xref: /linux/drivers/acpi/ec.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  ec.c - ACPI Embedded Controller Driver (v3)
4  *
5  *  Copyright (C) 2001-2015 Intel Corporation
6  *    Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7  *            2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8  *            2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  *            2004       Luming Yu <luming.yu@intel.com>
10  *            2001, 2002 Andy Grover <andrew.grover@intel.com>
11  *            2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12  *  Copyright (C) 2008      Alexey Starikovskiy <astarikovskiy@suse.de>
13  */
14 
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32 
33 #include "internal.h"
34 
35 #define ACPI_EC_CLASS			"embedded_controller"
36 #define ACPI_EC_DEVICE_NAME		"Embedded Controller"
37 
38 /* EC status register */
39 #define ACPI_EC_FLAG_OBF	0x01	/* Output buffer full */
40 #define ACPI_EC_FLAG_IBF	0x02	/* Input buffer full */
41 #define ACPI_EC_FLAG_CMD	0x08	/* Input buffer contains a command */
42 #define ACPI_EC_FLAG_BURST	0x10	/* burst mode */
43 #define ACPI_EC_FLAG_SCI	0x20	/* EC-SCI occurred */
44 
45 /*
46  * The SCI_EVT clearing timing is not defined by the ACPI specification.
47  * This leads to lots of practical timing issues for the host EC driver.
48  * The following variations are defined (from the target EC firmware's
49  * perspective):
50  * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
51  *         target can clear SCI_EVT at any time so long as the host can see
52  *         the indication by reading the status register (EC_SC). So the
53  *         host should re-check SCI_EVT after the first time the SCI_EVT
54  *         indication is seen, which is the same time the query request
55  *         (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
56  *         at any later time could indicate another event. Normally such
57  *         kind of EC firmware has implemented an event queue and will
58  *         return 0x00 to indicate "no outstanding event".
59  * QUERY: After seeing the query request (QR_EC) written to the command
60  *        register (EC_CMD) by the host and having prepared the responding
61  *        event value in the data register (EC_DATA), the target can safely
62  *        clear SCI_EVT because the target can confirm that the current
63  *        event is being handled by the host. The host then should check
64  *        SCI_EVT right after reading the event response from the data
65  *        register (EC_DATA).
66  * EVENT: After seeing the event response read from the data register
67  *        (EC_DATA) by the host, the target can clear SCI_EVT. As the
68  *        target requires time to notice the change in the data register
69  *        (EC_DATA), the host may be required to wait additional guarding
70  *        time before checking the SCI_EVT again. Such guarding may not be
71  *        necessary if the host is notified via another IRQ.
72  */
73 #define ACPI_EC_EVT_TIMING_STATUS	0x00
74 #define ACPI_EC_EVT_TIMING_QUERY	0x01
75 #define ACPI_EC_EVT_TIMING_EVENT	0x02
76 
77 /* EC commands */
78 enum ec_command {
79 	ACPI_EC_COMMAND_READ = 0x80,
80 	ACPI_EC_COMMAND_WRITE = 0x81,
81 	ACPI_EC_BURST_ENABLE = 0x82,
82 	ACPI_EC_BURST_DISABLE = 0x83,
83 	ACPI_EC_COMMAND_QUERY = 0x84,
84 };
85 
86 #define ACPI_EC_DELAY		500	/* Wait 500ms max. during EC ops */
87 #define ACPI_EC_UDELAY_GLK	1000	/* Wait 1ms max. to get global lock */
88 #define ACPI_EC_UDELAY_POLL	550	/* Wait 1ms for EC transaction polling */
89 #define ACPI_EC_CLEAR_MAX	100	/* Maximum number of events to query
90 					 * when trying to clear the EC */
91 #define ACPI_EC_MAX_QUERIES	16	/* Maximum number of parallel queries */
92 
93 enum {
94 	EC_FLAGS_QUERY_ENABLED,		/* Query is enabled */
95 	EC_FLAGS_QUERY_PENDING,		/* Query is pending */
96 	EC_FLAGS_QUERY_GUARDING,	/* Guard for SCI_EVT check */
97 	EC_FLAGS_EVENT_HANDLER_INSTALLED,	/* Event handler installed */
98 	EC_FLAGS_EC_HANDLER_INSTALLED,	/* OpReg handler installed */
99 	EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
100 	EC_FLAGS_STARTED,		/* Driver is started */
101 	EC_FLAGS_STOPPED,		/* Driver is stopped */
102 	EC_FLAGS_EVENTS_MASKED,		/* Events masked */
103 };
104 
105 #define ACPI_EC_COMMAND_POLL		0x01 /* Available for command byte */
106 #define ACPI_EC_COMMAND_COMPLETE	0x02 /* Completed last byte */
107 
108 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
109 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
110 module_param(ec_delay, uint, 0644);
111 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
112 
113 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
114 module_param(ec_max_queries, uint, 0644);
115 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
116 
117 static bool ec_busy_polling __read_mostly;
118 module_param(ec_busy_polling, bool, 0644);
119 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
120 
121 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
122 module_param(ec_polling_guard, uint, 0644);
123 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
124 
125 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
126 
127 /*
128  * If the number of false interrupts per one transaction exceeds
129  * this threshold, will think there is a GPE storm happened and
130  * will disable the GPE for normal transaction.
131  */
132 static unsigned int ec_storm_threshold  __read_mostly = 8;
133 module_param(ec_storm_threshold, uint, 0644);
134 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
135 
136 static bool ec_freeze_events __read_mostly = false;
137 module_param(ec_freeze_events, bool, 0644);
138 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
139 
140 static bool ec_no_wakeup __read_mostly;
141 module_param(ec_no_wakeup, bool, 0644);
142 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
143 
144 struct acpi_ec_query_handler {
145 	struct list_head node;
146 	acpi_ec_query_func func;
147 	acpi_handle handle;
148 	void *data;
149 	u8 query_bit;
150 	struct kref kref;
151 };
152 
153 struct transaction {
154 	const u8 *wdata;
155 	u8 *rdata;
156 	unsigned short irq_count;
157 	u8 command;
158 	u8 wi;
159 	u8 ri;
160 	u8 wlen;
161 	u8 rlen;
162 	u8 flags;
163 };
164 
165 struct acpi_ec_query {
166 	struct transaction transaction;
167 	struct work_struct work;
168 	struct acpi_ec_query_handler *handler;
169 };
170 
171 static int acpi_ec_query(struct acpi_ec *ec, u8 *data);
172 static void advance_transaction(struct acpi_ec *ec);
173 static void acpi_ec_event_handler(struct work_struct *work);
174 static void acpi_ec_event_processor(struct work_struct *work);
175 
176 struct acpi_ec *first_ec;
177 EXPORT_SYMBOL(first_ec);
178 
179 static struct acpi_ec *boot_ec;
180 static bool boot_ec_is_ecdt = false;
181 static struct workqueue_struct *ec_wq;
182 static struct workqueue_struct *ec_query_wq;
183 
184 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
185 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */
186 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
187 
188 /* --------------------------------------------------------------------------
189  *                           Logging/Debugging
190  * -------------------------------------------------------------------------- */
191 
192 /*
193  * Splitters used by the developers to track the boundary of the EC
194  * handling processes.
195  */
196 #ifdef DEBUG
197 #define EC_DBG_SEP	" "
198 #define EC_DBG_DRV	"+++++"
199 #define EC_DBG_STM	"====="
200 #define EC_DBG_REQ	"*****"
201 #define EC_DBG_EVT	"#####"
202 #else
203 #define EC_DBG_SEP	""
204 #define EC_DBG_DRV
205 #define EC_DBG_STM
206 #define EC_DBG_REQ
207 #define EC_DBG_EVT
208 #endif
209 
210 #define ec_log_raw(fmt, ...) \
211 	pr_info(fmt "\n", ##__VA_ARGS__)
212 #define ec_dbg_raw(fmt, ...) \
213 	pr_debug(fmt "\n", ##__VA_ARGS__)
214 #define ec_log(filter, fmt, ...) \
215 	ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
216 #define ec_dbg(filter, fmt, ...) \
217 	ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
218 
219 #define ec_log_drv(fmt, ...) \
220 	ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
221 #define ec_dbg_drv(fmt, ...) \
222 	ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
223 #define ec_dbg_stm(fmt, ...) \
224 	ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
225 #define ec_dbg_req(fmt, ...) \
226 	ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
227 #define ec_dbg_evt(fmt, ...) \
228 	ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
229 #define ec_dbg_ref(ec, fmt, ...) \
230 	ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
231 
232 /* --------------------------------------------------------------------------
233  *                           Device Flags
234  * -------------------------------------------------------------------------- */
235 
236 static bool acpi_ec_started(struct acpi_ec *ec)
237 {
238 	return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
239 	       !test_bit(EC_FLAGS_STOPPED, &ec->flags);
240 }
241 
242 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
243 {
244 	/*
245 	 * There is an OSPM early stage logic. During the early stages
246 	 * (boot/resume), OSPMs shouldn't enable the event handling, only
247 	 * the EC transactions are allowed to be performed.
248 	 */
249 	if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
250 		return false;
251 	/*
252 	 * However, disabling the event handling is experimental for late
253 	 * stage (suspend), and is controlled by the boot parameter of
254 	 * "ec_freeze_events":
255 	 * 1. true:  The EC event handling is disabled before entering
256 	 *           the noirq stage.
257 	 * 2. false: The EC event handling is automatically disabled as
258 	 *           soon as the EC driver is stopped.
259 	 */
260 	if (ec_freeze_events)
261 		return acpi_ec_started(ec);
262 	else
263 		return test_bit(EC_FLAGS_STARTED, &ec->flags);
264 }
265 
266 static bool acpi_ec_flushed(struct acpi_ec *ec)
267 {
268 	return ec->reference_count == 1;
269 }
270 
271 /* --------------------------------------------------------------------------
272  *                           EC Registers
273  * -------------------------------------------------------------------------- */
274 
275 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
276 {
277 	u8 x = inb(ec->command_addr);
278 
279 	ec_dbg_raw("EC_SC(R) = 0x%2.2x "
280 		   "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
281 		   x,
282 		   !!(x & ACPI_EC_FLAG_SCI),
283 		   !!(x & ACPI_EC_FLAG_BURST),
284 		   !!(x & ACPI_EC_FLAG_CMD),
285 		   !!(x & ACPI_EC_FLAG_IBF),
286 		   !!(x & ACPI_EC_FLAG_OBF));
287 	return x;
288 }
289 
290 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
291 {
292 	u8 x = inb(ec->data_addr);
293 
294 	ec->timestamp = jiffies;
295 	ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
296 	return x;
297 }
298 
299 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
300 {
301 	ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
302 	outb(command, ec->command_addr);
303 	ec->timestamp = jiffies;
304 }
305 
306 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
307 {
308 	ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
309 	outb(data, ec->data_addr);
310 	ec->timestamp = jiffies;
311 }
312 
313 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
314 static const char *acpi_ec_cmd_string(u8 cmd)
315 {
316 	switch (cmd) {
317 	case 0x80:
318 		return "RD_EC";
319 	case 0x81:
320 		return "WR_EC";
321 	case 0x82:
322 		return "BE_EC";
323 	case 0x83:
324 		return "BD_EC";
325 	case 0x84:
326 		return "QR_EC";
327 	}
328 	return "UNKNOWN";
329 }
330 #else
331 #define acpi_ec_cmd_string(cmd)		"UNDEF"
332 #endif
333 
334 /* --------------------------------------------------------------------------
335  *                           GPE Registers
336  * -------------------------------------------------------------------------- */
337 
338 static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec)
339 {
340 	acpi_event_status gpe_status = 0;
341 
342 	(void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
343 	return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false;
344 }
345 
346 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
347 {
348 	if (open)
349 		acpi_enable_gpe(NULL, ec->gpe);
350 	else {
351 		BUG_ON(ec->reference_count < 1);
352 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
353 	}
354 	if (acpi_ec_is_gpe_raised(ec)) {
355 		/*
356 		 * On some platforms, EN=1 writes cannot trigger GPE. So
357 		 * software need to manually trigger a pseudo GPE event on
358 		 * EN=1 writes.
359 		 */
360 		ec_dbg_raw("Polling quirk");
361 		advance_transaction(ec);
362 	}
363 }
364 
365 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
366 {
367 	if (close)
368 		acpi_disable_gpe(NULL, ec->gpe);
369 	else {
370 		BUG_ON(ec->reference_count < 1);
371 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
372 	}
373 }
374 
375 static inline void acpi_ec_clear_gpe(struct acpi_ec *ec)
376 {
377 	/*
378 	 * GPE STS is a W1C register, which means:
379 	 * 1. Software can clear it without worrying about clearing other
380 	 *    GPEs' STS bits when the hardware sets them in parallel.
381 	 * 2. As long as software can ensure only clearing it when it is
382 	 *    set, hardware won't set it in parallel.
383 	 * So software can clear GPE in any contexts.
384 	 * Warning: do not move the check into advance_transaction() as the
385 	 * EC commands will be sent without GPE raised.
386 	 */
387 	if (!acpi_ec_is_gpe_raised(ec))
388 		return;
389 	acpi_clear_gpe(NULL, ec->gpe);
390 }
391 
392 /* --------------------------------------------------------------------------
393  *                           Transaction Management
394  * -------------------------------------------------------------------------- */
395 
396 static void acpi_ec_submit_request(struct acpi_ec *ec)
397 {
398 	ec->reference_count++;
399 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
400 	    ec->gpe >= 0 && ec->reference_count == 1)
401 		acpi_ec_enable_gpe(ec, true);
402 }
403 
404 static void acpi_ec_complete_request(struct acpi_ec *ec)
405 {
406 	bool flushed = false;
407 
408 	ec->reference_count--;
409 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
410 	    ec->gpe >= 0 && ec->reference_count == 0)
411 		acpi_ec_disable_gpe(ec, true);
412 	flushed = acpi_ec_flushed(ec);
413 	if (flushed)
414 		wake_up(&ec->wait);
415 }
416 
417 static void acpi_ec_mask_events(struct acpi_ec *ec)
418 {
419 	if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
420 		if (ec->gpe >= 0)
421 			acpi_ec_disable_gpe(ec, false);
422 		else
423 			disable_irq_nosync(ec->irq);
424 
425 		ec_dbg_drv("Polling enabled");
426 		set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
427 	}
428 }
429 
430 static void acpi_ec_unmask_events(struct acpi_ec *ec)
431 {
432 	if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
433 		clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
434 		if (ec->gpe >= 0)
435 			acpi_ec_enable_gpe(ec, false);
436 		else
437 			enable_irq(ec->irq);
438 
439 		ec_dbg_drv("Polling disabled");
440 	}
441 }
442 
443 /*
444  * acpi_ec_submit_flushable_request() - Increase the reference count unless
445  *                                      the flush operation is not in
446  *                                      progress
447  * @ec: the EC device
448  *
449  * This function must be used before taking a new action that should hold
450  * the reference count.  If this function returns false, then the action
451  * must be discarded or it will prevent the flush operation from being
452  * completed.
453  */
454 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
455 {
456 	if (!acpi_ec_started(ec))
457 		return false;
458 	acpi_ec_submit_request(ec);
459 	return true;
460 }
461 
462 static void acpi_ec_submit_query(struct acpi_ec *ec)
463 {
464 	acpi_ec_mask_events(ec);
465 	if (!acpi_ec_event_enabled(ec))
466 		return;
467 	if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
468 		ec_dbg_evt("Command(%s) submitted/blocked",
469 			   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
470 		ec->nr_pending_queries++;
471 		queue_work(ec_wq, &ec->work);
472 	}
473 }
474 
475 static void acpi_ec_complete_query(struct acpi_ec *ec)
476 {
477 	if (test_and_clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags))
478 		ec_dbg_evt("Command(%s) unblocked",
479 			   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
480 	acpi_ec_unmask_events(ec);
481 }
482 
483 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
484 {
485 	if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
486 		ec_log_drv("event unblocked");
487 	/*
488 	 * Unconditionally invoke this once after enabling the event
489 	 * handling mechanism to detect the pending events.
490 	 */
491 	advance_transaction(ec);
492 }
493 
494 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
495 {
496 	if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
497 		ec_log_drv("event blocked");
498 }
499 
500 /*
501  * Process _Q events that might have accumulated in the EC.
502  * Run with locked ec mutex.
503  */
504 static void acpi_ec_clear(struct acpi_ec *ec)
505 {
506 	int i, status;
507 	u8 value = 0;
508 
509 	for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
510 		status = acpi_ec_query(ec, &value);
511 		if (status || !value)
512 			break;
513 	}
514 	if (unlikely(i == ACPI_EC_CLEAR_MAX))
515 		pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
516 	else
517 		pr_info("%d stale EC events cleared\n", i);
518 }
519 
520 static void acpi_ec_enable_event(struct acpi_ec *ec)
521 {
522 	unsigned long flags;
523 
524 	spin_lock_irqsave(&ec->lock, flags);
525 	if (acpi_ec_started(ec))
526 		__acpi_ec_enable_event(ec);
527 	spin_unlock_irqrestore(&ec->lock, flags);
528 
529 	/* Drain additional events if hardware requires that */
530 	if (EC_FLAGS_CLEAR_ON_RESUME)
531 		acpi_ec_clear(ec);
532 }
533 
534 #ifdef CONFIG_PM_SLEEP
535 static void __acpi_ec_flush_work(void)
536 {
537 	drain_workqueue(ec_wq); /* flush ec->work */
538 	flush_workqueue(ec_query_wq); /* flush queries */
539 }
540 
541 static void acpi_ec_disable_event(struct acpi_ec *ec)
542 {
543 	unsigned long flags;
544 
545 	spin_lock_irqsave(&ec->lock, flags);
546 	__acpi_ec_disable_event(ec);
547 	spin_unlock_irqrestore(&ec->lock, flags);
548 
549 	/*
550 	 * When ec_freeze_events is true, we need to flush events in
551 	 * the proper position before entering the noirq stage.
552 	 */
553 	__acpi_ec_flush_work();
554 }
555 
556 void acpi_ec_flush_work(void)
557 {
558 	/* Without ec_wq there is nothing to flush. */
559 	if (!ec_wq)
560 		return;
561 
562 	__acpi_ec_flush_work();
563 }
564 #endif /* CONFIG_PM_SLEEP */
565 
566 static bool acpi_ec_guard_event(struct acpi_ec *ec)
567 {
568 	bool guarded = true;
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(&ec->lock, flags);
572 	/*
573 	 * If firmware SCI_EVT clearing timing is "event", we actually
574 	 * don't know when the SCI_EVT will be cleared by firmware after
575 	 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
576 	 * acceptable period.
577 	 *
578 	 * The guarding period begins when EC_FLAGS_QUERY_PENDING is
579 	 * flagged, which means SCI_EVT check has just been performed.
580 	 * But if the current transaction is ACPI_EC_COMMAND_QUERY, the
581 	 * guarding should have already been performed (via
582 	 * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the
583 	 * ACPI_EC_COMMAND_QUERY transaction can be transitioned into
584 	 * ACPI_EC_COMMAND_POLL state immediately.
585 	 */
586 	if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
587 	    ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY ||
588 	    !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) ||
589 	    (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY))
590 		guarded = false;
591 	spin_unlock_irqrestore(&ec->lock, flags);
592 	return guarded;
593 }
594 
595 static int ec_transaction_polled(struct acpi_ec *ec)
596 {
597 	unsigned long flags;
598 	int ret = 0;
599 
600 	spin_lock_irqsave(&ec->lock, flags);
601 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
602 		ret = 1;
603 	spin_unlock_irqrestore(&ec->lock, flags);
604 	return ret;
605 }
606 
607 static int ec_transaction_completed(struct acpi_ec *ec)
608 {
609 	unsigned long flags;
610 	int ret = 0;
611 
612 	spin_lock_irqsave(&ec->lock, flags);
613 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
614 		ret = 1;
615 	spin_unlock_irqrestore(&ec->lock, flags);
616 	return ret;
617 }
618 
619 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
620 {
621 	ec->curr->flags |= flag;
622 	if (ec->curr->command == ACPI_EC_COMMAND_QUERY) {
623 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS &&
624 		    flag == ACPI_EC_COMMAND_POLL)
625 			acpi_ec_complete_query(ec);
626 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY &&
627 		    flag == ACPI_EC_COMMAND_COMPLETE)
628 			acpi_ec_complete_query(ec);
629 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
630 		    flag == ACPI_EC_COMMAND_COMPLETE)
631 			set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
632 	}
633 }
634 
635 static void advance_transaction(struct acpi_ec *ec)
636 {
637 	struct transaction *t;
638 	u8 status;
639 	bool wakeup = false;
640 
641 	ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK",
642 		   smp_processor_id());
643 	/*
644 	 * By always clearing STS before handling all indications, we can
645 	 * ensure a hardware STS 0->1 change after this clearing can always
646 	 * trigger a GPE interrupt.
647 	 */
648 	if (ec->gpe >= 0)
649 		acpi_ec_clear_gpe(ec);
650 
651 	status = acpi_ec_read_status(ec);
652 	t = ec->curr;
653 	/*
654 	 * Another IRQ or a guarded polling mode advancement is detected,
655 	 * the next QR_EC submission is then allowed.
656 	 */
657 	if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
658 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
659 		    (!ec->nr_pending_queries ||
660 		     test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) {
661 			clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
662 			acpi_ec_complete_query(ec);
663 		}
664 	}
665 	if (!t)
666 		goto err;
667 	if (t->flags & ACPI_EC_COMMAND_POLL) {
668 		if (t->wlen > t->wi) {
669 			if ((status & ACPI_EC_FLAG_IBF) == 0)
670 				acpi_ec_write_data(ec, t->wdata[t->wi++]);
671 			else
672 				goto err;
673 		} else if (t->rlen > t->ri) {
674 			if ((status & ACPI_EC_FLAG_OBF) == 1) {
675 				t->rdata[t->ri++] = acpi_ec_read_data(ec);
676 				if (t->rlen == t->ri) {
677 					ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
678 					if (t->command == ACPI_EC_COMMAND_QUERY)
679 						ec_dbg_evt("Command(%s) completed by hardware",
680 							   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
681 					wakeup = true;
682 				}
683 			} else
684 				goto err;
685 		} else if (t->wlen == t->wi &&
686 			   (status & ACPI_EC_FLAG_IBF) == 0) {
687 			ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
688 			wakeup = true;
689 		}
690 		goto out;
691 	} else if (!(status & ACPI_EC_FLAG_IBF)) {
692 		acpi_ec_write_cmd(ec, t->command);
693 		ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
694 		goto out;
695 	}
696 err:
697 	/*
698 	 * If SCI bit is set, then don't think it's a false IRQ
699 	 * otherwise will take a not handled IRQ as a false one.
700 	 */
701 	if (!(status & ACPI_EC_FLAG_SCI)) {
702 		if (in_interrupt() && t) {
703 			if (t->irq_count < ec_storm_threshold)
704 				++t->irq_count;
705 			/* Allow triggering on 0 threshold */
706 			if (t->irq_count == ec_storm_threshold)
707 				acpi_ec_mask_events(ec);
708 		}
709 	}
710 out:
711 	if (status & ACPI_EC_FLAG_SCI)
712 		acpi_ec_submit_query(ec);
713 	if (wakeup && in_interrupt())
714 		wake_up(&ec->wait);
715 }
716 
717 static void start_transaction(struct acpi_ec *ec)
718 {
719 	ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
720 	ec->curr->flags = 0;
721 }
722 
723 static int ec_guard(struct acpi_ec *ec)
724 {
725 	unsigned long guard = usecs_to_jiffies(ec->polling_guard);
726 	unsigned long timeout = ec->timestamp + guard;
727 
728 	/* Ensure guarding period before polling EC status */
729 	do {
730 		if (ec->busy_polling) {
731 			/* Perform busy polling */
732 			if (ec_transaction_completed(ec))
733 				return 0;
734 			udelay(jiffies_to_usecs(guard));
735 		} else {
736 			/*
737 			 * Perform wait polling
738 			 * 1. Wait the transaction to be completed by the
739 			 *    GPE handler after the transaction enters
740 			 *    ACPI_EC_COMMAND_POLL state.
741 			 * 2. A special guarding logic is also required
742 			 *    for event clearing mode "event" before the
743 			 *    transaction enters ACPI_EC_COMMAND_POLL
744 			 *    state.
745 			 */
746 			if (!ec_transaction_polled(ec) &&
747 			    !acpi_ec_guard_event(ec))
748 				break;
749 			if (wait_event_timeout(ec->wait,
750 					       ec_transaction_completed(ec),
751 					       guard))
752 				return 0;
753 		}
754 	} while (time_before(jiffies, timeout));
755 	return -ETIME;
756 }
757 
758 static int ec_poll(struct acpi_ec *ec)
759 {
760 	unsigned long flags;
761 	int repeat = 5; /* number of command restarts */
762 
763 	while (repeat--) {
764 		unsigned long delay = jiffies +
765 			msecs_to_jiffies(ec_delay);
766 		do {
767 			if (!ec_guard(ec))
768 				return 0;
769 			spin_lock_irqsave(&ec->lock, flags);
770 			advance_transaction(ec);
771 			spin_unlock_irqrestore(&ec->lock, flags);
772 		} while (time_before(jiffies, delay));
773 		pr_debug("controller reset, restart transaction\n");
774 		spin_lock_irqsave(&ec->lock, flags);
775 		start_transaction(ec);
776 		spin_unlock_irqrestore(&ec->lock, flags);
777 	}
778 	return -ETIME;
779 }
780 
781 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
782 					struct transaction *t)
783 {
784 	unsigned long tmp;
785 	int ret = 0;
786 
787 	/* start transaction */
788 	spin_lock_irqsave(&ec->lock, tmp);
789 	/* Enable GPE for command processing (IBF=0/OBF=1) */
790 	if (!acpi_ec_submit_flushable_request(ec)) {
791 		ret = -EINVAL;
792 		goto unlock;
793 	}
794 	ec_dbg_ref(ec, "Increase command");
795 	/* following two actions should be kept atomic */
796 	ec->curr = t;
797 	ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
798 	start_transaction(ec);
799 	spin_unlock_irqrestore(&ec->lock, tmp);
800 
801 	ret = ec_poll(ec);
802 
803 	spin_lock_irqsave(&ec->lock, tmp);
804 	if (t->irq_count == ec_storm_threshold)
805 		acpi_ec_unmask_events(ec);
806 	ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
807 	ec->curr = NULL;
808 	/* Disable GPE for command processing (IBF=0/OBF=1) */
809 	acpi_ec_complete_request(ec);
810 	ec_dbg_ref(ec, "Decrease command");
811 unlock:
812 	spin_unlock_irqrestore(&ec->lock, tmp);
813 	return ret;
814 }
815 
816 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
817 {
818 	int status;
819 	u32 glk;
820 
821 	if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
822 		return -EINVAL;
823 	if (t->rdata)
824 		memset(t->rdata, 0, t->rlen);
825 
826 	mutex_lock(&ec->mutex);
827 	if (ec->global_lock) {
828 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
829 		if (ACPI_FAILURE(status)) {
830 			status = -ENODEV;
831 			goto unlock;
832 		}
833 	}
834 
835 	status = acpi_ec_transaction_unlocked(ec, t);
836 
837 	if (ec->global_lock)
838 		acpi_release_global_lock(glk);
839 unlock:
840 	mutex_unlock(&ec->mutex);
841 	return status;
842 }
843 
844 static int acpi_ec_burst_enable(struct acpi_ec *ec)
845 {
846 	u8 d;
847 	struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
848 				.wdata = NULL, .rdata = &d,
849 				.wlen = 0, .rlen = 1};
850 
851 	return acpi_ec_transaction(ec, &t);
852 }
853 
854 static int acpi_ec_burst_disable(struct acpi_ec *ec)
855 {
856 	struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
857 				.wdata = NULL, .rdata = NULL,
858 				.wlen = 0, .rlen = 0};
859 
860 	return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
861 				acpi_ec_transaction(ec, &t) : 0;
862 }
863 
864 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
865 {
866 	int result;
867 	u8 d;
868 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
869 				.wdata = &address, .rdata = &d,
870 				.wlen = 1, .rlen = 1};
871 
872 	result = acpi_ec_transaction(ec, &t);
873 	*data = d;
874 	return result;
875 }
876 
877 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
878 {
879 	u8 wdata[2] = { address, data };
880 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
881 				.wdata = wdata, .rdata = NULL,
882 				.wlen = 2, .rlen = 0};
883 
884 	return acpi_ec_transaction(ec, &t);
885 }
886 
887 int ec_read(u8 addr, u8 *val)
888 {
889 	int err;
890 	u8 temp_data;
891 
892 	if (!first_ec)
893 		return -ENODEV;
894 
895 	err = acpi_ec_read(first_ec, addr, &temp_data);
896 
897 	if (!err) {
898 		*val = temp_data;
899 		return 0;
900 	}
901 	return err;
902 }
903 EXPORT_SYMBOL(ec_read);
904 
905 int ec_write(u8 addr, u8 val)
906 {
907 	int err;
908 
909 	if (!first_ec)
910 		return -ENODEV;
911 
912 	err = acpi_ec_write(first_ec, addr, val);
913 
914 	return err;
915 }
916 EXPORT_SYMBOL(ec_write);
917 
918 int ec_transaction(u8 command,
919 		   const u8 *wdata, unsigned wdata_len,
920 		   u8 *rdata, unsigned rdata_len)
921 {
922 	struct transaction t = {.command = command,
923 				.wdata = wdata, .rdata = rdata,
924 				.wlen = wdata_len, .rlen = rdata_len};
925 
926 	if (!first_ec)
927 		return -ENODEV;
928 
929 	return acpi_ec_transaction(first_ec, &t);
930 }
931 EXPORT_SYMBOL(ec_transaction);
932 
933 /* Get the handle to the EC device */
934 acpi_handle ec_get_handle(void)
935 {
936 	if (!first_ec)
937 		return NULL;
938 	return first_ec->handle;
939 }
940 EXPORT_SYMBOL(ec_get_handle);
941 
942 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
943 {
944 	unsigned long flags;
945 
946 	spin_lock_irqsave(&ec->lock, flags);
947 	if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
948 		ec_dbg_drv("Starting EC");
949 		/* Enable GPE for event processing (SCI_EVT=1) */
950 		if (!resuming) {
951 			acpi_ec_submit_request(ec);
952 			ec_dbg_ref(ec, "Increase driver");
953 		}
954 		ec_log_drv("EC started");
955 	}
956 	spin_unlock_irqrestore(&ec->lock, flags);
957 }
958 
959 static bool acpi_ec_stopped(struct acpi_ec *ec)
960 {
961 	unsigned long flags;
962 	bool flushed;
963 
964 	spin_lock_irqsave(&ec->lock, flags);
965 	flushed = acpi_ec_flushed(ec);
966 	spin_unlock_irqrestore(&ec->lock, flags);
967 	return flushed;
968 }
969 
970 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
971 {
972 	unsigned long flags;
973 
974 	spin_lock_irqsave(&ec->lock, flags);
975 	if (acpi_ec_started(ec)) {
976 		ec_dbg_drv("Stopping EC");
977 		set_bit(EC_FLAGS_STOPPED, &ec->flags);
978 		spin_unlock_irqrestore(&ec->lock, flags);
979 		wait_event(ec->wait, acpi_ec_stopped(ec));
980 		spin_lock_irqsave(&ec->lock, flags);
981 		/* Disable GPE for event processing (SCI_EVT=1) */
982 		if (!suspending) {
983 			acpi_ec_complete_request(ec);
984 			ec_dbg_ref(ec, "Decrease driver");
985 		} else if (!ec_freeze_events)
986 			__acpi_ec_disable_event(ec);
987 		clear_bit(EC_FLAGS_STARTED, &ec->flags);
988 		clear_bit(EC_FLAGS_STOPPED, &ec->flags);
989 		ec_log_drv("EC stopped");
990 	}
991 	spin_unlock_irqrestore(&ec->lock, flags);
992 }
993 
994 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
995 {
996 	unsigned long flags;
997 
998 	spin_lock_irqsave(&ec->lock, flags);
999 	ec->busy_polling = true;
1000 	ec->polling_guard = 0;
1001 	ec_log_drv("interrupt blocked");
1002 	spin_unlock_irqrestore(&ec->lock, flags);
1003 }
1004 
1005 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1006 {
1007 	unsigned long flags;
1008 
1009 	spin_lock_irqsave(&ec->lock, flags);
1010 	ec->busy_polling = ec_busy_polling;
1011 	ec->polling_guard = ec_polling_guard;
1012 	ec_log_drv("interrupt unblocked");
1013 	spin_unlock_irqrestore(&ec->lock, flags);
1014 }
1015 
1016 void acpi_ec_block_transactions(void)
1017 {
1018 	struct acpi_ec *ec = first_ec;
1019 
1020 	if (!ec)
1021 		return;
1022 
1023 	mutex_lock(&ec->mutex);
1024 	/* Prevent transactions from being carried out */
1025 	acpi_ec_stop(ec, true);
1026 	mutex_unlock(&ec->mutex);
1027 }
1028 
1029 void acpi_ec_unblock_transactions(void)
1030 {
1031 	/*
1032 	 * Allow transactions to happen again (this function is called from
1033 	 * atomic context during wakeup, so we don't need to acquire the mutex).
1034 	 */
1035 	if (first_ec)
1036 		acpi_ec_start(first_ec, true);
1037 }
1038 
1039 /* --------------------------------------------------------------------------
1040                                 Event Management
1041    -------------------------------------------------------------------------- */
1042 static struct acpi_ec_query_handler *
1043 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1044 {
1045 	struct acpi_ec_query_handler *handler;
1046 
1047 	mutex_lock(&ec->mutex);
1048 	list_for_each_entry(handler, &ec->list, node) {
1049 		if (value == handler->query_bit) {
1050 			kref_get(&handler->kref);
1051 			mutex_unlock(&ec->mutex);
1052 			return handler;
1053 		}
1054 	}
1055 	mutex_unlock(&ec->mutex);
1056 	return NULL;
1057 }
1058 
1059 static void acpi_ec_query_handler_release(struct kref *kref)
1060 {
1061 	struct acpi_ec_query_handler *handler =
1062 		container_of(kref, struct acpi_ec_query_handler, kref);
1063 
1064 	kfree(handler);
1065 }
1066 
1067 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1068 {
1069 	kref_put(&handler->kref, acpi_ec_query_handler_release);
1070 }
1071 
1072 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1073 			      acpi_handle handle, acpi_ec_query_func func,
1074 			      void *data)
1075 {
1076 	struct acpi_ec_query_handler *handler =
1077 	    kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1078 
1079 	if (!handler)
1080 		return -ENOMEM;
1081 
1082 	handler->query_bit = query_bit;
1083 	handler->handle = handle;
1084 	handler->func = func;
1085 	handler->data = data;
1086 	mutex_lock(&ec->mutex);
1087 	kref_init(&handler->kref);
1088 	list_add(&handler->node, &ec->list);
1089 	mutex_unlock(&ec->mutex);
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1093 
1094 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1095 					  bool remove_all, u8 query_bit)
1096 {
1097 	struct acpi_ec_query_handler *handler, *tmp;
1098 	LIST_HEAD(free_list);
1099 
1100 	mutex_lock(&ec->mutex);
1101 	list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1102 		if (remove_all || query_bit == handler->query_bit) {
1103 			list_del_init(&handler->node);
1104 			list_add(&handler->node, &free_list);
1105 		}
1106 	}
1107 	mutex_unlock(&ec->mutex);
1108 	list_for_each_entry_safe(handler, tmp, &free_list, node)
1109 		acpi_ec_put_query_handler(handler);
1110 }
1111 
1112 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1113 {
1114 	acpi_ec_remove_query_handlers(ec, false, query_bit);
1115 }
1116 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1117 
1118 static struct acpi_ec_query *acpi_ec_create_query(u8 *pval)
1119 {
1120 	struct acpi_ec_query *q;
1121 	struct transaction *t;
1122 
1123 	q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1124 	if (!q)
1125 		return NULL;
1126 	INIT_WORK(&q->work, acpi_ec_event_processor);
1127 	t = &q->transaction;
1128 	t->command = ACPI_EC_COMMAND_QUERY;
1129 	t->rdata = pval;
1130 	t->rlen = 1;
1131 	return q;
1132 }
1133 
1134 static void acpi_ec_delete_query(struct acpi_ec_query *q)
1135 {
1136 	if (q) {
1137 		if (q->handler)
1138 			acpi_ec_put_query_handler(q->handler);
1139 		kfree(q);
1140 	}
1141 }
1142 
1143 static void acpi_ec_event_processor(struct work_struct *work)
1144 {
1145 	struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1146 	struct acpi_ec_query_handler *handler = q->handler;
1147 
1148 	ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1149 	if (handler->func)
1150 		handler->func(handler->data);
1151 	else if (handler->handle)
1152 		acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1153 	ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1154 	acpi_ec_delete_query(q);
1155 }
1156 
1157 static int acpi_ec_query(struct acpi_ec *ec, u8 *data)
1158 {
1159 	u8 value = 0;
1160 	int result;
1161 	struct acpi_ec_query *q;
1162 
1163 	q = acpi_ec_create_query(&value);
1164 	if (!q)
1165 		return -ENOMEM;
1166 
1167 	/*
1168 	 * Query the EC to find out which _Qxx method we need to evaluate.
1169 	 * Note that successful completion of the query causes the ACPI_EC_SCI
1170 	 * bit to be cleared (and thus clearing the interrupt source).
1171 	 */
1172 	result = acpi_ec_transaction(ec, &q->transaction);
1173 	if (!value)
1174 		result = -ENODATA;
1175 	if (result)
1176 		goto err_exit;
1177 
1178 	q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1179 	if (!q->handler) {
1180 		result = -ENODATA;
1181 		goto err_exit;
1182 	}
1183 
1184 	/*
1185 	 * It is reported that _Qxx are evaluated in a parallel way on
1186 	 * Windows:
1187 	 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1188 	 *
1189 	 * Put this log entry before schedule_work() in order to make
1190 	 * it appearing before any other log entries occurred during the
1191 	 * work queue execution.
1192 	 */
1193 	ec_dbg_evt("Query(0x%02x) scheduled", value);
1194 	if (!queue_work(ec_query_wq, &q->work)) {
1195 		ec_dbg_evt("Query(0x%02x) overlapped", value);
1196 		result = -EBUSY;
1197 	}
1198 
1199 err_exit:
1200 	if (result)
1201 		acpi_ec_delete_query(q);
1202 	if (data)
1203 		*data = value;
1204 	return result;
1205 }
1206 
1207 static void acpi_ec_check_event(struct acpi_ec *ec)
1208 {
1209 	unsigned long flags;
1210 
1211 	if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1212 		if (ec_guard(ec)) {
1213 			spin_lock_irqsave(&ec->lock, flags);
1214 			/*
1215 			 * Take care of the SCI_EVT unless no one else is
1216 			 * taking care of it.
1217 			 */
1218 			if (!ec->curr)
1219 				advance_transaction(ec);
1220 			spin_unlock_irqrestore(&ec->lock, flags);
1221 		}
1222 	}
1223 }
1224 
1225 static void acpi_ec_event_handler(struct work_struct *work)
1226 {
1227 	unsigned long flags;
1228 	struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1229 
1230 	ec_dbg_evt("Event started");
1231 
1232 	spin_lock_irqsave(&ec->lock, flags);
1233 	while (ec->nr_pending_queries) {
1234 		spin_unlock_irqrestore(&ec->lock, flags);
1235 		(void)acpi_ec_query(ec, NULL);
1236 		spin_lock_irqsave(&ec->lock, flags);
1237 		ec->nr_pending_queries--;
1238 		/*
1239 		 * Before exit, make sure that this work item can be
1240 		 * scheduled again. There might be QR_EC failures, leaving
1241 		 * EC_FLAGS_QUERY_PENDING uncleared and preventing this work
1242 		 * item from being scheduled again.
1243 		 */
1244 		if (!ec->nr_pending_queries) {
1245 			if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
1246 			    ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY)
1247 				acpi_ec_complete_query(ec);
1248 		}
1249 	}
1250 	spin_unlock_irqrestore(&ec->lock, flags);
1251 
1252 	ec_dbg_evt("Event stopped");
1253 
1254 	acpi_ec_check_event(ec);
1255 }
1256 
1257 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1258 {
1259 	unsigned long flags;
1260 
1261 	spin_lock_irqsave(&ec->lock, flags);
1262 	advance_transaction(ec);
1263 	spin_unlock_irqrestore(&ec->lock, flags);
1264 }
1265 
1266 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1267 			       u32 gpe_number, void *data)
1268 {
1269 	acpi_ec_handle_interrupt(data);
1270 	return ACPI_INTERRUPT_HANDLED;
1271 }
1272 
1273 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1274 {
1275 	acpi_ec_handle_interrupt(data);
1276 	return IRQ_HANDLED;
1277 }
1278 
1279 /* --------------------------------------------------------------------------
1280  *                           Address Space Management
1281  * -------------------------------------------------------------------------- */
1282 
1283 static acpi_status
1284 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1285 		      u32 bits, u64 *value64,
1286 		      void *handler_context, void *region_context)
1287 {
1288 	struct acpi_ec *ec = handler_context;
1289 	int result = 0, i, bytes = bits / 8;
1290 	u8 *value = (u8 *)value64;
1291 
1292 	if ((address > 0xFF) || !value || !handler_context)
1293 		return AE_BAD_PARAMETER;
1294 
1295 	if (function != ACPI_READ && function != ACPI_WRITE)
1296 		return AE_BAD_PARAMETER;
1297 
1298 	if (ec->busy_polling || bits > 8)
1299 		acpi_ec_burst_enable(ec);
1300 
1301 	for (i = 0; i < bytes; ++i, ++address, ++value)
1302 		result = (function == ACPI_READ) ?
1303 			acpi_ec_read(ec, address, value) :
1304 			acpi_ec_write(ec, address, *value);
1305 
1306 	if (ec->busy_polling || bits > 8)
1307 		acpi_ec_burst_disable(ec);
1308 
1309 	switch (result) {
1310 	case -EINVAL:
1311 		return AE_BAD_PARAMETER;
1312 	case -ENODEV:
1313 		return AE_NOT_FOUND;
1314 	case -ETIME:
1315 		return AE_TIME;
1316 	default:
1317 		return AE_OK;
1318 	}
1319 }
1320 
1321 /* --------------------------------------------------------------------------
1322  *                             Driver Interface
1323  * -------------------------------------------------------------------------- */
1324 
1325 static acpi_status
1326 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1327 
1328 static void acpi_ec_free(struct acpi_ec *ec)
1329 {
1330 	if (first_ec == ec)
1331 		first_ec = NULL;
1332 	if (boot_ec == ec)
1333 		boot_ec = NULL;
1334 	kfree(ec);
1335 }
1336 
1337 static struct acpi_ec *acpi_ec_alloc(void)
1338 {
1339 	struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1340 
1341 	if (!ec)
1342 		return NULL;
1343 	mutex_init(&ec->mutex);
1344 	init_waitqueue_head(&ec->wait);
1345 	INIT_LIST_HEAD(&ec->list);
1346 	spin_lock_init(&ec->lock);
1347 	INIT_WORK(&ec->work, acpi_ec_event_handler);
1348 	ec->timestamp = jiffies;
1349 	ec->busy_polling = true;
1350 	ec->polling_guard = 0;
1351 	ec->gpe = -1;
1352 	ec->irq = -1;
1353 	return ec;
1354 }
1355 
1356 static acpi_status
1357 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1358 			       void *context, void **return_value)
1359 {
1360 	char node_name[5];
1361 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
1362 	struct acpi_ec *ec = context;
1363 	int value = 0;
1364 	acpi_status status;
1365 
1366 	status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1367 
1368 	if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1369 		acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1370 	return AE_OK;
1371 }
1372 
1373 static acpi_status
1374 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1375 {
1376 	acpi_status status;
1377 	unsigned long long tmp = 0;
1378 	struct acpi_ec *ec = context;
1379 
1380 	/* clear addr values, ec_parse_io_ports depend on it */
1381 	ec->command_addr = ec->data_addr = 0;
1382 
1383 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1384 				     ec_parse_io_ports, ec);
1385 	if (ACPI_FAILURE(status))
1386 		return status;
1387 	if (ec->data_addr == 0 || ec->command_addr == 0)
1388 		return AE_OK;
1389 
1390 	if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) {
1391 		/*
1392 		 * Always inherit the GPE number setting from the ECDT
1393 		 * EC.
1394 		 */
1395 		ec->gpe = boot_ec->gpe;
1396 	} else {
1397 		/* Get GPE bit assignment (EC events). */
1398 		/* TODO: Add support for _GPE returning a package */
1399 		status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1400 		if (ACPI_SUCCESS(status))
1401 			ec->gpe = tmp;
1402 
1403 		/*
1404 		 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1405 		 * platforms which use GpioInt instead of GPE.
1406 		 */
1407 	}
1408 	/* Use the global lock for all EC transactions? */
1409 	tmp = 0;
1410 	acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1411 	ec->global_lock = tmp;
1412 	ec->handle = handle;
1413 	return AE_CTRL_TERMINATE;
1414 }
1415 
1416 static bool install_gpe_event_handler(struct acpi_ec *ec)
1417 {
1418 	acpi_status status;
1419 
1420 	status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1421 					      ACPI_GPE_EDGE_TRIGGERED,
1422 					      &acpi_ec_gpe_handler, ec);
1423 	if (ACPI_FAILURE(status))
1424 		return false;
1425 
1426 	if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1427 		acpi_ec_enable_gpe(ec, true);
1428 
1429 	return true;
1430 }
1431 
1432 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1433 {
1434 	return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED,
1435 			   "ACPI EC", ec) >= 0;
1436 }
1437 
1438 /**
1439  * ec_install_handlers - Install service callbacks and register query methods.
1440  * @ec: Target EC.
1441  * @device: ACPI device object corresponding to @ec.
1442  *
1443  * Install a handler for the EC address space type unless it has been installed
1444  * already.  If @device is not NULL, also look for EC query methods in the
1445  * namespace and register them, and install an event (either GPE or GPIO IRQ)
1446  * handler for the EC, if possible.
1447  *
1448  * Return:
1449  * -ENODEV if the address space handler cannot be installed, which means
1450  *  "unable to handle transactions",
1451  * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1452  * or 0 (success) otherwise.
1453  */
1454 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device)
1455 {
1456 	acpi_status status;
1457 
1458 	acpi_ec_start(ec, false);
1459 
1460 	if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1461 		acpi_ec_enter_noirq(ec);
1462 		status = acpi_install_address_space_handler(ec->handle,
1463 							    ACPI_ADR_SPACE_EC,
1464 							    &acpi_ec_space_handler,
1465 							    NULL, ec);
1466 		if (ACPI_FAILURE(status)) {
1467 			acpi_ec_stop(ec, false);
1468 			return -ENODEV;
1469 		}
1470 		set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1471 	}
1472 
1473 	if (!device)
1474 		return 0;
1475 
1476 	if (ec->gpe < 0) {
1477 		/* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1478 		int irq = acpi_dev_gpio_irq_get(device, 0);
1479 		/*
1480 		 * Bail out right away for deferred probing or complete the
1481 		 * initialization regardless of any other errors.
1482 		 */
1483 		if (irq == -EPROBE_DEFER)
1484 			return -EPROBE_DEFER;
1485 		else if (irq >= 0)
1486 			ec->irq = irq;
1487 	}
1488 
1489 	if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1490 		/* Find and register all query methods */
1491 		acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1492 				    acpi_ec_register_query_methods,
1493 				    NULL, ec, NULL);
1494 		set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1495 	}
1496 	if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1497 		bool ready = false;
1498 
1499 		if (ec->gpe >= 0)
1500 			ready = install_gpe_event_handler(ec);
1501 		else if (ec->irq >= 0)
1502 			ready = install_gpio_irq_event_handler(ec);
1503 
1504 		if (ready) {
1505 			set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1506 			acpi_ec_leave_noirq(ec);
1507 		}
1508 		/*
1509 		 * Failures to install an event handler are not fatal, because
1510 		 * the EC can be polled for events.
1511 		 */
1512 	}
1513 	/* EC is fully operational, allow queries */
1514 	acpi_ec_enable_event(ec);
1515 
1516 	return 0;
1517 }
1518 
1519 static void ec_remove_handlers(struct acpi_ec *ec)
1520 {
1521 	if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1522 		if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1523 					ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1524 			pr_err("failed to remove space handler\n");
1525 		clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1526 	}
1527 
1528 	/*
1529 	 * Stops handling the EC transactions after removing the operation
1530 	 * region handler. This is required because _REG(DISCONNECT)
1531 	 * invoked during the removal can result in new EC transactions.
1532 	 *
1533 	 * Flushes the EC requests and thus disables the GPE before
1534 	 * removing the GPE handler. This is required by the current ACPICA
1535 	 * GPE core. ACPICA GPE core will automatically disable a GPE when
1536 	 * it is indicated but there is no way to handle it. So the drivers
1537 	 * must disable the GPEs prior to removing the GPE handlers.
1538 	 */
1539 	acpi_ec_stop(ec, false);
1540 
1541 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1542 		if (ec->gpe >= 0 &&
1543 		    ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1544 				 &acpi_ec_gpe_handler)))
1545 			pr_err("failed to remove gpe handler\n");
1546 
1547 		if (ec->irq >= 0)
1548 			free_irq(ec->irq, ec);
1549 
1550 		clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1551 	}
1552 	if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1553 		acpi_ec_remove_query_handlers(ec, true, 0);
1554 		clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1555 	}
1556 }
1557 
1558 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device)
1559 {
1560 	int ret;
1561 
1562 	ret = ec_install_handlers(ec, device);
1563 	if (ret)
1564 		return ret;
1565 
1566 	/* First EC capable of handling transactions */
1567 	if (!first_ec)
1568 		first_ec = ec;
1569 
1570 	pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1571 		ec->data_addr);
1572 
1573 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1574 		if (ec->gpe >= 0)
1575 			pr_info("GPE=0x%x\n", ec->gpe);
1576 		else
1577 			pr_info("IRQ=%d\n", ec->irq);
1578 	}
1579 
1580 	return ret;
1581 }
1582 
1583 static int acpi_ec_add(struct acpi_device *device)
1584 {
1585 	struct acpi_ec *ec;
1586 	int ret;
1587 
1588 	strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1589 	strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1590 
1591 	if (boot_ec && (boot_ec->handle == device->handle ||
1592 	    !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1593 		/* Fast path: this device corresponds to the boot EC. */
1594 		ec = boot_ec;
1595 	} else {
1596 		acpi_status status;
1597 
1598 		ec = acpi_ec_alloc();
1599 		if (!ec)
1600 			return -ENOMEM;
1601 
1602 		status = ec_parse_device(device->handle, 0, ec, NULL);
1603 		if (status != AE_CTRL_TERMINATE) {
1604 			ret = -EINVAL;
1605 			goto err;
1606 		}
1607 
1608 		if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1609 		    ec->data_addr == boot_ec->data_addr) {
1610 			/*
1611 			 * Trust PNP0C09 namespace location rather than
1612 			 * ECDT ID. But trust ECDT GPE rather than _GPE
1613 			 * because of ASUS quirks, so do not change
1614 			 * boot_ec->gpe to ec->gpe.
1615 			 */
1616 			boot_ec->handle = ec->handle;
1617 			acpi_handle_debug(ec->handle, "duplicated.\n");
1618 			acpi_ec_free(ec);
1619 			ec = boot_ec;
1620 		}
1621 	}
1622 
1623 	ret = acpi_ec_setup(ec, device);
1624 	if (ret)
1625 		goto err;
1626 
1627 	if (ec == boot_ec)
1628 		acpi_handle_info(boot_ec->handle,
1629 				 "Boot %s EC initialization complete\n",
1630 				 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1631 
1632 	acpi_handle_info(ec->handle,
1633 			 "EC: Used to handle transactions and events\n");
1634 
1635 	device->driver_data = ec;
1636 
1637 	ret = !!request_region(ec->data_addr, 1, "EC data");
1638 	WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1639 	ret = !!request_region(ec->command_addr, 1, "EC cmd");
1640 	WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1641 
1642 	/* Reprobe devices depending on the EC */
1643 	acpi_walk_dep_device_list(ec->handle);
1644 
1645 	acpi_handle_debug(ec->handle, "enumerated.\n");
1646 	return 0;
1647 
1648 err:
1649 	if (ec != boot_ec)
1650 		acpi_ec_free(ec);
1651 
1652 	return ret;
1653 }
1654 
1655 static int acpi_ec_remove(struct acpi_device *device)
1656 {
1657 	struct acpi_ec *ec;
1658 
1659 	if (!device)
1660 		return -EINVAL;
1661 
1662 	ec = acpi_driver_data(device);
1663 	release_region(ec->data_addr, 1);
1664 	release_region(ec->command_addr, 1);
1665 	device->driver_data = NULL;
1666 	if (ec != boot_ec) {
1667 		ec_remove_handlers(ec);
1668 		acpi_ec_free(ec);
1669 	}
1670 	return 0;
1671 }
1672 
1673 static acpi_status
1674 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1675 {
1676 	struct acpi_ec *ec = context;
1677 
1678 	if (resource->type != ACPI_RESOURCE_TYPE_IO)
1679 		return AE_OK;
1680 
1681 	/*
1682 	 * The first address region returned is the data port, and
1683 	 * the second address region returned is the status/command
1684 	 * port.
1685 	 */
1686 	if (ec->data_addr == 0)
1687 		ec->data_addr = resource->data.io.minimum;
1688 	else if (ec->command_addr == 0)
1689 		ec->command_addr = resource->data.io.minimum;
1690 	else
1691 		return AE_CTRL_TERMINATE;
1692 
1693 	return AE_OK;
1694 }
1695 
1696 static const struct acpi_device_id ec_device_ids[] = {
1697 	{"PNP0C09", 0},
1698 	{ACPI_ECDT_HID, 0},
1699 	{"", 0},
1700 };
1701 
1702 /*
1703  * This function is not Windows-compatible as Windows never enumerates the
1704  * namespace EC before the main ACPI device enumeration process. It is
1705  * retained for historical reason and will be deprecated in the future.
1706  */
1707 void __init acpi_ec_dsdt_probe(void)
1708 {
1709 	struct acpi_ec *ec;
1710 	acpi_status status;
1711 	int ret;
1712 
1713 	/*
1714 	 * If a platform has ECDT, there is no need to proceed as the
1715 	 * following probe is not a part of the ACPI device enumeration,
1716 	 * executing _STA is not safe, and thus this probe may risk of
1717 	 * picking up an invalid EC device.
1718 	 */
1719 	if (boot_ec)
1720 		return;
1721 
1722 	ec = acpi_ec_alloc();
1723 	if (!ec)
1724 		return;
1725 
1726 	/*
1727 	 * At this point, the namespace is initialized, so start to find
1728 	 * the namespace objects.
1729 	 */
1730 	status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1731 	if (ACPI_FAILURE(status) || !ec->handle) {
1732 		acpi_ec_free(ec);
1733 		return;
1734 	}
1735 
1736 	/*
1737 	 * When the DSDT EC is available, always re-configure boot EC to
1738 	 * have _REG evaluated. _REG can only be evaluated after the
1739 	 * namespace initialization.
1740 	 * At this point, the GPE is not fully initialized, so do not to
1741 	 * handle the events.
1742 	 */
1743 	ret = acpi_ec_setup(ec, NULL);
1744 	if (ret) {
1745 		acpi_ec_free(ec);
1746 		return;
1747 	}
1748 
1749 	boot_ec = ec;
1750 
1751 	acpi_handle_info(ec->handle,
1752 			 "Boot DSDT EC used to handle transactions\n");
1753 }
1754 
1755 /*
1756  * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1757  *
1758  * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1759  * found a matching object in the namespace.
1760  *
1761  * Next, in case the DSDT EC is not functioning, it is still necessary to
1762  * provide a functional ECDT EC to handle events, so add an extra device object
1763  * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1764  *
1765  * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1766  * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1767  */
1768 static void __init acpi_ec_ecdt_start(void)
1769 {
1770 	struct acpi_table_ecdt *ecdt_ptr;
1771 	acpi_handle handle;
1772 	acpi_status status;
1773 
1774 	/* Bail out if a matching EC has been found in the namespace. */
1775 	if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1776 		return;
1777 
1778 	/* Look up the object pointed to from the ECDT in the namespace. */
1779 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1780 				(struct acpi_table_header **)&ecdt_ptr);
1781 	if (ACPI_FAILURE(status))
1782 		return;
1783 
1784 	status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1785 	if (ACPI_SUCCESS(status)) {
1786 		boot_ec->handle = handle;
1787 
1788 		/* Add a special ACPI device object to represent the boot EC. */
1789 		acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1790 	}
1791 
1792 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1793 }
1794 
1795 /*
1796  * On some hardware it is necessary to clear events accumulated by the EC during
1797  * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1798  * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1799  *
1800  * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1801  *
1802  * Ideally, the EC should also be instructed NOT to accumulate events during
1803  * sleep (which Windows seems to do somehow), but the interface to control this
1804  * behaviour is not known at this time.
1805  *
1806  * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1807  * however it is very likely that other Samsung models are affected.
1808  *
1809  * On systems which don't accumulate _Q events during sleep, this extra check
1810  * should be harmless.
1811  */
1812 static int ec_clear_on_resume(const struct dmi_system_id *id)
1813 {
1814 	pr_debug("Detected system needing EC poll on resume.\n");
1815 	EC_FLAGS_CLEAR_ON_RESUME = 1;
1816 	ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1817 	return 0;
1818 }
1819 
1820 /*
1821  * Some ECDTs contain wrong register addresses.
1822  * MSI MS-171F
1823  * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1824  */
1825 static int ec_correct_ecdt(const struct dmi_system_id *id)
1826 {
1827 	pr_debug("Detected system needing ECDT address correction.\n");
1828 	EC_FLAGS_CORRECT_ECDT = 1;
1829 	return 0;
1830 }
1831 
1832 /*
1833  * Some DSDTs contain wrong GPE setting.
1834  * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD
1835  * https://bugzilla.kernel.org/show_bug.cgi?id=195651
1836  */
1837 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id)
1838 {
1839 	pr_debug("Detected system needing ignore DSDT GPE setting.\n");
1840 	EC_FLAGS_IGNORE_DSDT_GPE = 1;
1841 	return 0;
1842 }
1843 
1844 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1845 	{
1846 	ec_correct_ecdt, "MSI MS-171F", {
1847 	DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1848 	DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL},
1849 	{
1850 	ec_honor_ecdt_gpe, "ASUS FX502VD", {
1851 	DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1852 	DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL},
1853 	{
1854 	ec_honor_ecdt_gpe, "ASUS FX502VE", {
1855 	DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1856 	DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL},
1857 	{
1858 	ec_honor_ecdt_gpe, "ASUS GL702VMK", {
1859 	DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1860 	DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL},
1861 	{
1862 	ec_honor_ecdt_gpe, "ASUS X550VXK", {
1863 	DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1864 	DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL},
1865 	{
1866 	ec_honor_ecdt_gpe, "ASUS X580VD", {
1867 	DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1868 	DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL},
1869 	{
1870 	ec_clear_on_resume, "Samsung hardware", {
1871 	DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
1872 	{},
1873 };
1874 
1875 void __init acpi_ec_ecdt_probe(void)
1876 {
1877 	struct acpi_table_ecdt *ecdt_ptr;
1878 	struct acpi_ec *ec;
1879 	acpi_status status;
1880 	int ret;
1881 
1882 	/* Generate a boot ec context. */
1883 	dmi_check_system(ec_dmi_table);
1884 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1885 				(struct acpi_table_header **)&ecdt_ptr);
1886 	if (ACPI_FAILURE(status))
1887 		return;
1888 
1889 	if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1890 		/*
1891 		 * Asus X50GL:
1892 		 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1893 		 */
1894 		goto out;
1895 	}
1896 
1897 	ec = acpi_ec_alloc();
1898 	if (!ec)
1899 		goto out;
1900 
1901 	if (EC_FLAGS_CORRECT_ECDT) {
1902 		ec->command_addr = ecdt_ptr->data.address;
1903 		ec->data_addr = ecdt_ptr->control.address;
1904 	} else {
1905 		ec->command_addr = ecdt_ptr->control.address;
1906 		ec->data_addr = ecdt_ptr->data.address;
1907 	}
1908 
1909 	/*
1910 	 * Ignore the GPE value on Reduced Hardware platforms.
1911 	 * Some products have this set to an erroneous value.
1912 	 */
1913 	if (!acpi_gbl_reduced_hardware)
1914 		ec->gpe = ecdt_ptr->gpe;
1915 
1916 	ec->handle = ACPI_ROOT_OBJECT;
1917 
1918 	/*
1919 	 * At this point, the namespace is not initialized, so do not find
1920 	 * the namespace objects, or handle the events.
1921 	 */
1922 	ret = acpi_ec_setup(ec, NULL);
1923 	if (ret) {
1924 		acpi_ec_free(ec);
1925 		goto out;
1926 	}
1927 
1928 	boot_ec = ec;
1929 	boot_ec_is_ecdt = true;
1930 
1931 	pr_info("Boot ECDT EC used to handle transactions\n");
1932 
1933 out:
1934 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1935 }
1936 
1937 #ifdef CONFIG_PM_SLEEP
1938 static int acpi_ec_suspend(struct device *dev)
1939 {
1940 	struct acpi_ec *ec =
1941 		acpi_driver_data(to_acpi_device(dev));
1942 
1943 	if (!pm_suspend_no_platform() && ec_freeze_events)
1944 		acpi_ec_disable_event(ec);
1945 	return 0;
1946 }
1947 
1948 static int acpi_ec_suspend_noirq(struct device *dev)
1949 {
1950 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1951 
1952 	/*
1953 	 * The SCI handler doesn't run at this point, so the GPE can be
1954 	 * masked at the low level without side effects.
1955 	 */
1956 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1957 	    ec->gpe >= 0 && ec->reference_count >= 1)
1958 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
1959 
1960 	acpi_ec_enter_noirq(ec);
1961 
1962 	return 0;
1963 }
1964 
1965 static int acpi_ec_resume_noirq(struct device *dev)
1966 {
1967 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1968 
1969 	acpi_ec_leave_noirq(ec);
1970 
1971 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1972 	    ec->gpe >= 0 && ec->reference_count >= 1)
1973 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
1974 
1975 	return 0;
1976 }
1977 
1978 static int acpi_ec_resume(struct device *dev)
1979 {
1980 	struct acpi_ec *ec =
1981 		acpi_driver_data(to_acpi_device(dev));
1982 
1983 	acpi_ec_enable_event(ec);
1984 	return 0;
1985 }
1986 
1987 void acpi_ec_mark_gpe_for_wake(void)
1988 {
1989 	if (first_ec && !ec_no_wakeup)
1990 		acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
1991 }
1992 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
1993 
1994 void acpi_ec_set_gpe_wake_mask(u8 action)
1995 {
1996 	if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
1997 		acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
1998 }
1999 
2000 bool acpi_ec_dispatch_gpe(void)
2001 {
2002 	u32 ret;
2003 
2004 	if (!first_ec)
2005 		return acpi_any_gpe_status_set(U32_MAX);
2006 
2007 	/*
2008 	 * Report wakeup if the status bit is set for any enabled GPE other
2009 	 * than the EC one.
2010 	 */
2011 	if (acpi_any_gpe_status_set(first_ec->gpe))
2012 		return true;
2013 
2014 	if (ec_no_wakeup)
2015 		return false;
2016 
2017 	/*
2018 	 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2019 	 * to allow the caller to process events properly after that.
2020 	 */
2021 	ret = acpi_dispatch_gpe(NULL, first_ec->gpe);
2022 	if (ret == ACPI_INTERRUPT_HANDLED) {
2023 		pm_pr_dbg("ACPI EC GPE dispatched\n");
2024 
2025 		/* Flush the event and query workqueues. */
2026 		acpi_ec_flush_work();
2027 	}
2028 
2029 	return false;
2030 }
2031 #endif /* CONFIG_PM_SLEEP */
2032 
2033 static const struct dev_pm_ops acpi_ec_pm = {
2034 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2035 	SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2036 };
2037 
2038 static int param_set_event_clearing(const char *val,
2039 				    const struct kernel_param *kp)
2040 {
2041 	int result = 0;
2042 
2043 	if (!strncmp(val, "status", sizeof("status") - 1)) {
2044 		ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2045 		pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2046 	} else if (!strncmp(val, "query", sizeof("query") - 1)) {
2047 		ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2048 		pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2049 	} else if (!strncmp(val, "event", sizeof("event") - 1)) {
2050 		ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2051 		pr_info("Assuming SCI_EVT clearing on event reads\n");
2052 	} else
2053 		result = -EINVAL;
2054 	return result;
2055 }
2056 
2057 static int param_get_event_clearing(char *buffer,
2058 				    const struct kernel_param *kp)
2059 {
2060 	switch (ec_event_clearing) {
2061 	case ACPI_EC_EVT_TIMING_STATUS:
2062 		return sprintf(buffer, "status");
2063 	case ACPI_EC_EVT_TIMING_QUERY:
2064 		return sprintf(buffer, "query");
2065 	case ACPI_EC_EVT_TIMING_EVENT:
2066 		return sprintf(buffer, "event");
2067 	default:
2068 		return sprintf(buffer, "invalid");
2069 	}
2070 	return 0;
2071 }
2072 
2073 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2074 		  NULL, 0644);
2075 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2076 
2077 static struct acpi_driver acpi_ec_driver = {
2078 	.name = "ec",
2079 	.class = ACPI_EC_CLASS,
2080 	.ids = ec_device_ids,
2081 	.ops = {
2082 		.add = acpi_ec_add,
2083 		.remove = acpi_ec_remove,
2084 		},
2085 	.drv.pm = &acpi_ec_pm,
2086 };
2087 
2088 static void acpi_ec_destroy_workqueues(void)
2089 {
2090 	if (ec_wq) {
2091 		destroy_workqueue(ec_wq);
2092 		ec_wq = NULL;
2093 	}
2094 	if (ec_query_wq) {
2095 		destroy_workqueue(ec_query_wq);
2096 		ec_query_wq = NULL;
2097 	}
2098 }
2099 
2100 static int acpi_ec_init_workqueues(void)
2101 {
2102 	if (!ec_wq)
2103 		ec_wq = alloc_ordered_workqueue("kec", 0);
2104 
2105 	if (!ec_query_wq)
2106 		ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2107 
2108 	if (!ec_wq || !ec_query_wq) {
2109 		acpi_ec_destroy_workqueues();
2110 		return -ENODEV;
2111 	}
2112 	return 0;
2113 }
2114 
2115 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2116 	{
2117 		.ident = "Thinkpad X1 Carbon 6th",
2118 		.matches = {
2119 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2120 			DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2121 		},
2122 	},
2123 	{
2124 		.ident = "ThinkPad X1 Carbon 6th",
2125 		.matches = {
2126 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2127 			DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Carbon 6th"),
2128 		},
2129 	},
2130 	{
2131 		.ident = "ThinkPad X1 Yoga 3rd",
2132 		.matches = {
2133 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2134 			DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2135 		},
2136 	},
2137 	{ },
2138 };
2139 
2140 void __init acpi_ec_init(void)
2141 {
2142 	int result;
2143 
2144 	result = acpi_ec_init_workqueues();
2145 	if (result)
2146 		return;
2147 
2148 	/*
2149 	 * Disable EC wakeup on following systems to prevent periodic
2150 	 * wakeup from EC GPE.
2151 	 */
2152 	if (dmi_check_system(acpi_ec_no_wakeup)) {
2153 		ec_no_wakeup = true;
2154 		pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2155 	}
2156 
2157 	/* Driver must be registered after acpi_ec_init_workqueues(). */
2158 	acpi_bus_register_driver(&acpi_ec_driver);
2159 
2160 	acpi_ec_ecdt_start();
2161 }
2162 
2163 /* EC driver currently not unloadable */
2164 #if 0
2165 static void __exit acpi_ec_exit(void)
2166 {
2167 
2168 	acpi_bus_unregister_driver(&acpi_ec_driver);
2169 	acpi_ec_destroy_workqueues();
2170 }
2171 #endif	/* 0 */
2172