1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ec.c - ACPI Embedded Controller Driver (v3) 4 * 5 * Copyright (C) 2001-2015 Intel Corporation 6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com> 7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com> 8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 * 2004 Luming Yu <luming.yu@intel.com> 10 * 2001, 2002 Andy Grover <andrew.grover@intel.com> 11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de> 13 */ 14 15 /* Uncomment next line to get verbose printout */ 16 /* #define DEBUG */ 17 #define pr_fmt(fmt) "ACPI: EC: " fmt 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/init.h> 22 #include <linux/types.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/list.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/acpi.h> 30 #include <linux/dmi.h> 31 #include <asm/io.h> 32 33 #include "internal.h" 34 35 #define ACPI_EC_CLASS "embedded_controller" 36 #define ACPI_EC_DEVICE_NAME "Embedded Controller" 37 38 /* EC status register */ 39 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ 40 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ 41 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */ 42 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ 43 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ 44 45 /* 46 * The SCI_EVT clearing timing is not defined by the ACPI specification. 47 * This leads to lots of practical timing issues for the host EC driver. 48 * The following variations are defined (from the target EC firmware's 49 * perspective): 50 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the 51 * target can clear SCI_EVT at any time so long as the host can see 52 * the indication by reading the status register (EC_SC). So the 53 * host should re-check SCI_EVT after the first time the SCI_EVT 54 * indication is seen, which is the same time the query request 55 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set 56 * at any later time could indicate another event. Normally such 57 * kind of EC firmware has implemented an event queue and will 58 * return 0x00 to indicate "no outstanding event". 59 * QUERY: After seeing the query request (QR_EC) written to the command 60 * register (EC_CMD) by the host and having prepared the responding 61 * event value in the data register (EC_DATA), the target can safely 62 * clear SCI_EVT because the target can confirm that the current 63 * event is being handled by the host. The host then should check 64 * SCI_EVT right after reading the event response from the data 65 * register (EC_DATA). 66 * EVENT: After seeing the event response read from the data register 67 * (EC_DATA) by the host, the target can clear SCI_EVT. As the 68 * target requires time to notice the change in the data register 69 * (EC_DATA), the host may be required to wait additional guarding 70 * time before checking the SCI_EVT again. Such guarding may not be 71 * necessary if the host is notified via another IRQ. 72 */ 73 #define ACPI_EC_EVT_TIMING_STATUS 0x00 74 #define ACPI_EC_EVT_TIMING_QUERY 0x01 75 #define ACPI_EC_EVT_TIMING_EVENT 0x02 76 77 /* EC commands */ 78 enum ec_command { 79 ACPI_EC_COMMAND_READ = 0x80, 80 ACPI_EC_COMMAND_WRITE = 0x81, 81 ACPI_EC_BURST_ENABLE = 0x82, 82 ACPI_EC_BURST_DISABLE = 0x83, 83 ACPI_EC_COMMAND_QUERY = 0x84, 84 }; 85 86 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */ 87 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ 88 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */ 89 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query 90 * when trying to clear the EC */ 91 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */ 92 93 enum { 94 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */ 95 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */ 96 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */ 97 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */ 98 EC_FLAGS_STARTED, /* Driver is started */ 99 EC_FLAGS_STOPPED, /* Driver is stopped */ 100 EC_FLAGS_EVENTS_MASKED, /* Events masked */ 101 }; 102 103 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */ 104 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */ 105 106 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */ 107 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY; 108 module_param(ec_delay, uint, 0644); 109 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes"); 110 111 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES; 112 module_param(ec_max_queries, uint, 0644); 113 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations"); 114 115 static bool ec_busy_polling __read_mostly; 116 module_param(ec_busy_polling, bool, 0644); 117 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction"); 118 119 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL; 120 module_param(ec_polling_guard, uint, 0644); 121 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes"); 122 123 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY; 124 125 /* 126 * If the number of false interrupts per one transaction exceeds 127 * this threshold, will think there is a GPE storm happened and 128 * will disable the GPE for normal transaction. 129 */ 130 static unsigned int ec_storm_threshold __read_mostly = 8; 131 module_param(ec_storm_threshold, uint, 0644); 132 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm"); 133 134 static bool ec_freeze_events __read_mostly; 135 module_param(ec_freeze_events, bool, 0644); 136 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume"); 137 138 static bool ec_no_wakeup __read_mostly; 139 module_param(ec_no_wakeup, bool, 0644); 140 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle"); 141 142 struct acpi_ec_query_handler { 143 struct list_head node; 144 acpi_ec_query_func func; 145 acpi_handle handle; 146 void *data; 147 u8 query_bit; 148 struct kref kref; 149 }; 150 151 struct transaction { 152 const u8 *wdata; 153 u8 *rdata; 154 unsigned short irq_count; 155 u8 command; 156 u8 wi; 157 u8 ri; 158 u8 wlen; 159 u8 rlen; 160 u8 flags; 161 }; 162 163 struct acpi_ec_query { 164 struct transaction transaction; 165 struct work_struct work; 166 struct acpi_ec_query_handler *handler; 167 struct acpi_ec *ec; 168 }; 169 170 static int acpi_ec_submit_query(struct acpi_ec *ec); 171 static void advance_transaction(struct acpi_ec *ec, bool interrupt); 172 static void acpi_ec_event_handler(struct work_struct *work); 173 174 struct acpi_ec *first_ec; 175 EXPORT_SYMBOL(first_ec); 176 177 static struct acpi_ec *boot_ec; 178 static bool boot_ec_is_ecdt; 179 static struct workqueue_struct *ec_wq; 180 static struct workqueue_struct *ec_query_wq; 181 182 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */ 183 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */ 184 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */ 185 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */ 186 187 /* -------------------------------------------------------------------------- 188 * Logging/Debugging 189 * -------------------------------------------------------------------------- */ 190 191 /* 192 * Splitters used by the developers to track the boundary of the EC 193 * handling processes. 194 */ 195 #ifdef DEBUG 196 #define EC_DBG_SEP " " 197 #define EC_DBG_DRV "+++++" 198 #define EC_DBG_STM "=====" 199 #define EC_DBG_REQ "*****" 200 #define EC_DBG_EVT "#####" 201 #else 202 #define EC_DBG_SEP "" 203 #define EC_DBG_DRV 204 #define EC_DBG_STM 205 #define EC_DBG_REQ 206 #define EC_DBG_EVT 207 #endif 208 209 #define ec_log_raw(fmt, ...) \ 210 pr_info(fmt "\n", ##__VA_ARGS__) 211 #define ec_dbg_raw(fmt, ...) \ 212 pr_debug(fmt "\n", ##__VA_ARGS__) 213 #define ec_log(filter, fmt, ...) \ 214 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 215 #define ec_dbg(filter, fmt, ...) \ 216 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 217 218 #define ec_log_drv(fmt, ...) \ 219 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__) 220 #define ec_dbg_drv(fmt, ...) \ 221 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__) 222 #define ec_dbg_stm(fmt, ...) \ 223 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__) 224 #define ec_dbg_req(fmt, ...) \ 225 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__) 226 #define ec_dbg_evt(fmt, ...) \ 227 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__) 228 #define ec_dbg_ref(ec, fmt, ...) \ 229 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__) 230 231 /* -------------------------------------------------------------------------- 232 * Device Flags 233 * -------------------------------------------------------------------------- */ 234 235 static bool acpi_ec_started(struct acpi_ec *ec) 236 { 237 return test_bit(EC_FLAGS_STARTED, &ec->flags) && 238 !test_bit(EC_FLAGS_STOPPED, &ec->flags); 239 } 240 241 static bool acpi_ec_event_enabled(struct acpi_ec *ec) 242 { 243 /* 244 * There is an OSPM early stage logic. During the early stages 245 * (boot/resume), OSPMs shouldn't enable the event handling, only 246 * the EC transactions are allowed to be performed. 247 */ 248 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 249 return false; 250 /* 251 * However, disabling the event handling is experimental for late 252 * stage (suspend), and is controlled by the boot parameter of 253 * "ec_freeze_events": 254 * 1. true: The EC event handling is disabled before entering 255 * the noirq stage. 256 * 2. false: The EC event handling is automatically disabled as 257 * soon as the EC driver is stopped. 258 */ 259 if (ec_freeze_events) 260 return acpi_ec_started(ec); 261 else 262 return test_bit(EC_FLAGS_STARTED, &ec->flags); 263 } 264 265 static bool acpi_ec_flushed(struct acpi_ec *ec) 266 { 267 return ec->reference_count == 1; 268 } 269 270 /* -------------------------------------------------------------------------- 271 * EC Registers 272 * -------------------------------------------------------------------------- */ 273 274 static inline u8 acpi_ec_read_status(struct acpi_ec *ec) 275 { 276 u8 x = inb(ec->command_addr); 277 278 ec_dbg_raw("EC_SC(R) = 0x%2.2x " 279 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d", 280 x, 281 !!(x & ACPI_EC_FLAG_SCI), 282 !!(x & ACPI_EC_FLAG_BURST), 283 !!(x & ACPI_EC_FLAG_CMD), 284 !!(x & ACPI_EC_FLAG_IBF), 285 !!(x & ACPI_EC_FLAG_OBF)); 286 return x; 287 } 288 289 static inline u8 acpi_ec_read_data(struct acpi_ec *ec) 290 { 291 u8 x = inb(ec->data_addr); 292 293 ec->timestamp = jiffies; 294 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x); 295 return x; 296 } 297 298 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command) 299 { 300 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command); 301 outb(command, ec->command_addr); 302 ec->timestamp = jiffies; 303 } 304 305 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data) 306 { 307 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data); 308 outb(data, ec->data_addr); 309 ec->timestamp = jiffies; 310 } 311 312 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 313 static const char *acpi_ec_cmd_string(u8 cmd) 314 { 315 switch (cmd) { 316 case 0x80: 317 return "RD_EC"; 318 case 0x81: 319 return "WR_EC"; 320 case 0x82: 321 return "BE_EC"; 322 case 0x83: 323 return "BD_EC"; 324 case 0x84: 325 return "QR_EC"; 326 } 327 return "UNKNOWN"; 328 } 329 #else 330 #define acpi_ec_cmd_string(cmd) "UNDEF" 331 #endif 332 333 /* -------------------------------------------------------------------------- 334 * GPE Registers 335 * -------------------------------------------------------------------------- */ 336 337 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec) 338 { 339 acpi_event_status gpe_status = 0; 340 341 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status); 342 return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET); 343 } 344 345 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open) 346 { 347 if (open) 348 acpi_enable_gpe(NULL, ec->gpe); 349 else { 350 BUG_ON(ec->reference_count < 1); 351 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 352 } 353 if (acpi_ec_gpe_status_set(ec)) { 354 /* 355 * On some platforms, EN=1 writes cannot trigger GPE. So 356 * software need to manually trigger a pseudo GPE event on 357 * EN=1 writes. 358 */ 359 ec_dbg_raw("Polling quirk"); 360 advance_transaction(ec, false); 361 } 362 } 363 364 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close) 365 { 366 if (close) 367 acpi_disable_gpe(NULL, ec->gpe); 368 else { 369 BUG_ON(ec->reference_count < 1); 370 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 371 } 372 } 373 374 /* -------------------------------------------------------------------------- 375 * Transaction Management 376 * -------------------------------------------------------------------------- */ 377 378 static void acpi_ec_submit_request(struct acpi_ec *ec) 379 { 380 ec->reference_count++; 381 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 382 ec->gpe >= 0 && ec->reference_count == 1) 383 acpi_ec_enable_gpe(ec, true); 384 } 385 386 static void acpi_ec_complete_request(struct acpi_ec *ec) 387 { 388 bool flushed = false; 389 390 ec->reference_count--; 391 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 392 ec->gpe >= 0 && ec->reference_count == 0) 393 acpi_ec_disable_gpe(ec, true); 394 flushed = acpi_ec_flushed(ec); 395 if (flushed) 396 wake_up(&ec->wait); 397 } 398 399 static void acpi_ec_mask_events(struct acpi_ec *ec) 400 { 401 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 402 if (ec->gpe >= 0) 403 acpi_ec_disable_gpe(ec, false); 404 else 405 disable_irq_nosync(ec->irq); 406 407 ec_dbg_drv("Polling enabled"); 408 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 409 } 410 } 411 412 static void acpi_ec_unmask_events(struct acpi_ec *ec) 413 { 414 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 415 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 416 if (ec->gpe >= 0) 417 acpi_ec_enable_gpe(ec, false); 418 else 419 enable_irq(ec->irq); 420 421 ec_dbg_drv("Polling disabled"); 422 } 423 } 424 425 /* 426 * acpi_ec_submit_flushable_request() - Increase the reference count unless 427 * the flush operation is not in 428 * progress 429 * @ec: the EC device 430 * 431 * This function must be used before taking a new action that should hold 432 * the reference count. If this function returns false, then the action 433 * must be discarded or it will prevent the flush operation from being 434 * completed. 435 */ 436 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec) 437 { 438 if (!acpi_ec_started(ec)) 439 return false; 440 acpi_ec_submit_request(ec); 441 return true; 442 } 443 444 static void acpi_ec_submit_event(struct acpi_ec *ec) 445 { 446 /* 447 * It is safe to mask the events here, because acpi_ec_close_event() 448 * will run at least once after this. 449 */ 450 acpi_ec_mask_events(ec); 451 if (!acpi_ec_event_enabled(ec)) 452 return; 453 454 if (ec->event_state != EC_EVENT_READY) 455 return; 456 457 ec_dbg_evt("Command(%s) submitted/blocked", 458 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 459 460 ec->event_state = EC_EVENT_IN_PROGRESS; 461 /* 462 * If events_to_process is greater than 0 at this point, the while () 463 * loop in acpi_ec_event_handler() is still running and incrementing 464 * events_to_process will cause it to invoke acpi_ec_submit_query() once 465 * more, so it is not necessary to queue up the event work to start the 466 * same loop again. 467 */ 468 if (ec->events_to_process++ > 0) 469 return; 470 471 ec->events_in_progress++; 472 queue_work(ec_wq, &ec->work); 473 } 474 475 static void acpi_ec_complete_event(struct acpi_ec *ec) 476 { 477 if (ec->event_state == EC_EVENT_IN_PROGRESS) 478 ec->event_state = EC_EVENT_COMPLETE; 479 } 480 481 static void acpi_ec_close_event(struct acpi_ec *ec) 482 { 483 if (ec->event_state != EC_EVENT_READY) 484 ec_dbg_evt("Command(%s) unblocked", 485 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 486 487 ec->event_state = EC_EVENT_READY; 488 acpi_ec_unmask_events(ec); 489 } 490 491 static inline void __acpi_ec_enable_event(struct acpi_ec *ec) 492 { 493 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 494 ec_log_drv("event unblocked"); 495 /* 496 * Unconditionally invoke this once after enabling the event 497 * handling mechanism to detect the pending events. 498 */ 499 advance_transaction(ec, false); 500 } 501 502 static inline void __acpi_ec_disable_event(struct acpi_ec *ec) 503 { 504 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 505 ec_log_drv("event blocked"); 506 } 507 508 /* 509 * Process _Q events that might have accumulated in the EC. 510 * Run with locked ec mutex. 511 */ 512 static void acpi_ec_clear(struct acpi_ec *ec) 513 { 514 int i; 515 516 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) { 517 if (acpi_ec_submit_query(ec)) 518 break; 519 } 520 if (unlikely(i == ACPI_EC_CLEAR_MAX)) 521 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i); 522 else 523 pr_info("%d stale EC events cleared\n", i); 524 } 525 526 static void acpi_ec_enable_event(struct acpi_ec *ec) 527 { 528 unsigned long flags; 529 530 spin_lock_irqsave(&ec->lock, flags); 531 if (acpi_ec_started(ec)) 532 __acpi_ec_enable_event(ec); 533 spin_unlock_irqrestore(&ec->lock, flags); 534 535 /* Drain additional events if hardware requires that */ 536 if (EC_FLAGS_CLEAR_ON_RESUME) 537 acpi_ec_clear(ec); 538 } 539 540 #ifdef CONFIG_PM_SLEEP 541 static void __acpi_ec_flush_work(void) 542 { 543 flush_workqueue(ec_wq); /* flush ec->work */ 544 flush_workqueue(ec_query_wq); /* flush queries */ 545 } 546 547 static void acpi_ec_disable_event(struct acpi_ec *ec) 548 { 549 unsigned long flags; 550 551 spin_lock_irqsave(&ec->lock, flags); 552 __acpi_ec_disable_event(ec); 553 spin_unlock_irqrestore(&ec->lock, flags); 554 555 /* 556 * When ec_freeze_events is true, we need to flush events in 557 * the proper position before entering the noirq stage. 558 */ 559 __acpi_ec_flush_work(); 560 } 561 562 void acpi_ec_flush_work(void) 563 { 564 /* Without ec_wq there is nothing to flush. */ 565 if (!ec_wq) 566 return; 567 568 __acpi_ec_flush_work(); 569 } 570 #endif /* CONFIG_PM_SLEEP */ 571 572 static bool acpi_ec_guard_event(struct acpi_ec *ec) 573 { 574 unsigned long flags; 575 bool guarded; 576 577 spin_lock_irqsave(&ec->lock, flags); 578 /* 579 * If firmware SCI_EVT clearing timing is "event", we actually 580 * don't know when the SCI_EVT will be cleared by firmware after 581 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an 582 * acceptable period. 583 * 584 * The guarding period is applicable if the event state is not 585 * EC_EVENT_READY, but otherwise if the current transaction is of the 586 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already 587 * and it should not be applied to let the transaction transition into 588 * the ACPI_EC_COMMAND_POLL state immediately. 589 */ 590 guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 591 ec->event_state != EC_EVENT_READY && 592 (!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY); 593 spin_unlock_irqrestore(&ec->lock, flags); 594 return guarded; 595 } 596 597 static int ec_transaction_polled(struct acpi_ec *ec) 598 { 599 unsigned long flags; 600 int ret = 0; 601 602 spin_lock_irqsave(&ec->lock, flags); 603 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL)) 604 ret = 1; 605 spin_unlock_irqrestore(&ec->lock, flags); 606 return ret; 607 } 608 609 static int ec_transaction_completed(struct acpi_ec *ec) 610 { 611 unsigned long flags; 612 int ret = 0; 613 614 spin_lock_irqsave(&ec->lock, flags); 615 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE)) 616 ret = 1; 617 spin_unlock_irqrestore(&ec->lock, flags); 618 return ret; 619 } 620 621 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag) 622 { 623 ec->curr->flags |= flag; 624 625 if (ec->curr->command != ACPI_EC_COMMAND_QUERY) 626 return; 627 628 switch (ec_event_clearing) { 629 case ACPI_EC_EVT_TIMING_STATUS: 630 if (flag == ACPI_EC_COMMAND_POLL) 631 acpi_ec_close_event(ec); 632 633 return; 634 635 case ACPI_EC_EVT_TIMING_QUERY: 636 if (flag == ACPI_EC_COMMAND_COMPLETE) 637 acpi_ec_close_event(ec); 638 639 return; 640 641 case ACPI_EC_EVT_TIMING_EVENT: 642 if (flag == ACPI_EC_COMMAND_COMPLETE) 643 acpi_ec_complete_event(ec); 644 } 645 } 646 647 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t) 648 { 649 if (t->irq_count < ec_storm_threshold) 650 ++t->irq_count; 651 652 /* Trigger if the threshold is 0 too. */ 653 if (t->irq_count == ec_storm_threshold) 654 acpi_ec_mask_events(ec); 655 } 656 657 static void advance_transaction(struct acpi_ec *ec, bool interrupt) 658 { 659 struct transaction *t = ec->curr; 660 bool wakeup = false; 661 u8 status; 662 663 ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id()); 664 665 /* 666 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1 667 * changes to always trigger a GPE interrupt. 668 * 669 * GPE STS is a W1C register, which means: 670 * 671 * 1. Software can clear it without worrying about clearing the other 672 * GPEs' STS bits when the hardware sets them in parallel. 673 * 674 * 2. As long as software can ensure only clearing it when it is set, 675 * hardware won't set it in parallel. 676 */ 677 if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec)) 678 acpi_clear_gpe(NULL, ec->gpe); 679 680 status = acpi_ec_read_status(ec); 681 682 /* 683 * Another IRQ or a guarded polling mode advancement is detected, 684 * the next QR_EC submission is then allowed. 685 */ 686 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) { 687 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 688 ec->event_state == EC_EVENT_COMPLETE) 689 acpi_ec_close_event(ec); 690 691 if (!t) 692 goto out; 693 } 694 695 if (t->flags & ACPI_EC_COMMAND_POLL) { 696 if (t->wlen > t->wi) { 697 if (!(status & ACPI_EC_FLAG_IBF)) 698 acpi_ec_write_data(ec, t->wdata[t->wi++]); 699 else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) 700 acpi_ec_spurious_interrupt(ec, t); 701 } else if (t->rlen > t->ri) { 702 if (status & ACPI_EC_FLAG_OBF) { 703 t->rdata[t->ri++] = acpi_ec_read_data(ec); 704 if (t->rlen == t->ri) { 705 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 706 wakeup = true; 707 if (t->command == ACPI_EC_COMMAND_QUERY) 708 ec_dbg_evt("Command(%s) completed by hardware", 709 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 710 } 711 } else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) { 712 acpi_ec_spurious_interrupt(ec, t); 713 } 714 } else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) { 715 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 716 wakeup = true; 717 } 718 } else if (!(status & ACPI_EC_FLAG_IBF)) { 719 acpi_ec_write_cmd(ec, t->command); 720 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL); 721 } 722 723 out: 724 if (status & ACPI_EC_FLAG_SCI) 725 acpi_ec_submit_event(ec); 726 727 if (wakeup && interrupt) 728 wake_up(&ec->wait); 729 } 730 731 static void start_transaction(struct acpi_ec *ec) 732 { 733 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0; 734 ec->curr->flags = 0; 735 } 736 737 static int ec_guard(struct acpi_ec *ec) 738 { 739 unsigned long guard = usecs_to_jiffies(ec->polling_guard); 740 unsigned long timeout = ec->timestamp + guard; 741 742 /* Ensure guarding period before polling EC status */ 743 do { 744 if (ec->busy_polling) { 745 /* Perform busy polling */ 746 if (ec_transaction_completed(ec)) 747 return 0; 748 udelay(jiffies_to_usecs(guard)); 749 } else { 750 /* 751 * Perform wait polling 752 * 1. Wait the transaction to be completed by the 753 * GPE handler after the transaction enters 754 * ACPI_EC_COMMAND_POLL state. 755 * 2. A special guarding logic is also required 756 * for event clearing mode "event" before the 757 * transaction enters ACPI_EC_COMMAND_POLL 758 * state. 759 */ 760 if (!ec_transaction_polled(ec) && 761 !acpi_ec_guard_event(ec)) 762 break; 763 if (wait_event_timeout(ec->wait, 764 ec_transaction_completed(ec), 765 guard)) 766 return 0; 767 } 768 } while (time_before(jiffies, timeout)); 769 return -ETIME; 770 } 771 772 static int ec_poll(struct acpi_ec *ec) 773 { 774 unsigned long flags; 775 int repeat = 5; /* number of command restarts */ 776 777 while (repeat--) { 778 unsigned long delay = jiffies + 779 msecs_to_jiffies(ec_delay); 780 do { 781 if (!ec_guard(ec)) 782 return 0; 783 spin_lock_irqsave(&ec->lock, flags); 784 advance_transaction(ec, false); 785 spin_unlock_irqrestore(&ec->lock, flags); 786 } while (time_before(jiffies, delay)); 787 pr_debug("controller reset, restart transaction\n"); 788 spin_lock_irqsave(&ec->lock, flags); 789 start_transaction(ec); 790 spin_unlock_irqrestore(&ec->lock, flags); 791 } 792 return -ETIME; 793 } 794 795 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec, 796 struct transaction *t) 797 { 798 unsigned long tmp; 799 int ret = 0; 800 801 /* start transaction */ 802 spin_lock_irqsave(&ec->lock, tmp); 803 /* Enable GPE for command processing (IBF=0/OBF=1) */ 804 if (!acpi_ec_submit_flushable_request(ec)) { 805 ret = -EINVAL; 806 goto unlock; 807 } 808 ec_dbg_ref(ec, "Increase command"); 809 /* following two actions should be kept atomic */ 810 ec->curr = t; 811 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command)); 812 start_transaction(ec); 813 spin_unlock_irqrestore(&ec->lock, tmp); 814 815 ret = ec_poll(ec); 816 817 spin_lock_irqsave(&ec->lock, tmp); 818 if (t->irq_count == ec_storm_threshold) 819 acpi_ec_unmask_events(ec); 820 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command)); 821 ec->curr = NULL; 822 /* Disable GPE for command processing (IBF=0/OBF=1) */ 823 acpi_ec_complete_request(ec); 824 ec_dbg_ref(ec, "Decrease command"); 825 unlock: 826 spin_unlock_irqrestore(&ec->lock, tmp); 827 return ret; 828 } 829 830 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t) 831 { 832 int status; 833 u32 glk; 834 835 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata)) 836 return -EINVAL; 837 if (t->rdata) 838 memset(t->rdata, 0, t->rlen); 839 840 mutex_lock(&ec->mutex); 841 if (ec->global_lock) { 842 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); 843 if (ACPI_FAILURE(status)) { 844 status = -ENODEV; 845 goto unlock; 846 } 847 } 848 849 status = acpi_ec_transaction_unlocked(ec, t); 850 851 if (ec->global_lock) 852 acpi_release_global_lock(glk); 853 unlock: 854 mutex_unlock(&ec->mutex); 855 return status; 856 } 857 858 static int acpi_ec_burst_enable(struct acpi_ec *ec) 859 { 860 u8 d; 861 struct transaction t = {.command = ACPI_EC_BURST_ENABLE, 862 .wdata = NULL, .rdata = &d, 863 .wlen = 0, .rlen = 1}; 864 865 return acpi_ec_transaction(ec, &t); 866 } 867 868 static int acpi_ec_burst_disable(struct acpi_ec *ec) 869 { 870 struct transaction t = {.command = ACPI_EC_BURST_DISABLE, 871 .wdata = NULL, .rdata = NULL, 872 .wlen = 0, .rlen = 0}; 873 874 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ? 875 acpi_ec_transaction(ec, &t) : 0; 876 } 877 878 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data) 879 { 880 int result; 881 u8 d; 882 struct transaction t = {.command = ACPI_EC_COMMAND_READ, 883 .wdata = &address, .rdata = &d, 884 .wlen = 1, .rlen = 1}; 885 886 result = acpi_ec_transaction(ec, &t); 887 *data = d; 888 return result; 889 } 890 891 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data) 892 { 893 u8 wdata[2] = { address, data }; 894 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, 895 .wdata = wdata, .rdata = NULL, 896 .wlen = 2, .rlen = 0}; 897 898 return acpi_ec_transaction(ec, &t); 899 } 900 901 int ec_read(u8 addr, u8 *val) 902 { 903 int err; 904 u8 temp_data; 905 906 if (!first_ec) 907 return -ENODEV; 908 909 err = acpi_ec_read(first_ec, addr, &temp_data); 910 911 if (!err) { 912 *val = temp_data; 913 return 0; 914 } 915 return err; 916 } 917 EXPORT_SYMBOL(ec_read); 918 919 int ec_write(u8 addr, u8 val) 920 { 921 int err; 922 923 if (!first_ec) 924 return -ENODEV; 925 926 err = acpi_ec_write(first_ec, addr, val); 927 928 return err; 929 } 930 EXPORT_SYMBOL(ec_write); 931 932 int ec_transaction(u8 command, 933 const u8 *wdata, unsigned wdata_len, 934 u8 *rdata, unsigned rdata_len) 935 { 936 struct transaction t = {.command = command, 937 .wdata = wdata, .rdata = rdata, 938 .wlen = wdata_len, .rlen = rdata_len}; 939 940 if (!first_ec) 941 return -ENODEV; 942 943 return acpi_ec_transaction(first_ec, &t); 944 } 945 EXPORT_SYMBOL(ec_transaction); 946 947 /* Get the handle to the EC device */ 948 acpi_handle ec_get_handle(void) 949 { 950 if (!first_ec) 951 return NULL; 952 return first_ec->handle; 953 } 954 EXPORT_SYMBOL(ec_get_handle); 955 956 static void acpi_ec_start(struct acpi_ec *ec, bool resuming) 957 { 958 unsigned long flags; 959 960 spin_lock_irqsave(&ec->lock, flags); 961 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) { 962 ec_dbg_drv("Starting EC"); 963 /* Enable GPE for event processing (SCI_EVT=1) */ 964 if (!resuming) { 965 acpi_ec_submit_request(ec); 966 ec_dbg_ref(ec, "Increase driver"); 967 } 968 ec_log_drv("EC started"); 969 } 970 spin_unlock_irqrestore(&ec->lock, flags); 971 } 972 973 static bool acpi_ec_stopped(struct acpi_ec *ec) 974 { 975 unsigned long flags; 976 bool flushed; 977 978 spin_lock_irqsave(&ec->lock, flags); 979 flushed = acpi_ec_flushed(ec); 980 spin_unlock_irqrestore(&ec->lock, flags); 981 return flushed; 982 } 983 984 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending) 985 { 986 unsigned long flags; 987 988 spin_lock_irqsave(&ec->lock, flags); 989 if (acpi_ec_started(ec)) { 990 ec_dbg_drv("Stopping EC"); 991 set_bit(EC_FLAGS_STOPPED, &ec->flags); 992 spin_unlock_irqrestore(&ec->lock, flags); 993 wait_event(ec->wait, acpi_ec_stopped(ec)); 994 spin_lock_irqsave(&ec->lock, flags); 995 /* Disable GPE for event processing (SCI_EVT=1) */ 996 if (!suspending) { 997 acpi_ec_complete_request(ec); 998 ec_dbg_ref(ec, "Decrease driver"); 999 } else if (!ec_freeze_events) 1000 __acpi_ec_disable_event(ec); 1001 clear_bit(EC_FLAGS_STARTED, &ec->flags); 1002 clear_bit(EC_FLAGS_STOPPED, &ec->flags); 1003 ec_log_drv("EC stopped"); 1004 } 1005 spin_unlock_irqrestore(&ec->lock, flags); 1006 } 1007 1008 static void acpi_ec_enter_noirq(struct acpi_ec *ec) 1009 { 1010 unsigned long flags; 1011 1012 spin_lock_irqsave(&ec->lock, flags); 1013 ec->busy_polling = true; 1014 ec->polling_guard = 0; 1015 ec_log_drv("interrupt blocked"); 1016 spin_unlock_irqrestore(&ec->lock, flags); 1017 } 1018 1019 static void acpi_ec_leave_noirq(struct acpi_ec *ec) 1020 { 1021 unsigned long flags; 1022 1023 spin_lock_irqsave(&ec->lock, flags); 1024 ec->busy_polling = ec_busy_polling; 1025 ec->polling_guard = ec_polling_guard; 1026 ec_log_drv("interrupt unblocked"); 1027 spin_unlock_irqrestore(&ec->lock, flags); 1028 } 1029 1030 void acpi_ec_block_transactions(void) 1031 { 1032 struct acpi_ec *ec = first_ec; 1033 1034 if (!ec) 1035 return; 1036 1037 mutex_lock(&ec->mutex); 1038 /* Prevent transactions from being carried out */ 1039 acpi_ec_stop(ec, true); 1040 mutex_unlock(&ec->mutex); 1041 } 1042 1043 void acpi_ec_unblock_transactions(void) 1044 { 1045 /* 1046 * Allow transactions to happen again (this function is called from 1047 * atomic context during wakeup, so we don't need to acquire the mutex). 1048 */ 1049 if (first_ec) 1050 acpi_ec_start(first_ec, true); 1051 } 1052 1053 /* -------------------------------------------------------------------------- 1054 Event Management 1055 -------------------------------------------------------------------------- */ 1056 static struct acpi_ec_query_handler * 1057 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value) 1058 { 1059 struct acpi_ec_query_handler *handler; 1060 1061 mutex_lock(&ec->mutex); 1062 list_for_each_entry(handler, &ec->list, node) { 1063 if (value == handler->query_bit) { 1064 kref_get(&handler->kref); 1065 mutex_unlock(&ec->mutex); 1066 return handler; 1067 } 1068 } 1069 mutex_unlock(&ec->mutex); 1070 return NULL; 1071 } 1072 1073 static void acpi_ec_query_handler_release(struct kref *kref) 1074 { 1075 struct acpi_ec_query_handler *handler = 1076 container_of(kref, struct acpi_ec_query_handler, kref); 1077 1078 kfree(handler); 1079 } 1080 1081 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler) 1082 { 1083 kref_put(&handler->kref, acpi_ec_query_handler_release); 1084 } 1085 1086 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit, 1087 acpi_handle handle, acpi_ec_query_func func, 1088 void *data) 1089 { 1090 struct acpi_ec_query_handler *handler = 1091 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL); 1092 1093 if (!handler) 1094 return -ENOMEM; 1095 1096 handler->query_bit = query_bit; 1097 handler->handle = handle; 1098 handler->func = func; 1099 handler->data = data; 1100 mutex_lock(&ec->mutex); 1101 kref_init(&handler->kref); 1102 list_add(&handler->node, &ec->list); 1103 mutex_unlock(&ec->mutex); 1104 return 0; 1105 } 1106 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler); 1107 1108 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec, 1109 bool remove_all, u8 query_bit) 1110 { 1111 struct acpi_ec_query_handler *handler, *tmp; 1112 LIST_HEAD(free_list); 1113 1114 mutex_lock(&ec->mutex); 1115 list_for_each_entry_safe(handler, tmp, &ec->list, node) { 1116 if (remove_all || query_bit == handler->query_bit) { 1117 list_del_init(&handler->node); 1118 list_add(&handler->node, &free_list); 1119 } 1120 } 1121 mutex_unlock(&ec->mutex); 1122 list_for_each_entry_safe(handler, tmp, &free_list, node) 1123 acpi_ec_put_query_handler(handler); 1124 } 1125 1126 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit) 1127 { 1128 acpi_ec_remove_query_handlers(ec, false, query_bit); 1129 } 1130 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler); 1131 1132 static void acpi_ec_event_processor(struct work_struct *work) 1133 { 1134 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work); 1135 struct acpi_ec_query_handler *handler = q->handler; 1136 struct acpi_ec *ec = q->ec; 1137 1138 ec_dbg_evt("Query(0x%02x) started", handler->query_bit); 1139 1140 if (handler->func) 1141 handler->func(handler->data); 1142 else if (handler->handle) 1143 acpi_evaluate_object(handler->handle, NULL, NULL, NULL); 1144 1145 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit); 1146 1147 spin_lock_irq(&ec->lock); 1148 ec->queries_in_progress--; 1149 spin_unlock_irq(&ec->lock); 1150 1151 acpi_ec_put_query_handler(handler); 1152 kfree(q); 1153 } 1154 1155 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval) 1156 { 1157 struct acpi_ec_query *q; 1158 struct transaction *t; 1159 1160 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL); 1161 if (!q) 1162 return NULL; 1163 1164 INIT_WORK(&q->work, acpi_ec_event_processor); 1165 t = &q->transaction; 1166 t->command = ACPI_EC_COMMAND_QUERY; 1167 t->rdata = pval; 1168 t->rlen = 1; 1169 q->ec = ec; 1170 return q; 1171 } 1172 1173 static int acpi_ec_submit_query(struct acpi_ec *ec) 1174 { 1175 struct acpi_ec_query *q; 1176 u8 value = 0; 1177 int result; 1178 1179 q = acpi_ec_create_query(ec, &value); 1180 if (!q) 1181 return -ENOMEM; 1182 1183 /* 1184 * Query the EC to find out which _Qxx method we need to evaluate. 1185 * Note that successful completion of the query causes the ACPI_EC_SCI 1186 * bit to be cleared (and thus clearing the interrupt source). 1187 */ 1188 result = acpi_ec_transaction(ec, &q->transaction); 1189 if (result) 1190 goto err_exit; 1191 1192 if (!value) { 1193 result = -ENODATA; 1194 goto err_exit; 1195 } 1196 1197 q->handler = acpi_ec_get_query_handler_by_value(ec, value); 1198 if (!q->handler) { 1199 result = -ENODATA; 1200 goto err_exit; 1201 } 1202 1203 /* 1204 * It is reported that _Qxx are evaluated in a parallel way on Windows: 1205 * https://bugzilla.kernel.org/show_bug.cgi?id=94411 1206 * 1207 * Put this log entry before queue_work() to make it appear in the log 1208 * before any other messages emitted during workqueue handling. 1209 */ 1210 ec_dbg_evt("Query(0x%02x) scheduled", value); 1211 1212 spin_lock_irq(&ec->lock); 1213 1214 ec->queries_in_progress++; 1215 queue_work(ec_query_wq, &q->work); 1216 1217 spin_unlock_irq(&ec->lock); 1218 1219 return 0; 1220 1221 err_exit: 1222 kfree(q); 1223 1224 return result; 1225 } 1226 1227 static void acpi_ec_event_handler(struct work_struct *work) 1228 { 1229 struct acpi_ec *ec = container_of(work, struct acpi_ec, work); 1230 1231 ec_dbg_evt("Event started"); 1232 1233 spin_lock_irq(&ec->lock); 1234 1235 while (ec->events_to_process) { 1236 spin_unlock_irq(&ec->lock); 1237 1238 acpi_ec_submit_query(ec); 1239 1240 spin_lock_irq(&ec->lock); 1241 1242 ec->events_to_process--; 1243 } 1244 1245 /* 1246 * Before exit, make sure that the it will be possible to queue up the 1247 * event handling work again regardless of whether or not the query 1248 * queued up above is processed successfully. 1249 */ 1250 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) { 1251 bool guard_timeout; 1252 1253 acpi_ec_complete_event(ec); 1254 1255 ec_dbg_evt("Event stopped"); 1256 1257 spin_unlock_irq(&ec->lock); 1258 1259 guard_timeout = !!ec_guard(ec); 1260 1261 spin_lock_irq(&ec->lock); 1262 1263 /* Take care of SCI_EVT unless someone else is doing that. */ 1264 if (guard_timeout && !ec->curr) 1265 advance_transaction(ec, false); 1266 } else { 1267 acpi_ec_close_event(ec); 1268 1269 ec_dbg_evt("Event stopped"); 1270 } 1271 1272 ec->events_in_progress--; 1273 1274 spin_unlock_irq(&ec->lock); 1275 } 1276 1277 static void acpi_ec_handle_interrupt(struct acpi_ec *ec) 1278 { 1279 unsigned long flags; 1280 1281 spin_lock_irqsave(&ec->lock, flags); 1282 advance_transaction(ec, true); 1283 spin_unlock_irqrestore(&ec->lock, flags); 1284 } 1285 1286 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device, 1287 u32 gpe_number, void *data) 1288 { 1289 acpi_ec_handle_interrupt(data); 1290 return ACPI_INTERRUPT_HANDLED; 1291 } 1292 1293 static irqreturn_t acpi_ec_irq_handler(int irq, void *data) 1294 { 1295 acpi_ec_handle_interrupt(data); 1296 return IRQ_HANDLED; 1297 } 1298 1299 /* -------------------------------------------------------------------------- 1300 * Address Space Management 1301 * -------------------------------------------------------------------------- */ 1302 1303 static acpi_status 1304 acpi_ec_space_handler(u32 function, acpi_physical_address address, 1305 u32 bits, u64 *value64, 1306 void *handler_context, void *region_context) 1307 { 1308 struct acpi_ec *ec = handler_context; 1309 int result = 0, i, bytes = bits / 8; 1310 u8 *value = (u8 *)value64; 1311 1312 if ((address > 0xFF) || !value || !handler_context) 1313 return AE_BAD_PARAMETER; 1314 1315 if (function != ACPI_READ && function != ACPI_WRITE) 1316 return AE_BAD_PARAMETER; 1317 1318 if (ec->busy_polling || bits > 8) 1319 acpi_ec_burst_enable(ec); 1320 1321 for (i = 0; i < bytes; ++i, ++address, ++value) 1322 result = (function == ACPI_READ) ? 1323 acpi_ec_read(ec, address, value) : 1324 acpi_ec_write(ec, address, *value); 1325 1326 if (ec->busy_polling || bits > 8) 1327 acpi_ec_burst_disable(ec); 1328 1329 switch (result) { 1330 case -EINVAL: 1331 return AE_BAD_PARAMETER; 1332 case -ENODEV: 1333 return AE_NOT_FOUND; 1334 case -ETIME: 1335 return AE_TIME; 1336 default: 1337 return AE_OK; 1338 } 1339 } 1340 1341 /* -------------------------------------------------------------------------- 1342 * Driver Interface 1343 * -------------------------------------------------------------------------- */ 1344 1345 static acpi_status 1346 ec_parse_io_ports(struct acpi_resource *resource, void *context); 1347 1348 static void acpi_ec_free(struct acpi_ec *ec) 1349 { 1350 if (first_ec == ec) 1351 first_ec = NULL; 1352 if (boot_ec == ec) 1353 boot_ec = NULL; 1354 kfree(ec); 1355 } 1356 1357 static struct acpi_ec *acpi_ec_alloc(void) 1358 { 1359 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL); 1360 1361 if (!ec) 1362 return NULL; 1363 mutex_init(&ec->mutex); 1364 init_waitqueue_head(&ec->wait); 1365 INIT_LIST_HEAD(&ec->list); 1366 spin_lock_init(&ec->lock); 1367 INIT_WORK(&ec->work, acpi_ec_event_handler); 1368 ec->timestamp = jiffies; 1369 ec->busy_polling = true; 1370 ec->polling_guard = 0; 1371 ec->gpe = -1; 1372 ec->irq = -1; 1373 return ec; 1374 } 1375 1376 static acpi_status 1377 acpi_ec_register_query_methods(acpi_handle handle, u32 level, 1378 void *context, void **return_value) 1379 { 1380 char node_name[5]; 1381 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 1382 struct acpi_ec *ec = context; 1383 int value = 0; 1384 acpi_status status; 1385 1386 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 1387 1388 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1) 1389 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL); 1390 return AE_OK; 1391 } 1392 1393 static acpi_status 1394 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval) 1395 { 1396 acpi_status status; 1397 unsigned long long tmp = 0; 1398 struct acpi_ec *ec = context; 1399 1400 /* clear addr values, ec_parse_io_ports depend on it */ 1401 ec->command_addr = ec->data_addr = 0; 1402 1403 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1404 ec_parse_io_ports, ec); 1405 if (ACPI_FAILURE(status)) 1406 return status; 1407 if (ec->data_addr == 0 || ec->command_addr == 0) 1408 return AE_OK; 1409 1410 if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) { 1411 /* 1412 * Always inherit the GPE number setting from the ECDT 1413 * EC. 1414 */ 1415 ec->gpe = boot_ec->gpe; 1416 } else { 1417 /* Get GPE bit assignment (EC events). */ 1418 /* TODO: Add support for _GPE returning a package */ 1419 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 1420 if (ACPI_SUCCESS(status)) 1421 ec->gpe = tmp; 1422 1423 /* 1424 * Errors are non-fatal, allowing for ACPI Reduced Hardware 1425 * platforms which use GpioInt instead of GPE. 1426 */ 1427 } 1428 /* Use the global lock for all EC transactions? */ 1429 tmp = 0; 1430 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp); 1431 ec->global_lock = tmp; 1432 ec->handle = handle; 1433 return AE_CTRL_TERMINATE; 1434 } 1435 1436 static bool install_gpe_event_handler(struct acpi_ec *ec) 1437 { 1438 acpi_status status; 1439 1440 status = acpi_install_gpe_raw_handler(NULL, ec->gpe, 1441 ACPI_GPE_EDGE_TRIGGERED, 1442 &acpi_ec_gpe_handler, ec); 1443 if (ACPI_FAILURE(status)) 1444 return false; 1445 1446 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1) 1447 acpi_ec_enable_gpe(ec, true); 1448 1449 return true; 1450 } 1451 1452 static bool install_gpio_irq_event_handler(struct acpi_ec *ec) 1453 { 1454 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED, 1455 "ACPI EC", ec) >= 0; 1456 } 1457 1458 /** 1459 * ec_install_handlers - Install service callbacks and register query methods. 1460 * @ec: Target EC. 1461 * @device: ACPI device object corresponding to @ec. 1462 * 1463 * Install a handler for the EC address space type unless it has been installed 1464 * already. If @device is not NULL, also look for EC query methods in the 1465 * namespace and register them, and install an event (either GPE or GPIO IRQ) 1466 * handler for the EC, if possible. 1467 * 1468 * Return: 1469 * -ENODEV if the address space handler cannot be installed, which means 1470 * "unable to handle transactions", 1471 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred, 1472 * or 0 (success) otherwise. 1473 */ 1474 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device) 1475 { 1476 acpi_status status; 1477 1478 acpi_ec_start(ec, false); 1479 1480 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1481 acpi_ec_enter_noirq(ec); 1482 status = acpi_install_address_space_handler(ec->handle, 1483 ACPI_ADR_SPACE_EC, 1484 &acpi_ec_space_handler, 1485 NULL, ec); 1486 if (ACPI_FAILURE(status)) { 1487 acpi_ec_stop(ec, false); 1488 return -ENODEV; 1489 } 1490 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1491 } 1492 1493 if (!device) 1494 return 0; 1495 1496 if (ec->gpe < 0) { 1497 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */ 1498 int irq = acpi_dev_gpio_irq_get(device, 0); 1499 /* 1500 * Bail out right away for deferred probing or complete the 1501 * initialization regardless of any other errors. 1502 */ 1503 if (irq == -EPROBE_DEFER) 1504 return -EPROBE_DEFER; 1505 else if (irq >= 0) 1506 ec->irq = irq; 1507 } 1508 1509 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1510 /* Find and register all query methods */ 1511 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1, 1512 acpi_ec_register_query_methods, 1513 NULL, ec, NULL); 1514 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1515 } 1516 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1517 bool ready = false; 1518 1519 if (ec->gpe >= 0) 1520 ready = install_gpe_event_handler(ec); 1521 else if (ec->irq >= 0) 1522 ready = install_gpio_irq_event_handler(ec); 1523 1524 if (ready) { 1525 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1526 acpi_ec_leave_noirq(ec); 1527 } 1528 /* 1529 * Failures to install an event handler are not fatal, because 1530 * the EC can be polled for events. 1531 */ 1532 } 1533 /* EC is fully operational, allow queries */ 1534 acpi_ec_enable_event(ec); 1535 1536 return 0; 1537 } 1538 1539 static void ec_remove_handlers(struct acpi_ec *ec) 1540 { 1541 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1542 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle, 1543 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler))) 1544 pr_err("failed to remove space handler\n"); 1545 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1546 } 1547 1548 /* 1549 * Stops handling the EC transactions after removing the operation 1550 * region handler. This is required because _REG(DISCONNECT) 1551 * invoked during the removal can result in new EC transactions. 1552 * 1553 * Flushes the EC requests and thus disables the GPE before 1554 * removing the GPE handler. This is required by the current ACPICA 1555 * GPE core. ACPICA GPE core will automatically disable a GPE when 1556 * it is indicated but there is no way to handle it. So the drivers 1557 * must disable the GPEs prior to removing the GPE handlers. 1558 */ 1559 acpi_ec_stop(ec, false); 1560 1561 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1562 if (ec->gpe >= 0 && 1563 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe, 1564 &acpi_ec_gpe_handler))) 1565 pr_err("failed to remove gpe handler\n"); 1566 1567 if (ec->irq >= 0) 1568 free_irq(ec->irq, ec); 1569 1570 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1571 } 1572 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1573 acpi_ec_remove_query_handlers(ec, true, 0); 1574 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1575 } 1576 } 1577 1578 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device) 1579 { 1580 int ret; 1581 1582 ret = ec_install_handlers(ec, device); 1583 if (ret) 1584 return ret; 1585 1586 /* First EC capable of handling transactions */ 1587 if (!first_ec) 1588 first_ec = ec; 1589 1590 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr, 1591 ec->data_addr); 1592 1593 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1594 if (ec->gpe >= 0) 1595 pr_info("GPE=0x%x\n", ec->gpe); 1596 else 1597 pr_info("IRQ=%d\n", ec->irq); 1598 } 1599 1600 return ret; 1601 } 1602 1603 static int acpi_ec_add(struct acpi_device *device) 1604 { 1605 struct acpi_ec *ec; 1606 int ret; 1607 1608 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); 1609 strcpy(acpi_device_class(device), ACPI_EC_CLASS); 1610 1611 if (boot_ec && (boot_ec->handle == device->handle || 1612 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) { 1613 /* Fast path: this device corresponds to the boot EC. */ 1614 ec = boot_ec; 1615 } else { 1616 acpi_status status; 1617 1618 ec = acpi_ec_alloc(); 1619 if (!ec) 1620 return -ENOMEM; 1621 1622 status = ec_parse_device(device->handle, 0, ec, NULL); 1623 if (status != AE_CTRL_TERMINATE) { 1624 ret = -EINVAL; 1625 goto err; 1626 } 1627 1628 if (boot_ec && ec->command_addr == boot_ec->command_addr && 1629 ec->data_addr == boot_ec->data_addr && 1630 !EC_FLAGS_TRUST_DSDT_GPE) { 1631 /* 1632 * Trust PNP0C09 namespace location rather than 1633 * ECDT ID. But trust ECDT GPE rather than _GPE 1634 * because of ASUS quirks, so do not change 1635 * boot_ec->gpe to ec->gpe. 1636 */ 1637 boot_ec->handle = ec->handle; 1638 acpi_handle_debug(ec->handle, "duplicated.\n"); 1639 acpi_ec_free(ec); 1640 ec = boot_ec; 1641 } 1642 } 1643 1644 ret = acpi_ec_setup(ec, device); 1645 if (ret) 1646 goto err; 1647 1648 if (ec == boot_ec) 1649 acpi_handle_info(boot_ec->handle, 1650 "Boot %s EC initialization complete\n", 1651 boot_ec_is_ecdt ? "ECDT" : "DSDT"); 1652 1653 acpi_handle_info(ec->handle, 1654 "EC: Used to handle transactions and events\n"); 1655 1656 device->driver_data = ec; 1657 1658 ret = !!request_region(ec->data_addr, 1, "EC data"); 1659 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr); 1660 ret = !!request_region(ec->command_addr, 1, "EC cmd"); 1661 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr); 1662 1663 /* Reprobe devices depending on the EC */ 1664 acpi_dev_clear_dependencies(device); 1665 1666 acpi_handle_debug(ec->handle, "enumerated.\n"); 1667 return 0; 1668 1669 err: 1670 if (ec != boot_ec) 1671 acpi_ec_free(ec); 1672 1673 return ret; 1674 } 1675 1676 static int acpi_ec_remove(struct acpi_device *device) 1677 { 1678 struct acpi_ec *ec; 1679 1680 if (!device) 1681 return -EINVAL; 1682 1683 ec = acpi_driver_data(device); 1684 release_region(ec->data_addr, 1); 1685 release_region(ec->command_addr, 1); 1686 device->driver_data = NULL; 1687 if (ec != boot_ec) { 1688 ec_remove_handlers(ec); 1689 acpi_ec_free(ec); 1690 } 1691 return 0; 1692 } 1693 1694 static acpi_status 1695 ec_parse_io_ports(struct acpi_resource *resource, void *context) 1696 { 1697 struct acpi_ec *ec = context; 1698 1699 if (resource->type != ACPI_RESOURCE_TYPE_IO) 1700 return AE_OK; 1701 1702 /* 1703 * The first address region returned is the data port, and 1704 * the second address region returned is the status/command 1705 * port. 1706 */ 1707 if (ec->data_addr == 0) 1708 ec->data_addr = resource->data.io.minimum; 1709 else if (ec->command_addr == 0) 1710 ec->command_addr = resource->data.io.minimum; 1711 else 1712 return AE_CTRL_TERMINATE; 1713 1714 return AE_OK; 1715 } 1716 1717 static const struct acpi_device_id ec_device_ids[] = { 1718 {"PNP0C09", 0}, 1719 {ACPI_ECDT_HID, 0}, 1720 {"", 0}, 1721 }; 1722 1723 /* 1724 * This function is not Windows-compatible as Windows never enumerates the 1725 * namespace EC before the main ACPI device enumeration process. It is 1726 * retained for historical reason and will be deprecated in the future. 1727 */ 1728 void __init acpi_ec_dsdt_probe(void) 1729 { 1730 struct acpi_ec *ec; 1731 acpi_status status; 1732 int ret; 1733 1734 /* 1735 * If a platform has ECDT, there is no need to proceed as the 1736 * following probe is not a part of the ACPI device enumeration, 1737 * executing _STA is not safe, and thus this probe may risk of 1738 * picking up an invalid EC device. 1739 */ 1740 if (boot_ec) 1741 return; 1742 1743 ec = acpi_ec_alloc(); 1744 if (!ec) 1745 return; 1746 1747 /* 1748 * At this point, the namespace is initialized, so start to find 1749 * the namespace objects. 1750 */ 1751 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL); 1752 if (ACPI_FAILURE(status) || !ec->handle) { 1753 acpi_ec_free(ec); 1754 return; 1755 } 1756 1757 /* 1758 * When the DSDT EC is available, always re-configure boot EC to 1759 * have _REG evaluated. _REG can only be evaluated after the 1760 * namespace initialization. 1761 * At this point, the GPE is not fully initialized, so do not to 1762 * handle the events. 1763 */ 1764 ret = acpi_ec_setup(ec, NULL); 1765 if (ret) { 1766 acpi_ec_free(ec); 1767 return; 1768 } 1769 1770 boot_ec = ec; 1771 1772 acpi_handle_info(ec->handle, 1773 "Boot DSDT EC used to handle transactions\n"); 1774 } 1775 1776 /* 1777 * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization. 1778 * 1779 * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not 1780 * found a matching object in the namespace. 1781 * 1782 * Next, in case the DSDT EC is not functioning, it is still necessary to 1783 * provide a functional ECDT EC to handle events, so add an extra device object 1784 * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021). 1785 * 1786 * This is useful on platforms with valid ECDT and invalid DSDT EC settings, 1787 * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847). 1788 */ 1789 static void __init acpi_ec_ecdt_start(void) 1790 { 1791 struct acpi_table_ecdt *ecdt_ptr; 1792 acpi_handle handle; 1793 acpi_status status; 1794 1795 /* Bail out if a matching EC has been found in the namespace. */ 1796 if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT) 1797 return; 1798 1799 /* Look up the object pointed to from the ECDT in the namespace. */ 1800 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1801 (struct acpi_table_header **)&ecdt_ptr); 1802 if (ACPI_FAILURE(status)) 1803 return; 1804 1805 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle); 1806 if (ACPI_SUCCESS(status)) { 1807 boot_ec->handle = handle; 1808 1809 /* Add a special ACPI device object to represent the boot EC. */ 1810 acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC); 1811 } 1812 1813 acpi_put_table((struct acpi_table_header *)ecdt_ptr); 1814 } 1815 1816 /* 1817 * On some hardware it is necessary to clear events accumulated by the EC during 1818 * sleep. These ECs stop reporting GPEs until they are manually polled, if too 1819 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks) 1820 * 1821 * https://bugzilla.kernel.org/show_bug.cgi?id=44161 1822 * 1823 * Ideally, the EC should also be instructed NOT to accumulate events during 1824 * sleep (which Windows seems to do somehow), but the interface to control this 1825 * behaviour is not known at this time. 1826 * 1827 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx, 1828 * however it is very likely that other Samsung models are affected. 1829 * 1830 * On systems which don't accumulate _Q events during sleep, this extra check 1831 * should be harmless. 1832 */ 1833 static int ec_clear_on_resume(const struct dmi_system_id *id) 1834 { 1835 pr_debug("Detected system needing EC poll on resume.\n"); 1836 EC_FLAGS_CLEAR_ON_RESUME = 1; 1837 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 1838 return 0; 1839 } 1840 1841 /* 1842 * Some ECDTs contain wrong register addresses. 1843 * MSI MS-171F 1844 * https://bugzilla.kernel.org/show_bug.cgi?id=12461 1845 */ 1846 static int ec_correct_ecdt(const struct dmi_system_id *id) 1847 { 1848 pr_debug("Detected system needing ECDT address correction.\n"); 1849 EC_FLAGS_CORRECT_ECDT = 1; 1850 return 0; 1851 } 1852 1853 /* 1854 * Some ECDTs contain wrong GPE setting, but they share the same port addresses 1855 * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case. 1856 * https://bugzilla.kernel.org/show_bug.cgi?id=209989 1857 */ 1858 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id) 1859 { 1860 pr_debug("Detected system needing DSDT GPE setting.\n"); 1861 EC_FLAGS_TRUST_DSDT_GPE = 1; 1862 return 0; 1863 } 1864 1865 /* 1866 * Some DSDTs contain wrong GPE setting. 1867 * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD 1868 * https://bugzilla.kernel.org/show_bug.cgi?id=195651 1869 */ 1870 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id) 1871 { 1872 pr_debug("Detected system needing ignore DSDT GPE setting.\n"); 1873 EC_FLAGS_IGNORE_DSDT_GPE = 1; 1874 return 0; 1875 } 1876 1877 static const struct dmi_system_id ec_dmi_table[] __initconst = { 1878 { 1879 ec_correct_ecdt, "MSI MS-171F", { 1880 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"), 1881 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL}, 1882 { 1883 ec_honor_ecdt_gpe, "ASUS FX502VD", { 1884 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1885 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL}, 1886 { 1887 ec_honor_ecdt_gpe, "ASUS FX502VE", { 1888 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1889 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL}, 1890 { 1891 ec_honor_ecdt_gpe, "ASUS GL702VMK", { 1892 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1893 DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL}, 1894 { 1895 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BA", { 1896 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1897 DMI_MATCH(DMI_PRODUCT_NAME, "X505BA"),}, NULL}, 1898 { 1899 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BP", { 1900 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1901 DMI_MATCH(DMI_PRODUCT_NAME, "X505BP"),}, NULL}, 1902 { 1903 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BA", { 1904 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1905 DMI_MATCH(DMI_PRODUCT_NAME, "X542BA"),}, NULL}, 1906 { 1907 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BP", { 1908 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1909 DMI_MATCH(DMI_PRODUCT_NAME, "X542BP"),}, NULL}, 1910 { 1911 ec_honor_ecdt_gpe, "ASUS X550VXK", { 1912 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1913 DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL}, 1914 { 1915 ec_honor_ecdt_gpe, "ASUS X580VD", { 1916 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1917 DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL}, 1918 { 1919 /* https://bugzilla.kernel.org/show_bug.cgi?id=209989 */ 1920 ec_honor_dsdt_gpe, "HP Pavilion Gaming Laptop 15-cx0xxx", { 1921 DMI_MATCH(DMI_SYS_VENDOR, "HP"), 1922 DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),}, NULL}, 1923 { 1924 ec_clear_on_resume, "Samsung hardware", { 1925 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL}, 1926 {}, 1927 }; 1928 1929 void __init acpi_ec_ecdt_probe(void) 1930 { 1931 struct acpi_table_ecdt *ecdt_ptr; 1932 struct acpi_ec *ec; 1933 acpi_status status; 1934 int ret; 1935 1936 /* Generate a boot ec context. */ 1937 dmi_check_system(ec_dmi_table); 1938 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1939 (struct acpi_table_header **)&ecdt_ptr); 1940 if (ACPI_FAILURE(status)) 1941 return; 1942 1943 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) { 1944 /* 1945 * Asus X50GL: 1946 * https://bugzilla.kernel.org/show_bug.cgi?id=11880 1947 */ 1948 goto out; 1949 } 1950 1951 ec = acpi_ec_alloc(); 1952 if (!ec) 1953 goto out; 1954 1955 if (EC_FLAGS_CORRECT_ECDT) { 1956 ec->command_addr = ecdt_ptr->data.address; 1957 ec->data_addr = ecdt_ptr->control.address; 1958 } else { 1959 ec->command_addr = ecdt_ptr->control.address; 1960 ec->data_addr = ecdt_ptr->data.address; 1961 } 1962 1963 /* 1964 * Ignore the GPE value on Reduced Hardware platforms. 1965 * Some products have this set to an erroneous value. 1966 */ 1967 if (!acpi_gbl_reduced_hardware) 1968 ec->gpe = ecdt_ptr->gpe; 1969 1970 ec->handle = ACPI_ROOT_OBJECT; 1971 1972 /* 1973 * At this point, the namespace is not initialized, so do not find 1974 * the namespace objects, or handle the events. 1975 */ 1976 ret = acpi_ec_setup(ec, NULL); 1977 if (ret) { 1978 acpi_ec_free(ec); 1979 goto out; 1980 } 1981 1982 boot_ec = ec; 1983 boot_ec_is_ecdt = true; 1984 1985 pr_info("Boot ECDT EC used to handle transactions\n"); 1986 1987 out: 1988 acpi_put_table((struct acpi_table_header *)ecdt_ptr); 1989 } 1990 1991 #ifdef CONFIG_PM_SLEEP 1992 static int acpi_ec_suspend(struct device *dev) 1993 { 1994 struct acpi_ec *ec = 1995 acpi_driver_data(to_acpi_device(dev)); 1996 1997 if (!pm_suspend_no_platform() && ec_freeze_events) 1998 acpi_ec_disable_event(ec); 1999 return 0; 2000 } 2001 2002 static int acpi_ec_suspend_noirq(struct device *dev) 2003 { 2004 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 2005 2006 /* 2007 * The SCI handler doesn't run at this point, so the GPE can be 2008 * masked at the low level without side effects. 2009 */ 2010 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 2011 ec->gpe >= 0 && ec->reference_count >= 1) 2012 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 2013 2014 acpi_ec_enter_noirq(ec); 2015 2016 return 0; 2017 } 2018 2019 static int acpi_ec_resume_noirq(struct device *dev) 2020 { 2021 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 2022 2023 acpi_ec_leave_noirq(ec); 2024 2025 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 2026 ec->gpe >= 0 && ec->reference_count >= 1) 2027 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 2028 2029 return 0; 2030 } 2031 2032 static int acpi_ec_resume(struct device *dev) 2033 { 2034 struct acpi_ec *ec = 2035 acpi_driver_data(to_acpi_device(dev)); 2036 2037 acpi_ec_enable_event(ec); 2038 return 0; 2039 } 2040 2041 void acpi_ec_mark_gpe_for_wake(void) 2042 { 2043 if (first_ec && !ec_no_wakeup) 2044 acpi_mark_gpe_for_wake(NULL, first_ec->gpe); 2045 } 2046 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake); 2047 2048 void acpi_ec_set_gpe_wake_mask(u8 action) 2049 { 2050 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup) 2051 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action); 2052 } 2053 2054 static bool acpi_ec_work_in_progress(struct acpi_ec *ec) 2055 { 2056 return ec->events_in_progress + ec->queries_in_progress > 0; 2057 } 2058 2059 bool acpi_ec_dispatch_gpe(void) 2060 { 2061 bool work_in_progress = false; 2062 2063 if (!first_ec) 2064 return acpi_any_gpe_status_set(U32_MAX); 2065 2066 /* 2067 * Report wakeup if the status bit is set for any enabled GPE other 2068 * than the EC one. 2069 */ 2070 if (acpi_any_gpe_status_set(first_ec->gpe)) 2071 return true; 2072 2073 /* 2074 * Cancel the SCI wakeup and process all pending events in case there 2075 * are any wakeup ones in there. 2076 * 2077 * Note that if any non-EC GPEs are active at this point, the SCI will 2078 * retrigger after the rearming in acpi_s2idle_wake(), so no events 2079 * should be missed by canceling the wakeup here. 2080 */ 2081 pm_system_cancel_wakeup(); 2082 2083 /* 2084 * Dispatch the EC GPE in-band, but do not report wakeup in any case 2085 * to allow the caller to process events properly after that. 2086 */ 2087 spin_lock_irq(&first_ec->lock); 2088 2089 if (acpi_ec_gpe_status_set(first_ec)) { 2090 pm_pr_dbg("ACPI EC GPE status set\n"); 2091 2092 advance_transaction(first_ec, false); 2093 work_in_progress = acpi_ec_work_in_progress(first_ec); 2094 } 2095 2096 spin_unlock_irq(&first_ec->lock); 2097 2098 if (!work_in_progress) 2099 return false; 2100 2101 pm_pr_dbg("ACPI EC GPE dispatched\n"); 2102 2103 /* Drain EC work. */ 2104 do { 2105 acpi_ec_flush_work(); 2106 2107 pm_pr_dbg("ACPI EC work flushed\n"); 2108 2109 spin_lock_irq(&first_ec->lock); 2110 2111 work_in_progress = acpi_ec_work_in_progress(first_ec); 2112 2113 spin_unlock_irq(&first_ec->lock); 2114 } while (work_in_progress && !pm_wakeup_pending()); 2115 2116 return false; 2117 } 2118 #endif /* CONFIG_PM_SLEEP */ 2119 2120 static const struct dev_pm_ops acpi_ec_pm = { 2121 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq) 2122 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume) 2123 }; 2124 2125 static int param_set_event_clearing(const char *val, 2126 const struct kernel_param *kp) 2127 { 2128 int result = 0; 2129 2130 if (!strncmp(val, "status", sizeof("status") - 1)) { 2131 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 2132 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n"); 2133 } else if (!strncmp(val, "query", sizeof("query") - 1)) { 2134 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY; 2135 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n"); 2136 } else if (!strncmp(val, "event", sizeof("event") - 1)) { 2137 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT; 2138 pr_info("Assuming SCI_EVT clearing on event reads\n"); 2139 } else 2140 result = -EINVAL; 2141 return result; 2142 } 2143 2144 static int param_get_event_clearing(char *buffer, 2145 const struct kernel_param *kp) 2146 { 2147 switch (ec_event_clearing) { 2148 case ACPI_EC_EVT_TIMING_STATUS: 2149 return sprintf(buffer, "status\n"); 2150 case ACPI_EC_EVT_TIMING_QUERY: 2151 return sprintf(buffer, "query\n"); 2152 case ACPI_EC_EVT_TIMING_EVENT: 2153 return sprintf(buffer, "event\n"); 2154 default: 2155 return sprintf(buffer, "invalid\n"); 2156 } 2157 return 0; 2158 } 2159 2160 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing, 2161 NULL, 0644); 2162 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing"); 2163 2164 static struct acpi_driver acpi_ec_driver = { 2165 .name = "ec", 2166 .class = ACPI_EC_CLASS, 2167 .ids = ec_device_ids, 2168 .ops = { 2169 .add = acpi_ec_add, 2170 .remove = acpi_ec_remove, 2171 }, 2172 .drv.pm = &acpi_ec_pm, 2173 }; 2174 2175 static void acpi_ec_destroy_workqueues(void) 2176 { 2177 if (ec_wq) { 2178 destroy_workqueue(ec_wq); 2179 ec_wq = NULL; 2180 } 2181 if (ec_query_wq) { 2182 destroy_workqueue(ec_query_wq); 2183 ec_query_wq = NULL; 2184 } 2185 } 2186 2187 static int acpi_ec_init_workqueues(void) 2188 { 2189 if (!ec_wq) 2190 ec_wq = alloc_ordered_workqueue("kec", 0); 2191 2192 if (!ec_query_wq) 2193 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries); 2194 2195 if (!ec_wq || !ec_query_wq) { 2196 acpi_ec_destroy_workqueues(); 2197 return -ENODEV; 2198 } 2199 return 0; 2200 } 2201 2202 static const struct dmi_system_id acpi_ec_no_wakeup[] = { 2203 { 2204 .ident = "Thinkpad X1 Carbon 6th", 2205 .matches = { 2206 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2207 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"), 2208 }, 2209 }, 2210 { 2211 .ident = "ThinkPad X1 Carbon 6th", 2212 .matches = { 2213 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2214 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Carbon 6th"), 2215 }, 2216 }, 2217 { 2218 .ident = "ThinkPad X1 Yoga 3rd", 2219 .matches = { 2220 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2221 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"), 2222 }, 2223 }, 2224 { 2225 .ident = "HP ZHAN 66 Pro", 2226 .matches = { 2227 DMI_MATCH(DMI_SYS_VENDOR, "HP"), 2228 DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"), 2229 }, 2230 }, 2231 { }, 2232 }; 2233 2234 void __init acpi_ec_init(void) 2235 { 2236 int result; 2237 2238 result = acpi_ec_init_workqueues(); 2239 if (result) 2240 return; 2241 2242 /* 2243 * Disable EC wakeup on following systems to prevent periodic 2244 * wakeup from EC GPE. 2245 */ 2246 if (dmi_check_system(acpi_ec_no_wakeup)) { 2247 ec_no_wakeup = true; 2248 pr_debug("Disabling EC wakeup on suspend-to-idle\n"); 2249 } 2250 2251 /* Driver must be registered after acpi_ec_init_workqueues(). */ 2252 acpi_bus_register_driver(&acpi_ec_driver); 2253 2254 acpi_ec_ecdt_start(); 2255 } 2256 2257 /* EC driver currently not unloadable */ 2258 #if 0 2259 static void __exit acpi_ec_exit(void) 2260 { 2261 2262 acpi_bus_unregister_driver(&acpi_ec_driver); 2263 acpi_ec_destroy_workqueues(); 2264 } 2265 #endif /* 0 */ 2266