xref: /linux/drivers/acpi/nfit/core.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/ndctl.h>
10 #include <linux/sysfs.h>
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/acpi.h>
14 #include <linux/sort.h>
15 #include <linux/io.h>
16 #include <linux/nd.h>
17 #include <asm/cacheflush.h>
18 #include <acpi/nfit.h>
19 #include "intel.h"
20 #include "nfit.h"
21 
22 /*
23  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
24  * irrelevant.
25  */
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 
28 static bool force_enable_dimms;
29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
31 
32 static bool disable_vendor_specific;
33 module_param(disable_vendor_specific, bool, S_IRUGO);
34 MODULE_PARM_DESC(disable_vendor_specific,
35 		"Limit commands to the publicly specified set");
36 
37 static unsigned long override_dsm_mask;
38 module_param(override_dsm_mask, ulong, S_IRUGO);
39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
40 
41 static int default_dsm_family = -1;
42 module_param(default_dsm_family, int, S_IRUGO);
43 MODULE_PARM_DESC(default_dsm_family,
44 		"Try this DSM type first when identifying NVDIMM family");
45 
46 static bool no_init_ars;
47 module_param(no_init_ars, bool, 0644);
48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
49 
50 static bool force_labels;
51 module_param(force_labels, bool, 0444);
52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
53 
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56 
57 static struct workqueue_struct *nfit_wq;
58 
59 struct nfit_table_prev {
60 	struct list_head spas;
61 	struct list_head memdevs;
62 	struct list_head dcrs;
63 	struct list_head bdws;
64 	struct list_head idts;
65 	struct list_head flushes;
66 };
67 
68 static guid_t nfit_uuid[NFIT_UUID_MAX];
69 
70 const guid_t *to_nfit_uuid(enum nfit_uuids id)
71 {
72 	return &nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75 
76 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
77 {
78 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
79 
80 	/*
81 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
82 	 * acpi_device.
83 	 */
84 	if (!nd_desc->provider_name
85 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
86 		return NULL;
87 
88 	return to_acpi_device(acpi_desc->dev);
89 }
90 
91 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
92 {
93 	struct nd_cmd_clear_error *clear_err;
94 	struct nd_cmd_ars_status *ars_status;
95 	u16 flags;
96 
97 	switch (cmd) {
98 	case ND_CMD_ARS_CAP:
99 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
100 			return -ENOTTY;
101 
102 		/* Command failed */
103 		if (status & 0xffff)
104 			return -EIO;
105 
106 		/* No supported scan types for this range */
107 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
108 		if ((status >> 16 & flags) == 0)
109 			return -ENOTTY;
110 		return 0;
111 	case ND_CMD_ARS_START:
112 		/* ARS is in progress */
113 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
114 			return -EBUSY;
115 
116 		/* Command failed */
117 		if (status & 0xffff)
118 			return -EIO;
119 		return 0;
120 	case ND_CMD_ARS_STATUS:
121 		ars_status = buf;
122 		/* Command failed */
123 		if (status & 0xffff)
124 			return -EIO;
125 		/* Check extended status (Upper two bytes) */
126 		if (status == NFIT_ARS_STATUS_DONE)
127 			return 0;
128 
129 		/* ARS is in progress */
130 		if (status == NFIT_ARS_STATUS_BUSY)
131 			return -EBUSY;
132 
133 		/* No ARS performed for the current boot */
134 		if (status == NFIT_ARS_STATUS_NONE)
135 			return -EAGAIN;
136 
137 		/*
138 		 * ARS interrupted, either we overflowed or some other
139 		 * agent wants the scan to stop.  If we didn't overflow
140 		 * then just continue with the returned results.
141 		 */
142 		if (status == NFIT_ARS_STATUS_INTR) {
143 			if (ars_status->out_length >= 40 && (ars_status->flags
144 						& NFIT_ARS_F_OVERFLOW))
145 				return -ENOSPC;
146 			return 0;
147 		}
148 
149 		/* Unknown status */
150 		if (status >> 16)
151 			return -EIO;
152 		return 0;
153 	case ND_CMD_CLEAR_ERROR:
154 		clear_err = buf;
155 		if (status & 0xffff)
156 			return -EIO;
157 		if (!clear_err->cleared)
158 			return -EIO;
159 		if (clear_err->length > clear_err->cleared)
160 			return clear_err->cleared;
161 		return 0;
162 	default:
163 		break;
164 	}
165 
166 	/* all other non-zero status results in an error */
167 	if (status)
168 		return -EIO;
169 	return 0;
170 }
171 
172 #define ACPI_LABELS_LOCKED 3
173 
174 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
175 		u32 status)
176 {
177 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
178 
179 	switch (cmd) {
180 	case ND_CMD_GET_CONFIG_SIZE:
181 		/*
182 		 * In the _LSI, _LSR, _LSW case the locked status is
183 		 * communicated via the read/write commands
184 		 */
185 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
186 			break;
187 
188 		if (status >> 16 & ND_CONFIG_LOCKED)
189 			return -EACCES;
190 		break;
191 	case ND_CMD_GET_CONFIG_DATA:
192 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
193 				&& status == ACPI_LABELS_LOCKED)
194 			return -EACCES;
195 		break;
196 	case ND_CMD_SET_CONFIG_DATA:
197 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
198 				&& status == ACPI_LABELS_LOCKED)
199 			return -EACCES;
200 		break;
201 	default:
202 		break;
203 	}
204 
205 	/* all other non-zero status results in an error */
206 	if (status)
207 		return -EIO;
208 	return 0;
209 }
210 
211 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
212 		u32 status)
213 {
214 	if (!nvdimm)
215 		return xlat_bus_status(buf, cmd, status);
216 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
217 }
218 
219 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
220 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
221 {
222 	int i;
223 	void *dst;
224 	size_t size = 0;
225 	union acpi_object *buf = NULL;
226 
227 	if (pkg->type != ACPI_TYPE_PACKAGE) {
228 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
229 				pkg->type);
230 		goto err;
231 	}
232 
233 	for (i = 0; i < pkg->package.count; i++) {
234 		union acpi_object *obj = &pkg->package.elements[i];
235 
236 		if (obj->type == ACPI_TYPE_INTEGER)
237 			size += 4;
238 		else if (obj->type == ACPI_TYPE_BUFFER)
239 			size += obj->buffer.length;
240 		else {
241 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 					obj->type);
243 			goto err;
244 		}
245 	}
246 
247 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
248 	if (!buf)
249 		goto err;
250 
251 	dst = buf + 1;
252 	buf->type = ACPI_TYPE_BUFFER;
253 	buf->buffer.length = size;
254 	buf->buffer.pointer = dst;
255 	for (i = 0; i < pkg->package.count; i++) {
256 		union acpi_object *obj = &pkg->package.elements[i];
257 
258 		if (obj->type == ACPI_TYPE_INTEGER) {
259 			memcpy(dst, &obj->integer.value, 4);
260 			dst += 4;
261 		} else if (obj->type == ACPI_TYPE_BUFFER) {
262 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
263 			dst += obj->buffer.length;
264 		}
265 	}
266 err:
267 	ACPI_FREE(pkg);
268 	return buf;
269 }
270 
271 static union acpi_object *int_to_buf(union acpi_object *integer)
272 {
273 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
274 	void *dst = NULL;
275 
276 	if (!buf)
277 		goto err;
278 
279 	if (integer->type != ACPI_TYPE_INTEGER) {
280 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
281 				integer->type);
282 		goto err;
283 	}
284 
285 	dst = buf + 1;
286 	buf->type = ACPI_TYPE_BUFFER;
287 	buf->buffer.length = 4;
288 	buf->buffer.pointer = dst;
289 	memcpy(dst, &integer->integer.value, 4);
290 err:
291 	ACPI_FREE(integer);
292 	return buf;
293 }
294 
295 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
296 		u32 len, void *data)
297 {
298 	acpi_status rc;
299 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
300 	struct acpi_object_list input = {
301 		.count = 3,
302 		.pointer = (union acpi_object []) {
303 			[0] = {
304 				.integer.type = ACPI_TYPE_INTEGER,
305 				.integer.value = offset,
306 			},
307 			[1] = {
308 				.integer.type = ACPI_TYPE_INTEGER,
309 				.integer.value = len,
310 			},
311 			[2] = {
312 				.buffer.type = ACPI_TYPE_BUFFER,
313 				.buffer.pointer = data,
314 				.buffer.length = len,
315 			},
316 		},
317 	};
318 
319 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
320 	if (ACPI_FAILURE(rc))
321 		return NULL;
322 	return int_to_buf(buf.pointer);
323 }
324 
325 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
326 		u32 len)
327 {
328 	acpi_status rc;
329 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
330 	struct acpi_object_list input = {
331 		.count = 2,
332 		.pointer = (union acpi_object []) {
333 			[0] = {
334 				.integer.type = ACPI_TYPE_INTEGER,
335 				.integer.value = offset,
336 			},
337 			[1] = {
338 				.integer.type = ACPI_TYPE_INTEGER,
339 				.integer.value = len,
340 			},
341 		},
342 	};
343 
344 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
345 	if (ACPI_FAILURE(rc))
346 		return NULL;
347 	return pkg_to_buf(buf.pointer);
348 }
349 
350 static union acpi_object *acpi_label_info(acpi_handle handle)
351 {
352 	acpi_status rc;
353 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
354 
355 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
356 	if (ACPI_FAILURE(rc))
357 		return NULL;
358 	return pkg_to_buf(buf.pointer);
359 }
360 
361 static u8 nfit_dsm_revid(unsigned family, unsigned func)
362 {
363 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
364 		[NVDIMM_FAMILY_INTEL] = {
365 			[NVDIMM_INTEL_GET_MODES] = 2,
366 			[NVDIMM_INTEL_GET_FWINFO] = 2,
367 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
368 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
369 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
370 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
371 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
372 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
373 			[NVDIMM_INTEL_GET_SECURITY_STATE] = 2,
374 			[NVDIMM_INTEL_SET_PASSPHRASE] = 2,
375 			[NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2,
376 			[NVDIMM_INTEL_UNLOCK_UNIT] = 2,
377 			[NVDIMM_INTEL_FREEZE_LOCK] = 2,
378 			[NVDIMM_INTEL_SECURE_ERASE] = 2,
379 			[NVDIMM_INTEL_OVERWRITE] = 2,
380 			[NVDIMM_INTEL_QUERY_OVERWRITE] = 2,
381 			[NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2,
382 			[NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2,
383 		},
384 	};
385 	u8 id;
386 
387 	if (family > NVDIMM_FAMILY_MAX)
388 		return 0;
389 	if (func > 31)
390 		return 0;
391 	id = revid_table[family][func];
392 	if (id == 0)
393 		return 1; /* default */
394 	return id;
395 }
396 
397 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
398 {
399 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
400 
401 	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
402 			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
403 			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
404 		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
405 	return true;
406 }
407 
408 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
409 		struct nd_cmd_pkg *call_pkg)
410 {
411 	if (call_pkg) {
412 		int i;
413 
414 		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
415 			return -ENOTTY;
416 
417 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
418 			if (call_pkg->nd_reserved2[i])
419 				return -EINVAL;
420 		return call_pkg->nd_command;
421 	}
422 
423 	/* In the !call_pkg case, bus commands == bus functions */
424 	if (!nfit_mem)
425 		return cmd;
426 
427 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
428 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
429 		return cmd;
430 
431 	/*
432 	 * Force function number validation to fail since 0 is never
433 	 * published as a valid function in dsm_mask.
434 	 */
435 	return 0;
436 }
437 
438 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
439 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
440 {
441 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
442 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
443 	union acpi_object in_obj, in_buf, *out_obj;
444 	const struct nd_cmd_desc *desc = NULL;
445 	struct device *dev = acpi_desc->dev;
446 	struct nd_cmd_pkg *call_pkg = NULL;
447 	const char *cmd_name, *dimm_name;
448 	unsigned long cmd_mask, dsm_mask;
449 	u32 offset, fw_status = 0;
450 	acpi_handle handle;
451 	const guid_t *guid;
452 	int func, rc, i;
453 
454 	if (cmd_rc)
455 		*cmd_rc = -EINVAL;
456 
457 	if (cmd == ND_CMD_CALL)
458 		call_pkg = buf;
459 	func = cmd_to_func(nfit_mem, cmd, call_pkg);
460 	if (func < 0)
461 		return func;
462 
463 	if (nvdimm) {
464 		struct acpi_device *adev = nfit_mem->adev;
465 
466 		if (!adev)
467 			return -ENOTTY;
468 
469 		dimm_name = nvdimm_name(nvdimm);
470 		cmd_name = nvdimm_cmd_name(cmd);
471 		cmd_mask = nvdimm_cmd_mask(nvdimm);
472 		dsm_mask = nfit_mem->dsm_mask;
473 		desc = nd_cmd_dimm_desc(cmd);
474 		guid = to_nfit_uuid(nfit_mem->family);
475 		handle = adev->handle;
476 	} else {
477 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
478 
479 		cmd_name = nvdimm_bus_cmd_name(cmd);
480 		cmd_mask = nd_desc->cmd_mask;
481 		dsm_mask = nd_desc->bus_dsm_mask;
482 		desc = nd_cmd_bus_desc(cmd);
483 		guid = to_nfit_uuid(NFIT_DEV_BUS);
484 		handle = adev->handle;
485 		dimm_name = "bus";
486 	}
487 
488 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
489 		return -ENOTTY;
490 
491 	/*
492 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
493 	 * make sure that the DSM function is supported.
494 	 */
495 	if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask))
496 		return -ENOTTY;
497 	else if (!test_bit(cmd, &cmd_mask))
498 		return -ENOTTY;
499 
500 	in_obj.type = ACPI_TYPE_PACKAGE;
501 	in_obj.package.count = 1;
502 	in_obj.package.elements = &in_buf;
503 	in_buf.type = ACPI_TYPE_BUFFER;
504 	in_buf.buffer.pointer = buf;
505 	in_buf.buffer.length = 0;
506 
507 	/* libnvdimm has already validated the input envelope */
508 	for (i = 0; i < desc->in_num; i++)
509 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
510 				i, buf);
511 
512 	if (call_pkg) {
513 		/* skip over package wrapper */
514 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
515 		in_buf.buffer.length = call_pkg->nd_size_in;
516 	}
517 
518 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
519 		dimm_name, cmd, func, in_buf.buffer.length);
520 	if (payload_dumpable(nvdimm, func))
521 		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
522 				in_buf.buffer.pointer,
523 				min_t(u32, 256, in_buf.buffer.length), true);
524 
525 	/* call the BIOS, prefer the named methods over _DSM if available */
526 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
527 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
528 		out_obj = acpi_label_info(handle);
529 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
530 			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
531 		struct nd_cmd_get_config_data_hdr *p = buf;
532 
533 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
534 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
535 			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
536 		struct nd_cmd_set_config_hdr *p = buf;
537 
538 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
539 				p->in_buf);
540 	} else {
541 		u8 revid;
542 
543 		if (nvdimm)
544 			revid = nfit_dsm_revid(nfit_mem->family, func);
545 		else
546 			revid = 1;
547 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
548 	}
549 
550 	if (!out_obj) {
551 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
552 		return -EINVAL;
553 	}
554 
555 	if (out_obj->type != ACPI_TYPE_BUFFER) {
556 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
557 				dimm_name, cmd_name, out_obj->type);
558 		rc = -EINVAL;
559 		goto out;
560 	}
561 
562 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
563 			cmd_name, out_obj->buffer.length);
564 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
565 			out_obj->buffer.pointer,
566 			min_t(u32, 128, out_obj->buffer.length), true);
567 
568 	if (call_pkg) {
569 		call_pkg->nd_fw_size = out_obj->buffer.length;
570 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
571 			out_obj->buffer.pointer,
572 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
573 
574 		ACPI_FREE(out_obj);
575 		/*
576 		 * Need to support FW function w/o known size in advance.
577 		 * Caller can determine required size based upon nd_fw_size.
578 		 * If we return an error (like elsewhere) then caller wouldn't
579 		 * be able to rely upon data returned to make calculation.
580 		 */
581 		if (cmd_rc)
582 			*cmd_rc = 0;
583 		return 0;
584 	}
585 
586 	for (i = 0, offset = 0; i < desc->out_num; i++) {
587 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
588 				(u32 *) out_obj->buffer.pointer,
589 				out_obj->buffer.length - offset);
590 
591 		if (offset + out_size > out_obj->buffer.length) {
592 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
593 					dimm_name, cmd_name, i);
594 			break;
595 		}
596 
597 		if (in_buf.buffer.length + offset + out_size > buf_len) {
598 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
599 					dimm_name, cmd_name, i);
600 			rc = -ENXIO;
601 			goto out;
602 		}
603 		memcpy(buf + in_buf.buffer.length + offset,
604 				out_obj->buffer.pointer + offset, out_size);
605 		offset += out_size;
606 	}
607 
608 	/*
609 	 * Set fw_status for all the commands with a known format to be
610 	 * later interpreted by xlat_status().
611 	 */
612 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
613 					&& cmd <= ND_CMD_CLEAR_ERROR)
614 				|| (nvdimm && cmd >= ND_CMD_SMART
615 					&& cmd <= ND_CMD_VENDOR)))
616 		fw_status = *(u32 *) out_obj->buffer.pointer;
617 
618 	if (offset + in_buf.buffer.length < buf_len) {
619 		if (i >= 1) {
620 			/*
621 			 * status valid, return the number of bytes left
622 			 * unfilled in the output buffer
623 			 */
624 			rc = buf_len - offset - in_buf.buffer.length;
625 			if (cmd_rc)
626 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
627 						fw_status);
628 		} else {
629 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
630 					__func__, dimm_name, cmd_name, buf_len,
631 					offset);
632 			rc = -ENXIO;
633 		}
634 	} else {
635 		rc = 0;
636 		if (cmd_rc)
637 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
638 	}
639 
640  out:
641 	ACPI_FREE(out_obj);
642 
643 	return rc;
644 }
645 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
646 
647 static const char *spa_type_name(u16 type)
648 {
649 	static const char *to_name[] = {
650 		[NFIT_SPA_VOLATILE] = "volatile",
651 		[NFIT_SPA_PM] = "pmem",
652 		[NFIT_SPA_DCR] = "dimm-control-region",
653 		[NFIT_SPA_BDW] = "block-data-window",
654 		[NFIT_SPA_VDISK] = "volatile-disk",
655 		[NFIT_SPA_VCD] = "volatile-cd",
656 		[NFIT_SPA_PDISK] = "persistent-disk",
657 		[NFIT_SPA_PCD] = "persistent-cd",
658 
659 	};
660 
661 	if (type > NFIT_SPA_PCD)
662 		return "unknown";
663 
664 	return to_name[type];
665 }
666 
667 int nfit_spa_type(struct acpi_nfit_system_address *spa)
668 {
669 	int i;
670 
671 	for (i = 0; i < NFIT_UUID_MAX; i++)
672 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
673 			return i;
674 	return -1;
675 }
676 
677 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
678 		struct nfit_table_prev *prev,
679 		struct acpi_nfit_system_address *spa)
680 {
681 	struct device *dev = acpi_desc->dev;
682 	struct nfit_spa *nfit_spa;
683 
684 	if (spa->header.length != sizeof(*spa))
685 		return false;
686 
687 	list_for_each_entry(nfit_spa, &prev->spas, list) {
688 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
689 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
690 			return true;
691 		}
692 	}
693 
694 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
695 			GFP_KERNEL);
696 	if (!nfit_spa)
697 		return false;
698 	INIT_LIST_HEAD(&nfit_spa->list);
699 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
700 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
701 	dev_dbg(dev, "spa index: %d type: %s\n",
702 			spa->range_index,
703 			spa_type_name(nfit_spa_type(spa)));
704 	return true;
705 }
706 
707 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
708 		struct nfit_table_prev *prev,
709 		struct acpi_nfit_memory_map *memdev)
710 {
711 	struct device *dev = acpi_desc->dev;
712 	struct nfit_memdev *nfit_memdev;
713 
714 	if (memdev->header.length != sizeof(*memdev))
715 		return false;
716 
717 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
718 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
719 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
720 			return true;
721 		}
722 
723 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
724 			GFP_KERNEL);
725 	if (!nfit_memdev)
726 		return false;
727 	INIT_LIST_HEAD(&nfit_memdev->list);
728 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
729 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
730 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
731 			memdev->device_handle, memdev->range_index,
732 			memdev->region_index, memdev->flags);
733 	return true;
734 }
735 
736 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
737 {
738 	struct acpi_nfit_memory_map *memdev;
739 	struct acpi_nfit_desc *acpi_desc;
740 	struct nfit_mem *nfit_mem;
741 	u16 physical_id;
742 
743 	mutex_lock(&acpi_desc_lock);
744 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
745 		mutex_lock(&acpi_desc->init_mutex);
746 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
747 			memdev = __to_nfit_memdev(nfit_mem);
748 			if (memdev->device_handle == device_handle) {
749 				*flags = memdev->flags;
750 				physical_id = memdev->physical_id;
751 				mutex_unlock(&acpi_desc->init_mutex);
752 				mutex_unlock(&acpi_desc_lock);
753 				return physical_id;
754 			}
755 		}
756 		mutex_unlock(&acpi_desc->init_mutex);
757 	}
758 	mutex_unlock(&acpi_desc_lock);
759 
760 	return -ENODEV;
761 }
762 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
763 
764 /*
765  * An implementation may provide a truncated control region if no block windows
766  * are defined.
767  */
768 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
769 {
770 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
771 				window_size))
772 		return 0;
773 	if (dcr->windows)
774 		return sizeof(*dcr);
775 	return offsetof(struct acpi_nfit_control_region, window_size);
776 }
777 
778 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
779 		struct nfit_table_prev *prev,
780 		struct acpi_nfit_control_region *dcr)
781 {
782 	struct device *dev = acpi_desc->dev;
783 	struct nfit_dcr *nfit_dcr;
784 
785 	if (!sizeof_dcr(dcr))
786 		return false;
787 
788 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
789 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
790 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
791 			return true;
792 		}
793 
794 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
795 			GFP_KERNEL);
796 	if (!nfit_dcr)
797 		return false;
798 	INIT_LIST_HEAD(&nfit_dcr->list);
799 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
800 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
801 	dev_dbg(dev, "dcr index: %d windows: %d\n",
802 			dcr->region_index, dcr->windows);
803 	return true;
804 }
805 
806 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
807 		struct nfit_table_prev *prev,
808 		struct acpi_nfit_data_region *bdw)
809 {
810 	struct device *dev = acpi_desc->dev;
811 	struct nfit_bdw *nfit_bdw;
812 
813 	if (bdw->header.length != sizeof(*bdw))
814 		return false;
815 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
816 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
817 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
818 			return true;
819 		}
820 
821 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
822 			GFP_KERNEL);
823 	if (!nfit_bdw)
824 		return false;
825 	INIT_LIST_HEAD(&nfit_bdw->list);
826 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
827 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
828 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
829 			bdw->region_index, bdw->windows);
830 	return true;
831 }
832 
833 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
834 {
835 	if (idt->header.length < sizeof(*idt))
836 		return 0;
837 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
838 }
839 
840 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
841 		struct nfit_table_prev *prev,
842 		struct acpi_nfit_interleave *idt)
843 {
844 	struct device *dev = acpi_desc->dev;
845 	struct nfit_idt *nfit_idt;
846 
847 	if (!sizeof_idt(idt))
848 		return false;
849 
850 	list_for_each_entry(nfit_idt, &prev->idts, list) {
851 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
852 			continue;
853 
854 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
855 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
856 			return true;
857 		}
858 	}
859 
860 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
861 			GFP_KERNEL);
862 	if (!nfit_idt)
863 		return false;
864 	INIT_LIST_HEAD(&nfit_idt->list);
865 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
866 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
867 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
868 			idt->interleave_index, idt->line_count);
869 	return true;
870 }
871 
872 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
873 {
874 	if (flush->header.length < sizeof(*flush))
875 		return 0;
876 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
877 }
878 
879 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
880 		struct nfit_table_prev *prev,
881 		struct acpi_nfit_flush_address *flush)
882 {
883 	struct device *dev = acpi_desc->dev;
884 	struct nfit_flush *nfit_flush;
885 
886 	if (!sizeof_flush(flush))
887 		return false;
888 
889 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
890 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
891 			continue;
892 
893 		if (memcmp(nfit_flush->flush, flush,
894 					sizeof_flush(flush)) == 0) {
895 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
896 			return true;
897 		}
898 	}
899 
900 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
901 			+ sizeof_flush(flush), GFP_KERNEL);
902 	if (!nfit_flush)
903 		return false;
904 	INIT_LIST_HEAD(&nfit_flush->list);
905 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
906 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
907 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
908 			flush->device_handle, flush->hint_count);
909 	return true;
910 }
911 
912 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
913 		struct acpi_nfit_capabilities *pcap)
914 {
915 	struct device *dev = acpi_desc->dev;
916 	u32 mask;
917 
918 	mask = (1 << (pcap->highest_capability + 1)) - 1;
919 	acpi_desc->platform_cap = pcap->capabilities & mask;
920 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
921 	return true;
922 }
923 
924 static void *add_table(struct acpi_nfit_desc *acpi_desc,
925 		struct nfit_table_prev *prev, void *table, const void *end)
926 {
927 	struct device *dev = acpi_desc->dev;
928 	struct acpi_nfit_header *hdr;
929 	void *err = ERR_PTR(-ENOMEM);
930 
931 	if (table >= end)
932 		return NULL;
933 
934 	hdr = table;
935 	if (!hdr->length) {
936 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
937 			hdr->type);
938 		return NULL;
939 	}
940 
941 	switch (hdr->type) {
942 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
943 		if (!add_spa(acpi_desc, prev, table))
944 			return err;
945 		break;
946 	case ACPI_NFIT_TYPE_MEMORY_MAP:
947 		if (!add_memdev(acpi_desc, prev, table))
948 			return err;
949 		break;
950 	case ACPI_NFIT_TYPE_CONTROL_REGION:
951 		if (!add_dcr(acpi_desc, prev, table))
952 			return err;
953 		break;
954 	case ACPI_NFIT_TYPE_DATA_REGION:
955 		if (!add_bdw(acpi_desc, prev, table))
956 			return err;
957 		break;
958 	case ACPI_NFIT_TYPE_INTERLEAVE:
959 		if (!add_idt(acpi_desc, prev, table))
960 			return err;
961 		break;
962 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
963 		if (!add_flush(acpi_desc, prev, table))
964 			return err;
965 		break;
966 	case ACPI_NFIT_TYPE_SMBIOS:
967 		dev_dbg(dev, "smbios\n");
968 		break;
969 	case ACPI_NFIT_TYPE_CAPABILITIES:
970 		if (!add_platform_cap(acpi_desc, table))
971 			return err;
972 		break;
973 	default:
974 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
975 		break;
976 	}
977 
978 	return table + hdr->length;
979 }
980 
981 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
982 		struct nfit_mem *nfit_mem)
983 {
984 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
985 	u16 dcr = nfit_mem->dcr->region_index;
986 	struct nfit_spa *nfit_spa;
987 
988 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
989 		u16 range_index = nfit_spa->spa->range_index;
990 		int type = nfit_spa_type(nfit_spa->spa);
991 		struct nfit_memdev *nfit_memdev;
992 
993 		if (type != NFIT_SPA_BDW)
994 			continue;
995 
996 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
997 			if (nfit_memdev->memdev->range_index != range_index)
998 				continue;
999 			if (nfit_memdev->memdev->device_handle != device_handle)
1000 				continue;
1001 			if (nfit_memdev->memdev->region_index != dcr)
1002 				continue;
1003 
1004 			nfit_mem->spa_bdw = nfit_spa->spa;
1005 			return;
1006 		}
1007 	}
1008 
1009 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1010 			nfit_mem->spa_dcr->range_index);
1011 	nfit_mem->bdw = NULL;
1012 }
1013 
1014 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1015 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1016 {
1017 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1018 	struct nfit_memdev *nfit_memdev;
1019 	struct nfit_bdw *nfit_bdw;
1020 	struct nfit_idt *nfit_idt;
1021 	u16 idt_idx, range_index;
1022 
1023 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1024 		if (nfit_bdw->bdw->region_index != dcr)
1025 			continue;
1026 		nfit_mem->bdw = nfit_bdw->bdw;
1027 		break;
1028 	}
1029 
1030 	if (!nfit_mem->bdw)
1031 		return;
1032 
1033 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1034 
1035 	if (!nfit_mem->spa_bdw)
1036 		return;
1037 
1038 	range_index = nfit_mem->spa_bdw->range_index;
1039 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1040 		if (nfit_memdev->memdev->range_index != range_index ||
1041 				nfit_memdev->memdev->region_index != dcr)
1042 			continue;
1043 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1044 		idt_idx = nfit_memdev->memdev->interleave_index;
1045 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1046 			if (nfit_idt->idt->interleave_index != idt_idx)
1047 				continue;
1048 			nfit_mem->idt_bdw = nfit_idt->idt;
1049 			break;
1050 		}
1051 		break;
1052 	}
1053 }
1054 
1055 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1056 		struct acpi_nfit_system_address *spa)
1057 {
1058 	struct nfit_mem *nfit_mem, *found;
1059 	struct nfit_memdev *nfit_memdev;
1060 	int type = spa ? nfit_spa_type(spa) : 0;
1061 
1062 	switch (type) {
1063 	case NFIT_SPA_DCR:
1064 	case NFIT_SPA_PM:
1065 		break;
1066 	default:
1067 		if (spa)
1068 			return 0;
1069 	}
1070 
1071 	/*
1072 	 * This loop runs in two modes, when a dimm is mapped the loop
1073 	 * adds memdev associations to an existing dimm, or creates a
1074 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1075 	 * instances with an invalid / zero range_index and adds those
1076 	 * dimms without spa associations.
1077 	 */
1078 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1079 		struct nfit_flush *nfit_flush;
1080 		struct nfit_dcr *nfit_dcr;
1081 		u32 device_handle;
1082 		u16 dcr;
1083 
1084 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1085 			continue;
1086 		if (!spa && nfit_memdev->memdev->range_index)
1087 			continue;
1088 		found = NULL;
1089 		dcr = nfit_memdev->memdev->region_index;
1090 		device_handle = nfit_memdev->memdev->device_handle;
1091 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1092 			if (__to_nfit_memdev(nfit_mem)->device_handle
1093 					== device_handle) {
1094 				found = nfit_mem;
1095 				break;
1096 			}
1097 
1098 		if (found)
1099 			nfit_mem = found;
1100 		else {
1101 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1102 					sizeof(*nfit_mem), GFP_KERNEL);
1103 			if (!nfit_mem)
1104 				return -ENOMEM;
1105 			INIT_LIST_HEAD(&nfit_mem->list);
1106 			nfit_mem->acpi_desc = acpi_desc;
1107 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1108 		}
1109 
1110 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1111 			if (nfit_dcr->dcr->region_index != dcr)
1112 				continue;
1113 			/*
1114 			 * Record the control region for the dimm.  For
1115 			 * the ACPI 6.1 case, where there are separate
1116 			 * control regions for the pmem vs blk
1117 			 * interfaces, be sure to record the extended
1118 			 * blk details.
1119 			 */
1120 			if (!nfit_mem->dcr)
1121 				nfit_mem->dcr = nfit_dcr->dcr;
1122 			else if (nfit_mem->dcr->windows == 0
1123 					&& nfit_dcr->dcr->windows)
1124 				nfit_mem->dcr = nfit_dcr->dcr;
1125 			break;
1126 		}
1127 
1128 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1129 			struct acpi_nfit_flush_address *flush;
1130 			u16 i;
1131 
1132 			if (nfit_flush->flush->device_handle != device_handle)
1133 				continue;
1134 			nfit_mem->nfit_flush = nfit_flush;
1135 			flush = nfit_flush->flush;
1136 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1137 					flush->hint_count,
1138 					sizeof(struct resource),
1139 					GFP_KERNEL);
1140 			if (!nfit_mem->flush_wpq)
1141 				return -ENOMEM;
1142 			for (i = 0; i < flush->hint_count; i++) {
1143 				struct resource *res = &nfit_mem->flush_wpq[i];
1144 
1145 				res->start = flush->hint_address[i];
1146 				res->end = res->start + 8 - 1;
1147 			}
1148 			break;
1149 		}
1150 
1151 		if (dcr && !nfit_mem->dcr) {
1152 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1153 					spa->range_index, dcr);
1154 			return -ENODEV;
1155 		}
1156 
1157 		if (type == NFIT_SPA_DCR) {
1158 			struct nfit_idt *nfit_idt;
1159 			u16 idt_idx;
1160 
1161 			/* multiple dimms may share a SPA when interleaved */
1162 			nfit_mem->spa_dcr = spa;
1163 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1164 			idt_idx = nfit_memdev->memdev->interleave_index;
1165 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1166 				if (nfit_idt->idt->interleave_index != idt_idx)
1167 					continue;
1168 				nfit_mem->idt_dcr = nfit_idt->idt;
1169 				break;
1170 			}
1171 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1172 		} else if (type == NFIT_SPA_PM) {
1173 			/*
1174 			 * A single dimm may belong to multiple SPA-PM
1175 			 * ranges, record at least one in addition to
1176 			 * any SPA-DCR range.
1177 			 */
1178 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1179 		} else
1180 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1187 {
1188 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1189 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1190 	u32 handleA, handleB;
1191 
1192 	handleA = __to_nfit_memdev(a)->device_handle;
1193 	handleB = __to_nfit_memdev(b)->device_handle;
1194 	if (handleA < handleB)
1195 		return -1;
1196 	else if (handleA > handleB)
1197 		return 1;
1198 	return 0;
1199 }
1200 
1201 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1202 {
1203 	struct nfit_spa *nfit_spa;
1204 	int rc;
1205 
1206 
1207 	/*
1208 	 * For each SPA-DCR or SPA-PMEM address range find its
1209 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1210 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1211 	 * try to find a SPA-BDW and a corresponding BDW that references
1212 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1213 	 * BDWs are optional.
1214 	 */
1215 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1216 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1217 		if (rc)
1218 			return rc;
1219 	}
1220 
1221 	/*
1222 	 * If a DIMM has failed to be mapped into SPA there will be no
1223 	 * SPA entries above. Find and register all the unmapped DIMMs
1224 	 * for reporting and recovery purposes.
1225 	 */
1226 	rc = __nfit_mem_init(acpi_desc, NULL);
1227 	if (rc)
1228 		return rc;
1229 
1230 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1231 
1232 	return 0;
1233 }
1234 
1235 static ssize_t bus_dsm_mask_show(struct device *dev,
1236 		struct device_attribute *attr, char *buf)
1237 {
1238 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1239 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1240 
1241 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1242 }
1243 static struct device_attribute dev_attr_bus_dsm_mask =
1244 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1245 
1246 static ssize_t revision_show(struct device *dev,
1247 		struct device_attribute *attr, char *buf)
1248 {
1249 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1250 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1251 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1252 
1253 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1254 }
1255 static DEVICE_ATTR_RO(revision);
1256 
1257 static ssize_t hw_error_scrub_show(struct device *dev,
1258 		struct device_attribute *attr, char *buf)
1259 {
1260 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1261 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1262 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1263 
1264 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1265 }
1266 
1267 /*
1268  * The 'hw_error_scrub' attribute can have the following values written to it:
1269  * '0': Switch to the default mode where an exception will only insert
1270  *      the address of the memory error into the poison and badblocks lists.
1271  * '1': Enable a full scrub to happen if an exception for a memory error is
1272  *      received.
1273  */
1274 static ssize_t hw_error_scrub_store(struct device *dev,
1275 		struct device_attribute *attr, const char *buf, size_t size)
1276 {
1277 	struct nvdimm_bus_descriptor *nd_desc;
1278 	ssize_t rc;
1279 	long val;
1280 
1281 	rc = kstrtol(buf, 0, &val);
1282 	if (rc)
1283 		return rc;
1284 
1285 	nfit_device_lock(dev);
1286 	nd_desc = dev_get_drvdata(dev);
1287 	if (nd_desc) {
1288 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1289 
1290 		switch (val) {
1291 		case HW_ERROR_SCRUB_ON:
1292 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1293 			break;
1294 		case HW_ERROR_SCRUB_OFF:
1295 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1296 			break;
1297 		default:
1298 			rc = -EINVAL;
1299 			break;
1300 		}
1301 	}
1302 	nfit_device_unlock(dev);
1303 	if (rc)
1304 		return rc;
1305 	return size;
1306 }
1307 static DEVICE_ATTR_RW(hw_error_scrub);
1308 
1309 /*
1310  * This shows the number of full Address Range Scrubs that have been
1311  * completed since driver load time. Userspace can wait on this using
1312  * select/poll etc. A '+' at the end indicates an ARS is in progress
1313  */
1314 static ssize_t scrub_show(struct device *dev,
1315 		struct device_attribute *attr, char *buf)
1316 {
1317 	struct nvdimm_bus_descriptor *nd_desc;
1318 	struct acpi_nfit_desc *acpi_desc;
1319 	ssize_t rc = -ENXIO;
1320 	bool busy;
1321 
1322 	nfit_device_lock(dev);
1323 	nd_desc = dev_get_drvdata(dev);
1324 	if (!nd_desc) {
1325 		nfit_device_unlock(dev);
1326 		return rc;
1327 	}
1328 	acpi_desc = to_acpi_desc(nd_desc);
1329 
1330 	mutex_lock(&acpi_desc->init_mutex);
1331 	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1332 		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1333 	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1334 	/* Allow an admin to poll the busy state at a higher rate */
1335 	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1336 				&acpi_desc->scrub_flags)) {
1337 		acpi_desc->scrub_tmo = 1;
1338 		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1339 	}
1340 
1341 	mutex_unlock(&acpi_desc->init_mutex);
1342 	nfit_device_unlock(dev);
1343 	return rc;
1344 }
1345 
1346 static ssize_t scrub_store(struct device *dev,
1347 		struct device_attribute *attr, const char *buf, size_t size)
1348 {
1349 	struct nvdimm_bus_descriptor *nd_desc;
1350 	ssize_t rc;
1351 	long val;
1352 
1353 	rc = kstrtol(buf, 0, &val);
1354 	if (rc)
1355 		return rc;
1356 	if (val != 1)
1357 		return -EINVAL;
1358 
1359 	nfit_device_lock(dev);
1360 	nd_desc = dev_get_drvdata(dev);
1361 	if (nd_desc) {
1362 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1363 
1364 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1365 	}
1366 	nfit_device_unlock(dev);
1367 	if (rc)
1368 		return rc;
1369 	return size;
1370 }
1371 static DEVICE_ATTR_RW(scrub);
1372 
1373 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1374 {
1375 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1376 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1377 		| 1 << ND_CMD_ARS_STATUS;
1378 
1379 	return (nd_desc->cmd_mask & mask) == mask;
1380 }
1381 
1382 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1383 {
1384 	struct device *dev = container_of(kobj, struct device, kobj);
1385 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1386 
1387 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1388 		return 0;
1389 	return a->mode;
1390 }
1391 
1392 static struct attribute *acpi_nfit_attributes[] = {
1393 	&dev_attr_revision.attr,
1394 	&dev_attr_scrub.attr,
1395 	&dev_attr_hw_error_scrub.attr,
1396 	&dev_attr_bus_dsm_mask.attr,
1397 	NULL,
1398 };
1399 
1400 static const struct attribute_group acpi_nfit_attribute_group = {
1401 	.name = "nfit",
1402 	.attrs = acpi_nfit_attributes,
1403 	.is_visible = nfit_visible,
1404 };
1405 
1406 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1407 	&acpi_nfit_attribute_group,
1408 	NULL,
1409 };
1410 
1411 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1412 {
1413 	struct nvdimm *nvdimm = to_nvdimm(dev);
1414 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1415 
1416 	return __to_nfit_memdev(nfit_mem);
1417 }
1418 
1419 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1420 {
1421 	struct nvdimm *nvdimm = to_nvdimm(dev);
1422 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1423 
1424 	return nfit_mem->dcr;
1425 }
1426 
1427 static ssize_t handle_show(struct device *dev,
1428 		struct device_attribute *attr, char *buf)
1429 {
1430 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1431 
1432 	return sprintf(buf, "%#x\n", memdev->device_handle);
1433 }
1434 static DEVICE_ATTR_RO(handle);
1435 
1436 static ssize_t phys_id_show(struct device *dev,
1437 		struct device_attribute *attr, char *buf)
1438 {
1439 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1440 
1441 	return sprintf(buf, "%#x\n", memdev->physical_id);
1442 }
1443 static DEVICE_ATTR_RO(phys_id);
1444 
1445 static ssize_t vendor_show(struct device *dev,
1446 		struct device_attribute *attr, char *buf)
1447 {
1448 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1449 
1450 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1451 }
1452 static DEVICE_ATTR_RO(vendor);
1453 
1454 static ssize_t rev_id_show(struct device *dev,
1455 		struct device_attribute *attr, char *buf)
1456 {
1457 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1458 
1459 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1460 }
1461 static DEVICE_ATTR_RO(rev_id);
1462 
1463 static ssize_t device_show(struct device *dev,
1464 		struct device_attribute *attr, char *buf)
1465 {
1466 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1467 
1468 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1469 }
1470 static DEVICE_ATTR_RO(device);
1471 
1472 static ssize_t subsystem_vendor_show(struct device *dev,
1473 		struct device_attribute *attr, char *buf)
1474 {
1475 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1476 
1477 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1478 }
1479 static DEVICE_ATTR_RO(subsystem_vendor);
1480 
1481 static ssize_t subsystem_rev_id_show(struct device *dev,
1482 		struct device_attribute *attr, char *buf)
1483 {
1484 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1485 
1486 	return sprintf(buf, "0x%04x\n",
1487 			be16_to_cpu(dcr->subsystem_revision_id));
1488 }
1489 static DEVICE_ATTR_RO(subsystem_rev_id);
1490 
1491 static ssize_t subsystem_device_show(struct device *dev,
1492 		struct device_attribute *attr, char *buf)
1493 {
1494 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1495 
1496 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1497 }
1498 static DEVICE_ATTR_RO(subsystem_device);
1499 
1500 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1501 {
1502 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1503 	int formats = 0;
1504 
1505 	if (nfit_mem->memdev_pmem)
1506 		formats++;
1507 	if (nfit_mem->memdev_bdw)
1508 		formats++;
1509 	return formats;
1510 }
1511 
1512 static ssize_t format_show(struct device *dev,
1513 		struct device_attribute *attr, char *buf)
1514 {
1515 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1516 
1517 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1518 }
1519 static DEVICE_ATTR_RO(format);
1520 
1521 static ssize_t format1_show(struct device *dev,
1522 		struct device_attribute *attr, char *buf)
1523 {
1524 	u32 handle;
1525 	ssize_t rc = -ENXIO;
1526 	struct nfit_mem *nfit_mem;
1527 	struct nfit_memdev *nfit_memdev;
1528 	struct acpi_nfit_desc *acpi_desc;
1529 	struct nvdimm *nvdimm = to_nvdimm(dev);
1530 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1531 
1532 	nfit_mem = nvdimm_provider_data(nvdimm);
1533 	acpi_desc = nfit_mem->acpi_desc;
1534 	handle = to_nfit_memdev(dev)->device_handle;
1535 
1536 	/* assumes DIMMs have at most 2 published interface codes */
1537 	mutex_lock(&acpi_desc->init_mutex);
1538 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1539 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1540 		struct nfit_dcr *nfit_dcr;
1541 
1542 		if (memdev->device_handle != handle)
1543 			continue;
1544 
1545 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1546 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1547 				continue;
1548 			if (nfit_dcr->dcr->code == dcr->code)
1549 				continue;
1550 			rc = sprintf(buf, "0x%04x\n",
1551 					le16_to_cpu(nfit_dcr->dcr->code));
1552 			break;
1553 		}
1554 		if (rc != ENXIO)
1555 			break;
1556 	}
1557 	mutex_unlock(&acpi_desc->init_mutex);
1558 	return rc;
1559 }
1560 static DEVICE_ATTR_RO(format1);
1561 
1562 static ssize_t formats_show(struct device *dev,
1563 		struct device_attribute *attr, char *buf)
1564 {
1565 	struct nvdimm *nvdimm = to_nvdimm(dev);
1566 
1567 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1568 }
1569 static DEVICE_ATTR_RO(formats);
1570 
1571 static ssize_t serial_show(struct device *dev,
1572 		struct device_attribute *attr, char *buf)
1573 {
1574 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1575 
1576 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1577 }
1578 static DEVICE_ATTR_RO(serial);
1579 
1580 static ssize_t family_show(struct device *dev,
1581 		struct device_attribute *attr, char *buf)
1582 {
1583 	struct nvdimm *nvdimm = to_nvdimm(dev);
1584 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1585 
1586 	if (nfit_mem->family < 0)
1587 		return -ENXIO;
1588 	return sprintf(buf, "%d\n", nfit_mem->family);
1589 }
1590 static DEVICE_ATTR_RO(family);
1591 
1592 static ssize_t dsm_mask_show(struct device *dev,
1593 		struct device_attribute *attr, char *buf)
1594 {
1595 	struct nvdimm *nvdimm = to_nvdimm(dev);
1596 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1597 
1598 	if (nfit_mem->family < 0)
1599 		return -ENXIO;
1600 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1601 }
1602 static DEVICE_ATTR_RO(dsm_mask);
1603 
1604 static ssize_t flags_show(struct device *dev,
1605 		struct device_attribute *attr, char *buf)
1606 {
1607 	struct nvdimm *nvdimm = to_nvdimm(dev);
1608 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1609 	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1610 
1611 	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1612 		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1613 
1614 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1615 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1616 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1617 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1618 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1619 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1620 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1621 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1622 }
1623 static DEVICE_ATTR_RO(flags);
1624 
1625 static ssize_t id_show(struct device *dev,
1626 		struct device_attribute *attr, char *buf)
1627 {
1628 	struct nvdimm *nvdimm = to_nvdimm(dev);
1629 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1630 
1631 	return sprintf(buf, "%s\n", nfit_mem->id);
1632 }
1633 static DEVICE_ATTR_RO(id);
1634 
1635 static ssize_t dirty_shutdown_show(struct device *dev,
1636 		struct device_attribute *attr, char *buf)
1637 {
1638 	struct nvdimm *nvdimm = to_nvdimm(dev);
1639 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1640 
1641 	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1642 }
1643 static DEVICE_ATTR_RO(dirty_shutdown);
1644 
1645 static struct attribute *acpi_nfit_dimm_attributes[] = {
1646 	&dev_attr_handle.attr,
1647 	&dev_attr_phys_id.attr,
1648 	&dev_attr_vendor.attr,
1649 	&dev_attr_device.attr,
1650 	&dev_attr_rev_id.attr,
1651 	&dev_attr_subsystem_vendor.attr,
1652 	&dev_attr_subsystem_device.attr,
1653 	&dev_attr_subsystem_rev_id.attr,
1654 	&dev_attr_format.attr,
1655 	&dev_attr_formats.attr,
1656 	&dev_attr_format1.attr,
1657 	&dev_attr_serial.attr,
1658 	&dev_attr_flags.attr,
1659 	&dev_attr_id.attr,
1660 	&dev_attr_family.attr,
1661 	&dev_attr_dsm_mask.attr,
1662 	&dev_attr_dirty_shutdown.attr,
1663 	NULL,
1664 };
1665 
1666 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1667 		struct attribute *a, int n)
1668 {
1669 	struct device *dev = container_of(kobj, struct device, kobj);
1670 	struct nvdimm *nvdimm = to_nvdimm(dev);
1671 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1672 
1673 	if (!to_nfit_dcr(dev)) {
1674 		/* Without a dcr only the memdev attributes can be surfaced */
1675 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1676 				|| a == &dev_attr_flags.attr
1677 				|| a == &dev_attr_family.attr
1678 				|| a == &dev_attr_dsm_mask.attr)
1679 			return a->mode;
1680 		return 0;
1681 	}
1682 
1683 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1684 		return 0;
1685 
1686 	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1687 			&& a == &dev_attr_dirty_shutdown.attr)
1688 		return 0;
1689 
1690 	return a->mode;
1691 }
1692 
1693 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1694 	.name = "nfit",
1695 	.attrs = acpi_nfit_dimm_attributes,
1696 	.is_visible = acpi_nfit_dimm_attr_visible,
1697 };
1698 
1699 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1700 	&acpi_nfit_dimm_attribute_group,
1701 	NULL,
1702 };
1703 
1704 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1705 		u32 device_handle)
1706 {
1707 	struct nfit_mem *nfit_mem;
1708 
1709 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1710 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1711 			return nfit_mem->nvdimm;
1712 
1713 	return NULL;
1714 }
1715 
1716 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1717 {
1718 	struct nfit_mem *nfit_mem;
1719 	struct acpi_nfit_desc *acpi_desc;
1720 
1721 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1722 			event);
1723 
1724 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1725 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1726 				event);
1727 		return;
1728 	}
1729 
1730 	acpi_desc = dev_get_drvdata(dev->parent);
1731 	if (!acpi_desc)
1732 		return;
1733 
1734 	/*
1735 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1736 	 * is still valid.
1737 	 */
1738 	nfit_mem = dev_get_drvdata(dev);
1739 	if (nfit_mem && nfit_mem->flags_attr)
1740 		sysfs_notify_dirent(nfit_mem->flags_attr);
1741 }
1742 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1743 
1744 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1745 {
1746 	struct acpi_device *adev = data;
1747 	struct device *dev = &adev->dev;
1748 
1749 	nfit_device_lock(dev->parent);
1750 	__acpi_nvdimm_notify(dev, event);
1751 	nfit_device_unlock(dev->parent);
1752 }
1753 
1754 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1755 {
1756 	acpi_handle handle;
1757 	acpi_status status;
1758 
1759 	status = acpi_get_handle(adev->handle, method, &handle);
1760 
1761 	if (ACPI_SUCCESS(status))
1762 		return true;
1763 	return false;
1764 }
1765 
1766 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1767 {
1768 	struct device *dev = &nfit_mem->adev->dev;
1769 	struct nd_intel_smart smart = { 0 };
1770 	union acpi_object in_buf = {
1771 		.buffer.type = ACPI_TYPE_BUFFER,
1772 		.buffer.length = 0,
1773 	};
1774 	union acpi_object in_obj = {
1775 		.package.type = ACPI_TYPE_PACKAGE,
1776 		.package.count = 1,
1777 		.package.elements = &in_buf,
1778 	};
1779 	const u8 func = ND_INTEL_SMART;
1780 	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1781 	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1782 	struct acpi_device *adev = nfit_mem->adev;
1783 	acpi_handle handle = adev->handle;
1784 	union acpi_object *out_obj;
1785 
1786 	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1787 		return;
1788 
1789 	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1790 	if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1791 			|| out_obj->buffer.length < sizeof(smart)) {
1792 		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1793 				dev_name(dev));
1794 		ACPI_FREE(out_obj);
1795 		return;
1796 	}
1797 	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1798 	ACPI_FREE(out_obj);
1799 
1800 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1801 		if (smart.shutdown_state)
1802 			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1803 	}
1804 
1805 	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1806 		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1807 		nfit_mem->dirty_shutdown = smart.shutdown_count;
1808 	}
1809 }
1810 
1811 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1812 {
1813 	/*
1814 	 * For DIMMs that provide a dynamic facility to retrieve a
1815 	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1816 	 * these values in nfit_mem.
1817 	 */
1818 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1819 		nfit_intel_shutdown_status(nfit_mem);
1820 }
1821 
1822 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1823 		struct nfit_mem *nfit_mem, u32 device_handle)
1824 {
1825 	struct acpi_device *adev, *adev_dimm;
1826 	struct device *dev = acpi_desc->dev;
1827 	unsigned long dsm_mask, label_mask;
1828 	const guid_t *guid;
1829 	int i;
1830 	int family = -1;
1831 	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1832 
1833 	/* nfit test assumes 1:1 relationship between commands and dsms */
1834 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1835 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1836 
1837 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1838 		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1839 				be16_to_cpu(dcr->vendor_id),
1840 				dcr->manufacturing_location,
1841 				be16_to_cpu(dcr->manufacturing_date),
1842 				be32_to_cpu(dcr->serial_number));
1843 	else
1844 		sprintf(nfit_mem->id, "%04x-%08x",
1845 				be16_to_cpu(dcr->vendor_id),
1846 				be32_to_cpu(dcr->serial_number));
1847 
1848 	adev = to_acpi_dev(acpi_desc);
1849 	if (!adev) {
1850 		/* unit test case */
1851 		populate_shutdown_status(nfit_mem);
1852 		return 0;
1853 	}
1854 
1855 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1856 	nfit_mem->adev = adev_dimm;
1857 	if (!adev_dimm) {
1858 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1859 				device_handle);
1860 		return force_enable_dimms ? 0 : -ENODEV;
1861 	}
1862 
1863 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1864 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1865 		dev_err(dev, "%s: notification registration failed\n",
1866 				dev_name(&adev_dimm->dev));
1867 		return -ENXIO;
1868 	}
1869 	/*
1870 	 * Record nfit_mem for the notification path to track back to
1871 	 * the nfit sysfs attributes for this dimm device object.
1872 	 */
1873 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1874 
1875 	/*
1876 	 * There are 4 "legacy" NVDIMM command sets
1877 	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1878 	 * an EFI working group was established to constrain this
1879 	 * proliferation. The nfit driver probes for the supported command
1880 	 * set by GUID. Note, if you're a platform developer looking to add
1881 	 * a new command set to this probe, consider using an existing set,
1882 	 * or otherwise seek approval to publish the command set at
1883 	 * http://www.uefi.org/RFIC_LIST.
1884 	 *
1885 	 * Note, that checking for function0 (bit0) tells us if any commands
1886 	 * are reachable through this GUID.
1887 	 */
1888 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1889 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1890 			if (family < 0 || i == default_dsm_family)
1891 				family = i;
1892 
1893 	/* limit the supported commands to those that are publicly documented */
1894 	nfit_mem->family = family;
1895 	if (override_dsm_mask && !disable_vendor_specific)
1896 		dsm_mask = override_dsm_mask;
1897 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1898 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1899 		if (disable_vendor_specific)
1900 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1901 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1902 		dsm_mask = 0x1c3c76;
1903 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1904 		dsm_mask = 0x1fe;
1905 		if (disable_vendor_specific)
1906 			dsm_mask &= ~(1 << 8);
1907 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1908 		dsm_mask = 0xffffffff;
1909 	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1910 		dsm_mask = 0x1f;
1911 	} else {
1912 		dev_dbg(dev, "unknown dimm command family\n");
1913 		nfit_mem->family = -1;
1914 		/* DSMs are optional, continue loading the driver... */
1915 		return 0;
1916 	}
1917 
1918 	/*
1919 	 * Function 0 is the command interrogation function, don't
1920 	 * export it to potential userspace use, and enable it to be
1921 	 * used as an error value in acpi_nfit_ctl().
1922 	 */
1923 	dsm_mask &= ~1UL;
1924 
1925 	guid = to_nfit_uuid(nfit_mem->family);
1926 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1927 		if (acpi_check_dsm(adev_dimm->handle, guid,
1928 					nfit_dsm_revid(nfit_mem->family, i),
1929 					1ULL << i))
1930 			set_bit(i, &nfit_mem->dsm_mask);
1931 
1932 	/*
1933 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1934 	 * due to their better semantics handling locked capacity.
1935 	 */
1936 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1937 		| 1 << ND_CMD_SET_CONFIG_DATA;
1938 	if (family == NVDIMM_FAMILY_INTEL
1939 			&& (dsm_mask & label_mask) == label_mask)
1940 		/* skip _LS{I,R,W} enabling */;
1941 	else {
1942 		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1943 				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1944 			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1945 			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1946 		}
1947 
1948 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1949 				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1950 			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1951 			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1952 		}
1953 
1954 		/*
1955 		 * Quirk read-only label configurations to preserve
1956 		 * access to label-less namespaces by default.
1957 		 */
1958 		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1959 				&& !force_labels) {
1960 			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1961 					dev_name(&adev_dimm->dev));
1962 			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1963 		} else
1964 			dev_dbg(dev, "%s: Force enable labels\n",
1965 					dev_name(&adev_dimm->dev));
1966 	}
1967 
1968 	populate_shutdown_status(nfit_mem);
1969 
1970 	return 0;
1971 }
1972 
1973 static void shutdown_dimm_notify(void *data)
1974 {
1975 	struct acpi_nfit_desc *acpi_desc = data;
1976 	struct nfit_mem *nfit_mem;
1977 
1978 	mutex_lock(&acpi_desc->init_mutex);
1979 	/*
1980 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1981 	 * notifications.
1982 	 */
1983 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1984 		struct acpi_device *adev_dimm = nfit_mem->adev;
1985 
1986 		if (nfit_mem->flags_attr) {
1987 			sysfs_put(nfit_mem->flags_attr);
1988 			nfit_mem->flags_attr = NULL;
1989 		}
1990 		if (adev_dimm) {
1991 			acpi_remove_notify_handler(adev_dimm->handle,
1992 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1993 			dev_set_drvdata(&adev_dimm->dev, NULL);
1994 		}
1995 	}
1996 	mutex_unlock(&acpi_desc->init_mutex);
1997 }
1998 
1999 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2000 {
2001 	switch (family) {
2002 	case NVDIMM_FAMILY_INTEL:
2003 		return intel_security_ops;
2004 	default:
2005 		return NULL;
2006 	}
2007 }
2008 
2009 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2010 {
2011 	struct nfit_mem *nfit_mem;
2012 	int dimm_count = 0, rc;
2013 	struct nvdimm *nvdimm;
2014 
2015 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2016 		struct acpi_nfit_flush_address *flush;
2017 		unsigned long flags = 0, cmd_mask;
2018 		struct nfit_memdev *nfit_memdev;
2019 		u32 device_handle;
2020 		u16 mem_flags;
2021 
2022 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2023 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2024 		if (nvdimm) {
2025 			dimm_count++;
2026 			continue;
2027 		}
2028 
2029 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
2030 			set_bit(NDD_ALIASING, &flags);
2031 
2032 		/* collate flags across all memdevs for this dimm */
2033 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2034 			struct acpi_nfit_memory_map *dimm_memdev;
2035 
2036 			dimm_memdev = __to_nfit_memdev(nfit_mem);
2037 			if (dimm_memdev->device_handle
2038 					!= nfit_memdev->memdev->device_handle)
2039 				continue;
2040 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2041 		}
2042 
2043 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2044 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2045 			set_bit(NDD_UNARMED, &flags);
2046 
2047 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2048 		if (rc)
2049 			continue;
2050 
2051 		/*
2052 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2053 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2054 		 * userspace interface.
2055 		 */
2056 		cmd_mask = 1UL << ND_CMD_CALL;
2057 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2058 			/*
2059 			 * These commands have a 1:1 correspondence
2060 			 * between DSM payload and libnvdimm ioctl
2061 			 * payload format.
2062 			 */
2063 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2064 		}
2065 
2066 		/* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2067 		if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2068 			set_bit(NDD_NOBLK, &flags);
2069 
2070 		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2071 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2072 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2073 		}
2074 		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2075 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2076 
2077 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2078 			: NULL;
2079 		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2080 				acpi_nfit_dimm_attribute_groups,
2081 				flags, cmd_mask, flush ? flush->hint_count : 0,
2082 				nfit_mem->flush_wpq, &nfit_mem->id[0],
2083 				acpi_nfit_get_security_ops(nfit_mem->family));
2084 		if (!nvdimm)
2085 			return -ENOMEM;
2086 
2087 		nfit_mem->nvdimm = nvdimm;
2088 		dimm_count++;
2089 
2090 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2091 			continue;
2092 
2093 		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2094 				nvdimm_name(nvdimm),
2095 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2096 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2097 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2098 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2099 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2100 
2101 	}
2102 
2103 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2104 	if (rc)
2105 		return rc;
2106 
2107 	/*
2108 	 * Now that dimms are successfully registered, and async registration
2109 	 * is flushed, attempt to enable event notification.
2110 	 */
2111 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2112 		struct kernfs_node *nfit_kernfs;
2113 
2114 		nvdimm = nfit_mem->nvdimm;
2115 		if (!nvdimm)
2116 			continue;
2117 
2118 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2119 		if (nfit_kernfs)
2120 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2121 					"flags");
2122 		sysfs_put(nfit_kernfs);
2123 		if (!nfit_mem->flags_attr)
2124 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2125 					nvdimm_name(nvdimm));
2126 	}
2127 
2128 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2129 			acpi_desc);
2130 }
2131 
2132 /*
2133  * These constants are private because there are no kernel consumers of
2134  * these commands.
2135  */
2136 enum nfit_aux_cmds {
2137         NFIT_CMD_TRANSLATE_SPA = 5,
2138         NFIT_CMD_ARS_INJECT_SET = 7,
2139         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2140         NFIT_CMD_ARS_INJECT_GET = 9,
2141 };
2142 
2143 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2144 {
2145 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2146 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2147 	struct acpi_device *adev;
2148 	unsigned long dsm_mask;
2149 	int i;
2150 
2151 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2152 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2153 	adev = to_acpi_dev(acpi_desc);
2154 	if (!adev)
2155 		return;
2156 
2157 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2158 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2159 			set_bit(i, &nd_desc->cmd_mask);
2160 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2161 
2162 	dsm_mask =
2163 		(1 << ND_CMD_ARS_CAP) |
2164 		(1 << ND_CMD_ARS_START) |
2165 		(1 << ND_CMD_ARS_STATUS) |
2166 		(1 << ND_CMD_CLEAR_ERROR) |
2167 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2168 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2169 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2170 		(1 << NFIT_CMD_ARS_INJECT_GET);
2171 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2172 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2173 			set_bit(i, &nd_desc->bus_dsm_mask);
2174 }
2175 
2176 static ssize_t range_index_show(struct device *dev,
2177 		struct device_attribute *attr, char *buf)
2178 {
2179 	struct nd_region *nd_region = to_nd_region(dev);
2180 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2181 
2182 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2183 }
2184 static DEVICE_ATTR_RO(range_index);
2185 
2186 static struct attribute *acpi_nfit_region_attributes[] = {
2187 	&dev_attr_range_index.attr,
2188 	NULL,
2189 };
2190 
2191 static const struct attribute_group acpi_nfit_region_attribute_group = {
2192 	.name = "nfit",
2193 	.attrs = acpi_nfit_region_attributes,
2194 };
2195 
2196 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2197 	&acpi_nfit_region_attribute_group,
2198 	NULL,
2199 };
2200 
2201 /* enough info to uniquely specify an interleave set */
2202 struct nfit_set_info {
2203 	struct nfit_set_info_map {
2204 		u64 region_offset;
2205 		u32 serial_number;
2206 		u32 pad;
2207 	} mapping[0];
2208 };
2209 
2210 struct nfit_set_info2 {
2211 	struct nfit_set_info_map2 {
2212 		u64 region_offset;
2213 		u32 serial_number;
2214 		u16 vendor_id;
2215 		u16 manufacturing_date;
2216 		u8  manufacturing_location;
2217 		u8  reserved[31];
2218 	} mapping[0];
2219 };
2220 
2221 static size_t sizeof_nfit_set_info(int num_mappings)
2222 {
2223 	return sizeof(struct nfit_set_info)
2224 		+ num_mappings * sizeof(struct nfit_set_info_map);
2225 }
2226 
2227 static size_t sizeof_nfit_set_info2(int num_mappings)
2228 {
2229 	return sizeof(struct nfit_set_info2)
2230 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2231 }
2232 
2233 static int cmp_map_compat(const void *m0, const void *m1)
2234 {
2235 	const struct nfit_set_info_map *map0 = m0;
2236 	const struct nfit_set_info_map *map1 = m1;
2237 
2238 	return memcmp(&map0->region_offset, &map1->region_offset,
2239 			sizeof(u64));
2240 }
2241 
2242 static int cmp_map(const void *m0, const void *m1)
2243 {
2244 	const struct nfit_set_info_map *map0 = m0;
2245 	const struct nfit_set_info_map *map1 = m1;
2246 
2247 	if (map0->region_offset < map1->region_offset)
2248 		return -1;
2249 	else if (map0->region_offset > map1->region_offset)
2250 		return 1;
2251 	return 0;
2252 }
2253 
2254 static int cmp_map2(const void *m0, const void *m1)
2255 {
2256 	const struct nfit_set_info_map2 *map0 = m0;
2257 	const struct nfit_set_info_map2 *map1 = m1;
2258 
2259 	if (map0->region_offset < map1->region_offset)
2260 		return -1;
2261 	else if (map0->region_offset > map1->region_offset)
2262 		return 1;
2263 	return 0;
2264 }
2265 
2266 /* Retrieve the nth entry referencing this spa */
2267 static struct acpi_nfit_memory_map *memdev_from_spa(
2268 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2269 {
2270 	struct nfit_memdev *nfit_memdev;
2271 
2272 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2273 		if (nfit_memdev->memdev->range_index == range_index)
2274 			if (n-- == 0)
2275 				return nfit_memdev->memdev;
2276 	return NULL;
2277 }
2278 
2279 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2280 		struct nd_region_desc *ndr_desc,
2281 		struct acpi_nfit_system_address *spa)
2282 {
2283 	struct device *dev = acpi_desc->dev;
2284 	struct nd_interleave_set *nd_set;
2285 	u16 nr = ndr_desc->num_mappings;
2286 	struct nfit_set_info2 *info2;
2287 	struct nfit_set_info *info;
2288 	int i;
2289 
2290 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2291 	if (!nd_set)
2292 		return -ENOMEM;
2293 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2294 
2295 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2296 	if (!info)
2297 		return -ENOMEM;
2298 
2299 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2300 	if (!info2)
2301 		return -ENOMEM;
2302 
2303 	for (i = 0; i < nr; i++) {
2304 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2305 		struct nfit_set_info_map *map = &info->mapping[i];
2306 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2307 		struct nvdimm *nvdimm = mapping->nvdimm;
2308 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2309 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2310 				spa->range_index, i);
2311 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2312 
2313 		if (!memdev || !nfit_mem->dcr) {
2314 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2315 			return -ENODEV;
2316 		}
2317 
2318 		map->region_offset = memdev->region_offset;
2319 		map->serial_number = dcr->serial_number;
2320 
2321 		map2->region_offset = memdev->region_offset;
2322 		map2->serial_number = dcr->serial_number;
2323 		map2->vendor_id = dcr->vendor_id;
2324 		map2->manufacturing_date = dcr->manufacturing_date;
2325 		map2->manufacturing_location = dcr->manufacturing_location;
2326 	}
2327 
2328 	/* v1.1 namespaces */
2329 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2330 			cmp_map, NULL);
2331 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2332 
2333 	/* v1.2 namespaces */
2334 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2335 			cmp_map2, NULL);
2336 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2337 
2338 	/* support v1.1 namespaces created with the wrong sort order */
2339 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2340 			cmp_map_compat, NULL);
2341 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2342 
2343 	/* record the result of the sort for the mapping position */
2344 	for (i = 0; i < nr; i++) {
2345 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2346 		int j;
2347 
2348 		for (j = 0; j < nr; j++) {
2349 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2350 			struct nvdimm *nvdimm = mapping->nvdimm;
2351 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2352 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2353 
2354 			if (map2->serial_number == dcr->serial_number &&
2355 			    map2->vendor_id == dcr->vendor_id &&
2356 			    map2->manufacturing_date == dcr->manufacturing_date &&
2357 			    map2->manufacturing_location
2358 				    == dcr->manufacturing_location) {
2359 				mapping->position = i;
2360 				break;
2361 			}
2362 		}
2363 	}
2364 
2365 	ndr_desc->nd_set = nd_set;
2366 	devm_kfree(dev, info);
2367 	devm_kfree(dev, info2);
2368 
2369 	return 0;
2370 }
2371 
2372 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2373 {
2374 	struct acpi_nfit_interleave *idt = mmio->idt;
2375 	u32 sub_line_offset, line_index, line_offset;
2376 	u64 line_no, table_skip_count, table_offset;
2377 
2378 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2379 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2380 	line_offset = idt->line_offset[line_index]
2381 		* mmio->line_size;
2382 	table_offset = table_skip_count * mmio->table_size;
2383 
2384 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2385 }
2386 
2387 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2388 {
2389 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2390 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2391 	const u32 STATUS_MASK = 0x80000037;
2392 
2393 	if (mmio->num_lines)
2394 		offset = to_interleave_offset(offset, mmio);
2395 
2396 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2397 }
2398 
2399 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2400 		resource_size_t dpa, unsigned int len, unsigned int write)
2401 {
2402 	u64 cmd, offset;
2403 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2404 
2405 	enum {
2406 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2407 		BCW_LEN_SHIFT = 48,
2408 		BCW_LEN_MASK = (1ULL << 8) - 1,
2409 		BCW_CMD_SHIFT = 56,
2410 	};
2411 
2412 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2413 	len = len >> L1_CACHE_SHIFT;
2414 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2415 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2416 
2417 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2418 	if (mmio->num_lines)
2419 		offset = to_interleave_offset(offset, mmio);
2420 
2421 	writeq(cmd, mmio->addr.base + offset);
2422 	nvdimm_flush(nfit_blk->nd_region, NULL);
2423 
2424 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2425 		readq(mmio->addr.base + offset);
2426 }
2427 
2428 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2429 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2430 		unsigned int lane)
2431 {
2432 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2433 	unsigned int copied = 0;
2434 	u64 base_offset;
2435 	int rc;
2436 
2437 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2438 		+ lane * mmio->size;
2439 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2440 	while (len) {
2441 		unsigned int c;
2442 		u64 offset;
2443 
2444 		if (mmio->num_lines) {
2445 			u32 line_offset;
2446 
2447 			offset = to_interleave_offset(base_offset + copied,
2448 					mmio);
2449 			div_u64_rem(offset, mmio->line_size, &line_offset);
2450 			c = min_t(size_t, len, mmio->line_size - line_offset);
2451 		} else {
2452 			offset = base_offset + nfit_blk->bdw_offset;
2453 			c = len;
2454 		}
2455 
2456 		if (rw)
2457 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2458 		else {
2459 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2460 				arch_invalidate_pmem((void __force *)
2461 					mmio->addr.aperture + offset, c);
2462 
2463 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2464 		}
2465 
2466 		copied += c;
2467 		len -= c;
2468 	}
2469 
2470 	if (rw)
2471 		nvdimm_flush(nfit_blk->nd_region, NULL);
2472 
2473 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2474 	return rc;
2475 }
2476 
2477 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2478 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2479 {
2480 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2481 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2482 	struct nd_region *nd_region = nfit_blk->nd_region;
2483 	unsigned int lane, copied = 0;
2484 	int rc = 0;
2485 
2486 	lane = nd_region_acquire_lane(nd_region);
2487 	while (len) {
2488 		u64 c = min(len, mmio->size);
2489 
2490 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2491 				iobuf + copied, c, rw, lane);
2492 		if (rc)
2493 			break;
2494 
2495 		copied += c;
2496 		len -= c;
2497 	}
2498 	nd_region_release_lane(nd_region, lane);
2499 
2500 	return rc;
2501 }
2502 
2503 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2504 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2505 {
2506 	if (idt) {
2507 		mmio->num_lines = idt->line_count;
2508 		mmio->line_size = idt->line_size;
2509 		if (interleave_ways == 0)
2510 			return -ENXIO;
2511 		mmio->table_size = mmio->num_lines * interleave_ways
2512 			* mmio->line_size;
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2519 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2520 {
2521 	struct nd_cmd_dimm_flags flags;
2522 	int rc;
2523 
2524 	memset(&flags, 0, sizeof(flags));
2525 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2526 			sizeof(flags), NULL);
2527 
2528 	if (rc >= 0 && flags.status == 0)
2529 		nfit_blk->dimm_flags = flags.flags;
2530 	else if (rc == -ENOTTY) {
2531 		/* fall back to a conservative default */
2532 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2533 		rc = 0;
2534 	} else
2535 		rc = -ENXIO;
2536 
2537 	return rc;
2538 }
2539 
2540 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2541 		struct device *dev)
2542 {
2543 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2544 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2545 	struct nfit_blk_mmio *mmio;
2546 	struct nfit_blk *nfit_blk;
2547 	struct nfit_mem *nfit_mem;
2548 	struct nvdimm *nvdimm;
2549 	int rc;
2550 
2551 	nvdimm = nd_blk_region_to_dimm(ndbr);
2552 	nfit_mem = nvdimm_provider_data(nvdimm);
2553 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2554 		dev_dbg(dev, "missing%s%s%s\n",
2555 				nfit_mem ? "" : " nfit_mem",
2556 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2557 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2558 		return -ENXIO;
2559 	}
2560 
2561 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2562 	if (!nfit_blk)
2563 		return -ENOMEM;
2564 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2565 	nfit_blk->nd_region = to_nd_region(dev);
2566 
2567 	/* map block aperture memory */
2568 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2569 	mmio = &nfit_blk->mmio[BDW];
2570 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2571                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2572 	if (!mmio->addr.base) {
2573 		dev_dbg(dev, "%s failed to map bdw\n",
2574 				nvdimm_name(nvdimm));
2575 		return -ENOMEM;
2576 	}
2577 	mmio->size = nfit_mem->bdw->size;
2578 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2579 	mmio->idt = nfit_mem->idt_bdw;
2580 	mmio->spa = nfit_mem->spa_bdw;
2581 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2582 			nfit_mem->memdev_bdw->interleave_ways);
2583 	if (rc) {
2584 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2585 				nvdimm_name(nvdimm));
2586 		return rc;
2587 	}
2588 
2589 	/* map block control memory */
2590 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2591 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2592 	mmio = &nfit_blk->mmio[DCR];
2593 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2594 			nfit_mem->spa_dcr->length);
2595 	if (!mmio->addr.base) {
2596 		dev_dbg(dev, "%s failed to map dcr\n",
2597 				nvdimm_name(nvdimm));
2598 		return -ENOMEM;
2599 	}
2600 	mmio->size = nfit_mem->dcr->window_size;
2601 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2602 	mmio->idt = nfit_mem->idt_dcr;
2603 	mmio->spa = nfit_mem->spa_dcr;
2604 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2605 			nfit_mem->memdev_dcr->interleave_ways);
2606 	if (rc) {
2607 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2608 				nvdimm_name(nvdimm));
2609 		return rc;
2610 	}
2611 
2612 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2613 	if (rc < 0) {
2614 		dev_dbg(dev, "%s failed get DIMM flags\n",
2615 				nvdimm_name(nvdimm));
2616 		return rc;
2617 	}
2618 
2619 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2620 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2621 
2622 	if (mmio->line_size == 0)
2623 		return 0;
2624 
2625 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2626 			+ 8 > mmio->line_size) {
2627 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2628 		return -ENXIO;
2629 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2630 			+ 8 > mmio->line_size) {
2631 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2632 		return -ENXIO;
2633 	}
2634 
2635 	return 0;
2636 }
2637 
2638 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2639 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2640 {
2641 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2642 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2643 	int cmd_rc, rc;
2644 
2645 	cmd->address = spa->address;
2646 	cmd->length = spa->length;
2647 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2648 			sizeof(*cmd), &cmd_rc);
2649 	if (rc < 0)
2650 		return rc;
2651 	return cmd_rc;
2652 }
2653 
2654 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2655 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2656 {
2657 	int rc;
2658 	int cmd_rc;
2659 	struct nd_cmd_ars_start ars_start;
2660 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2661 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2662 
2663 	memset(&ars_start, 0, sizeof(ars_start));
2664 	ars_start.address = spa->address;
2665 	ars_start.length = spa->length;
2666 	if (req_type == ARS_REQ_SHORT)
2667 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2668 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2669 		ars_start.type = ND_ARS_PERSISTENT;
2670 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2671 		ars_start.type = ND_ARS_VOLATILE;
2672 	else
2673 		return -ENOTTY;
2674 
2675 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2676 			sizeof(ars_start), &cmd_rc);
2677 
2678 	if (rc < 0)
2679 		return rc;
2680 	if (cmd_rc < 0)
2681 		return cmd_rc;
2682 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2683 	return 0;
2684 }
2685 
2686 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2687 {
2688 	int rc, cmd_rc;
2689 	struct nd_cmd_ars_start ars_start;
2690 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2691 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2692 
2693 	ars_start = (struct nd_cmd_ars_start) {
2694 		.address = ars_status->restart_address,
2695 		.length = ars_status->restart_length,
2696 		.type = ars_status->type,
2697 	};
2698 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2699 			sizeof(ars_start), &cmd_rc);
2700 	if (rc < 0)
2701 		return rc;
2702 	return cmd_rc;
2703 }
2704 
2705 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2706 {
2707 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2708 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2709 	int rc, cmd_rc;
2710 
2711 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2712 			acpi_desc->max_ars, &cmd_rc);
2713 	if (rc < 0)
2714 		return rc;
2715 	return cmd_rc;
2716 }
2717 
2718 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2719 		struct nfit_spa *nfit_spa)
2720 {
2721 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2722 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2723 	struct nd_region *nd_region = nfit_spa->nd_region;
2724 	struct device *dev;
2725 
2726 	lockdep_assert_held(&acpi_desc->init_mutex);
2727 	/*
2728 	 * Only advance the ARS state for ARS runs initiated by the
2729 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2730 	 * completion tracking.
2731 	 */
2732 	if (acpi_desc->scrub_spa != nfit_spa)
2733 		return;
2734 
2735 	if ((ars_status->address >= spa->address && ars_status->address
2736 				< spa->address + spa->length)
2737 			|| (ars_status->address < spa->address)) {
2738 		/*
2739 		 * Assume that if a scrub starts at an offset from the
2740 		 * start of nfit_spa that we are in the continuation
2741 		 * case.
2742 		 *
2743 		 * Otherwise, if the scrub covers the spa range, mark
2744 		 * any pending request complete.
2745 		 */
2746 		if (ars_status->address + ars_status->length
2747 				>= spa->address + spa->length)
2748 				/* complete */;
2749 		else
2750 			return;
2751 	} else
2752 		return;
2753 
2754 	acpi_desc->scrub_spa = NULL;
2755 	if (nd_region) {
2756 		dev = nd_region_dev(nd_region);
2757 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2758 	} else
2759 		dev = acpi_desc->dev;
2760 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2761 }
2762 
2763 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2764 {
2765 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2766 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2767 	int rc;
2768 	u32 i;
2769 
2770 	/*
2771 	 * First record starts at 44 byte offset from the start of the
2772 	 * payload.
2773 	 */
2774 	if (ars_status->out_length < 44)
2775 		return 0;
2776 
2777 	/*
2778 	 * Ignore potentially stale results that are only refreshed
2779 	 * after a start-ARS event.
2780 	 */
2781 	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2782 		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2783 				ars_status->num_records);
2784 		return 0;
2785 	}
2786 
2787 	for (i = 0; i < ars_status->num_records; i++) {
2788 		/* only process full records */
2789 		if (ars_status->out_length
2790 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2791 			break;
2792 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2793 				ars_status->records[i].err_address,
2794 				ars_status->records[i].length);
2795 		if (rc)
2796 			return rc;
2797 	}
2798 	if (i < ars_status->num_records)
2799 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2800 
2801 	return 0;
2802 }
2803 
2804 static void acpi_nfit_remove_resource(void *data)
2805 {
2806 	struct resource *res = data;
2807 
2808 	remove_resource(res);
2809 }
2810 
2811 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2812 		struct nd_region_desc *ndr_desc)
2813 {
2814 	struct resource *res, *nd_res = ndr_desc->res;
2815 	int is_pmem, ret;
2816 
2817 	/* No operation if the region is already registered as PMEM */
2818 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2819 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2820 	if (is_pmem == REGION_INTERSECTS)
2821 		return 0;
2822 
2823 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2824 	if (!res)
2825 		return -ENOMEM;
2826 
2827 	res->name = "Persistent Memory";
2828 	res->start = nd_res->start;
2829 	res->end = nd_res->end;
2830 	res->flags = IORESOURCE_MEM;
2831 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2832 
2833 	ret = insert_resource(&iomem_resource, res);
2834 	if (ret)
2835 		return ret;
2836 
2837 	ret = devm_add_action_or_reset(acpi_desc->dev,
2838 					acpi_nfit_remove_resource,
2839 					res);
2840 	if (ret)
2841 		return ret;
2842 
2843 	return 0;
2844 }
2845 
2846 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2847 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2848 		struct acpi_nfit_memory_map *memdev,
2849 		struct nfit_spa *nfit_spa)
2850 {
2851 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2852 			memdev->device_handle);
2853 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2854 	struct nd_blk_region_desc *ndbr_desc;
2855 	struct nfit_mem *nfit_mem;
2856 	int rc;
2857 
2858 	if (!nvdimm) {
2859 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2860 				spa->range_index, memdev->device_handle);
2861 		return -ENODEV;
2862 	}
2863 
2864 	mapping->nvdimm = nvdimm;
2865 	switch (nfit_spa_type(spa)) {
2866 	case NFIT_SPA_PM:
2867 	case NFIT_SPA_VOLATILE:
2868 		mapping->start = memdev->address;
2869 		mapping->size = memdev->region_size;
2870 		break;
2871 	case NFIT_SPA_DCR:
2872 		nfit_mem = nvdimm_provider_data(nvdimm);
2873 		if (!nfit_mem || !nfit_mem->bdw) {
2874 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2875 					spa->range_index, nvdimm_name(nvdimm));
2876 			break;
2877 		}
2878 
2879 		mapping->size = nfit_mem->bdw->capacity;
2880 		mapping->start = nfit_mem->bdw->start_address;
2881 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2882 		ndr_desc->mapping = mapping;
2883 		ndr_desc->num_mappings = 1;
2884 		ndbr_desc = to_blk_region_desc(ndr_desc);
2885 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2886 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2887 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2888 		if (rc)
2889 			return rc;
2890 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2891 				ndr_desc);
2892 		if (!nfit_spa->nd_region)
2893 			return -ENOMEM;
2894 		break;
2895 	}
2896 
2897 	return 0;
2898 }
2899 
2900 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2901 {
2902 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2903 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2904 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2905 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2906 }
2907 
2908 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2909 {
2910 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2911 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2912 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2913 }
2914 
2915 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2916 		struct nfit_spa *nfit_spa)
2917 {
2918 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2919 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2920 	struct nd_blk_region_desc ndbr_desc;
2921 	struct nd_region_desc *ndr_desc;
2922 	struct nfit_memdev *nfit_memdev;
2923 	struct nvdimm_bus *nvdimm_bus;
2924 	struct resource res;
2925 	int count = 0, rc;
2926 
2927 	if (nfit_spa->nd_region)
2928 		return 0;
2929 
2930 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2931 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2932 		return 0;
2933 	}
2934 
2935 	memset(&res, 0, sizeof(res));
2936 	memset(&mappings, 0, sizeof(mappings));
2937 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2938 	res.start = spa->address;
2939 	res.end = res.start + spa->length - 1;
2940 	ndr_desc = &ndbr_desc.ndr_desc;
2941 	ndr_desc->res = &res;
2942 	ndr_desc->provider_data = nfit_spa;
2943 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2944 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2945 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2946 						spa->proximity_domain);
2947 		ndr_desc->target_node = acpi_map_pxm_to_node(
2948 				spa->proximity_domain);
2949 	} else {
2950 		ndr_desc->numa_node = NUMA_NO_NODE;
2951 		ndr_desc->target_node = NUMA_NO_NODE;
2952 	}
2953 
2954 	/*
2955 	 * Persistence domain bits are hierarchical, if
2956 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2957 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2958 	 */
2959 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2960 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2961 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2962 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2963 
2964 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2965 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2966 		struct nd_mapping_desc *mapping;
2967 
2968 		if (memdev->range_index != spa->range_index)
2969 			continue;
2970 		if (count >= ND_MAX_MAPPINGS) {
2971 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2972 					spa->range_index, ND_MAX_MAPPINGS);
2973 			return -ENXIO;
2974 		}
2975 		mapping = &mappings[count++];
2976 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2977 				memdev, nfit_spa);
2978 		if (rc)
2979 			goto out;
2980 	}
2981 
2982 	ndr_desc->mapping = mappings;
2983 	ndr_desc->num_mappings = count;
2984 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2985 	if (rc)
2986 		goto out;
2987 
2988 	nvdimm_bus = acpi_desc->nvdimm_bus;
2989 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2990 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2991 		if (rc) {
2992 			dev_warn(acpi_desc->dev,
2993 				"failed to insert pmem resource to iomem: %d\n",
2994 				rc);
2995 			goto out;
2996 		}
2997 
2998 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2999 				ndr_desc);
3000 		if (!nfit_spa->nd_region)
3001 			rc = -ENOMEM;
3002 	} else if (nfit_spa_is_volatile(spa)) {
3003 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3004 				ndr_desc);
3005 		if (!nfit_spa->nd_region)
3006 			rc = -ENOMEM;
3007 	} else if (nfit_spa_is_virtual(spa)) {
3008 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3009 				ndr_desc);
3010 		if (!nfit_spa->nd_region)
3011 			rc = -ENOMEM;
3012 	}
3013 
3014  out:
3015 	if (rc)
3016 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3017 				nfit_spa->spa->range_index);
3018 	return rc;
3019 }
3020 
3021 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3022 {
3023 	struct device *dev = acpi_desc->dev;
3024 	struct nd_cmd_ars_status *ars_status;
3025 
3026 	if (acpi_desc->ars_status) {
3027 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3028 		return 0;
3029 	}
3030 
3031 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3032 	if (!ars_status)
3033 		return -ENOMEM;
3034 	acpi_desc->ars_status = ars_status;
3035 	return 0;
3036 }
3037 
3038 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3039 {
3040 	int rc;
3041 
3042 	if (ars_status_alloc(acpi_desc))
3043 		return -ENOMEM;
3044 
3045 	rc = ars_get_status(acpi_desc);
3046 
3047 	if (rc < 0 && rc != -ENOSPC)
3048 		return rc;
3049 
3050 	if (ars_status_process_records(acpi_desc))
3051 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3052 
3053 	return rc;
3054 }
3055 
3056 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3057 		struct nfit_spa *nfit_spa)
3058 {
3059 	int rc;
3060 
3061 	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3062 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
3063 
3064 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3065 	if (!no_init_ars)
3066 		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3067 
3068 	switch (acpi_nfit_query_poison(acpi_desc)) {
3069 	case 0:
3070 	case -ENOSPC:
3071 	case -EAGAIN:
3072 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3073 		/* shouldn't happen, try again later */
3074 		if (rc == -EBUSY)
3075 			break;
3076 		if (rc) {
3077 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
3078 			break;
3079 		}
3080 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3081 		rc = acpi_nfit_query_poison(acpi_desc);
3082 		if (rc)
3083 			break;
3084 		acpi_desc->scrub_spa = nfit_spa;
3085 		ars_complete(acpi_desc, nfit_spa);
3086 		/*
3087 		 * If ars_complete() says we didn't complete the
3088 		 * short scrub, we'll try again with a long
3089 		 * request.
3090 		 */
3091 		acpi_desc->scrub_spa = NULL;
3092 		break;
3093 	case -EBUSY:
3094 	case -ENOMEM:
3095 		/*
3096 		 * BIOS was using ARS, wait for it to complete (or
3097 		 * resources to become available) and then perform our
3098 		 * own scrubs.
3099 		 */
3100 		break;
3101 	default:
3102 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3103 		break;
3104 	}
3105 
3106 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
3107 }
3108 
3109 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3110 {
3111 	struct nfit_spa *nfit_spa;
3112 
3113 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3114 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3115 			continue;
3116 		ars_complete(acpi_desc, nfit_spa);
3117 	}
3118 }
3119 
3120 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3121 		int query_rc)
3122 {
3123 	unsigned int tmo = acpi_desc->scrub_tmo;
3124 	struct device *dev = acpi_desc->dev;
3125 	struct nfit_spa *nfit_spa;
3126 
3127 	lockdep_assert_held(&acpi_desc->init_mutex);
3128 
3129 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3130 		return 0;
3131 
3132 	if (query_rc == -EBUSY) {
3133 		dev_dbg(dev, "ARS: ARS busy\n");
3134 		return min(30U * 60U, tmo * 2);
3135 	}
3136 	if (query_rc == -ENOSPC) {
3137 		dev_dbg(dev, "ARS: ARS continue\n");
3138 		ars_continue(acpi_desc);
3139 		return 1;
3140 	}
3141 	if (query_rc && query_rc != -EAGAIN) {
3142 		unsigned long long addr, end;
3143 
3144 		addr = acpi_desc->ars_status->address;
3145 		end = addr + acpi_desc->ars_status->length;
3146 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3147 				query_rc);
3148 	}
3149 
3150 	ars_complete_all(acpi_desc);
3151 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3152 		enum nfit_ars_state req_type;
3153 		int rc;
3154 
3155 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3156 			continue;
3157 
3158 		/* prefer short ARS requests first */
3159 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3160 			req_type = ARS_REQ_SHORT;
3161 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3162 			req_type = ARS_REQ_LONG;
3163 		else
3164 			continue;
3165 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3166 
3167 		dev = nd_region_dev(nfit_spa->nd_region);
3168 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3169 				nfit_spa->spa->range_index,
3170 				req_type == ARS_REQ_SHORT ? "short" : "long",
3171 				rc);
3172 		/*
3173 		 * Hmm, we raced someone else starting ARS? Try again in
3174 		 * a bit.
3175 		 */
3176 		if (rc == -EBUSY)
3177 			return 1;
3178 		if (rc == 0) {
3179 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3180 					"scrub start while range %d active\n",
3181 					acpi_desc->scrub_spa->spa->range_index);
3182 			clear_bit(req_type, &nfit_spa->ars_state);
3183 			acpi_desc->scrub_spa = nfit_spa;
3184 			/*
3185 			 * Consider this spa last for future scrub
3186 			 * requests
3187 			 */
3188 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3189 			return 1;
3190 		}
3191 
3192 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3193 				nfit_spa->spa->range_index, rc);
3194 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3195 	}
3196 	return 0;
3197 }
3198 
3199 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3200 {
3201 	lockdep_assert_held(&acpi_desc->init_mutex);
3202 
3203 	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3204 	/* note this should only be set from within the workqueue */
3205 	if (tmo)
3206 		acpi_desc->scrub_tmo = tmo;
3207 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3208 }
3209 
3210 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3211 {
3212 	__sched_ars(acpi_desc, 0);
3213 }
3214 
3215 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3216 {
3217 	lockdep_assert_held(&acpi_desc->init_mutex);
3218 
3219 	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3220 	acpi_desc->scrub_count++;
3221 	if (acpi_desc->scrub_count_state)
3222 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3223 }
3224 
3225 static void acpi_nfit_scrub(struct work_struct *work)
3226 {
3227 	struct acpi_nfit_desc *acpi_desc;
3228 	unsigned int tmo;
3229 	int query_rc;
3230 
3231 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3232 	mutex_lock(&acpi_desc->init_mutex);
3233 	query_rc = acpi_nfit_query_poison(acpi_desc);
3234 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3235 	if (tmo)
3236 		__sched_ars(acpi_desc, tmo);
3237 	else
3238 		notify_ars_done(acpi_desc);
3239 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3240 	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3241 	mutex_unlock(&acpi_desc->init_mutex);
3242 }
3243 
3244 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3245 		struct nfit_spa *nfit_spa)
3246 {
3247 	int type = nfit_spa_type(nfit_spa->spa);
3248 	struct nd_cmd_ars_cap ars_cap;
3249 	int rc;
3250 
3251 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3252 	memset(&ars_cap, 0, sizeof(ars_cap));
3253 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3254 	if (rc < 0)
3255 		return;
3256 	/* check that the supported scrub types match the spa type */
3257 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3258 				& ND_ARS_VOLATILE) == 0)
3259 		return;
3260 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3261 				& ND_ARS_PERSISTENT) == 0)
3262 		return;
3263 
3264 	nfit_spa->max_ars = ars_cap.max_ars_out;
3265 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3266 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3267 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3268 }
3269 
3270 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3271 {
3272 	struct nfit_spa *nfit_spa;
3273 	int rc;
3274 
3275 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3276 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3277 		switch (nfit_spa_type(nfit_spa->spa)) {
3278 		case NFIT_SPA_VOLATILE:
3279 		case NFIT_SPA_PM:
3280 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3281 			break;
3282 		}
3283 	}
3284 
3285 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3286 		switch (nfit_spa_type(nfit_spa->spa)) {
3287 		case NFIT_SPA_VOLATILE:
3288 		case NFIT_SPA_PM:
3289 			/* register regions and kick off initial ARS run */
3290 			rc = ars_register(acpi_desc, nfit_spa);
3291 			if (rc)
3292 				return rc;
3293 			break;
3294 		case NFIT_SPA_BDW:
3295 			/* nothing to register */
3296 			break;
3297 		case NFIT_SPA_DCR:
3298 		case NFIT_SPA_VDISK:
3299 		case NFIT_SPA_VCD:
3300 		case NFIT_SPA_PDISK:
3301 		case NFIT_SPA_PCD:
3302 			/* register known regions that don't support ARS */
3303 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3304 			if (rc)
3305 				return rc;
3306 			break;
3307 		default:
3308 			/* don't register unknown regions */
3309 			break;
3310 		}
3311 
3312 	sched_ars(acpi_desc);
3313 	return 0;
3314 }
3315 
3316 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3317 		struct nfit_table_prev *prev)
3318 {
3319 	struct device *dev = acpi_desc->dev;
3320 
3321 	if (!list_empty(&prev->spas) ||
3322 			!list_empty(&prev->memdevs) ||
3323 			!list_empty(&prev->dcrs) ||
3324 			!list_empty(&prev->bdws) ||
3325 			!list_empty(&prev->idts) ||
3326 			!list_empty(&prev->flushes)) {
3327 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3328 		return -ENXIO;
3329 	}
3330 	return 0;
3331 }
3332 
3333 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3334 {
3335 	struct device *dev = acpi_desc->dev;
3336 	struct kernfs_node *nfit;
3337 	struct device *bus_dev;
3338 
3339 	if (!ars_supported(acpi_desc->nvdimm_bus))
3340 		return 0;
3341 
3342 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3343 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3344 	if (!nfit) {
3345 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3346 		return -ENODEV;
3347 	}
3348 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3349 	sysfs_put(nfit);
3350 	if (!acpi_desc->scrub_count_state) {
3351 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3352 		return -ENODEV;
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 static void acpi_nfit_unregister(void *data)
3359 {
3360 	struct acpi_nfit_desc *acpi_desc = data;
3361 
3362 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3363 }
3364 
3365 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3366 {
3367 	struct device *dev = acpi_desc->dev;
3368 	struct nfit_table_prev prev;
3369 	const void *end;
3370 	int rc;
3371 
3372 	if (!acpi_desc->nvdimm_bus) {
3373 		acpi_nfit_init_dsms(acpi_desc);
3374 
3375 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3376 				&acpi_desc->nd_desc);
3377 		if (!acpi_desc->nvdimm_bus)
3378 			return -ENOMEM;
3379 
3380 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3381 				acpi_desc);
3382 		if (rc)
3383 			return rc;
3384 
3385 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3386 		if (rc)
3387 			return rc;
3388 
3389 		/* register this acpi_desc for mce notifications */
3390 		mutex_lock(&acpi_desc_lock);
3391 		list_add_tail(&acpi_desc->list, &acpi_descs);
3392 		mutex_unlock(&acpi_desc_lock);
3393 	}
3394 
3395 	mutex_lock(&acpi_desc->init_mutex);
3396 
3397 	INIT_LIST_HEAD(&prev.spas);
3398 	INIT_LIST_HEAD(&prev.memdevs);
3399 	INIT_LIST_HEAD(&prev.dcrs);
3400 	INIT_LIST_HEAD(&prev.bdws);
3401 	INIT_LIST_HEAD(&prev.idts);
3402 	INIT_LIST_HEAD(&prev.flushes);
3403 
3404 	list_cut_position(&prev.spas, &acpi_desc->spas,
3405 				acpi_desc->spas.prev);
3406 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3407 				acpi_desc->memdevs.prev);
3408 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3409 				acpi_desc->dcrs.prev);
3410 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3411 				acpi_desc->bdws.prev);
3412 	list_cut_position(&prev.idts, &acpi_desc->idts,
3413 				acpi_desc->idts.prev);
3414 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3415 				acpi_desc->flushes.prev);
3416 
3417 	end = data + sz;
3418 	while (!IS_ERR_OR_NULL(data))
3419 		data = add_table(acpi_desc, &prev, data, end);
3420 
3421 	if (IS_ERR(data)) {
3422 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3423 		rc = PTR_ERR(data);
3424 		goto out_unlock;
3425 	}
3426 
3427 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3428 	if (rc)
3429 		goto out_unlock;
3430 
3431 	rc = nfit_mem_init(acpi_desc);
3432 	if (rc)
3433 		goto out_unlock;
3434 
3435 	rc = acpi_nfit_register_dimms(acpi_desc);
3436 	if (rc)
3437 		goto out_unlock;
3438 
3439 	rc = acpi_nfit_register_regions(acpi_desc);
3440 
3441  out_unlock:
3442 	mutex_unlock(&acpi_desc->init_mutex);
3443 	return rc;
3444 }
3445 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3446 
3447 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3448 {
3449 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3450 	struct device *dev = acpi_desc->dev;
3451 
3452 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3453 	nfit_device_lock(dev);
3454 	nfit_device_unlock(dev);
3455 
3456 	/* Bounce the init_mutex to complete initial registration */
3457 	mutex_lock(&acpi_desc->init_mutex);
3458 	mutex_unlock(&acpi_desc->init_mutex);
3459 
3460 	return 0;
3461 }
3462 
3463 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3464 		struct nvdimm *nvdimm, unsigned int cmd)
3465 {
3466 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3467 
3468 	if (nvdimm)
3469 		return 0;
3470 	if (cmd != ND_CMD_ARS_START)
3471 		return 0;
3472 
3473 	/*
3474 	 * The kernel and userspace may race to initiate a scrub, but
3475 	 * the scrub thread is prepared to lose that initial race.  It
3476 	 * just needs guarantees that any ARS it initiates are not
3477 	 * interrupted by any intervening start requests from userspace.
3478 	 */
3479 	if (work_busy(&acpi_desc->dwork.work))
3480 		return -EBUSY;
3481 
3482 	return 0;
3483 }
3484 
3485 /* prevent security commands from being issued via ioctl */
3486 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3487 		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3488 {
3489 	struct nd_cmd_pkg *call_pkg = buf;
3490 	unsigned int func;
3491 
3492 	if (nvdimm && cmd == ND_CMD_CALL &&
3493 			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3494 		func = call_pkg->nd_command;
3495 		if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK)
3496 			return -EOPNOTSUPP;
3497 	}
3498 
3499 	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3500 }
3501 
3502 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3503 		enum nfit_ars_state req_type)
3504 {
3505 	struct device *dev = acpi_desc->dev;
3506 	int scheduled = 0, busy = 0;
3507 	struct nfit_spa *nfit_spa;
3508 
3509 	mutex_lock(&acpi_desc->init_mutex);
3510 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3511 		mutex_unlock(&acpi_desc->init_mutex);
3512 		return 0;
3513 	}
3514 
3515 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3516 		int type = nfit_spa_type(nfit_spa->spa);
3517 
3518 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3519 			continue;
3520 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3521 			continue;
3522 
3523 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3524 			busy++;
3525 		else
3526 			scheduled++;
3527 	}
3528 	if (scheduled) {
3529 		sched_ars(acpi_desc);
3530 		dev_dbg(dev, "ars_scan triggered\n");
3531 	}
3532 	mutex_unlock(&acpi_desc->init_mutex);
3533 
3534 	if (scheduled)
3535 		return 0;
3536 	if (busy)
3537 		return -EBUSY;
3538 	return -ENOTTY;
3539 }
3540 
3541 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3542 {
3543 	struct nvdimm_bus_descriptor *nd_desc;
3544 
3545 	dev_set_drvdata(dev, acpi_desc);
3546 	acpi_desc->dev = dev;
3547 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3548 	nd_desc = &acpi_desc->nd_desc;
3549 	nd_desc->provider_name = "ACPI.NFIT";
3550 	nd_desc->module = THIS_MODULE;
3551 	nd_desc->ndctl = acpi_nfit_ctl;
3552 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3553 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3554 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3555 
3556 	INIT_LIST_HEAD(&acpi_desc->spas);
3557 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3558 	INIT_LIST_HEAD(&acpi_desc->bdws);
3559 	INIT_LIST_HEAD(&acpi_desc->idts);
3560 	INIT_LIST_HEAD(&acpi_desc->flushes);
3561 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3562 	INIT_LIST_HEAD(&acpi_desc->dimms);
3563 	INIT_LIST_HEAD(&acpi_desc->list);
3564 	mutex_init(&acpi_desc->init_mutex);
3565 	acpi_desc->scrub_tmo = 1;
3566 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3567 }
3568 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3569 
3570 static void acpi_nfit_put_table(void *table)
3571 {
3572 	acpi_put_table(table);
3573 }
3574 
3575 void acpi_nfit_shutdown(void *data)
3576 {
3577 	struct acpi_nfit_desc *acpi_desc = data;
3578 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3579 
3580 	/*
3581 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3582 	 * race teardown
3583 	 */
3584 	mutex_lock(&acpi_desc_lock);
3585 	list_del(&acpi_desc->list);
3586 	mutex_unlock(&acpi_desc_lock);
3587 
3588 	mutex_lock(&acpi_desc->init_mutex);
3589 	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3590 	cancel_delayed_work_sync(&acpi_desc->dwork);
3591 	mutex_unlock(&acpi_desc->init_mutex);
3592 
3593 	/*
3594 	 * Bounce the nvdimm bus lock to make sure any in-flight
3595 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3596 	 * either submit or see ->cancel set.
3597 	 */
3598 	nfit_device_lock(bus_dev);
3599 	nfit_device_unlock(bus_dev);
3600 
3601 	flush_workqueue(nfit_wq);
3602 }
3603 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3604 
3605 static int acpi_nfit_add(struct acpi_device *adev)
3606 {
3607 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3608 	struct acpi_nfit_desc *acpi_desc;
3609 	struct device *dev = &adev->dev;
3610 	struct acpi_table_header *tbl;
3611 	acpi_status status = AE_OK;
3612 	acpi_size sz;
3613 	int rc = 0;
3614 
3615 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3616 	if (ACPI_FAILURE(status)) {
3617 		/* The NVDIMM root device allows OS to trigger enumeration of
3618 		 * NVDIMMs through NFIT at boot time and re-enumeration at
3619 		 * root level via the _FIT method during runtime.
3620 		 * This is ok to return 0 here, we could have an nvdimm
3621 		 * hotplugged later and evaluate _FIT method which returns
3622 		 * data in the format of a series of NFIT Structures.
3623 		 */
3624 		dev_dbg(dev, "failed to find NFIT at startup\n");
3625 		return 0;
3626 	}
3627 
3628 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3629 	if (rc)
3630 		return rc;
3631 	sz = tbl->length;
3632 
3633 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3634 	if (!acpi_desc)
3635 		return -ENOMEM;
3636 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3637 
3638 	/* Save the acpi header for exporting the revision via sysfs */
3639 	acpi_desc->acpi_header = *tbl;
3640 
3641 	/* Evaluate _FIT and override with that if present */
3642 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3643 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3644 		union acpi_object *obj = buf.pointer;
3645 
3646 		if (obj->type == ACPI_TYPE_BUFFER)
3647 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3648 					obj->buffer.length);
3649 		else
3650 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3651 				(int) obj->type);
3652 		kfree(buf.pointer);
3653 	} else
3654 		/* skip over the lead-in header table */
3655 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3656 				+ sizeof(struct acpi_table_nfit),
3657 				sz - sizeof(struct acpi_table_nfit));
3658 
3659 	if (rc)
3660 		return rc;
3661 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3662 }
3663 
3664 static int acpi_nfit_remove(struct acpi_device *adev)
3665 {
3666 	/* see acpi_nfit_unregister */
3667 	return 0;
3668 }
3669 
3670 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3671 {
3672 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3673 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3674 	union acpi_object *obj;
3675 	acpi_status status;
3676 	int ret;
3677 
3678 	if (!dev->driver) {
3679 		/* dev->driver may be null if we're being removed */
3680 		dev_dbg(dev, "no driver found for dev\n");
3681 		return;
3682 	}
3683 
3684 	if (!acpi_desc) {
3685 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3686 		if (!acpi_desc)
3687 			return;
3688 		acpi_nfit_desc_init(acpi_desc, dev);
3689 	} else {
3690 		/*
3691 		 * Finish previous registration before considering new
3692 		 * regions.
3693 		 */
3694 		flush_workqueue(nfit_wq);
3695 	}
3696 
3697 	/* Evaluate _FIT */
3698 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3699 	if (ACPI_FAILURE(status)) {
3700 		dev_err(dev, "failed to evaluate _FIT\n");
3701 		return;
3702 	}
3703 
3704 	obj = buf.pointer;
3705 	if (obj->type == ACPI_TYPE_BUFFER) {
3706 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3707 				obj->buffer.length);
3708 		if (ret)
3709 			dev_err(dev, "failed to merge updated NFIT\n");
3710 	} else
3711 		dev_err(dev, "Invalid _FIT\n");
3712 	kfree(buf.pointer);
3713 }
3714 
3715 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3716 {
3717 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3718 
3719 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3720 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3721 	else
3722 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3723 }
3724 
3725 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3726 {
3727 	dev_dbg(dev, "event: 0x%x\n", event);
3728 
3729 	switch (event) {
3730 	case NFIT_NOTIFY_UPDATE:
3731 		return acpi_nfit_update_notify(dev, handle);
3732 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3733 		return acpi_nfit_uc_error_notify(dev, handle);
3734 	default:
3735 		return;
3736 	}
3737 }
3738 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3739 
3740 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3741 {
3742 	nfit_device_lock(&adev->dev);
3743 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3744 	nfit_device_unlock(&adev->dev);
3745 }
3746 
3747 static const struct acpi_device_id acpi_nfit_ids[] = {
3748 	{ "ACPI0012", 0 },
3749 	{ "", 0 },
3750 };
3751 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3752 
3753 static struct acpi_driver acpi_nfit_driver = {
3754 	.name = KBUILD_MODNAME,
3755 	.ids = acpi_nfit_ids,
3756 	.ops = {
3757 		.add = acpi_nfit_add,
3758 		.remove = acpi_nfit_remove,
3759 		.notify = acpi_nfit_notify,
3760 	},
3761 };
3762 
3763 static __init int nfit_init(void)
3764 {
3765 	int ret;
3766 
3767 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3768 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3769 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3770 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3771 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3772 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3773 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3774 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3775 
3776 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3777 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3778 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3779 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3780 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3781 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3782 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3783 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3784 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3785 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3786 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3787 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3788 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3789 	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3790 
3791 	nfit_wq = create_singlethread_workqueue("nfit");
3792 	if (!nfit_wq)
3793 		return -ENOMEM;
3794 
3795 	nfit_mce_register();
3796 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3797 	if (ret) {
3798 		nfit_mce_unregister();
3799 		destroy_workqueue(nfit_wq);
3800 	}
3801 
3802 	return ret;
3803 
3804 }
3805 
3806 static __exit void nfit_exit(void)
3807 {
3808 	nfit_mce_unregister();
3809 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3810 	destroy_workqueue(nfit_wq);
3811 	WARN_ON(!list_empty(&acpi_descs));
3812 }
3813 
3814 module_init(nfit_init);
3815 module_exit(nfit_exit);
3816 MODULE_LICENSE("GPL v2");
3817 MODULE_AUTHOR("Intel Corporation");
3818