size = nfit_mem->bdw->capacity; 2931 mapping->start = nfit_mem->bdw->start_address; 2932 ndr_desc->num_lanes = nfit_mem->bdw->windows; 2933 ndr_desc->mapping = mapping; 2934 ndr_desc->num_mappings = 1; 2935 ndbr_desc = to_blk_region_desc(ndr_desc); 2936 ndbr_desc->enable = acpi_nfit_blk_region_enable; 2937 ndbr_desc->do_io = acpi_desc->blk_do_io; 2938 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 2939 if (rc) 2940 return rc; 2941 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, 2942 ndr_desc); 2943 if (!nfit_spa->nd_region) 2944 return -ENOMEM; 2945 break; 2946 } 2947 2948 return 0; 2949 } 2950 2951 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) 2952 { 2953 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2954 nfit_spa_type(spa) == NFIT_SPA_VCD || 2955 nfit_spa_type(spa) == NFIT_SPA_PDISK || 2956 nfit_spa_type(spa) == NFIT_SPA_PCD); 2957 } 2958 2959 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) 2960 { 2961 return (nfit_spa_type(spa) == NFIT_SPA_VDISK || 2962 nfit_spa_type(spa) == NFIT_SPA_VCD || 2963 nfit_spa_type(spa) == NFIT_SPA_VOLATILE); 2964 } 2965 2966 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, 2967 struct nfit_spa *nfit_spa) 2968 { 2969 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; 2970 struct acpi_nfit_system_address *spa = nfit_spa->spa; 2971 struct nd_blk_region_desc ndbr_desc; 2972 struct nd_region_desc *ndr_desc; 2973 struct nfit_memdev *nfit_memdev; 2974 struct nvdimm_bus *nvdimm_bus; 2975 struct resource res; 2976 int count = 0, rc; 2977 2978 if (nfit_spa->nd_region) 2979 return 0; 2980 2981 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { 2982 dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); 2983 return 0; 2984 } 2985 2986 memset(&res, 0, sizeof(res)); 2987 memset(&mappings, 0, sizeof(mappings)); 2988 memset(&ndbr_desc, 0, sizeof(ndbr_desc)); 2989 res.start = spa->address; 2990 res.end = res.start + spa->length - 1; 2991 ndr_desc = &ndbr_desc.ndr_desc; 2992 ndr_desc->res = &res; 2993 ndr_desc->provider_data = nfit_spa; 2994 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; 2995 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) { 2996 ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain); 2997 ndr_desc->target_node = pxm_to_node(spa->proximity_domain); 2998 } else { 2999 ndr_desc->numa_node = NUMA_NO_NODE; 3000 ndr_desc->target_node = NUMA_NO_NODE; 3001 } 3002 3003 /* 3004 * Persistence domain bits are hierarchical, if 3005 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then 3006 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. 3007 */ 3008 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) 3009 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); 3010 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) 3011 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); 3012 3013 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { 3014 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; 3015 struct nd_mapping_desc *mapping; 3016 3017 if (memdev->range_index != spa->range_index) 3018 continue; 3019 if (count >= ND_MAX_MAPPINGS) { 3020 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", 3021 spa->range_index, ND_MAX_MAPPINGS); 3022 return -ENXIO; 3023 } 3024 mapping = &mappings[count++]; 3025 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, 3026 memdev, nfit_spa); 3027 if (rc) 3028 goto out; 3029 } 3030 3031 ndr_desc->mapping = mappings; 3032 ndr_desc->num_mappings = count; 3033 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); 3034 if (rc) 3035 goto out; 3036 3037 nvdimm_bus = acpi_desc->nvdimm_bus; 3038 if (nfit_spa_type(spa) == NFIT_SPA_PM) { 3039 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); 3040 if (rc) { 3041 dev_warn(acpi_desc->dev, 3042 "failed to insert pmem resource to iomem: %d\n", 3043 rc); 3044 goto out; 3045 } 3046 3047 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3048 ndr_desc); 3049 if (!nfit_spa->nd_region) 3050 rc = -ENOMEM; 3051 } else if (nfit_spa_is_volatile(spa)) { 3052 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, 3053 ndr_desc); 3054 if (!nfit_spa->nd_region) 3055 rc = -ENOMEM; 3056 } else if (nfit_spa_is_virtual(spa)) { 3057 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, 3058 ndr_desc); 3059 if (!nfit_spa->nd_region) 3060 rc = -ENOMEM; 3061 } 3062 3063 out: 3064 if (rc) 3065 dev_err(acpi_desc->dev, "failed to register spa range %d\n", 3066 nfit_spa->spa->range_index); 3067 return rc; 3068 } 3069 3070 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) 3071 { 3072 struct device *dev = acpi_desc->dev; 3073 struct nd_cmd_ars_status *ars_status; 3074 3075 if (acpi_desc->ars_status) { 3076 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3077 return 0; 3078 } 3079 3080 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); 3081 if (!ars_status) 3082 return -ENOMEM; 3083 acpi_desc->ars_status = ars_status; 3084 return 0; 3085 } 3086 3087 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) 3088 { 3089 int rc; 3090 3091 if (ars_status_alloc(acpi_desc)) 3092 return -ENOMEM; 3093 3094 rc = ars_get_status(acpi_desc); 3095 3096 if (rc < 0 && rc != -ENOSPC) 3097 return rc; 3098 3099 if (ars_status_process_records(acpi_desc)) 3100 dev_err(acpi_desc->dev, "Failed to process ARS records\n"); 3101 3102 return rc; 3103 } 3104 3105 static int ars_register(struct acpi_nfit_desc *acpi_desc, 3106 struct nfit_spa *nfit_spa) 3107 { 3108 int rc; 3109 3110 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3111 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3112 3113 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3114 if (!no_init_ars) 3115 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); 3116 3117 switch (acpi_nfit_query_poison(acpi_desc)) { 3118 case 0: 3119 case -ENOSPC: 3120 case -EAGAIN: 3121 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); 3122 /* shouldn't happen, try again later */ 3123 if (rc == -EBUSY) 3124 break; 3125 if (rc) { 3126 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3127 break; 3128 } 3129 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); 3130 rc = acpi_nfit_query_poison(acpi_desc); 3131 if (rc) 3132 break; 3133 acpi_desc->scrub_spa = nfit_spa; 3134 ars_complete(acpi_desc, nfit_spa); 3135 /* 3136 * If ars_complete() says we didn't complete the 3137 * short scrub, we'll try again with a long 3138 * request. 3139 */ 3140 acpi_desc->scrub_spa = NULL; 3141 break; 3142 case -EBUSY: 3143 case -ENOMEM: 3144 /* 3145 * BIOS was using ARS, wait for it to complete (or 3146 * resources to become available) and then perform our 3147 * own scrubs. 3148 */ 3149 break; 3150 default: 3151 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3152 break; 3153 } 3154 3155 return acpi_nfit_register_region(acpi_desc, nfit_spa); 3156 } 3157 3158 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) 3159 { 3160 struct nfit_spa *nfit_spa; 3161 3162 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3163 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3164 continue; 3165 ars_complete(acpi_desc, nfit_spa); 3166 } 3167 } 3168 3169 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, 3170 int query_rc) 3171 { 3172 unsigned int tmo = acpi_desc->scrub_tmo; 3173 struct device *dev = acpi_desc->dev; 3174 struct nfit_spa *nfit_spa; 3175 3176 lockdep_assert_held(&acpi_desc->init_mutex); 3177 3178 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) 3179 return 0; 3180 3181 if (query_rc == -EBUSY) { 3182 dev_dbg(dev, "ARS: ARS busy\n"); 3183 return min(30U * 60U, tmo * 2); 3184 } 3185 if (query_rc == -ENOSPC) { 3186 dev_dbg(dev, "ARS: ARS continue\n"); 3187 ars_continue(acpi_desc); 3188 return 1; 3189 } 3190 if (query_rc && query_rc != -EAGAIN) { 3191 unsigned long long addr, end; 3192 3193 addr = acpi_desc->ars_status->address; 3194 end = addr + acpi_desc->ars_status->length; 3195 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, 3196 query_rc); 3197 } 3198 3199 ars_complete_all(acpi_desc); 3200 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3201 enum nfit_ars_state req_type; 3202 int rc; 3203 3204 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3205 continue; 3206 3207 /* prefer short ARS requests first */ 3208 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) 3209 req_type = ARS_REQ_SHORT; 3210 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) 3211 req_type = ARS_REQ_LONG; 3212 else 3213 continue; 3214 rc = ars_start(acpi_desc, nfit_spa, req_type); 3215 3216 dev = nd_region_dev(nfit_spa->nd_region); 3217 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", 3218 nfit_spa->spa->range_index, 3219 req_type == ARS_REQ_SHORT ? "short" : "long", 3220 rc); 3221 /* 3222 * Hmm, we raced someone else starting ARS? Try again in 3223 * a bit. 3224 */ 3225 if (rc == -EBUSY) 3226 return 1; 3227 if (rc == 0) { 3228 dev_WARN_ONCE(dev, acpi_desc->scrub_spa, 3229 "scrub start while range %d active\n", 3230 acpi_desc->scrub_spa->spa->range_index); 3231 clear_bit(req_type, &nfit_spa->ars_state); 3232 acpi_desc->scrub_spa = nfit_spa; 3233 /* 3234 * Consider this spa last for future scrub 3235 * requests 3236 */ 3237 list_move_tail(&nfit_spa->list, &acpi_desc->spas); 3238 return 1; 3239 } 3240 3241 dev_err(dev, "ARS: range %d ARS failed (%d)\n", 3242 nfit_spa->spa->range_index, rc); 3243 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3244 } 3245 return 0; 3246 } 3247 3248 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) 3249 { 3250 lockdep_assert_held(&acpi_desc->init_mutex); 3251 3252 set_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3253 /* note this should only be set from within the workqueue */ 3254 if (tmo) 3255 acpi_desc->scrub_tmo = tmo; 3256 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); 3257 } 3258 3259 static void sched_ars(struct acpi_nfit_desc *acpi_desc) 3260 { 3261 __sched_ars(acpi_desc, 0); 3262 } 3263 3264 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) 3265 { 3266 lockdep_assert_held(&acpi_desc->init_mutex); 3267 3268 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags); 3269 acpi_desc->scrub_count++; 3270 if (acpi_desc->scrub_count_state) 3271 sysfs_notify_dirent(acpi_desc->scrub_count_state); 3272 } 3273 3274 static void acpi_nfit_scrub(struct work_struct *work) 3275 { 3276 struct acpi_nfit_desc *acpi_desc; 3277 unsigned int tmo; 3278 int query_rc; 3279 3280 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); 3281 mutex_lock(&acpi_desc->init_mutex); 3282 query_rc = acpi_nfit_query_poison(acpi_desc); 3283 tmo = __acpi_nfit_scrub(acpi_desc, query_rc); 3284 if (tmo) 3285 __sched_ars(acpi_desc, tmo); 3286 else 3287 notify_ars_done(acpi_desc); 3288 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); 3289 clear_bit(ARS_POLL, &acpi_desc->scrub_flags); 3290 mutex_unlock(&acpi_desc->init_mutex); 3291 } 3292 3293 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, 3294 struct nfit_spa *nfit_spa) 3295 { 3296 int type = nfit_spa_type(nfit_spa->spa); 3297 struct nd_cmd_ars_cap ars_cap; 3298 int rc; 3299 3300 set_bit(ARS_FAILED, &nfit_spa->ars_state); 3301 memset(&ars_cap, 0, sizeof(ars_cap)); 3302 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); 3303 if (rc < 0) 3304 return; 3305 /* check that the supported scrub types match the spa type */ 3306 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) 3307 & ND_ARS_VOLATILE) == 0) 3308 return; 3309 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) 3310 & ND_ARS_PERSISTENT) == 0) 3311 return; 3312 3313 nfit_spa->max_ars = ars_cap.max_ars_out; 3314 nfit_spa->clear_err_unit = ars_cap.clear_err_unit; 3315 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); 3316 clear_bit(ARS_FAILED, &nfit_spa->ars_state); 3317 } 3318 3319 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) 3320 { 3321 struct nfit_spa *nfit_spa; 3322 int rc, do_sched_ars = 0; 3323 3324 set_bit(ARS_VALID, &acpi_desc->scrub_flags); 3325 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3326 switch (nfit_spa_type(nfit_spa->spa)) { 3327 case NFIT_SPA_VOLATILE: 3328 case NFIT_SPA_PM: 3329 acpi_nfit_init_ars(acpi_desc, nfit_spa); 3330 break; 3331 } 3332 } 3333 3334 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3335 switch (nfit_spa_type(nfit_spa->spa)) { 3336 case NFIT_SPA_VOLATILE: 3337 case NFIT_SPA_PM: 3338 /* register regions and kick off initial ARS run */ 3339 rc = ars_register(acpi_desc, nfit_spa); 3340 if (rc) 3341 return rc; 3342 3343 /* 3344 * Kick off background ARS if at least one 3345 * region successfully registered ARS 3346 */ 3347 if (!test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3348 do_sched_ars++; 3349 break; 3350 case NFIT_SPA_BDW: 3351 /* nothing to register */ 3352 break; 3353 case NFIT_SPA_DCR: 3354 case NFIT_SPA_VDISK: 3355 case NFIT_SPA_VCD: 3356 case NFIT_SPA_PDISK: 3357 case NFIT_SPA_PCD: 3358 /* register known regions that don't support ARS */ 3359 rc = acpi_nfit_register_region(acpi_desc, nfit_spa); 3360 if (rc) 3361 return rc; 3362 break; 3363 default: 3364 /* don't register unknown regions */ 3365 break; 3366 } 3367 } 3368 3369 if (do_sched_ars) 3370 sched_ars(acpi_desc); 3371 return 0; 3372 } 3373 3374 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, 3375 struct nfit_table_prev *prev) 3376 { 3377 struct device *dev = acpi_desc->dev; 3378 3379 if (!list_empty(&prev->spas) || 3380 !list_empty(&prev->memdevs) || 3381 !list_empty(&prev->dcrs) || 3382 !list_empty(&prev->bdws) || 3383 !list_empty(&prev->idts) || 3384 !list_empty(&prev->flushes)) { 3385 dev_err(dev, "new nfit deletes entries (unsupported)\n"); 3386 return -ENXIO; 3387 } 3388 return 0; 3389 } 3390 3391 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) 3392 { 3393 struct device *dev = acpi_desc->dev; 3394 struct kernfs_node *nfit; 3395 struct device *bus_dev; 3396 3397 if (!ars_supported(acpi_desc->nvdimm_bus)) 3398 return 0; 3399 3400 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3401 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); 3402 if (!nfit) { 3403 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); 3404 return -ENODEV; 3405 } 3406 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); 3407 sysfs_put(nfit); 3408 if (!acpi_desc->scrub_count_state) { 3409 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); 3410 return -ENODEV; 3411 } 3412 3413 return 0; 3414 } 3415 3416 static void acpi_nfit_unregister(void *data) 3417 { 3418 struct acpi_nfit_desc *acpi_desc = data; 3419 3420 nvdimm_bus_unregister(acpi_desc->nvdimm_bus); 3421 } 3422 3423 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) 3424 { 3425 struct device *dev = acpi_desc->dev; 3426 struct nfit_table_prev prev; 3427 const void *end; 3428 int rc; 3429 3430 if (!acpi_desc->nvdimm_bus) { 3431 acpi_nfit_init_dsms(acpi_desc); 3432 3433 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, 3434 &acpi_desc->nd_desc); 3435 if (!acpi_desc->nvdimm_bus) 3436 return -ENOMEM; 3437 3438 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, 3439 acpi_desc); 3440 if (rc) 3441 return rc; 3442 3443 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); 3444 if (rc) 3445 return rc; 3446 3447 /* register this acpi_desc for mce notifications */ 3448 mutex_lock(&acpi_desc_lock); 3449 list_add_tail(&acpi_desc->list, &acpi_descs); 3450 mutex_unlock(&acpi_desc_lock); 3451 } 3452 3453 mutex_lock(&acpi_desc->init_mutex); 3454 3455 INIT_LIST_HEAD(&prev.spas); 3456 INIT_LIST_HEAD(&prev.memdevs); 3457 INIT_LIST_HEAD(&prev.dcrs); 3458 INIT_LIST_HEAD(&prev.bdws); 3459 INIT_LIST_HEAD(&prev.idts); 3460 INIT_LIST_HEAD(&prev.flushes); 3461 3462 list_cut_position(&prev.spas, &acpi_desc->spas, 3463 acpi_desc->spas.prev); 3464 list_cut_position(&prev.memdevs, &acpi_desc->memdevs, 3465 acpi_desc->memdevs.prev); 3466 list_cut_position(&prev.dcrs, &acpi_desc->dcrs, 3467 acpi_desc->dcrs.prev); 3468 list_cut_position(&prev.bdws, &acpi_desc->bdws, 3469 acpi_desc->bdws.prev); 3470 list_cut_position(&prev.idts, &acpi_desc->idts, 3471 acpi_desc->idts.prev); 3472 list_cut_position(&prev.flushes, &acpi_desc->flushes, 3473 acpi_desc->flushes.prev); 3474 3475 end = data + sz; 3476 while (!IS_ERR_OR_NULL(data)) 3477 data = add_table(acpi_desc, &prev, data, end); 3478 3479 if (IS_ERR(data)) { 3480 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); 3481 rc = PTR_ERR(data); 3482 goto out_unlock; 3483 } 3484 3485 rc = acpi_nfit_check_deletions(acpi_desc, &prev); 3486 if (rc) 3487 goto out_unlock; 3488 3489 rc = nfit_mem_init(acpi_desc); 3490 if (rc) 3491 goto out_unlock; 3492 3493 rc = acpi_nfit_register_dimms(acpi_desc); 3494 if (rc) 3495 goto out_unlock; 3496 3497 rc = acpi_nfit_register_regions(acpi_desc); 3498 3499 out_unlock: 3500 mutex_unlock(&acpi_desc->init_mutex); 3501 return rc; 3502 } 3503 EXPORT_SYMBOL_GPL(acpi_nfit_init); 3504 3505 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) 3506 { 3507 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3508 struct device *dev = acpi_desc->dev; 3509 3510 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ 3511 nfit_device_lock(dev); 3512 nfit_device_unlock(dev); 3513 3514 /* Bounce the init_mutex to complete initial registration */ 3515 mutex_lock(&acpi_desc->init_mutex); 3516 mutex_unlock(&acpi_desc->init_mutex); 3517 3518 return 0; 3519 } 3520 3521 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3522 struct nvdimm *nvdimm, unsigned int cmd) 3523 { 3524 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); 3525 3526 if (nvdimm) 3527 return 0; 3528 if (cmd != ND_CMD_ARS_START) 3529 return 0; 3530 3531 /* 3532 * The kernel and userspace may race to initiate a scrub, but 3533 * the scrub thread is prepared to lose that initial race. It 3534 * just needs guarantees that any ARS it initiates are not 3535 * interrupted by any intervening start requests from userspace. 3536 */ 3537 if (work_busy(&acpi_desc->dwork.work)) 3538 return -EBUSY; 3539 3540 return 0; 3541 } 3542 3543 /* 3544 * Prevent security and firmware activate commands from being issued via 3545 * ioctl. 3546 */ 3547 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, 3548 struct nvdimm *nvdimm, unsigned int cmd, void *buf) 3549 { 3550 struct nd_cmd_pkg *call_pkg = buf; 3551 unsigned int func; 3552 3553 if (nvdimm && cmd == ND_CMD_CALL && 3554 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { 3555 func = call_pkg->nd_command; 3556 if (func > NVDIMM_CMD_MAX || 3557 (1 << func) & NVDIMM_INTEL_DENY_CMDMASK) 3558 return -EOPNOTSUPP; 3559 } 3560 3561 /* block all non-nfit bus commands */ 3562 if (!nvdimm && cmd == ND_CMD_CALL && 3563 call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT) 3564 return -EOPNOTSUPP; 3565 3566 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); 3567 } 3568 3569 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, 3570 enum nfit_ars_state req_type) 3571 { 3572 struct device *dev = acpi_desc->dev; 3573 int scheduled = 0, busy = 0; 3574 struct nfit_spa *nfit_spa; 3575 3576 mutex_lock(&acpi_desc->init_mutex); 3577 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) { 3578 mutex_unlock(&acpi_desc->init_mutex); 3579 return 0; 3580 } 3581 3582 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { 3583 int type = nfit_spa_type(nfit_spa->spa); 3584 3585 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) 3586 continue; 3587 if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) 3588 continue; 3589 3590 if (test_and_set_bit(req_type, &nfit_spa->ars_state)) 3591 busy++; 3592 else 3593 scheduled++; 3594 } 3595 if (scheduled) { 3596 sched_ars(acpi_desc); 3597 dev_dbg(dev, "ars_scan triggered\n"); 3598 } 3599 mutex_unlock(&acpi_desc->init_mutex); 3600 3601 if (scheduled) 3602 return 0; 3603 if (busy) 3604 return -EBUSY; 3605 return -ENOTTY; 3606 } 3607 3608 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) 3609 { 3610 struct nvdimm_bus_descriptor *nd_desc; 3611 3612 dev_set_drvdata(dev, acpi_desc); 3613 acpi_desc->dev = dev; 3614 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; 3615 nd_desc = &acpi_desc->nd_desc; 3616 nd_desc->provider_name = "ACPI.NFIT"; 3617 nd_desc->module = THIS_MODULE; 3618 nd_desc->ndctl = acpi_nfit_ctl; 3619 nd_desc->flush_probe = acpi_nfit_flush_probe; 3620 nd_desc->clear_to_send = acpi_nfit_clear_to_send; 3621 nd_desc->attr_groups = acpi_nfit_attribute_groups; 3622 3623 INIT_LIST_HEAD(&acpi_desc->spas); 3624 INIT_LIST_HEAD(&acpi_desc->dcrs); 3625 INIT_LIST_HEAD(&acpi_desc->bdws); 3626 INIT_LIST_HEAD(&acpi_desc->idts); 3627 INIT_LIST_HEAD(&acpi_desc->flushes); 3628 INIT_LIST_HEAD(&acpi_desc->memdevs); 3629 INIT_LIST_HEAD(&acpi_desc->dimms); 3630 INIT_LIST_HEAD(&acpi_desc->list); 3631 mutex_init(&acpi_desc->init_mutex); 3632 acpi_desc->scrub_tmo = 1; 3633 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); 3634 } 3635 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); 3636 3637 static void acpi_nfit_put_table(void *table) 3638 { 3639 acpi_put_table(table); 3640 } 3641 3642 void acpi_nfit_shutdown(void *data) 3643 { 3644 struct acpi_nfit_desc *acpi_desc = data; 3645 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); 3646 3647 /* 3648 * Destruct under acpi_desc_lock so that nfit_handle_mce does not 3649 * race teardown 3650 */ 3651 mutex_lock(&acpi_desc_lock); 3652 list_del(&acpi_desc->list); 3653 mutex_unlock(&acpi_desc_lock); 3654 3655 mutex_lock(&acpi_desc->init_mutex); 3656 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags); 3657 cancel_delayed_work_sync(&acpi_desc->dwork); 3658 mutex_unlock(&acpi_desc->init_mutex); 3659 3660 /* 3661 * Bounce the nvdimm bus lock to make sure any in-flight 3662 * acpi_nfit_ars_rescan() submissions have had a chance to 3663 * either submit or see ->cancel set. 3664 */ 3665 nfit_device_lock(bus_dev); 3666 nfit_device_unlock(bus_dev); 3667 3668 flush_workqueue(nfit_wq); 3669 } 3670 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); 3671 3672 static int acpi_nfit_add(struct acpi_device *adev) 3673 { 3674 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3675 struct acpi_nfit_desc *acpi_desc; 3676 struct device *dev = &adev->dev; 3677 struct acpi_table_header *tbl; 3678 acpi_status status = AE_OK; 3679 acpi_size sz; 3680 int rc = 0; 3681 3682 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); 3683 if (ACPI_FAILURE(status)) { 3684 /* The NVDIMM root device allows OS to trigger enumeration of 3685 * NVDIMMs through NFIT at boot time and re-enumeration at 3686 * root level via the _FIT method during runtime. 3687 * This is ok to return 0 here, we could have an nvdimm 3688 * hotplugged later and evaluate _FIT method which returns 3689 * data in the format of a series of NFIT Structures. 3690 */ 3691 dev_dbg(dev, "failed to find NFIT at startup\n"); 3692 return 0; 3693 } 3694 3695 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); 3696 if (rc) 3697 return rc; 3698 sz = tbl->length; 3699 3700 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3701 if (!acpi_desc) 3702 return -ENOMEM; 3703 acpi_nfit_desc_init(acpi_desc, &adev->dev); 3704 3705 /* Save the acpi header for exporting the revision via sysfs */ 3706 acpi_desc->acpi_header = *tbl; 3707 3708 /* Evaluate _FIT and override with that if present */ 3709 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); 3710 if (ACPI_SUCCESS(status) && buf.length > 0) { 3711 union acpi_object *obj = buf.pointer; 3712 3713 if (obj->type == ACPI_TYPE_BUFFER) 3714 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3715 obj->buffer.length); 3716 else 3717 dev_dbg(dev, "invalid type %d, ignoring _FIT\n", 3718 (int) obj->type); 3719 kfree(buf.pointer); 3720 } else 3721 /* skip over the lead-in header table */ 3722 rc = acpi_nfit_init(acpi_desc, (void *) tbl 3723 + sizeof(struct acpi_table_nfit), 3724 sz - sizeof(struct acpi_table_nfit)); 3725 3726 if (rc) 3727 return rc; 3728 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); 3729 } 3730 3731 static int acpi_nfit_remove(struct acpi_device *adev) 3732 { 3733 /* see acpi_nfit_unregister */ 3734 return 0; 3735 } 3736 3737 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) 3738 { 3739 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3740 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 3741 union acpi_object *obj; 3742 acpi_status status; 3743 int ret; 3744 3745 if (!dev->driver) { 3746 /* dev->driver may be null if we're being removed */ 3747 dev_dbg(dev, "no driver found for dev\n"); 3748 return; 3749 } 3750 3751 if (!acpi_desc) { 3752 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); 3753 if (!acpi_desc) 3754 return; 3755 acpi_nfit_desc_init(acpi_desc, dev); 3756 } else { 3757 /* 3758 * Finish previous registration before considering new 3759 * regions. 3760 */ 3761 flush_workqueue(nfit_wq); 3762 } 3763 3764 /* Evaluate _FIT */ 3765 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); 3766 if (ACPI_FAILURE(status)) { 3767 dev_err(dev, "failed to evaluate _FIT\n"); 3768 return; 3769 } 3770 3771 obj = buf.pointer; 3772 if (obj->type == ACPI_TYPE_BUFFER) { 3773 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, 3774 obj->buffer.length); 3775 if (ret) 3776 dev_err(dev, "failed to merge updated NFIT\n"); 3777 } else 3778 dev_err(dev, "Invalid _FIT\n"); 3779 kfree(buf.pointer); 3780 } 3781 3782 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) 3783 { 3784 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); 3785 3786 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) 3787 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); 3788 else 3789 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); 3790 } 3791 3792 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) 3793 { 3794 dev_dbg(dev, "event: 0x%x\n", event); 3795 3796 switch (event) { 3797 case NFIT_NOTIFY_UPDATE: 3798 return acpi_nfit_update_notify(dev, handle); 3799 case NFIT_NOTIFY_UC_MEMORY_ERROR: 3800 return acpi_nfit_uc_error_notify(dev, handle); 3801 default: 3802 return; 3803 } 3804 } 3805 EXPORT_SYMBOL_GPL(__acpi_nfit_notify); 3806 3807 static void acpi_nfit_notify(struct acpi_device *adev, u32 event) 3808 { 3809 nfit_device_lock(&adev->dev); 3810 __acpi_nfit_notify(&adev->dev, adev->handle, event); 3811 nfit_device_unlock(&adev->dev); 3812 } 3813 3814 static const struct acpi_device_id acpi_nfit_ids[] = { 3815 { "ACPI0012", 0 }, 3816 { "", 0 }, 3817 }; 3818 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); 3819 3820 static struct acpi_driver acpi_nfit_driver = { 3821 .name = KBUILD_MODNAME, 3822 .ids = acpi_nfit_ids, 3823 .ops = { 3824 .add = acpi_nfit_add, 3825 .remove = acpi_nfit_remove, 3826 .notify = acpi_nfit_notify, 3827 }, 3828 }; 3829 3830 static __init int nfit_init(void) 3831 { 3832 int ret; 3833 3834 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); 3835 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64); 3836 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); 3837 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); 3838 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); 3839 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); 3840 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); 3841 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); 3842 3843 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); 3844 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); 3845 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); 3846 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); 3847 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); 3848 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); 3849 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); 3850 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); 3851 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); 3852 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); 3853 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); 3854 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); 3855 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); 3856 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]); 3857 guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]); 3858 3859 nfit_wq = create_singlethread_workqueue("nfit"); 3860 if (!nfit_wq) 3861 return -ENOMEM; 3862 3863 nfit_mce_register(); 3864 ret = acpi_bus_register_driver(&acpi_nfit_driver); 3865 if (ret) { 3866 nfit_mce_unregister(); 3867 destroy_workqueue(nfit_wq); 3868 } 3869 3870 return ret; 3871 3872 } 3873 3874 static __exit void nfit_exit(void) 3875 { 3876 nfit_mce_unregister(); 3877 acpi_bus_unregister_driver(&acpi_nfit_driver); 3878 destroy_workqueue(nfit_wq); 3879 WARN_ON(!list_empty(&acpi_descs)); 3880 } 3881 3882 module_init(nfit_init); 3883 module_exit(nfit_exit); 3884 MODULE_LICENSE("GPL v2"); 3885 MODULE_AUTHOR("Intel Corporation"); 3886