xref: /linux/drivers/acpi/ec.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  ec.c - ACPI Embedded Controller Driver (v3)
4  *
5  *  Copyright (C) 2001-2015 Intel Corporation
6  *    Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7  *            2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8  *            2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  *            2004       Luming Yu <luming.yu@intel.com>
10  *            2001, 2002 Andy Grover <andrew.grover@intel.com>
11  *            2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12  *  Copyright (C) 2008      Alexey Starikovskiy <astarikovskiy@suse.de>
13  */
14 
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32 
33 #include "internal.h"
34 
35 #define ACPI_EC_CLASS			"embedded_controller"
36 #define ACPI_EC_DEVICE_NAME		"Embedded Controller"
37 
38 /* EC status register */
39 #define ACPI_EC_FLAG_OBF	0x01	/* Output buffer full */
40 #define ACPI_EC_FLAG_IBF	0x02	/* Input buffer full */
41 #define ACPI_EC_FLAG_CMD	0x08	/* Input buffer contains a command */
42 #define ACPI_EC_FLAG_BURST	0x10	/* burst mode */
43 #define ACPI_EC_FLAG_SCI	0x20	/* EC-SCI occurred */
44 
45 /*
46  * The SCI_EVT clearing timing is not defined by the ACPI specification.
47  * This leads to lots of practical timing issues for the host EC driver.
48  * The following variations are defined (from the target EC firmware's
49  * perspective):
50  * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
51  *         target can clear SCI_EVT at any time so long as the host can see
52  *         the indication by reading the status register (EC_SC). So the
53  *         host should re-check SCI_EVT after the first time the SCI_EVT
54  *         indication is seen, which is the same time the query request
55  *         (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
56  *         at any later time could indicate another event. Normally such
57  *         kind of EC firmware has implemented an event queue and will
58  *         return 0x00 to indicate "no outstanding event".
59  * QUERY: After seeing the query request (QR_EC) written to the command
60  *        register (EC_CMD) by the host and having prepared the responding
61  *        event value in the data register (EC_DATA), the target can safely
62  *        clear SCI_EVT because the target can confirm that the current
63  *        event is being handled by the host. The host then should check
64  *        SCI_EVT right after reading the event response from the data
65  *        register (EC_DATA).
66  * EVENT: After seeing the event response read from the data register
67  *        (EC_DATA) by the host, the target can clear SCI_EVT. As the
68  *        target requires time to notice the change in the data register
69  *        (EC_DATA), the host may be required to wait additional guarding
70  *        time before checking the SCI_EVT again. Such guarding may not be
71  *        necessary if the host is notified via another IRQ.
72  */
73 #define ACPI_EC_EVT_TIMING_STATUS	0x00
74 #define ACPI_EC_EVT_TIMING_QUERY	0x01
75 #define ACPI_EC_EVT_TIMING_EVENT	0x02
76 
77 /* EC commands */
78 enum ec_command {
79 	ACPI_EC_COMMAND_READ = 0x80,
80 	ACPI_EC_COMMAND_WRITE = 0x81,
81 	ACPI_EC_BURST_ENABLE = 0x82,
82 	ACPI_EC_BURST_DISABLE = 0x83,
83 	ACPI_EC_COMMAND_QUERY = 0x84,
84 };
85 
86 #define ACPI_EC_DELAY		500	/* Wait 500ms max. during EC ops */
87 #define ACPI_EC_UDELAY_GLK	1000	/* Wait 1ms max. to get global lock */
88 #define ACPI_EC_UDELAY_POLL	550	/* Wait 1ms for EC transaction polling */
89 #define ACPI_EC_CLEAR_MAX	100	/* Maximum number of events to query
90 					 * when trying to clear the EC */
91 #define ACPI_EC_MAX_QUERIES	16	/* Maximum number of parallel queries */
92 
93 enum {
94 	EC_FLAGS_QUERY_ENABLED,		/* Query is enabled */
95 	EC_FLAGS_EVENT_HANDLER_INSTALLED,	/* Event handler installed */
96 	EC_FLAGS_EC_HANDLER_INSTALLED,	/* OpReg handler installed */
97 	EC_FLAGS_EC_REG_CALLED,		/* OpReg ACPI _REG method called */
98 	EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
99 	EC_FLAGS_STARTED,		/* Driver is started */
100 	EC_FLAGS_STOPPED,		/* Driver is stopped */
101 	EC_FLAGS_EVENTS_MASKED,		/* Events masked */
102 };
103 
104 #define ACPI_EC_COMMAND_POLL		0x01 /* Available for command byte */
105 #define ACPI_EC_COMMAND_COMPLETE	0x02 /* Completed last byte */
106 
107 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
108 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
109 module_param(ec_delay, uint, 0644);
110 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
111 
112 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
113 module_param(ec_max_queries, uint, 0644);
114 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
115 
116 static bool ec_busy_polling __read_mostly;
117 module_param(ec_busy_polling, bool, 0644);
118 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
119 
120 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
121 module_param(ec_polling_guard, uint, 0644);
122 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
123 
124 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
125 
126 /*
127  * If the number of false interrupts per one transaction exceeds
128  * this threshold, will think there is a GPE storm happened and
129  * will disable the GPE for normal transaction.
130  */
131 static unsigned int ec_storm_threshold  __read_mostly = 8;
132 module_param(ec_storm_threshold, uint, 0644);
133 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
134 
135 static bool ec_freeze_events __read_mostly;
136 module_param(ec_freeze_events, bool, 0644);
137 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
138 
139 static bool ec_no_wakeup __read_mostly;
140 module_param(ec_no_wakeup, bool, 0644);
141 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
142 
143 struct acpi_ec_query_handler {
144 	struct list_head node;
145 	acpi_ec_query_func func;
146 	acpi_handle handle;
147 	void *data;
148 	u8 query_bit;
149 	struct kref kref;
150 };
151 
152 struct transaction {
153 	const u8 *wdata;
154 	u8 *rdata;
155 	unsigned short irq_count;
156 	u8 command;
157 	u8 wi;
158 	u8 ri;
159 	u8 wlen;
160 	u8 rlen;
161 	u8 flags;
162 };
163 
164 struct acpi_ec_query {
165 	struct transaction transaction;
166 	struct work_struct work;
167 	struct acpi_ec_query_handler *handler;
168 	struct acpi_ec *ec;
169 };
170 
171 static int acpi_ec_submit_query(struct acpi_ec *ec);
172 static void advance_transaction(struct acpi_ec *ec, bool interrupt);
173 static void acpi_ec_event_handler(struct work_struct *work);
174 
175 struct acpi_ec *first_ec;
176 EXPORT_SYMBOL(first_ec);
177 
178 static struct acpi_ec *boot_ec;
179 static bool boot_ec_is_ecdt;
180 static struct workqueue_struct *ec_wq;
181 static struct workqueue_struct *ec_query_wq;
182 
183 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
184 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */
185 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
186 
187 /* --------------------------------------------------------------------------
188  *                           Logging/Debugging
189  * -------------------------------------------------------------------------- */
190 
191 /*
192  * Splitters used by the developers to track the boundary of the EC
193  * handling processes.
194  */
195 #ifdef DEBUG
196 #define EC_DBG_SEP	" "
197 #define EC_DBG_DRV	"+++++"
198 #define EC_DBG_STM	"====="
199 #define EC_DBG_REQ	"*****"
200 #define EC_DBG_EVT	"#####"
201 #else
202 #define EC_DBG_SEP	""
203 #define EC_DBG_DRV
204 #define EC_DBG_STM
205 #define EC_DBG_REQ
206 #define EC_DBG_EVT
207 #endif
208 
209 #define ec_log_raw(fmt, ...) \
210 	pr_info(fmt "\n", ##__VA_ARGS__)
211 #define ec_dbg_raw(fmt, ...) \
212 	pr_debug(fmt "\n", ##__VA_ARGS__)
213 #define ec_log(filter, fmt, ...) \
214 	ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
215 #define ec_dbg(filter, fmt, ...) \
216 	ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
217 
218 #define ec_log_drv(fmt, ...) \
219 	ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
220 #define ec_dbg_drv(fmt, ...) \
221 	ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
222 #define ec_dbg_stm(fmt, ...) \
223 	ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
224 #define ec_dbg_req(fmt, ...) \
225 	ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
226 #define ec_dbg_evt(fmt, ...) \
227 	ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
228 #define ec_dbg_ref(ec, fmt, ...) \
229 	ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
230 
231 /* --------------------------------------------------------------------------
232  *                           Device Flags
233  * -------------------------------------------------------------------------- */
234 
235 static bool acpi_ec_started(struct acpi_ec *ec)
236 {
237 	return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
238 	       !test_bit(EC_FLAGS_STOPPED, &ec->flags);
239 }
240 
241 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
242 {
243 	/*
244 	 * There is an OSPM early stage logic. During the early stages
245 	 * (boot/resume), OSPMs shouldn't enable the event handling, only
246 	 * the EC transactions are allowed to be performed.
247 	 */
248 	if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
249 		return false;
250 	/*
251 	 * However, disabling the event handling is experimental for late
252 	 * stage (suspend), and is controlled by the boot parameter of
253 	 * "ec_freeze_events":
254 	 * 1. true:  The EC event handling is disabled before entering
255 	 *           the noirq stage.
256 	 * 2. false: The EC event handling is automatically disabled as
257 	 *           soon as the EC driver is stopped.
258 	 */
259 	if (ec_freeze_events)
260 		return acpi_ec_started(ec);
261 	else
262 		return test_bit(EC_FLAGS_STARTED, &ec->flags);
263 }
264 
265 static bool acpi_ec_flushed(struct acpi_ec *ec)
266 {
267 	return ec->reference_count == 1;
268 }
269 
270 /* --------------------------------------------------------------------------
271  *                           EC Registers
272  * -------------------------------------------------------------------------- */
273 
274 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
275 {
276 	u8 x = inb(ec->command_addr);
277 
278 	ec_dbg_raw("EC_SC(R) = 0x%2.2x "
279 		   "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
280 		   x,
281 		   !!(x & ACPI_EC_FLAG_SCI),
282 		   !!(x & ACPI_EC_FLAG_BURST),
283 		   !!(x & ACPI_EC_FLAG_CMD),
284 		   !!(x & ACPI_EC_FLAG_IBF),
285 		   !!(x & ACPI_EC_FLAG_OBF));
286 	return x;
287 }
288 
289 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
290 {
291 	u8 x = inb(ec->data_addr);
292 
293 	ec->timestamp = jiffies;
294 	ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
295 	return x;
296 }
297 
298 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
299 {
300 	ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
301 	outb(command, ec->command_addr);
302 	ec->timestamp = jiffies;
303 }
304 
305 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
306 {
307 	ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
308 	outb(data, ec->data_addr);
309 	ec->timestamp = jiffies;
310 }
311 
312 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
313 static const char *acpi_ec_cmd_string(u8 cmd)
314 {
315 	switch (cmd) {
316 	case 0x80:
317 		return "RD_EC";
318 	case 0x81:
319 		return "WR_EC";
320 	case 0x82:
321 		return "BE_EC";
322 	case 0x83:
323 		return "BD_EC";
324 	case 0x84:
325 		return "QR_EC";
326 	}
327 	return "UNKNOWN";
328 }
329 #else
330 #define acpi_ec_cmd_string(cmd)		"UNDEF"
331 #endif
332 
333 /* --------------------------------------------------------------------------
334  *                           GPE Registers
335  * -------------------------------------------------------------------------- */
336 
337 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec)
338 {
339 	acpi_event_status gpe_status = 0;
340 
341 	(void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
342 	return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET);
343 }
344 
345 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
346 {
347 	if (open)
348 		acpi_enable_gpe(NULL, ec->gpe);
349 	else {
350 		BUG_ON(ec->reference_count < 1);
351 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
352 	}
353 	if (acpi_ec_gpe_status_set(ec)) {
354 		/*
355 		 * On some platforms, EN=1 writes cannot trigger GPE. So
356 		 * software need to manually trigger a pseudo GPE event on
357 		 * EN=1 writes.
358 		 */
359 		ec_dbg_raw("Polling quirk");
360 		advance_transaction(ec, false);
361 	}
362 }
363 
364 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
365 {
366 	if (close)
367 		acpi_disable_gpe(NULL, ec->gpe);
368 	else {
369 		BUG_ON(ec->reference_count < 1);
370 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
371 	}
372 }
373 
374 /* --------------------------------------------------------------------------
375  *                           Transaction Management
376  * -------------------------------------------------------------------------- */
377 
378 static void acpi_ec_submit_request(struct acpi_ec *ec)
379 {
380 	ec->reference_count++;
381 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
382 	    ec->gpe >= 0 && ec->reference_count == 1)
383 		acpi_ec_enable_gpe(ec, true);
384 }
385 
386 static void acpi_ec_complete_request(struct acpi_ec *ec)
387 {
388 	bool flushed = false;
389 
390 	ec->reference_count--;
391 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
392 	    ec->gpe >= 0 && ec->reference_count == 0)
393 		acpi_ec_disable_gpe(ec, true);
394 	flushed = acpi_ec_flushed(ec);
395 	if (flushed)
396 		wake_up(&ec->wait);
397 }
398 
399 static void acpi_ec_mask_events(struct acpi_ec *ec)
400 {
401 	if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
402 		if (ec->gpe >= 0)
403 			acpi_ec_disable_gpe(ec, false);
404 		else
405 			disable_irq_nosync(ec->irq);
406 
407 		ec_dbg_drv("Polling enabled");
408 		set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
409 	}
410 }
411 
412 static void acpi_ec_unmask_events(struct acpi_ec *ec)
413 {
414 	if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
415 		clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
416 		if (ec->gpe >= 0)
417 			acpi_ec_enable_gpe(ec, false);
418 		else
419 			enable_irq(ec->irq);
420 
421 		ec_dbg_drv("Polling disabled");
422 	}
423 }
424 
425 /*
426  * acpi_ec_submit_flushable_request() - Increase the reference count unless
427  *                                      the flush operation is not in
428  *                                      progress
429  * @ec: the EC device
430  *
431  * This function must be used before taking a new action that should hold
432  * the reference count.  If this function returns false, then the action
433  * must be discarded or it will prevent the flush operation from being
434  * completed.
435  */
436 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
437 {
438 	if (!acpi_ec_started(ec))
439 		return false;
440 	acpi_ec_submit_request(ec);
441 	return true;
442 }
443 
444 static void acpi_ec_submit_event(struct acpi_ec *ec)
445 {
446 	/*
447 	 * It is safe to mask the events here, because acpi_ec_close_event()
448 	 * will run at least once after this.
449 	 */
450 	acpi_ec_mask_events(ec);
451 	if (!acpi_ec_event_enabled(ec))
452 		return;
453 
454 	if (ec->event_state != EC_EVENT_READY)
455 		return;
456 
457 	ec_dbg_evt("Command(%s) submitted/blocked",
458 		   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
459 
460 	ec->event_state = EC_EVENT_IN_PROGRESS;
461 	/*
462 	 * If events_to_process is greater than 0 at this point, the while ()
463 	 * loop in acpi_ec_event_handler() is still running and incrementing
464 	 * events_to_process will cause it to invoke acpi_ec_submit_query() once
465 	 * more, so it is not necessary to queue up the event work to start the
466 	 * same loop again.
467 	 */
468 	if (ec->events_to_process++ > 0)
469 		return;
470 
471 	ec->events_in_progress++;
472 	queue_work(ec_wq, &ec->work);
473 }
474 
475 static void acpi_ec_complete_event(struct acpi_ec *ec)
476 {
477 	if (ec->event_state == EC_EVENT_IN_PROGRESS)
478 		ec->event_state = EC_EVENT_COMPLETE;
479 }
480 
481 static void acpi_ec_close_event(struct acpi_ec *ec)
482 {
483 	if (ec->event_state != EC_EVENT_READY)
484 		ec_dbg_evt("Command(%s) unblocked",
485 			   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
486 
487 	ec->event_state = EC_EVENT_READY;
488 	acpi_ec_unmask_events(ec);
489 }
490 
491 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
492 {
493 	if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
494 		ec_log_drv("event unblocked");
495 	/*
496 	 * Unconditionally invoke this once after enabling the event
497 	 * handling mechanism to detect the pending events.
498 	 */
499 	advance_transaction(ec, false);
500 }
501 
502 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
503 {
504 	if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
505 		ec_log_drv("event blocked");
506 }
507 
508 /*
509  * Process _Q events that might have accumulated in the EC.
510  * Run with locked ec mutex.
511  */
512 static void acpi_ec_clear(struct acpi_ec *ec)
513 {
514 	int i;
515 
516 	for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
517 		if (acpi_ec_submit_query(ec))
518 			break;
519 	}
520 	if (unlikely(i == ACPI_EC_CLEAR_MAX))
521 		pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
522 	else
523 		pr_info("%d stale EC events cleared\n", i);
524 }
525 
526 static void acpi_ec_enable_event(struct acpi_ec *ec)
527 {
528 	spin_lock(&ec->lock);
529 	if (acpi_ec_started(ec))
530 		__acpi_ec_enable_event(ec);
531 	spin_unlock(&ec->lock);
532 
533 	/* Drain additional events if hardware requires that */
534 	if (EC_FLAGS_CLEAR_ON_RESUME)
535 		acpi_ec_clear(ec);
536 }
537 
538 #ifdef CONFIG_PM_SLEEP
539 static void __acpi_ec_flush_work(void)
540 {
541 	flush_workqueue(ec_wq); /* flush ec->work */
542 	flush_workqueue(ec_query_wq); /* flush queries */
543 }
544 
545 static void acpi_ec_disable_event(struct acpi_ec *ec)
546 {
547 	spin_lock(&ec->lock);
548 	__acpi_ec_disable_event(ec);
549 	spin_unlock(&ec->lock);
550 
551 	/*
552 	 * When ec_freeze_events is true, we need to flush events in
553 	 * the proper position before entering the noirq stage.
554 	 */
555 	__acpi_ec_flush_work();
556 }
557 
558 void acpi_ec_flush_work(void)
559 {
560 	/* Without ec_wq there is nothing to flush. */
561 	if (!ec_wq)
562 		return;
563 
564 	__acpi_ec_flush_work();
565 }
566 #endif /* CONFIG_PM_SLEEP */
567 
568 static bool acpi_ec_guard_event(struct acpi_ec *ec)
569 {
570 	bool guarded;
571 
572 	spin_lock(&ec->lock);
573 	/*
574 	 * If firmware SCI_EVT clearing timing is "event", we actually
575 	 * don't know when the SCI_EVT will be cleared by firmware after
576 	 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
577 	 * acceptable period.
578 	 *
579 	 * The guarding period is applicable if the event state is not
580 	 * EC_EVENT_READY, but otherwise if the current transaction is of the
581 	 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already
582 	 * and it should not be applied to let the transaction transition into
583 	 * the ACPI_EC_COMMAND_POLL state immediately.
584 	 */
585 	guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
586 		ec->event_state != EC_EVENT_READY &&
587 		(!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY);
588 	spin_unlock(&ec->lock);
589 	return guarded;
590 }
591 
592 static int ec_transaction_polled(struct acpi_ec *ec)
593 {
594 	int ret = 0;
595 
596 	spin_lock(&ec->lock);
597 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
598 		ret = 1;
599 	spin_unlock(&ec->lock);
600 	return ret;
601 }
602 
603 static int ec_transaction_completed(struct acpi_ec *ec)
604 {
605 	int ret = 0;
606 
607 	spin_lock(&ec->lock);
608 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
609 		ret = 1;
610 	spin_unlock(&ec->lock);
611 	return ret;
612 }
613 
614 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
615 {
616 	ec->curr->flags |= flag;
617 
618 	if (ec->curr->command != ACPI_EC_COMMAND_QUERY)
619 		return;
620 
621 	switch (ec_event_clearing) {
622 	case ACPI_EC_EVT_TIMING_STATUS:
623 		if (flag == ACPI_EC_COMMAND_POLL)
624 			acpi_ec_close_event(ec);
625 
626 		return;
627 
628 	case ACPI_EC_EVT_TIMING_QUERY:
629 		if (flag == ACPI_EC_COMMAND_COMPLETE)
630 			acpi_ec_close_event(ec);
631 
632 		return;
633 
634 	case ACPI_EC_EVT_TIMING_EVENT:
635 		if (flag == ACPI_EC_COMMAND_COMPLETE)
636 			acpi_ec_complete_event(ec);
637 	}
638 }
639 
640 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t)
641 {
642 	if (t->irq_count < ec_storm_threshold)
643 		++t->irq_count;
644 
645 	/* Trigger if the threshold is 0 too. */
646 	if (t->irq_count == ec_storm_threshold)
647 		acpi_ec_mask_events(ec);
648 }
649 
650 static void advance_transaction(struct acpi_ec *ec, bool interrupt)
651 {
652 	struct transaction *t = ec->curr;
653 	bool wakeup = false;
654 	u8 status;
655 
656 	ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id());
657 
658 	status = acpi_ec_read_status(ec);
659 
660 	/*
661 	 * Another IRQ or a guarded polling mode advancement is detected,
662 	 * the next QR_EC submission is then allowed.
663 	 */
664 	if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
665 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
666 		    ec->event_state == EC_EVENT_COMPLETE)
667 			acpi_ec_close_event(ec);
668 
669 		if (!t)
670 			goto out;
671 	}
672 
673 	if (t->flags & ACPI_EC_COMMAND_POLL) {
674 		if (t->wlen > t->wi) {
675 			if (!(status & ACPI_EC_FLAG_IBF))
676 				acpi_ec_write_data(ec, t->wdata[t->wi++]);
677 			else if (interrupt && !(status & ACPI_EC_FLAG_SCI))
678 				acpi_ec_spurious_interrupt(ec, t);
679 		} else if (t->rlen > t->ri) {
680 			if (status & ACPI_EC_FLAG_OBF) {
681 				t->rdata[t->ri++] = acpi_ec_read_data(ec);
682 				if (t->rlen == t->ri) {
683 					ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
684 					wakeup = true;
685 					if (t->command == ACPI_EC_COMMAND_QUERY)
686 						ec_dbg_evt("Command(%s) completed by hardware",
687 							   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
688 				}
689 			} else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) {
690 				acpi_ec_spurious_interrupt(ec, t);
691 			}
692 		} else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) {
693 			ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
694 			wakeup = true;
695 		}
696 	} else if (!(status & ACPI_EC_FLAG_IBF)) {
697 		acpi_ec_write_cmd(ec, t->command);
698 		ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
699 	}
700 
701 out:
702 	if (status & ACPI_EC_FLAG_SCI)
703 		acpi_ec_submit_event(ec);
704 
705 	if (wakeup && interrupt)
706 		wake_up(&ec->wait);
707 }
708 
709 static void start_transaction(struct acpi_ec *ec)
710 {
711 	ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
712 	ec->curr->flags = 0;
713 }
714 
715 static int ec_guard(struct acpi_ec *ec)
716 {
717 	unsigned long guard = usecs_to_jiffies(ec->polling_guard);
718 	unsigned long timeout = ec->timestamp + guard;
719 
720 	/* Ensure guarding period before polling EC status */
721 	do {
722 		if (ec->busy_polling) {
723 			/* Perform busy polling */
724 			if (ec_transaction_completed(ec))
725 				return 0;
726 			udelay(jiffies_to_usecs(guard));
727 		} else {
728 			/*
729 			 * Perform wait polling
730 			 * 1. Wait the transaction to be completed by the
731 			 *    GPE handler after the transaction enters
732 			 *    ACPI_EC_COMMAND_POLL state.
733 			 * 2. A special guarding logic is also required
734 			 *    for event clearing mode "event" before the
735 			 *    transaction enters ACPI_EC_COMMAND_POLL
736 			 *    state.
737 			 */
738 			if (!ec_transaction_polled(ec) &&
739 			    !acpi_ec_guard_event(ec))
740 				break;
741 			if (wait_event_timeout(ec->wait,
742 					       ec_transaction_completed(ec),
743 					       guard))
744 				return 0;
745 		}
746 	} while (time_before(jiffies, timeout));
747 	return -ETIME;
748 }
749 
750 static int ec_poll(struct acpi_ec *ec)
751 {
752 	int repeat = 5; /* number of command restarts */
753 
754 	while (repeat--) {
755 		unsigned long delay = jiffies +
756 			msecs_to_jiffies(ec_delay);
757 		do {
758 			if (!ec_guard(ec))
759 				return 0;
760 			spin_lock(&ec->lock);
761 			advance_transaction(ec, false);
762 			spin_unlock(&ec->lock);
763 		} while (time_before(jiffies, delay));
764 		pr_debug("controller reset, restart transaction\n");
765 		spin_lock(&ec->lock);
766 		start_transaction(ec);
767 		spin_unlock(&ec->lock);
768 	}
769 	return -ETIME;
770 }
771 
772 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
773 					struct transaction *t)
774 {
775 	int ret = 0;
776 
777 	/* start transaction */
778 	spin_lock(&ec->lock);
779 	/* Enable GPE for command processing (IBF=0/OBF=1) */
780 	if (!acpi_ec_submit_flushable_request(ec)) {
781 		ret = -EINVAL;
782 		goto unlock;
783 	}
784 	ec_dbg_ref(ec, "Increase command");
785 	/* following two actions should be kept atomic */
786 	ec->curr = t;
787 	ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
788 	start_transaction(ec);
789 	spin_unlock(&ec->lock);
790 
791 	ret = ec_poll(ec);
792 
793 	spin_lock(&ec->lock);
794 	if (t->irq_count == ec_storm_threshold)
795 		acpi_ec_unmask_events(ec);
796 	ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
797 	ec->curr = NULL;
798 	/* Disable GPE for command processing (IBF=0/OBF=1) */
799 	acpi_ec_complete_request(ec);
800 	ec_dbg_ref(ec, "Decrease command");
801 unlock:
802 	spin_unlock(&ec->lock);
803 	return ret;
804 }
805 
806 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
807 {
808 	int status;
809 	u32 glk;
810 
811 	if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
812 		return -EINVAL;
813 	if (t->rdata)
814 		memset(t->rdata, 0, t->rlen);
815 
816 	mutex_lock(&ec->mutex);
817 	if (ec->global_lock) {
818 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
819 		if (ACPI_FAILURE(status)) {
820 			status = -ENODEV;
821 			goto unlock;
822 		}
823 	}
824 
825 	status = acpi_ec_transaction_unlocked(ec, t);
826 
827 	if (ec->global_lock)
828 		acpi_release_global_lock(glk);
829 unlock:
830 	mutex_unlock(&ec->mutex);
831 	return status;
832 }
833 
834 static int acpi_ec_burst_enable(struct acpi_ec *ec)
835 {
836 	u8 d;
837 	struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
838 				.wdata = NULL, .rdata = &d,
839 				.wlen = 0, .rlen = 1};
840 
841 	return acpi_ec_transaction(ec, &t);
842 }
843 
844 static int acpi_ec_burst_disable(struct acpi_ec *ec)
845 {
846 	struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
847 				.wdata = NULL, .rdata = NULL,
848 				.wlen = 0, .rlen = 0};
849 
850 	return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
851 				acpi_ec_transaction(ec, &t) : 0;
852 }
853 
854 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
855 {
856 	int result;
857 	u8 d;
858 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
859 				.wdata = &address, .rdata = &d,
860 				.wlen = 1, .rlen = 1};
861 
862 	result = acpi_ec_transaction(ec, &t);
863 	*data = d;
864 	return result;
865 }
866 
867 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
868 {
869 	u8 wdata[2] = { address, data };
870 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
871 				.wdata = wdata, .rdata = NULL,
872 				.wlen = 2, .rlen = 0};
873 
874 	return acpi_ec_transaction(ec, &t);
875 }
876 
877 int ec_read(u8 addr, u8 *val)
878 {
879 	int err;
880 	u8 temp_data;
881 
882 	if (!first_ec)
883 		return -ENODEV;
884 
885 	err = acpi_ec_read(first_ec, addr, &temp_data);
886 
887 	if (!err) {
888 		*val = temp_data;
889 		return 0;
890 	}
891 	return err;
892 }
893 EXPORT_SYMBOL(ec_read);
894 
895 int ec_write(u8 addr, u8 val)
896 {
897 	if (!first_ec)
898 		return -ENODEV;
899 
900 	return acpi_ec_write(first_ec, addr, val);
901 }
902 EXPORT_SYMBOL(ec_write);
903 
904 int ec_transaction(u8 command,
905 		   const u8 *wdata, unsigned wdata_len,
906 		   u8 *rdata, unsigned rdata_len)
907 {
908 	struct transaction t = {.command = command,
909 				.wdata = wdata, .rdata = rdata,
910 				.wlen = wdata_len, .rlen = rdata_len};
911 
912 	if (!first_ec)
913 		return -ENODEV;
914 
915 	return acpi_ec_transaction(first_ec, &t);
916 }
917 EXPORT_SYMBOL(ec_transaction);
918 
919 /* Get the handle to the EC device */
920 acpi_handle ec_get_handle(void)
921 {
922 	if (!first_ec)
923 		return NULL;
924 	return first_ec->handle;
925 }
926 EXPORT_SYMBOL(ec_get_handle);
927 
928 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
929 {
930 	spin_lock(&ec->lock);
931 	if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
932 		ec_dbg_drv("Starting EC");
933 		/* Enable GPE for event processing (SCI_EVT=1) */
934 		if (!resuming) {
935 			acpi_ec_submit_request(ec);
936 			ec_dbg_ref(ec, "Increase driver");
937 		}
938 		ec_log_drv("EC started");
939 	}
940 	spin_unlock(&ec->lock);
941 }
942 
943 static bool acpi_ec_stopped(struct acpi_ec *ec)
944 {
945 	bool flushed;
946 
947 	spin_lock(&ec->lock);
948 	flushed = acpi_ec_flushed(ec);
949 	spin_unlock(&ec->lock);
950 	return flushed;
951 }
952 
953 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
954 {
955 	spin_lock(&ec->lock);
956 	if (acpi_ec_started(ec)) {
957 		ec_dbg_drv("Stopping EC");
958 		set_bit(EC_FLAGS_STOPPED, &ec->flags);
959 		spin_unlock(&ec->lock);
960 		wait_event(ec->wait, acpi_ec_stopped(ec));
961 		spin_lock(&ec->lock);
962 		/* Disable GPE for event processing (SCI_EVT=1) */
963 		if (!suspending) {
964 			acpi_ec_complete_request(ec);
965 			ec_dbg_ref(ec, "Decrease driver");
966 		} else if (!ec_freeze_events)
967 			__acpi_ec_disable_event(ec);
968 		clear_bit(EC_FLAGS_STARTED, &ec->flags);
969 		clear_bit(EC_FLAGS_STOPPED, &ec->flags);
970 		ec_log_drv("EC stopped");
971 	}
972 	spin_unlock(&ec->lock);
973 }
974 
975 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
976 {
977 	spin_lock(&ec->lock);
978 	ec->busy_polling = true;
979 	ec->polling_guard = 0;
980 	ec_log_drv("interrupt blocked");
981 	spin_unlock(&ec->lock);
982 }
983 
984 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
985 {
986 	spin_lock(&ec->lock);
987 	ec->busy_polling = ec_busy_polling;
988 	ec->polling_guard = ec_polling_guard;
989 	ec_log_drv("interrupt unblocked");
990 	spin_unlock(&ec->lock);
991 }
992 
993 void acpi_ec_block_transactions(void)
994 {
995 	struct acpi_ec *ec = first_ec;
996 
997 	if (!ec)
998 		return;
999 
1000 	mutex_lock(&ec->mutex);
1001 	/* Prevent transactions from being carried out */
1002 	acpi_ec_stop(ec, true);
1003 	mutex_unlock(&ec->mutex);
1004 }
1005 
1006 void acpi_ec_unblock_transactions(void)
1007 {
1008 	/*
1009 	 * Allow transactions to happen again (this function is called from
1010 	 * atomic context during wakeup, so we don't need to acquire the mutex).
1011 	 */
1012 	if (first_ec)
1013 		acpi_ec_start(first_ec, true);
1014 }
1015 
1016 /* --------------------------------------------------------------------------
1017                                 Event Management
1018    -------------------------------------------------------------------------- */
1019 static struct acpi_ec_query_handler *
1020 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1021 {
1022 	struct acpi_ec_query_handler *handler;
1023 
1024 	mutex_lock(&ec->mutex);
1025 	list_for_each_entry(handler, &ec->list, node) {
1026 		if (value == handler->query_bit) {
1027 			kref_get(&handler->kref);
1028 			mutex_unlock(&ec->mutex);
1029 			return handler;
1030 		}
1031 	}
1032 	mutex_unlock(&ec->mutex);
1033 	return NULL;
1034 }
1035 
1036 static void acpi_ec_query_handler_release(struct kref *kref)
1037 {
1038 	struct acpi_ec_query_handler *handler =
1039 		container_of(kref, struct acpi_ec_query_handler, kref);
1040 
1041 	kfree(handler);
1042 }
1043 
1044 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1045 {
1046 	kref_put(&handler->kref, acpi_ec_query_handler_release);
1047 }
1048 
1049 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1050 			      acpi_handle handle, acpi_ec_query_func func,
1051 			      void *data)
1052 {
1053 	struct acpi_ec_query_handler *handler;
1054 
1055 	if (!handle && !func)
1056 		return -EINVAL;
1057 
1058 	handler = kzalloc(sizeof(*handler), GFP_KERNEL);
1059 	if (!handler)
1060 		return -ENOMEM;
1061 
1062 	handler->query_bit = query_bit;
1063 	handler->handle = handle;
1064 	handler->func = func;
1065 	handler->data = data;
1066 	mutex_lock(&ec->mutex);
1067 	kref_init(&handler->kref);
1068 	list_add(&handler->node, &ec->list);
1069 	mutex_unlock(&ec->mutex);
1070 
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1074 
1075 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1076 					  bool remove_all, u8 query_bit)
1077 {
1078 	struct acpi_ec_query_handler *handler, *tmp;
1079 	LIST_HEAD(free_list);
1080 
1081 	mutex_lock(&ec->mutex);
1082 	list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1083 		/*
1084 		 * When remove_all is false, only remove custom query handlers
1085 		 * which have handler->func set. This is done to preserve query
1086 		 * handlers discovered thru ACPI, as they should continue handling
1087 		 * EC queries.
1088 		 */
1089 		if (remove_all || (handler->func && handler->query_bit == query_bit)) {
1090 			list_del_init(&handler->node);
1091 			list_add(&handler->node, &free_list);
1092 
1093 		}
1094 	}
1095 	mutex_unlock(&ec->mutex);
1096 	list_for_each_entry_safe(handler, tmp, &free_list, node)
1097 		acpi_ec_put_query_handler(handler);
1098 }
1099 
1100 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1101 {
1102 	acpi_ec_remove_query_handlers(ec, false, query_bit);
1103 	flush_workqueue(ec_query_wq);
1104 }
1105 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1106 
1107 static void acpi_ec_event_processor(struct work_struct *work)
1108 {
1109 	struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1110 	struct acpi_ec_query_handler *handler = q->handler;
1111 	struct acpi_ec *ec = q->ec;
1112 
1113 	ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1114 
1115 	if (handler->func)
1116 		handler->func(handler->data);
1117 	else if (handler->handle)
1118 		acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1119 
1120 	ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1121 
1122 	spin_lock(&ec->lock);
1123 	ec->queries_in_progress--;
1124 	spin_unlock(&ec->lock);
1125 
1126 	acpi_ec_put_query_handler(handler);
1127 	kfree(q);
1128 }
1129 
1130 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval)
1131 {
1132 	struct acpi_ec_query *q;
1133 	struct transaction *t;
1134 
1135 	q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1136 	if (!q)
1137 		return NULL;
1138 
1139 	INIT_WORK(&q->work, acpi_ec_event_processor);
1140 	t = &q->transaction;
1141 	t->command = ACPI_EC_COMMAND_QUERY;
1142 	t->rdata = pval;
1143 	t->rlen = 1;
1144 	q->ec = ec;
1145 	return q;
1146 }
1147 
1148 static int acpi_ec_submit_query(struct acpi_ec *ec)
1149 {
1150 	struct acpi_ec_query *q;
1151 	u8 value = 0;
1152 	int result;
1153 
1154 	q = acpi_ec_create_query(ec, &value);
1155 	if (!q)
1156 		return -ENOMEM;
1157 
1158 	/*
1159 	 * Query the EC to find out which _Qxx method we need to evaluate.
1160 	 * Note that successful completion of the query causes the ACPI_EC_SCI
1161 	 * bit to be cleared (and thus clearing the interrupt source).
1162 	 */
1163 	result = acpi_ec_transaction(ec, &q->transaction);
1164 	if (result)
1165 		goto err_exit;
1166 
1167 	if (!value) {
1168 		result = -ENODATA;
1169 		goto err_exit;
1170 	}
1171 
1172 	q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1173 	if (!q->handler) {
1174 		result = -ENODATA;
1175 		goto err_exit;
1176 	}
1177 
1178 	/*
1179 	 * It is reported that _Qxx are evaluated in a parallel way on Windows:
1180 	 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1181 	 *
1182 	 * Put this log entry before queue_work() to make it appear in the log
1183 	 * before any other messages emitted during workqueue handling.
1184 	 */
1185 	ec_dbg_evt("Query(0x%02x) scheduled", value);
1186 
1187 	spin_lock(&ec->lock);
1188 
1189 	ec->queries_in_progress++;
1190 	queue_work(ec_query_wq, &q->work);
1191 
1192 	spin_unlock(&ec->lock);
1193 
1194 	return 0;
1195 
1196 err_exit:
1197 	kfree(q);
1198 
1199 	return result;
1200 }
1201 
1202 static void acpi_ec_event_handler(struct work_struct *work)
1203 {
1204 	struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1205 
1206 	ec_dbg_evt("Event started");
1207 
1208 	spin_lock(&ec->lock);
1209 
1210 	while (ec->events_to_process) {
1211 		spin_unlock(&ec->lock);
1212 
1213 		acpi_ec_submit_query(ec);
1214 
1215 		spin_lock(&ec->lock);
1216 
1217 		ec->events_to_process--;
1218 	}
1219 
1220 	/*
1221 	 * Before exit, make sure that the it will be possible to queue up the
1222 	 * event handling work again regardless of whether or not the query
1223 	 * queued up above is processed successfully.
1224 	 */
1225 	if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1226 		bool guard_timeout;
1227 
1228 		acpi_ec_complete_event(ec);
1229 
1230 		ec_dbg_evt("Event stopped");
1231 
1232 		spin_unlock(&ec->lock);
1233 
1234 		guard_timeout = !!ec_guard(ec);
1235 
1236 		spin_lock(&ec->lock);
1237 
1238 		/* Take care of SCI_EVT unless someone else is doing that. */
1239 		if (guard_timeout && !ec->curr)
1240 			advance_transaction(ec, false);
1241 	} else {
1242 		acpi_ec_close_event(ec);
1243 
1244 		ec_dbg_evt("Event stopped");
1245 	}
1246 
1247 	ec->events_in_progress--;
1248 
1249 	spin_unlock(&ec->lock);
1250 }
1251 
1252 static void clear_gpe_and_advance_transaction(struct acpi_ec *ec, bool interrupt)
1253 {
1254 	/*
1255 	 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1
1256 	 * changes to always trigger a GPE interrupt.
1257 	 *
1258 	 * GPE STS is a W1C register, which means:
1259 	 *
1260 	 * 1. Software can clear it without worrying about clearing the other
1261 	 *    GPEs' STS bits when the hardware sets them in parallel.
1262 	 *
1263 	 * 2. As long as software can ensure only clearing it when it is set,
1264 	 *    hardware won't set it in parallel.
1265 	 */
1266 	if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec))
1267 		acpi_clear_gpe(NULL, ec->gpe);
1268 
1269 	advance_transaction(ec, true);
1270 }
1271 
1272 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1273 {
1274 	spin_lock(&ec->lock);
1275 
1276 	clear_gpe_and_advance_transaction(ec, true);
1277 
1278 	spin_unlock(&ec->lock);
1279 }
1280 
1281 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1282 			       u32 gpe_number, void *data)
1283 {
1284 	acpi_ec_handle_interrupt(data);
1285 	return ACPI_INTERRUPT_HANDLED;
1286 }
1287 
1288 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1289 {
1290 	acpi_ec_handle_interrupt(data);
1291 	return IRQ_HANDLED;
1292 }
1293 
1294 /* --------------------------------------------------------------------------
1295  *                           Address Space Management
1296  * -------------------------------------------------------------------------- */
1297 
1298 static acpi_status
1299 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1300 		      u32 bits, u64 *value64,
1301 		      void *handler_context, void *region_context)
1302 {
1303 	struct acpi_ec *ec = handler_context;
1304 	int result = 0, i, bytes = bits / 8;
1305 	u8 *value = (u8 *)value64;
1306 
1307 	if ((address > 0xFF) || !value || !handler_context)
1308 		return AE_BAD_PARAMETER;
1309 
1310 	if (function != ACPI_READ && function != ACPI_WRITE)
1311 		return AE_BAD_PARAMETER;
1312 
1313 	if (ec->busy_polling || bits > 8)
1314 		acpi_ec_burst_enable(ec);
1315 
1316 	for (i = 0; i < bytes; ++i, ++address, ++value)
1317 		result = (function == ACPI_READ) ?
1318 			acpi_ec_read(ec, address, value) :
1319 			acpi_ec_write(ec, address, *value);
1320 
1321 	if (ec->busy_polling || bits > 8)
1322 		acpi_ec_burst_disable(ec);
1323 
1324 	switch (result) {
1325 	case -EINVAL:
1326 		return AE_BAD_PARAMETER;
1327 	case -ENODEV:
1328 		return AE_NOT_FOUND;
1329 	case -ETIME:
1330 		return AE_TIME;
1331 	default:
1332 		return AE_OK;
1333 	}
1334 }
1335 
1336 /* --------------------------------------------------------------------------
1337  *                             Driver Interface
1338  * -------------------------------------------------------------------------- */
1339 
1340 static acpi_status
1341 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1342 
1343 static void acpi_ec_free(struct acpi_ec *ec)
1344 {
1345 	if (first_ec == ec)
1346 		first_ec = NULL;
1347 	if (boot_ec == ec)
1348 		boot_ec = NULL;
1349 	kfree(ec);
1350 }
1351 
1352 static struct acpi_ec *acpi_ec_alloc(void)
1353 {
1354 	struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1355 
1356 	if (!ec)
1357 		return NULL;
1358 	mutex_init(&ec->mutex);
1359 	init_waitqueue_head(&ec->wait);
1360 	INIT_LIST_HEAD(&ec->list);
1361 	spin_lock_init(&ec->lock);
1362 	INIT_WORK(&ec->work, acpi_ec_event_handler);
1363 	ec->timestamp = jiffies;
1364 	ec->busy_polling = true;
1365 	ec->polling_guard = 0;
1366 	ec->gpe = -1;
1367 	ec->irq = -1;
1368 	return ec;
1369 }
1370 
1371 static acpi_status
1372 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1373 			       void *context, void **return_value)
1374 {
1375 	char node_name[5];
1376 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
1377 	struct acpi_ec *ec = context;
1378 	int value = 0;
1379 	acpi_status status;
1380 
1381 	status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1382 
1383 	if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1384 		acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1385 	return AE_OK;
1386 }
1387 
1388 static acpi_status
1389 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1390 {
1391 	acpi_status status;
1392 	unsigned long long tmp = 0;
1393 	struct acpi_ec *ec = context;
1394 
1395 	/* clear addr values, ec_parse_io_ports depend on it */
1396 	ec->command_addr = ec->data_addr = 0;
1397 
1398 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1399 				     ec_parse_io_ports, ec);
1400 	if (ACPI_FAILURE(status))
1401 		return status;
1402 	if (ec->data_addr == 0 || ec->command_addr == 0)
1403 		return AE_OK;
1404 
1405 	/* Get GPE bit assignment (EC events). */
1406 	/* TODO: Add support for _GPE returning a package */
1407 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1408 	if (ACPI_SUCCESS(status))
1409 		ec->gpe = tmp;
1410 	/*
1411 	 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1412 	 * platforms which use GpioInt instead of GPE.
1413 	 */
1414 
1415 	/* Use the global lock for all EC transactions? */
1416 	tmp = 0;
1417 	acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1418 	ec->global_lock = tmp;
1419 	ec->handle = handle;
1420 	return AE_CTRL_TERMINATE;
1421 }
1422 
1423 static bool install_gpe_event_handler(struct acpi_ec *ec)
1424 {
1425 	acpi_status status;
1426 
1427 	status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1428 					      ACPI_GPE_EDGE_TRIGGERED,
1429 					      &acpi_ec_gpe_handler, ec);
1430 	if (ACPI_FAILURE(status))
1431 		return false;
1432 
1433 	if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1434 		acpi_ec_enable_gpe(ec, true);
1435 
1436 	return true;
1437 }
1438 
1439 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1440 {
1441 	return request_threaded_irq(ec->irq, NULL, acpi_ec_irq_handler,
1442 				    IRQF_SHARED | IRQF_ONESHOT, "ACPI EC", ec) >= 0;
1443 }
1444 
1445 /**
1446  * ec_install_handlers - Install service callbacks and register query methods.
1447  * @ec: Target EC.
1448  * @device: ACPI device object corresponding to @ec.
1449  * @call_reg: If _REG should be called to notify OpRegion availability
1450  *
1451  * Install a handler for the EC address space type unless it has been installed
1452  * already.  If @device is not NULL, also look for EC query methods in the
1453  * namespace and register them, and install an event (either GPE or GPIO IRQ)
1454  * handler for the EC, if possible.
1455  *
1456  * Return:
1457  * -ENODEV if the address space handler cannot be installed, which means
1458  *  "unable to handle transactions",
1459  * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1460  * or 0 (success) otherwise.
1461  */
1462 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device,
1463 			       bool call_reg)
1464 {
1465 	acpi_status status;
1466 
1467 	acpi_ec_start(ec, false);
1468 
1469 	if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1470 		acpi_ec_enter_noirq(ec);
1471 		status = acpi_install_address_space_handler_no_reg(ec->handle,
1472 								   ACPI_ADR_SPACE_EC,
1473 								   &acpi_ec_space_handler,
1474 								   NULL, ec);
1475 		if (ACPI_FAILURE(status)) {
1476 			acpi_ec_stop(ec, false);
1477 			return -ENODEV;
1478 		}
1479 		set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1480 		ec->address_space_handler_holder = ec->handle;
1481 	}
1482 
1483 	if (call_reg && !test_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags)) {
1484 		acpi_execute_reg_methods(ec->handle, ACPI_ADR_SPACE_EC);
1485 		set_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags);
1486 	}
1487 
1488 	if (!device)
1489 		return 0;
1490 
1491 	if (ec->gpe < 0) {
1492 		/* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1493 		int irq = acpi_dev_gpio_irq_get(device, 0);
1494 		/*
1495 		 * Bail out right away for deferred probing or complete the
1496 		 * initialization regardless of any other errors.
1497 		 */
1498 		if (irq == -EPROBE_DEFER)
1499 			return -EPROBE_DEFER;
1500 		else if (irq >= 0)
1501 			ec->irq = irq;
1502 	}
1503 
1504 	if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1505 		/* Find and register all query methods */
1506 		acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1507 				    acpi_ec_register_query_methods,
1508 				    NULL, ec, NULL);
1509 		set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1510 	}
1511 	if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1512 		bool ready = false;
1513 
1514 		if (ec->gpe >= 0)
1515 			ready = install_gpe_event_handler(ec);
1516 		else if (ec->irq >= 0)
1517 			ready = install_gpio_irq_event_handler(ec);
1518 
1519 		if (ready) {
1520 			set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1521 			acpi_ec_leave_noirq(ec);
1522 		}
1523 		/*
1524 		 * Failures to install an event handler are not fatal, because
1525 		 * the EC can be polled for events.
1526 		 */
1527 	}
1528 	/* EC is fully operational, allow queries */
1529 	acpi_ec_enable_event(ec);
1530 
1531 	return 0;
1532 }
1533 
1534 static void ec_remove_handlers(struct acpi_ec *ec)
1535 {
1536 	if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1537 		if (ACPI_FAILURE(acpi_remove_address_space_handler(
1538 					ec->address_space_handler_holder,
1539 					ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1540 			pr_err("failed to remove space handler\n");
1541 		clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1542 	}
1543 
1544 	/*
1545 	 * Stops handling the EC transactions after removing the operation
1546 	 * region handler. This is required because _REG(DISCONNECT)
1547 	 * invoked during the removal can result in new EC transactions.
1548 	 *
1549 	 * Flushes the EC requests and thus disables the GPE before
1550 	 * removing the GPE handler. This is required by the current ACPICA
1551 	 * GPE core. ACPICA GPE core will automatically disable a GPE when
1552 	 * it is indicated but there is no way to handle it. So the drivers
1553 	 * must disable the GPEs prior to removing the GPE handlers.
1554 	 */
1555 	acpi_ec_stop(ec, false);
1556 
1557 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1558 		if (ec->gpe >= 0 &&
1559 		    ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1560 				 &acpi_ec_gpe_handler)))
1561 			pr_err("failed to remove gpe handler\n");
1562 
1563 		if (ec->irq >= 0)
1564 			free_irq(ec->irq, ec);
1565 
1566 		clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1567 	}
1568 	if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1569 		acpi_ec_remove_query_handlers(ec, true, 0);
1570 		clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1571 	}
1572 }
1573 
1574 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device, bool call_reg)
1575 {
1576 	int ret;
1577 
1578 	ret = ec_install_handlers(ec, device, call_reg);
1579 	if (ret)
1580 		return ret;
1581 
1582 	/* First EC capable of handling transactions */
1583 	if (!first_ec)
1584 		first_ec = ec;
1585 
1586 	pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1587 		ec->data_addr);
1588 
1589 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1590 		if (ec->gpe >= 0)
1591 			pr_info("GPE=0x%x\n", ec->gpe);
1592 		else
1593 			pr_info("IRQ=%d\n", ec->irq);
1594 	}
1595 
1596 	return ret;
1597 }
1598 
1599 static int acpi_ec_add(struct acpi_device *device)
1600 {
1601 	struct acpi_ec *ec;
1602 	int ret;
1603 
1604 	strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1605 	strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1606 
1607 	if (boot_ec && (boot_ec->handle == device->handle ||
1608 	    !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1609 		/* Fast path: this device corresponds to the boot EC. */
1610 		ec = boot_ec;
1611 	} else {
1612 		acpi_status status;
1613 
1614 		ec = acpi_ec_alloc();
1615 		if (!ec)
1616 			return -ENOMEM;
1617 
1618 		status = ec_parse_device(device->handle, 0, ec, NULL);
1619 		if (status != AE_CTRL_TERMINATE) {
1620 			ret = -EINVAL;
1621 			goto err;
1622 		}
1623 
1624 		if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1625 		    ec->data_addr == boot_ec->data_addr) {
1626 			/*
1627 			 * Trust PNP0C09 namespace location rather than ECDT ID.
1628 			 * But trust ECDT GPE rather than _GPE because of ASUS
1629 			 * quirks. So do not change boot_ec->gpe to ec->gpe,
1630 			 * except when the TRUST_DSDT_GPE quirk is set.
1631 			 */
1632 			boot_ec->handle = ec->handle;
1633 
1634 			if (EC_FLAGS_TRUST_DSDT_GPE)
1635 				boot_ec->gpe = ec->gpe;
1636 
1637 			acpi_handle_debug(ec->handle, "duplicated.\n");
1638 			acpi_ec_free(ec);
1639 			ec = boot_ec;
1640 		}
1641 	}
1642 
1643 	ret = acpi_ec_setup(ec, device, true);
1644 	if (ret)
1645 		goto err;
1646 
1647 	if (ec == boot_ec)
1648 		acpi_handle_info(boot_ec->handle,
1649 				 "Boot %s EC initialization complete\n",
1650 				 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1651 
1652 	acpi_handle_info(ec->handle,
1653 			 "EC: Used to handle transactions and events\n");
1654 
1655 	device->driver_data = ec;
1656 
1657 	ret = !!request_region(ec->data_addr, 1, "EC data");
1658 	WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1659 	ret = !!request_region(ec->command_addr, 1, "EC cmd");
1660 	WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1661 
1662 	/* Reprobe devices depending on the EC */
1663 	acpi_dev_clear_dependencies(device);
1664 
1665 	acpi_handle_debug(ec->handle, "enumerated.\n");
1666 	return 0;
1667 
1668 err:
1669 	if (ec != boot_ec)
1670 		acpi_ec_free(ec);
1671 
1672 	return ret;
1673 }
1674 
1675 static void acpi_ec_remove(struct acpi_device *device)
1676 {
1677 	struct acpi_ec *ec;
1678 
1679 	if (!device)
1680 		return;
1681 
1682 	ec = acpi_driver_data(device);
1683 	release_region(ec->data_addr, 1);
1684 	release_region(ec->command_addr, 1);
1685 	device->driver_data = NULL;
1686 	if (ec != boot_ec) {
1687 		ec_remove_handlers(ec);
1688 		acpi_ec_free(ec);
1689 	}
1690 }
1691 
1692 static acpi_status
1693 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1694 {
1695 	struct acpi_ec *ec = context;
1696 
1697 	if (resource->type != ACPI_RESOURCE_TYPE_IO)
1698 		return AE_OK;
1699 
1700 	/*
1701 	 * The first address region returned is the data port, and
1702 	 * the second address region returned is the status/command
1703 	 * port.
1704 	 */
1705 	if (ec->data_addr == 0)
1706 		ec->data_addr = resource->data.io.minimum;
1707 	else if (ec->command_addr == 0)
1708 		ec->command_addr = resource->data.io.minimum;
1709 	else
1710 		return AE_CTRL_TERMINATE;
1711 
1712 	return AE_OK;
1713 }
1714 
1715 static const struct acpi_device_id ec_device_ids[] = {
1716 	{"PNP0C09", 0},
1717 	{ACPI_ECDT_HID, 0},
1718 	{"", 0},
1719 };
1720 
1721 /*
1722  * This function is not Windows-compatible as Windows never enumerates the
1723  * namespace EC before the main ACPI device enumeration process. It is
1724  * retained for historical reason and will be deprecated in the future.
1725  */
1726 void __init acpi_ec_dsdt_probe(void)
1727 {
1728 	struct acpi_ec *ec;
1729 	acpi_status status;
1730 	int ret;
1731 
1732 	/*
1733 	 * If a platform has ECDT, there is no need to proceed as the
1734 	 * following probe is not a part of the ACPI device enumeration,
1735 	 * executing _STA is not safe, and thus this probe may risk of
1736 	 * picking up an invalid EC device.
1737 	 */
1738 	if (boot_ec)
1739 		return;
1740 
1741 	ec = acpi_ec_alloc();
1742 	if (!ec)
1743 		return;
1744 
1745 	/*
1746 	 * At this point, the namespace is initialized, so start to find
1747 	 * the namespace objects.
1748 	 */
1749 	status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1750 	if (ACPI_FAILURE(status) || !ec->handle) {
1751 		acpi_ec_free(ec);
1752 		return;
1753 	}
1754 
1755 	/*
1756 	 * When the DSDT EC is available, always re-configure boot EC to
1757 	 * have _REG evaluated. _REG can only be evaluated after the
1758 	 * namespace initialization.
1759 	 * At this point, the GPE is not fully initialized, so do not to
1760 	 * handle the events.
1761 	 */
1762 	ret = acpi_ec_setup(ec, NULL, true);
1763 	if (ret) {
1764 		acpi_ec_free(ec);
1765 		return;
1766 	}
1767 
1768 	boot_ec = ec;
1769 
1770 	acpi_handle_info(ec->handle,
1771 			 "Boot DSDT EC used to handle transactions\n");
1772 }
1773 
1774 /*
1775  * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1776  *
1777  * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1778  * found a matching object in the namespace.
1779  *
1780  * Next, in case the DSDT EC is not functioning, it is still necessary to
1781  * provide a functional ECDT EC to handle events, so add an extra device object
1782  * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1783  *
1784  * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1785  * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1786  */
1787 static void __init acpi_ec_ecdt_start(void)
1788 {
1789 	struct acpi_table_ecdt *ecdt_ptr;
1790 	acpi_handle handle;
1791 	acpi_status status;
1792 
1793 	/* Bail out if a matching EC has been found in the namespace. */
1794 	if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1795 		return;
1796 
1797 	/* Look up the object pointed to from the ECDT in the namespace. */
1798 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1799 				(struct acpi_table_header **)&ecdt_ptr);
1800 	if (ACPI_FAILURE(status))
1801 		return;
1802 
1803 	status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1804 	if (ACPI_SUCCESS(status)) {
1805 		boot_ec->handle = handle;
1806 
1807 		/* Add a special ACPI device object to represent the boot EC. */
1808 		acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1809 	}
1810 
1811 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1812 }
1813 
1814 /*
1815  * On some hardware it is necessary to clear events accumulated by the EC during
1816  * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1817  * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1818  *
1819  * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1820  *
1821  * Ideally, the EC should also be instructed NOT to accumulate events during
1822  * sleep (which Windows seems to do somehow), but the interface to control this
1823  * behaviour is not known at this time.
1824  *
1825  * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1826  * however it is very likely that other Samsung models are affected.
1827  *
1828  * On systems which don't accumulate _Q events during sleep, this extra check
1829  * should be harmless.
1830  */
1831 static int ec_clear_on_resume(const struct dmi_system_id *id)
1832 {
1833 	pr_debug("Detected system needing EC poll on resume.\n");
1834 	EC_FLAGS_CLEAR_ON_RESUME = 1;
1835 	ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1836 	return 0;
1837 }
1838 
1839 /*
1840  * Some ECDTs contain wrong register addresses.
1841  * MSI MS-171F
1842  * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1843  */
1844 static int ec_correct_ecdt(const struct dmi_system_id *id)
1845 {
1846 	pr_debug("Detected system needing ECDT address correction.\n");
1847 	EC_FLAGS_CORRECT_ECDT = 1;
1848 	return 0;
1849 }
1850 
1851 /*
1852  * Some ECDTs contain wrong GPE setting, but they share the same port addresses
1853  * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case.
1854  * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1855  */
1856 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id)
1857 {
1858 	pr_debug("Detected system needing DSDT GPE setting.\n");
1859 	EC_FLAGS_TRUST_DSDT_GPE = 1;
1860 	return 0;
1861 }
1862 
1863 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1864 	{
1865 		/*
1866 		 * MSI MS-171F
1867 		 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1868 		 */
1869 		.callback = ec_correct_ecdt,
1870 		.matches = {
1871 			DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1872 			DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),
1873 		},
1874 	},
1875 	{
1876 		/*
1877 		 * HP Pavilion Gaming Laptop 15-cx0xxx
1878 		 * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1879 		 */
1880 		.callback = ec_honor_dsdt_gpe,
1881 		.matches = {
1882 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1883 			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),
1884 		},
1885 	},
1886 	{
1887 		/*
1888 		 * HP Pavilion Gaming Laptop 15-cx0041ur
1889 		 */
1890 		.callback = ec_honor_dsdt_gpe,
1891 		.matches = {
1892 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1893 			DMI_MATCH(DMI_PRODUCT_NAME, "HP 15-cx0041ur"),
1894 		},
1895 	},
1896 	{
1897 		/*
1898 		 * HP Pavilion Gaming Laptop 15-dk1xxx
1899 		 * https://github.com/systemd/systemd/issues/28942
1900 		 */
1901 		.callback = ec_honor_dsdt_gpe,
1902 		.matches = {
1903 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1904 			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-dk1xxx"),
1905 		},
1906 	},
1907 	{
1908 		/*
1909 		 * HP 250 G7 Notebook PC
1910 		 */
1911 		.callback = ec_honor_dsdt_gpe,
1912 		.matches = {
1913 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1914 			DMI_MATCH(DMI_PRODUCT_NAME, "HP 250 G7 Notebook PC"),
1915 		},
1916 	},
1917 	{
1918 		/*
1919 		 * Samsung hardware
1920 		 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1921 		 */
1922 		.callback = ec_clear_on_resume,
1923 		.matches = {
1924 			DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."),
1925 		},
1926 	},
1927 	{}
1928 };
1929 
1930 void __init acpi_ec_ecdt_probe(void)
1931 {
1932 	struct acpi_table_ecdt *ecdt_ptr;
1933 	struct acpi_ec *ec;
1934 	acpi_status status;
1935 	int ret;
1936 
1937 	/* Generate a boot ec context. */
1938 	dmi_check_system(ec_dmi_table);
1939 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1940 				(struct acpi_table_header **)&ecdt_ptr);
1941 	if (ACPI_FAILURE(status))
1942 		return;
1943 
1944 	if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1945 		/*
1946 		 * Asus X50GL:
1947 		 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1948 		 */
1949 		goto out;
1950 	}
1951 
1952 	ec = acpi_ec_alloc();
1953 	if (!ec)
1954 		goto out;
1955 
1956 	if (EC_FLAGS_CORRECT_ECDT) {
1957 		ec->command_addr = ecdt_ptr->data.address;
1958 		ec->data_addr = ecdt_ptr->control.address;
1959 	} else {
1960 		ec->command_addr = ecdt_ptr->control.address;
1961 		ec->data_addr = ecdt_ptr->data.address;
1962 	}
1963 
1964 	/*
1965 	 * Ignore the GPE value on Reduced Hardware platforms.
1966 	 * Some products have this set to an erroneous value.
1967 	 */
1968 	if (!acpi_gbl_reduced_hardware)
1969 		ec->gpe = ecdt_ptr->gpe;
1970 
1971 	ec->handle = ACPI_ROOT_OBJECT;
1972 
1973 	/*
1974 	 * At this point, the namespace is not initialized, so do not find
1975 	 * the namespace objects, or handle the events.
1976 	 */
1977 	ret = acpi_ec_setup(ec, NULL, false);
1978 	if (ret) {
1979 		acpi_ec_free(ec);
1980 		goto out;
1981 	}
1982 
1983 	boot_ec = ec;
1984 	boot_ec_is_ecdt = true;
1985 
1986 	pr_info("Boot ECDT EC used to handle transactions\n");
1987 
1988 out:
1989 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1990 }
1991 
1992 #ifdef CONFIG_PM_SLEEP
1993 static int acpi_ec_suspend(struct device *dev)
1994 {
1995 	struct acpi_ec *ec =
1996 		acpi_driver_data(to_acpi_device(dev));
1997 
1998 	if (!pm_suspend_no_platform() && ec_freeze_events)
1999 		acpi_ec_disable_event(ec);
2000 	return 0;
2001 }
2002 
2003 static int acpi_ec_suspend_noirq(struct device *dev)
2004 {
2005 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2006 
2007 	/*
2008 	 * The SCI handler doesn't run at this point, so the GPE can be
2009 	 * masked at the low level without side effects.
2010 	 */
2011 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2012 	    ec->gpe >= 0 && ec->reference_count >= 1)
2013 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
2014 
2015 	acpi_ec_enter_noirq(ec);
2016 
2017 	return 0;
2018 }
2019 
2020 static int acpi_ec_resume_noirq(struct device *dev)
2021 {
2022 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2023 
2024 	acpi_ec_leave_noirq(ec);
2025 
2026 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2027 	    ec->gpe >= 0 && ec->reference_count >= 1)
2028 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2029 
2030 	return 0;
2031 }
2032 
2033 static int acpi_ec_resume(struct device *dev)
2034 {
2035 	struct acpi_ec *ec =
2036 		acpi_driver_data(to_acpi_device(dev));
2037 
2038 	acpi_ec_enable_event(ec);
2039 	return 0;
2040 }
2041 
2042 void acpi_ec_mark_gpe_for_wake(void)
2043 {
2044 	if (first_ec && !ec_no_wakeup)
2045 		acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
2046 }
2047 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
2048 
2049 void acpi_ec_set_gpe_wake_mask(u8 action)
2050 {
2051 	if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
2052 		acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
2053 }
2054 
2055 static bool acpi_ec_work_in_progress(struct acpi_ec *ec)
2056 {
2057 	return ec->events_in_progress + ec->queries_in_progress > 0;
2058 }
2059 
2060 bool acpi_ec_dispatch_gpe(void)
2061 {
2062 	bool work_in_progress = false;
2063 
2064 	if (!first_ec)
2065 		return acpi_any_gpe_status_set(U32_MAX);
2066 
2067 	/*
2068 	 * Report wakeup if the status bit is set for any enabled GPE other
2069 	 * than the EC one.
2070 	 */
2071 	if (acpi_any_gpe_status_set(first_ec->gpe))
2072 		return true;
2073 
2074 	/*
2075 	 * Cancel the SCI wakeup and process all pending events in case there
2076 	 * are any wakeup ones in there.
2077 	 *
2078 	 * Note that if any non-EC GPEs are active at this point, the SCI will
2079 	 * retrigger after the rearming in acpi_s2idle_wake(), so no events
2080 	 * should be missed by canceling the wakeup here.
2081 	 */
2082 	pm_system_cancel_wakeup();
2083 
2084 	/*
2085 	 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2086 	 * to allow the caller to process events properly after that.
2087 	 */
2088 	spin_lock(&first_ec->lock);
2089 
2090 	if (acpi_ec_gpe_status_set(first_ec)) {
2091 		pm_pr_dbg("ACPI EC GPE status set\n");
2092 
2093 		clear_gpe_and_advance_transaction(first_ec, false);
2094 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2095 	}
2096 
2097 	spin_unlock(&first_ec->lock);
2098 
2099 	if (!work_in_progress)
2100 		return false;
2101 
2102 	pm_pr_dbg("ACPI EC GPE dispatched\n");
2103 
2104 	/* Drain EC work. */
2105 	do {
2106 		acpi_ec_flush_work();
2107 
2108 		pm_pr_dbg("ACPI EC work flushed\n");
2109 
2110 		spin_lock(&first_ec->lock);
2111 
2112 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2113 
2114 		spin_unlock(&first_ec->lock);
2115 	} while (work_in_progress && !pm_wakeup_pending());
2116 
2117 	return false;
2118 }
2119 #endif /* CONFIG_PM_SLEEP */
2120 
2121 static const struct dev_pm_ops acpi_ec_pm = {
2122 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2123 	SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2124 };
2125 
2126 static int param_set_event_clearing(const char *val,
2127 				    const struct kernel_param *kp)
2128 {
2129 	int result = 0;
2130 
2131 	if (!strncmp(val, "status", sizeof("status") - 1)) {
2132 		ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2133 		pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2134 	} else if (!strncmp(val, "query", sizeof("query") - 1)) {
2135 		ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2136 		pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2137 	} else if (!strncmp(val, "event", sizeof("event") - 1)) {
2138 		ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2139 		pr_info("Assuming SCI_EVT clearing on event reads\n");
2140 	} else
2141 		result = -EINVAL;
2142 	return result;
2143 }
2144 
2145 static int param_get_event_clearing(char *buffer,
2146 				    const struct kernel_param *kp)
2147 {
2148 	switch (ec_event_clearing) {
2149 	case ACPI_EC_EVT_TIMING_STATUS:
2150 		return sprintf(buffer, "status\n");
2151 	case ACPI_EC_EVT_TIMING_QUERY:
2152 		return sprintf(buffer, "query\n");
2153 	case ACPI_EC_EVT_TIMING_EVENT:
2154 		return sprintf(buffer, "event\n");
2155 	default:
2156 		return sprintf(buffer, "invalid\n");
2157 	}
2158 	return 0;
2159 }
2160 
2161 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2162 		  NULL, 0644);
2163 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2164 
2165 static struct acpi_driver acpi_ec_driver = {
2166 	.name = "ec",
2167 	.class = ACPI_EC_CLASS,
2168 	.ids = ec_device_ids,
2169 	.ops = {
2170 		.add = acpi_ec_add,
2171 		.remove = acpi_ec_remove,
2172 		},
2173 	.drv.pm = &acpi_ec_pm,
2174 };
2175 
2176 static void acpi_ec_destroy_workqueues(void)
2177 {
2178 	if (ec_wq) {
2179 		destroy_workqueue(ec_wq);
2180 		ec_wq = NULL;
2181 	}
2182 	if (ec_query_wq) {
2183 		destroy_workqueue(ec_query_wq);
2184 		ec_query_wq = NULL;
2185 	}
2186 }
2187 
2188 static int acpi_ec_init_workqueues(void)
2189 {
2190 	if (!ec_wq)
2191 		ec_wq = alloc_ordered_workqueue("kec", 0);
2192 
2193 	if (!ec_query_wq)
2194 		ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2195 
2196 	if (!ec_wq || !ec_query_wq) {
2197 		acpi_ec_destroy_workqueues();
2198 		return -ENODEV;
2199 	}
2200 	return 0;
2201 }
2202 
2203 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2204 	{
2205 		.matches = {
2206 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2207 			DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2208 		},
2209 	},
2210 	{
2211 		.matches = {
2212 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2213 			DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2214 		},
2215 	},
2216 	{
2217 		.matches = {
2218 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
2219 			DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"),
2220 		},
2221 	},
2222 	{ },
2223 };
2224 
2225 void __init acpi_ec_init(void)
2226 {
2227 	int result;
2228 
2229 	result = acpi_ec_init_workqueues();
2230 	if (result)
2231 		return;
2232 
2233 	/*
2234 	 * Disable EC wakeup on following systems to prevent periodic
2235 	 * wakeup from EC GPE.
2236 	 */
2237 	if (dmi_check_system(acpi_ec_no_wakeup)) {
2238 		ec_no_wakeup = true;
2239 		pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2240 	}
2241 
2242 	/* Driver must be registered after acpi_ec_init_workqueues(). */
2243 	acpi_bus_register_driver(&acpi_ec_driver);
2244 
2245 	acpi_ec_ecdt_start();
2246 }
2247 
2248 /* EC driver currently not unloadable */
2249 #if 0
2250 static void __exit acpi_ec_exit(void)
2251 {
2252 
2253 	acpi_bus_unregister_driver(&acpi_ec_driver);
2254 	acpi_ec_destroy_workqueues();
2255 }
2256 #endif	/* 0 */
2257