1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ec.c - ACPI Embedded Controller Driver (v3) 4 * 5 * Copyright (C) 2001-2015 Intel Corporation 6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com> 7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com> 8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 * 2004 Luming Yu <luming.yu@intel.com> 10 * 2001, 2002 Andy Grover <andrew.grover@intel.com> 11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de> 13 */ 14 15 /* Uncomment next line to get verbose printout */ 16 /* #define DEBUG */ 17 #define pr_fmt(fmt) "ACPI: EC: " fmt 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/init.h> 22 #include <linux/types.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/list.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/acpi.h> 30 #include <linux/dmi.h> 31 #include <asm/io.h> 32 33 #include "internal.h" 34 35 #define ACPI_EC_CLASS "embedded_controller" 36 #define ACPI_EC_DEVICE_NAME "Embedded Controller" 37 38 /* EC status register */ 39 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ 40 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ 41 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */ 42 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ 43 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ 44 45 /* 46 * The SCI_EVT clearing timing is not defined by the ACPI specification. 47 * This leads to lots of practical timing issues for the host EC driver. 48 * The following variations are defined (from the target EC firmware's 49 * perspective): 50 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the 51 * target can clear SCI_EVT at any time so long as the host can see 52 * the indication by reading the status register (EC_SC). So the 53 * host should re-check SCI_EVT after the first time the SCI_EVT 54 * indication is seen, which is the same time the query request 55 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set 56 * at any later time could indicate another event. Normally such 57 * kind of EC firmware has implemented an event queue and will 58 * return 0x00 to indicate "no outstanding event". 59 * QUERY: After seeing the query request (QR_EC) written to the command 60 * register (EC_CMD) by the host and having prepared the responding 61 * event value in the data register (EC_DATA), the target can safely 62 * clear SCI_EVT because the target can confirm that the current 63 * event is being handled by the host. The host then should check 64 * SCI_EVT right after reading the event response from the data 65 * register (EC_DATA). 66 * EVENT: After seeing the event response read from the data register 67 * (EC_DATA) by the host, the target can clear SCI_EVT. As the 68 * target requires time to notice the change in the data register 69 * (EC_DATA), the host may be required to wait additional guarding 70 * time before checking the SCI_EVT again. Such guarding may not be 71 * necessary if the host is notified via another IRQ. 72 */ 73 #define ACPI_EC_EVT_TIMING_STATUS 0x00 74 #define ACPI_EC_EVT_TIMING_QUERY 0x01 75 #define ACPI_EC_EVT_TIMING_EVENT 0x02 76 77 /* EC commands */ 78 enum ec_command { 79 ACPI_EC_COMMAND_READ = 0x80, 80 ACPI_EC_COMMAND_WRITE = 0x81, 81 ACPI_EC_BURST_ENABLE = 0x82, 82 ACPI_EC_BURST_DISABLE = 0x83, 83 ACPI_EC_COMMAND_QUERY = 0x84, 84 }; 85 86 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */ 87 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ 88 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */ 89 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query 90 * when trying to clear the EC */ 91 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */ 92 93 enum { 94 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */ 95 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */ 96 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */ 97 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */ 98 EC_FLAGS_STARTED, /* Driver is started */ 99 EC_FLAGS_STOPPED, /* Driver is stopped */ 100 EC_FLAGS_EVENTS_MASKED, /* Events masked */ 101 }; 102 103 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */ 104 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */ 105 106 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */ 107 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY; 108 module_param(ec_delay, uint, 0644); 109 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes"); 110 111 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES; 112 module_param(ec_max_queries, uint, 0644); 113 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations"); 114 115 static bool ec_busy_polling __read_mostly; 116 module_param(ec_busy_polling, bool, 0644); 117 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction"); 118 119 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL; 120 module_param(ec_polling_guard, uint, 0644); 121 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes"); 122 123 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY; 124 125 /* 126 * If the number of false interrupts per one transaction exceeds 127 * this threshold, will think there is a GPE storm happened and 128 * will disable the GPE for normal transaction. 129 */ 130 static unsigned int ec_storm_threshold __read_mostly = 8; 131 module_param(ec_storm_threshold, uint, 0644); 132 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm"); 133 134 static bool ec_freeze_events __read_mostly; 135 module_param(ec_freeze_events, bool, 0644); 136 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume"); 137 138 static bool ec_no_wakeup __read_mostly; 139 module_param(ec_no_wakeup, bool, 0644); 140 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle"); 141 142 struct acpi_ec_query_handler { 143 struct list_head node; 144 acpi_ec_query_func func; 145 acpi_handle handle; 146 void *data; 147 u8 query_bit; 148 struct kref kref; 149 }; 150 151 struct transaction { 152 const u8 *wdata; 153 u8 *rdata; 154 unsigned short irq_count; 155 u8 command; 156 u8 wi; 157 u8 ri; 158 u8 wlen; 159 u8 rlen; 160 u8 flags; 161 }; 162 163 struct acpi_ec_query { 164 struct transaction transaction; 165 struct work_struct work; 166 struct acpi_ec_query_handler *handler; 167 struct acpi_ec *ec; 168 }; 169 170 static int acpi_ec_submit_query(struct acpi_ec *ec); 171 static bool advance_transaction(struct acpi_ec *ec, bool interrupt); 172 static void acpi_ec_event_handler(struct work_struct *work); 173 174 struct acpi_ec *first_ec; 175 EXPORT_SYMBOL(first_ec); 176 177 static struct acpi_ec *boot_ec; 178 static bool boot_ec_is_ecdt; 179 static struct workqueue_struct *ec_wq; 180 static struct workqueue_struct *ec_query_wq; 181 182 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */ 183 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */ 184 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */ 185 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */ 186 187 /* -------------------------------------------------------------------------- 188 * Logging/Debugging 189 * -------------------------------------------------------------------------- */ 190 191 /* 192 * Splitters used by the developers to track the boundary of the EC 193 * handling processes. 194 */ 195 #ifdef DEBUG 196 #define EC_DBG_SEP " " 197 #define EC_DBG_DRV "+++++" 198 #define EC_DBG_STM "=====" 199 #define EC_DBG_REQ "*****" 200 #define EC_DBG_EVT "#####" 201 #else 202 #define EC_DBG_SEP "" 203 #define EC_DBG_DRV 204 #define EC_DBG_STM 205 #define EC_DBG_REQ 206 #define EC_DBG_EVT 207 #endif 208 209 #define ec_log_raw(fmt, ...) \ 210 pr_info(fmt "\n", ##__VA_ARGS__) 211 #define ec_dbg_raw(fmt, ...) \ 212 pr_debug(fmt "\n", ##__VA_ARGS__) 213 #define ec_log(filter, fmt, ...) \ 214 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 215 #define ec_dbg(filter, fmt, ...) \ 216 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) 217 218 #define ec_log_drv(fmt, ...) \ 219 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__) 220 #define ec_dbg_drv(fmt, ...) \ 221 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__) 222 #define ec_dbg_stm(fmt, ...) \ 223 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__) 224 #define ec_dbg_req(fmt, ...) \ 225 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__) 226 #define ec_dbg_evt(fmt, ...) \ 227 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__) 228 #define ec_dbg_ref(ec, fmt, ...) \ 229 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__) 230 231 /* -------------------------------------------------------------------------- 232 * Device Flags 233 * -------------------------------------------------------------------------- */ 234 235 static bool acpi_ec_started(struct acpi_ec *ec) 236 { 237 return test_bit(EC_FLAGS_STARTED, &ec->flags) && 238 !test_bit(EC_FLAGS_STOPPED, &ec->flags); 239 } 240 241 static bool acpi_ec_event_enabled(struct acpi_ec *ec) 242 { 243 /* 244 * There is an OSPM early stage logic. During the early stages 245 * (boot/resume), OSPMs shouldn't enable the event handling, only 246 * the EC transactions are allowed to be performed. 247 */ 248 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 249 return false; 250 /* 251 * However, disabling the event handling is experimental for late 252 * stage (suspend), and is controlled by the boot parameter of 253 * "ec_freeze_events": 254 * 1. true: The EC event handling is disabled before entering 255 * the noirq stage. 256 * 2. false: The EC event handling is automatically disabled as 257 * soon as the EC driver is stopped. 258 */ 259 if (ec_freeze_events) 260 return acpi_ec_started(ec); 261 else 262 return test_bit(EC_FLAGS_STARTED, &ec->flags); 263 } 264 265 static bool acpi_ec_flushed(struct acpi_ec *ec) 266 { 267 return ec->reference_count == 1; 268 } 269 270 /* -------------------------------------------------------------------------- 271 * EC Registers 272 * -------------------------------------------------------------------------- */ 273 274 static inline u8 acpi_ec_read_status(struct acpi_ec *ec) 275 { 276 u8 x = inb(ec->command_addr); 277 278 ec_dbg_raw("EC_SC(R) = 0x%2.2x " 279 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d", 280 x, 281 !!(x & ACPI_EC_FLAG_SCI), 282 !!(x & ACPI_EC_FLAG_BURST), 283 !!(x & ACPI_EC_FLAG_CMD), 284 !!(x & ACPI_EC_FLAG_IBF), 285 !!(x & ACPI_EC_FLAG_OBF)); 286 return x; 287 } 288 289 static inline u8 acpi_ec_read_data(struct acpi_ec *ec) 290 { 291 u8 x = inb(ec->data_addr); 292 293 ec->timestamp = jiffies; 294 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x); 295 return x; 296 } 297 298 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command) 299 { 300 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command); 301 outb(command, ec->command_addr); 302 ec->timestamp = jiffies; 303 } 304 305 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data) 306 { 307 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data); 308 outb(data, ec->data_addr); 309 ec->timestamp = jiffies; 310 } 311 312 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 313 static const char *acpi_ec_cmd_string(u8 cmd) 314 { 315 switch (cmd) { 316 case 0x80: 317 return "RD_EC"; 318 case 0x81: 319 return "WR_EC"; 320 case 0x82: 321 return "BE_EC"; 322 case 0x83: 323 return "BD_EC"; 324 case 0x84: 325 return "QR_EC"; 326 } 327 return "UNKNOWN"; 328 } 329 #else 330 #define acpi_ec_cmd_string(cmd) "UNDEF" 331 #endif 332 333 /* -------------------------------------------------------------------------- 334 * GPE Registers 335 * -------------------------------------------------------------------------- */ 336 337 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec) 338 { 339 acpi_event_status gpe_status = 0; 340 341 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status); 342 return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET); 343 } 344 345 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open) 346 { 347 if (open) 348 acpi_enable_gpe(NULL, ec->gpe); 349 else { 350 BUG_ON(ec->reference_count < 1); 351 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 352 } 353 if (acpi_ec_gpe_status_set(ec)) { 354 /* 355 * On some platforms, EN=1 writes cannot trigger GPE. So 356 * software need to manually trigger a pseudo GPE event on 357 * EN=1 writes. 358 */ 359 ec_dbg_raw("Polling quirk"); 360 advance_transaction(ec, false); 361 } 362 } 363 364 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close) 365 { 366 if (close) 367 acpi_disable_gpe(NULL, ec->gpe); 368 else { 369 BUG_ON(ec->reference_count < 1); 370 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 371 } 372 } 373 374 /* -------------------------------------------------------------------------- 375 * Transaction Management 376 * -------------------------------------------------------------------------- */ 377 378 static void acpi_ec_submit_request(struct acpi_ec *ec) 379 { 380 ec->reference_count++; 381 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 382 ec->gpe >= 0 && ec->reference_count == 1) 383 acpi_ec_enable_gpe(ec, true); 384 } 385 386 static void acpi_ec_complete_request(struct acpi_ec *ec) 387 { 388 bool flushed = false; 389 390 ec->reference_count--; 391 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) && 392 ec->gpe >= 0 && ec->reference_count == 0) 393 acpi_ec_disable_gpe(ec, true); 394 flushed = acpi_ec_flushed(ec); 395 if (flushed) 396 wake_up(&ec->wait); 397 } 398 399 static void acpi_ec_mask_events(struct acpi_ec *ec) 400 { 401 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 402 if (ec->gpe >= 0) 403 acpi_ec_disable_gpe(ec, false); 404 else 405 disable_irq_nosync(ec->irq); 406 407 ec_dbg_drv("Polling enabled"); 408 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 409 } 410 } 411 412 static void acpi_ec_unmask_events(struct acpi_ec *ec) 413 { 414 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) { 415 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags); 416 if (ec->gpe >= 0) 417 acpi_ec_enable_gpe(ec, false); 418 else 419 enable_irq(ec->irq); 420 421 ec_dbg_drv("Polling disabled"); 422 } 423 } 424 425 /* 426 * acpi_ec_submit_flushable_request() - Increase the reference count unless 427 * the flush operation is not in 428 * progress 429 * @ec: the EC device 430 * 431 * This function must be used before taking a new action that should hold 432 * the reference count. If this function returns false, then the action 433 * must be discarded or it will prevent the flush operation from being 434 * completed. 435 */ 436 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec) 437 { 438 if (!acpi_ec_started(ec)) 439 return false; 440 acpi_ec_submit_request(ec); 441 return true; 442 } 443 444 static bool acpi_ec_submit_event(struct acpi_ec *ec) 445 { 446 acpi_ec_mask_events(ec); 447 if (!acpi_ec_event_enabled(ec)) 448 return false; 449 450 if (ec->event_state == EC_EVENT_READY) { 451 ec_dbg_evt("Command(%s) submitted/blocked", 452 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 453 454 ec->event_state = EC_EVENT_IN_PROGRESS; 455 /* 456 * If events_to_process is greqter than 0 at this point, the 457 * while () loop in acpi_ec_event_handler() is still running 458 * and incrementing events_to_process will cause it to invoke 459 * acpi_ec_submit_query() once more, so it is not necessary to 460 * queue up the event work to start the same loop again. 461 */ 462 if (ec->events_to_process++ > 0) 463 return true; 464 465 ec->events_in_progress++; 466 return queue_work(ec_wq, &ec->work); 467 } 468 469 /* 470 * The event handling work has not been completed yet, so it needs to be 471 * flushed. 472 */ 473 return true; 474 } 475 476 static void acpi_ec_complete_event(struct acpi_ec *ec) 477 { 478 if (ec->event_state == EC_EVENT_IN_PROGRESS) 479 ec->event_state = EC_EVENT_COMPLETE; 480 } 481 482 static void acpi_ec_close_event(struct acpi_ec *ec) 483 { 484 if (ec->event_state != EC_EVENT_READY) 485 ec_dbg_evt("Command(%s) unblocked", 486 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 487 488 ec->event_state = EC_EVENT_READY; 489 acpi_ec_unmask_events(ec); 490 } 491 492 static inline void __acpi_ec_enable_event(struct acpi_ec *ec) 493 { 494 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 495 ec_log_drv("event unblocked"); 496 /* 497 * Unconditionally invoke this once after enabling the event 498 * handling mechanism to detect the pending events. 499 */ 500 advance_transaction(ec, false); 501 } 502 503 static inline void __acpi_ec_disable_event(struct acpi_ec *ec) 504 { 505 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) 506 ec_log_drv("event blocked"); 507 } 508 509 /* 510 * Process _Q events that might have accumulated in the EC. 511 * Run with locked ec mutex. 512 */ 513 static void acpi_ec_clear(struct acpi_ec *ec) 514 { 515 int i; 516 517 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) { 518 if (acpi_ec_submit_query(ec)) 519 break; 520 } 521 if (unlikely(i == ACPI_EC_CLEAR_MAX)) 522 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i); 523 else 524 pr_info("%d stale EC events cleared\n", i); 525 } 526 527 static void acpi_ec_enable_event(struct acpi_ec *ec) 528 { 529 unsigned long flags; 530 531 spin_lock_irqsave(&ec->lock, flags); 532 if (acpi_ec_started(ec)) 533 __acpi_ec_enable_event(ec); 534 spin_unlock_irqrestore(&ec->lock, flags); 535 536 /* Drain additional events if hardware requires that */ 537 if (EC_FLAGS_CLEAR_ON_RESUME) 538 acpi_ec_clear(ec); 539 } 540 541 #ifdef CONFIG_PM_SLEEP 542 static void __acpi_ec_flush_work(void) 543 { 544 flush_workqueue(ec_wq); /* flush ec->work */ 545 flush_workqueue(ec_query_wq); /* flush queries */ 546 } 547 548 static void acpi_ec_disable_event(struct acpi_ec *ec) 549 { 550 unsigned long flags; 551 552 spin_lock_irqsave(&ec->lock, flags); 553 __acpi_ec_disable_event(ec); 554 spin_unlock_irqrestore(&ec->lock, flags); 555 556 /* 557 * When ec_freeze_events is true, we need to flush events in 558 * the proper position before entering the noirq stage. 559 */ 560 __acpi_ec_flush_work(); 561 } 562 563 void acpi_ec_flush_work(void) 564 { 565 /* Without ec_wq there is nothing to flush. */ 566 if (!ec_wq) 567 return; 568 569 __acpi_ec_flush_work(); 570 } 571 #endif /* CONFIG_PM_SLEEP */ 572 573 static bool acpi_ec_guard_event(struct acpi_ec *ec) 574 { 575 unsigned long flags; 576 bool guarded; 577 578 spin_lock_irqsave(&ec->lock, flags); 579 /* 580 * If firmware SCI_EVT clearing timing is "event", we actually 581 * don't know when the SCI_EVT will be cleared by firmware after 582 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an 583 * acceptable period. 584 * 585 * The guarding period is applicable if the event state is not 586 * EC_EVENT_READY, but otherwise if the current transaction is of the 587 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already 588 * and it should not be applied to let the transaction transition into 589 * the ACPI_EC_COMMAND_POLL state immediately. 590 */ 591 guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 592 ec->event_state != EC_EVENT_READY && 593 (!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY); 594 spin_unlock_irqrestore(&ec->lock, flags); 595 return guarded; 596 } 597 598 static int ec_transaction_polled(struct acpi_ec *ec) 599 { 600 unsigned long flags; 601 int ret = 0; 602 603 spin_lock_irqsave(&ec->lock, flags); 604 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL)) 605 ret = 1; 606 spin_unlock_irqrestore(&ec->lock, flags); 607 return ret; 608 } 609 610 static int ec_transaction_completed(struct acpi_ec *ec) 611 { 612 unsigned long flags; 613 int ret = 0; 614 615 spin_lock_irqsave(&ec->lock, flags); 616 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE)) 617 ret = 1; 618 spin_unlock_irqrestore(&ec->lock, flags); 619 return ret; 620 } 621 622 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag) 623 { 624 ec->curr->flags |= flag; 625 626 if (ec->curr->command != ACPI_EC_COMMAND_QUERY) 627 return; 628 629 switch (ec_event_clearing) { 630 case ACPI_EC_EVT_TIMING_STATUS: 631 if (flag == ACPI_EC_COMMAND_POLL) 632 acpi_ec_close_event(ec); 633 634 return; 635 636 case ACPI_EC_EVT_TIMING_QUERY: 637 if (flag == ACPI_EC_COMMAND_COMPLETE) 638 acpi_ec_close_event(ec); 639 640 return; 641 642 case ACPI_EC_EVT_TIMING_EVENT: 643 if (flag == ACPI_EC_COMMAND_COMPLETE) 644 acpi_ec_complete_event(ec); 645 } 646 } 647 648 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t) 649 { 650 if (t->irq_count < ec_storm_threshold) 651 ++t->irq_count; 652 653 /* Trigger if the threshold is 0 too. */ 654 if (t->irq_count == ec_storm_threshold) 655 acpi_ec_mask_events(ec); 656 } 657 658 static bool advance_transaction(struct acpi_ec *ec, bool interrupt) 659 { 660 struct transaction *t = ec->curr; 661 bool wakeup = false; 662 bool ret = false; 663 u8 status; 664 665 ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id()); 666 667 /* 668 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1 669 * changes to always trigger a GPE interrupt. 670 * 671 * GPE STS is a W1C register, which means: 672 * 673 * 1. Software can clear it without worrying about clearing the other 674 * GPEs' STS bits when the hardware sets them in parallel. 675 * 676 * 2. As long as software can ensure only clearing it when it is set, 677 * hardware won't set it in parallel. 678 */ 679 if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec)) 680 acpi_clear_gpe(NULL, ec->gpe); 681 682 status = acpi_ec_read_status(ec); 683 684 /* 685 * Another IRQ or a guarded polling mode advancement is detected, 686 * the next QR_EC submission is then allowed. 687 */ 688 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) { 689 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && 690 ec->event_state == EC_EVENT_COMPLETE) 691 acpi_ec_close_event(ec); 692 693 if (!t) 694 goto out; 695 } 696 697 if (t->flags & ACPI_EC_COMMAND_POLL) { 698 if (t->wlen > t->wi) { 699 if (!(status & ACPI_EC_FLAG_IBF)) 700 acpi_ec_write_data(ec, t->wdata[t->wi++]); 701 else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) 702 acpi_ec_spurious_interrupt(ec, t); 703 } else if (t->rlen > t->ri) { 704 if (status & ACPI_EC_FLAG_OBF) { 705 t->rdata[t->ri++] = acpi_ec_read_data(ec); 706 if (t->rlen == t->ri) { 707 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 708 wakeup = true; 709 if (t->command == ACPI_EC_COMMAND_QUERY) 710 ec_dbg_evt("Command(%s) completed by hardware", 711 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); 712 } 713 } else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) { 714 acpi_ec_spurious_interrupt(ec, t); 715 } 716 } else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) { 717 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); 718 wakeup = true; 719 } 720 } else if (!(status & ACPI_EC_FLAG_IBF)) { 721 acpi_ec_write_cmd(ec, t->command); 722 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL); 723 } 724 725 out: 726 if (status & ACPI_EC_FLAG_SCI) 727 ret = acpi_ec_submit_event(ec); 728 729 if (wakeup && interrupt) 730 wake_up(&ec->wait); 731 732 return ret; 733 } 734 735 static void start_transaction(struct acpi_ec *ec) 736 { 737 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0; 738 ec->curr->flags = 0; 739 } 740 741 static int ec_guard(struct acpi_ec *ec) 742 { 743 unsigned long guard = usecs_to_jiffies(ec->polling_guard); 744 unsigned long timeout = ec->timestamp + guard; 745 746 /* Ensure guarding period before polling EC status */ 747 do { 748 if (ec->busy_polling) { 749 /* Perform busy polling */ 750 if (ec_transaction_completed(ec)) 751 return 0; 752 udelay(jiffies_to_usecs(guard)); 753 } else { 754 /* 755 * Perform wait polling 756 * 1. Wait the transaction to be completed by the 757 * GPE handler after the transaction enters 758 * ACPI_EC_COMMAND_POLL state. 759 * 2. A special guarding logic is also required 760 * for event clearing mode "event" before the 761 * transaction enters ACPI_EC_COMMAND_POLL 762 * state. 763 */ 764 if (!ec_transaction_polled(ec) && 765 !acpi_ec_guard_event(ec)) 766 break; 767 if (wait_event_timeout(ec->wait, 768 ec_transaction_completed(ec), 769 guard)) 770 return 0; 771 } 772 } while (time_before(jiffies, timeout)); 773 return -ETIME; 774 } 775 776 static int ec_poll(struct acpi_ec *ec) 777 { 778 unsigned long flags; 779 int repeat = 5; /* number of command restarts */ 780 781 while (repeat--) { 782 unsigned long delay = jiffies + 783 msecs_to_jiffies(ec_delay); 784 do { 785 if (!ec_guard(ec)) 786 return 0; 787 spin_lock_irqsave(&ec->lock, flags); 788 advance_transaction(ec, false); 789 spin_unlock_irqrestore(&ec->lock, flags); 790 } while (time_before(jiffies, delay)); 791 pr_debug("controller reset, restart transaction\n"); 792 spin_lock_irqsave(&ec->lock, flags); 793 start_transaction(ec); 794 spin_unlock_irqrestore(&ec->lock, flags); 795 } 796 return -ETIME; 797 } 798 799 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec, 800 struct transaction *t) 801 { 802 unsigned long tmp; 803 int ret = 0; 804 805 /* start transaction */ 806 spin_lock_irqsave(&ec->lock, tmp); 807 /* Enable GPE for command processing (IBF=0/OBF=1) */ 808 if (!acpi_ec_submit_flushable_request(ec)) { 809 ret = -EINVAL; 810 goto unlock; 811 } 812 ec_dbg_ref(ec, "Increase command"); 813 /* following two actions should be kept atomic */ 814 ec->curr = t; 815 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command)); 816 start_transaction(ec); 817 spin_unlock_irqrestore(&ec->lock, tmp); 818 819 ret = ec_poll(ec); 820 821 spin_lock_irqsave(&ec->lock, tmp); 822 if (t->irq_count == ec_storm_threshold) 823 acpi_ec_unmask_events(ec); 824 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command)); 825 ec->curr = NULL; 826 /* Disable GPE for command processing (IBF=0/OBF=1) */ 827 acpi_ec_complete_request(ec); 828 ec_dbg_ref(ec, "Decrease command"); 829 unlock: 830 spin_unlock_irqrestore(&ec->lock, tmp); 831 return ret; 832 } 833 834 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t) 835 { 836 int status; 837 u32 glk; 838 839 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata)) 840 return -EINVAL; 841 if (t->rdata) 842 memset(t->rdata, 0, t->rlen); 843 844 mutex_lock(&ec->mutex); 845 if (ec->global_lock) { 846 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); 847 if (ACPI_FAILURE(status)) { 848 status = -ENODEV; 849 goto unlock; 850 } 851 } 852 853 status = acpi_ec_transaction_unlocked(ec, t); 854 855 if (ec->global_lock) 856 acpi_release_global_lock(glk); 857 unlock: 858 mutex_unlock(&ec->mutex); 859 return status; 860 } 861 862 static int acpi_ec_burst_enable(struct acpi_ec *ec) 863 { 864 u8 d; 865 struct transaction t = {.command = ACPI_EC_BURST_ENABLE, 866 .wdata = NULL, .rdata = &d, 867 .wlen = 0, .rlen = 1}; 868 869 return acpi_ec_transaction(ec, &t); 870 } 871 872 static int acpi_ec_burst_disable(struct acpi_ec *ec) 873 { 874 struct transaction t = {.command = ACPI_EC_BURST_DISABLE, 875 .wdata = NULL, .rdata = NULL, 876 .wlen = 0, .rlen = 0}; 877 878 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ? 879 acpi_ec_transaction(ec, &t) : 0; 880 } 881 882 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data) 883 { 884 int result; 885 u8 d; 886 struct transaction t = {.command = ACPI_EC_COMMAND_READ, 887 .wdata = &address, .rdata = &d, 888 .wlen = 1, .rlen = 1}; 889 890 result = acpi_ec_transaction(ec, &t); 891 *data = d; 892 return result; 893 } 894 895 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data) 896 { 897 u8 wdata[2] = { address, data }; 898 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, 899 .wdata = wdata, .rdata = NULL, 900 .wlen = 2, .rlen = 0}; 901 902 return acpi_ec_transaction(ec, &t); 903 } 904 905 int ec_read(u8 addr, u8 *val) 906 { 907 int err; 908 u8 temp_data; 909 910 if (!first_ec) 911 return -ENODEV; 912 913 err = acpi_ec_read(first_ec, addr, &temp_data); 914 915 if (!err) { 916 *val = temp_data; 917 return 0; 918 } 919 return err; 920 } 921 EXPORT_SYMBOL(ec_read); 922 923 int ec_write(u8 addr, u8 val) 924 { 925 int err; 926 927 if (!first_ec) 928 return -ENODEV; 929 930 err = acpi_ec_write(first_ec, addr, val); 931 932 return err; 933 } 934 EXPORT_SYMBOL(ec_write); 935 936 int ec_transaction(u8 command, 937 const u8 *wdata, unsigned wdata_len, 938 u8 *rdata, unsigned rdata_len) 939 { 940 struct transaction t = {.command = command, 941 .wdata = wdata, .rdata = rdata, 942 .wlen = wdata_len, .rlen = rdata_len}; 943 944 if (!first_ec) 945 return -ENODEV; 946 947 return acpi_ec_transaction(first_ec, &t); 948 } 949 EXPORT_SYMBOL(ec_transaction); 950 951 /* Get the handle to the EC device */ 952 acpi_handle ec_get_handle(void) 953 { 954 if (!first_ec) 955 return NULL; 956 return first_ec->handle; 957 } 958 EXPORT_SYMBOL(ec_get_handle); 959 960 static void acpi_ec_start(struct acpi_ec *ec, bool resuming) 961 { 962 unsigned long flags; 963 964 spin_lock_irqsave(&ec->lock, flags); 965 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) { 966 ec_dbg_drv("Starting EC"); 967 /* Enable GPE for event processing (SCI_EVT=1) */ 968 if (!resuming) { 969 acpi_ec_submit_request(ec); 970 ec_dbg_ref(ec, "Increase driver"); 971 } 972 ec_log_drv("EC started"); 973 } 974 spin_unlock_irqrestore(&ec->lock, flags); 975 } 976 977 static bool acpi_ec_stopped(struct acpi_ec *ec) 978 { 979 unsigned long flags; 980 bool flushed; 981 982 spin_lock_irqsave(&ec->lock, flags); 983 flushed = acpi_ec_flushed(ec); 984 spin_unlock_irqrestore(&ec->lock, flags); 985 return flushed; 986 } 987 988 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending) 989 { 990 unsigned long flags; 991 992 spin_lock_irqsave(&ec->lock, flags); 993 if (acpi_ec_started(ec)) { 994 ec_dbg_drv("Stopping EC"); 995 set_bit(EC_FLAGS_STOPPED, &ec->flags); 996 spin_unlock_irqrestore(&ec->lock, flags); 997 wait_event(ec->wait, acpi_ec_stopped(ec)); 998 spin_lock_irqsave(&ec->lock, flags); 999 /* Disable GPE for event processing (SCI_EVT=1) */ 1000 if (!suspending) { 1001 acpi_ec_complete_request(ec); 1002 ec_dbg_ref(ec, "Decrease driver"); 1003 } else if (!ec_freeze_events) 1004 __acpi_ec_disable_event(ec); 1005 clear_bit(EC_FLAGS_STARTED, &ec->flags); 1006 clear_bit(EC_FLAGS_STOPPED, &ec->flags); 1007 ec_log_drv("EC stopped"); 1008 } 1009 spin_unlock_irqrestore(&ec->lock, flags); 1010 } 1011 1012 static void acpi_ec_enter_noirq(struct acpi_ec *ec) 1013 { 1014 unsigned long flags; 1015 1016 spin_lock_irqsave(&ec->lock, flags); 1017 ec->busy_polling = true; 1018 ec->polling_guard = 0; 1019 ec_log_drv("interrupt blocked"); 1020 spin_unlock_irqrestore(&ec->lock, flags); 1021 } 1022 1023 static void acpi_ec_leave_noirq(struct acpi_ec *ec) 1024 { 1025 unsigned long flags; 1026 1027 spin_lock_irqsave(&ec->lock, flags); 1028 ec->busy_polling = ec_busy_polling; 1029 ec->polling_guard = ec_polling_guard; 1030 ec_log_drv("interrupt unblocked"); 1031 spin_unlock_irqrestore(&ec->lock, flags); 1032 } 1033 1034 void acpi_ec_block_transactions(void) 1035 { 1036 struct acpi_ec *ec = first_ec; 1037 1038 if (!ec) 1039 return; 1040 1041 mutex_lock(&ec->mutex); 1042 /* Prevent transactions from being carried out */ 1043 acpi_ec_stop(ec, true); 1044 mutex_unlock(&ec->mutex); 1045 } 1046 1047 void acpi_ec_unblock_transactions(void) 1048 { 1049 /* 1050 * Allow transactions to happen again (this function is called from 1051 * atomic context during wakeup, so we don't need to acquire the mutex). 1052 */ 1053 if (first_ec) 1054 acpi_ec_start(first_ec, true); 1055 } 1056 1057 /* -------------------------------------------------------------------------- 1058 Event Management 1059 -------------------------------------------------------------------------- */ 1060 static struct acpi_ec_query_handler * 1061 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value) 1062 { 1063 struct acpi_ec_query_handler *handler; 1064 1065 mutex_lock(&ec->mutex); 1066 list_for_each_entry(handler, &ec->list, node) { 1067 if (value == handler->query_bit) { 1068 kref_get(&handler->kref); 1069 mutex_unlock(&ec->mutex); 1070 return handler; 1071 } 1072 } 1073 mutex_unlock(&ec->mutex); 1074 return NULL; 1075 } 1076 1077 static void acpi_ec_query_handler_release(struct kref *kref) 1078 { 1079 struct acpi_ec_query_handler *handler = 1080 container_of(kref, struct acpi_ec_query_handler, kref); 1081 1082 kfree(handler); 1083 } 1084 1085 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler) 1086 { 1087 kref_put(&handler->kref, acpi_ec_query_handler_release); 1088 } 1089 1090 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit, 1091 acpi_handle handle, acpi_ec_query_func func, 1092 void *data) 1093 { 1094 struct acpi_ec_query_handler *handler = 1095 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL); 1096 1097 if (!handler) 1098 return -ENOMEM; 1099 1100 handler->query_bit = query_bit; 1101 handler->handle = handle; 1102 handler->func = func; 1103 handler->data = data; 1104 mutex_lock(&ec->mutex); 1105 kref_init(&handler->kref); 1106 list_add(&handler->node, &ec->list); 1107 mutex_unlock(&ec->mutex); 1108 return 0; 1109 } 1110 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler); 1111 1112 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec, 1113 bool remove_all, u8 query_bit) 1114 { 1115 struct acpi_ec_query_handler *handler, *tmp; 1116 LIST_HEAD(free_list); 1117 1118 mutex_lock(&ec->mutex); 1119 list_for_each_entry_safe(handler, tmp, &ec->list, node) { 1120 if (remove_all || query_bit == handler->query_bit) { 1121 list_del_init(&handler->node); 1122 list_add(&handler->node, &free_list); 1123 } 1124 } 1125 mutex_unlock(&ec->mutex); 1126 list_for_each_entry_safe(handler, tmp, &free_list, node) 1127 acpi_ec_put_query_handler(handler); 1128 } 1129 1130 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit) 1131 { 1132 acpi_ec_remove_query_handlers(ec, false, query_bit); 1133 } 1134 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler); 1135 1136 static void acpi_ec_event_processor(struct work_struct *work) 1137 { 1138 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work); 1139 struct acpi_ec_query_handler *handler = q->handler; 1140 struct acpi_ec *ec = q->ec; 1141 1142 ec_dbg_evt("Query(0x%02x) started", handler->query_bit); 1143 1144 if (handler->func) 1145 handler->func(handler->data); 1146 else if (handler->handle) 1147 acpi_evaluate_object(handler->handle, NULL, NULL, NULL); 1148 1149 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit); 1150 1151 spin_lock_irq(&ec->lock); 1152 ec->queries_in_progress--; 1153 spin_unlock_irq(&ec->lock); 1154 1155 acpi_ec_put_query_handler(handler); 1156 kfree(q); 1157 } 1158 1159 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval) 1160 { 1161 struct acpi_ec_query *q; 1162 struct transaction *t; 1163 1164 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL); 1165 if (!q) 1166 return NULL; 1167 1168 INIT_WORK(&q->work, acpi_ec_event_processor); 1169 t = &q->transaction; 1170 t->command = ACPI_EC_COMMAND_QUERY; 1171 t->rdata = pval; 1172 t->rlen = 1; 1173 q->ec = ec; 1174 return q; 1175 } 1176 1177 static int acpi_ec_submit_query(struct acpi_ec *ec) 1178 { 1179 struct acpi_ec_query *q; 1180 u8 value = 0; 1181 int result; 1182 1183 q = acpi_ec_create_query(ec, &value); 1184 if (!q) 1185 return -ENOMEM; 1186 1187 /* 1188 * Query the EC to find out which _Qxx method we need to evaluate. 1189 * Note that successful completion of the query causes the ACPI_EC_SCI 1190 * bit to be cleared (and thus clearing the interrupt source). 1191 */ 1192 result = acpi_ec_transaction(ec, &q->transaction); 1193 if (result) 1194 goto err_exit; 1195 1196 if (!value) { 1197 result = -ENODATA; 1198 goto err_exit; 1199 } 1200 1201 q->handler = acpi_ec_get_query_handler_by_value(ec, value); 1202 if (!q->handler) { 1203 result = -ENODATA; 1204 goto err_exit; 1205 } 1206 1207 /* 1208 * It is reported that _Qxx are evaluated in a parallel way on Windows: 1209 * https://bugzilla.kernel.org/show_bug.cgi?id=94411 1210 * 1211 * Put this log entry before queue_work() to make it appear in the log 1212 * before any other messages emitted during workqueue handling. 1213 */ 1214 ec_dbg_evt("Query(0x%02x) scheduled", value); 1215 1216 spin_lock_irq(&ec->lock); 1217 1218 ec->queries_in_progress++; 1219 queue_work(ec_query_wq, &q->work); 1220 1221 spin_unlock_irq(&ec->lock); 1222 1223 return 0; 1224 1225 err_exit: 1226 kfree(q); 1227 1228 return result; 1229 } 1230 1231 static void acpi_ec_event_handler(struct work_struct *work) 1232 { 1233 struct acpi_ec *ec = container_of(work, struct acpi_ec, work); 1234 1235 ec_dbg_evt("Event started"); 1236 1237 spin_lock_irq(&ec->lock); 1238 1239 while (ec->events_to_process) { 1240 spin_unlock_irq(&ec->lock); 1241 1242 acpi_ec_submit_query(ec); 1243 1244 spin_lock_irq(&ec->lock); 1245 ec->events_to_process--; 1246 } 1247 1248 /* 1249 * Before exit, make sure that the it will be possible to queue up the 1250 * event handling work again regardless of whether or not the query 1251 * queued up above is processed successfully. 1252 */ 1253 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) 1254 acpi_ec_complete_event(ec); 1255 else 1256 acpi_ec_close_event(ec); 1257 1258 spin_unlock_irq(&ec->lock); 1259 1260 ec_dbg_evt("Event stopped"); 1261 1262 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && ec_guard(ec)) { 1263 spin_lock_irq(&ec->lock); 1264 1265 /* Take care of SCI_EVT unless someone else is doing that. */ 1266 if (!ec->curr) 1267 advance_transaction(ec, false); 1268 1269 spin_unlock_irq(&ec->lock); 1270 } 1271 1272 spin_lock_irq(&ec->lock); 1273 ec->events_in_progress--; 1274 spin_unlock_irq(&ec->lock); 1275 } 1276 1277 static void acpi_ec_handle_interrupt(struct acpi_ec *ec) 1278 { 1279 unsigned long flags; 1280 1281 spin_lock_irqsave(&ec->lock, flags); 1282 advance_transaction(ec, true); 1283 spin_unlock_irqrestore(&ec->lock, flags); 1284 } 1285 1286 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device, 1287 u32 gpe_number, void *data) 1288 { 1289 acpi_ec_handle_interrupt(data); 1290 return ACPI_INTERRUPT_HANDLED; 1291 } 1292 1293 static irqreturn_t acpi_ec_irq_handler(int irq, void *data) 1294 { 1295 acpi_ec_handle_interrupt(data); 1296 return IRQ_HANDLED; 1297 } 1298 1299 /* -------------------------------------------------------------------------- 1300 * Address Space Management 1301 * -------------------------------------------------------------------------- */ 1302 1303 static acpi_status 1304 acpi_ec_space_handler(u32 function, acpi_physical_address address, 1305 u32 bits, u64 *value64, 1306 void *handler_context, void *region_context) 1307 { 1308 struct acpi_ec *ec = handler_context; 1309 int result = 0, i, bytes = bits / 8; 1310 u8 *value = (u8 *)value64; 1311 1312 if ((address > 0xFF) || !value || !handler_context) 1313 return AE_BAD_PARAMETER; 1314 1315 if (function != ACPI_READ && function != ACPI_WRITE) 1316 return AE_BAD_PARAMETER; 1317 1318 if (ec->busy_polling || bits > 8) 1319 acpi_ec_burst_enable(ec); 1320 1321 for (i = 0; i < bytes; ++i, ++address, ++value) 1322 result = (function == ACPI_READ) ? 1323 acpi_ec_read(ec, address, value) : 1324 acpi_ec_write(ec, address, *value); 1325 1326 if (ec->busy_polling || bits > 8) 1327 acpi_ec_burst_disable(ec); 1328 1329 switch (result) { 1330 case -EINVAL: 1331 return AE_BAD_PARAMETER; 1332 case -ENODEV: 1333 return AE_NOT_FOUND; 1334 case -ETIME: 1335 return AE_TIME; 1336 default: 1337 return AE_OK; 1338 } 1339 } 1340 1341 /* -------------------------------------------------------------------------- 1342 * Driver Interface 1343 * -------------------------------------------------------------------------- */ 1344 1345 static acpi_status 1346 ec_parse_io_ports(struct acpi_resource *resource, void *context); 1347 1348 static void acpi_ec_free(struct acpi_ec *ec) 1349 { 1350 if (first_ec == ec) 1351 first_ec = NULL; 1352 if (boot_ec == ec) 1353 boot_ec = NULL; 1354 kfree(ec); 1355 } 1356 1357 static struct acpi_ec *acpi_ec_alloc(void) 1358 { 1359 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL); 1360 1361 if (!ec) 1362 return NULL; 1363 mutex_init(&ec->mutex); 1364 init_waitqueue_head(&ec->wait); 1365 INIT_LIST_HEAD(&ec->list); 1366 spin_lock_init(&ec->lock); 1367 INIT_WORK(&ec->work, acpi_ec_event_handler); 1368 ec->timestamp = jiffies; 1369 ec->busy_polling = true; 1370 ec->polling_guard = 0; 1371 ec->gpe = -1; 1372 ec->irq = -1; 1373 return ec; 1374 } 1375 1376 static acpi_status 1377 acpi_ec_register_query_methods(acpi_handle handle, u32 level, 1378 void *context, void **return_value) 1379 { 1380 char node_name[5]; 1381 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 1382 struct acpi_ec *ec = context; 1383 int value = 0; 1384 acpi_status status; 1385 1386 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 1387 1388 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1) 1389 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL); 1390 return AE_OK; 1391 } 1392 1393 static acpi_status 1394 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval) 1395 { 1396 acpi_status status; 1397 unsigned long long tmp = 0; 1398 struct acpi_ec *ec = context; 1399 1400 /* clear addr values, ec_parse_io_ports depend on it */ 1401 ec->command_addr = ec->data_addr = 0; 1402 1403 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1404 ec_parse_io_ports, ec); 1405 if (ACPI_FAILURE(status)) 1406 return status; 1407 if (ec->data_addr == 0 || ec->command_addr == 0) 1408 return AE_OK; 1409 1410 if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) { 1411 /* 1412 * Always inherit the GPE number setting from the ECDT 1413 * EC. 1414 */ 1415 ec->gpe = boot_ec->gpe; 1416 } else { 1417 /* Get GPE bit assignment (EC events). */ 1418 /* TODO: Add support for _GPE returning a package */ 1419 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 1420 if (ACPI_SUCCESS(status)) 1421 ec->gpe = tmp; 1422 1423 /* 1424 * Errors are non-fatal, allowing for ACPI Reduced Hardware 1425 * platforms which use GpioInt instead of GPE. 1426 */ 1427 } 1428 /* Use the global lock for all EC transactions? */ 1429 tmp = 0; 1430 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp); 1431 ec->global_lock = tmp; 1432 ec->handle = handle; 1433 return AE_CTRL_TERMINATE; 1434 } 1435 1436 static bool install_gpe_event_handler(struct acpi_ec *ec) 1437 { 1438 acpi_status status; 1439 1440 status = acpi_install_gpe_raw_handler(NULL, ec->gpe, 1441 ACPI_GPE_EDGE_TRIGGERED, 1442 &acpi_ec_gpe_handler, ec); 1443 if (ACPI_FAILURE(status)) 1444 return false; 1445 1446 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1) 1447 acpi_ec_enable_gpe(ec, true); 1448 1449 return true; 1450 } 1451 1452 static bool install_gpio_irq_event_handler(struct acpi_ec *ec) 1453 { 1454 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED, 1455 "ACPI EC", ec) >= 0; 1456 } 1457 1458 /** 1459 * ec_install_handlers - Install service callbacks and register query methods. 1460 * @ec: Target EC. 1461 * @device: ACPI device object corresponding to @ec. 1462 * 1463 * Install a handler for the EC address space type unless it has been installed 1464 * already. If @device is not NULL, also look for EC query methods in the 1465 * namespace and register them, and install an event (either GPE or GPIO IRQ) 1466 * handler for the EC, if possible. 1467 * 1468 * Return: 1469 * -ENODEV if the address space handler cannot be installed, which means 1470 * "unable to handle transactions", 1471 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred, 1472 * or 0 (success) otherwise. 1473 */ 1474 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device) 1475 { 1476 acpi_status status; 1477 1478 acpi_ec_start(ec, false); 1479 1480 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1481 acpi_ec_enter_noirq(ec); 1482 status = acpi_install_address_space_handler(ec->handle, 1483 ACPI_ADR_SPACE_EC, 1484 &acpi_ec_space_handler, 1485 NULL, ec); 1486 if (ACPI_FAILURE(status)) { 1487 acpi_ec_stop(ec, false); 1488 return -ENODEV; 1489 } 1490 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1491 } 1492 1493 if (!device) 1494 return 0; 1495 1496 if (ec->gpe < 0) { 1497 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */ 1498 int irq = acpi_dev_gpio_irq_get(device, 0); 1499 /* 1500 * Bail out right away for deferred probing or complete the 1501 * initialization regardless of any other errors. 1502 */ 1503 if (irq == -EPROBE_DEFER) 1504 return -EPROBE_DEFER; 1505 else if (irq >= 0) 1506 ec->irq = irq; 1507 } 1508 1509 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1510 /* Find and register all query methods */ 1511 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1, 1512 acpi_ec_register_query_methods, 1513 NULL, ec, NULL); 1514 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1515 } 1516 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1517 bool ready = false; 1518 1519 if (ec->gpe >= 0) 1520 ready = install_gpe_event_handler(ec); 1521 else if (ec->irq >= 0) 1522 ready = install_gpio_irq_event_handler(ec); 1523 1524 if (ready) { 1525 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1526 acpi_ec_leave_noirq(ec); 1527 } 1528 /* 1529 * Failures to install an event handler are not fatal, because 1530 * the EC can be polled for events. 1531 */ 1532 } 1533 /* EC is fully operational, allow queries */ 1534 acpi_ec_enable_event(ec); 1535 1536 return 0; 1537 } 1538 1539 static void ec_remove_handlers(struct acpi_ec *ec) 1540 { 1541 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { 1542 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle, 1543 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler))) 1544 pr_err("failed to remove space handler\n"); 1545 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); 1546 } 1547 1548 /* 1549 * Stops handling the EC transactions after removing the operation 1550 * region handler. This is required because _REG(DISCONNECT) 1551 * invoked during the removal can result in new EC transactions. 1552 * 1553 * Flushes the EC requests and thus disables the GPE before 1554 * removing the GPE handler. This is required by the current ACPICA 1555 * GPE core. ACPICA GPE core will automatically disable a GPE when 1556 * it is indicated but there is no way to handle it. So the drivers 1557 * must disable the GPEs prior to removing the GPE handlers. 1558 */ 1559 acpi_ec_stop(ec, false); 1560 1561 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1562 if (ec->gpe >= 0 && 1563 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe, 1564 &acpi_ec_gpe_handler))) 1565 pr_err("failed to remove gpe handler\n"); 1566 1567 if (ec->irq >= 0) 1568 free_irq(ec->irq, ec); 1569 1570 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags); 1571 } 1572 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) { 1573 acpi_ec_remove_query_handlers(ec, true, 0); 1574 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags); 1575 } 1576 } 1577 1578 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device) 1579 { 1580 int ret; 1581 1582 ret = ec_install_handlers(ec, device); 1583 if (ret) 1584 return ret; 1585 1586 /* First EC capable of handling transactions */ 1587 if (!first_ec) 1588 first_ec = ec; 1589 1590 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr, 1591 ec->data_addr); 1592 1593 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) { 1594 if (ec->gpe >= 0) 1595 pr_info("GPE=0x%x\n", ec->gpe); 1596 else 1597 pr_info("IRQ=%d\n", ec->irq); 1598 } 1599 1600 return ret; 1601 } 1602 1603 static int acpi_ec_add(struct acpi_device *device) 1604 { 1605 struct acpi_ec *ec; 1606 int ret; 1607 1608 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); 1609 strcpy(acpi_device_class(device), ACPI_EC_CLASS); 1610 1611 if (boot_ec && (boot_ec->handle == device->handle || 1612 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) { 1613 /* Fast path: this device corresponds to the boot EC. */ 1614 ec = boot_ec; 1615 } else { 1616 acpi_status status; 1617 1618 ec = acpi_ec_alloc(); 1619 if (!ec) 1620 return -ENOMEM; 1621 1622 status = ec_parse_device(device->handle, 0, ec, NULL); 1623 if (status != AE_CTRL_TERMINATE) { 1624 ret = -EINVAL; 1625 goto err; 1626 } 1627 1628 if (boot_ec && ec->command_addr == boot_ec->command_addr && 1629 ec->data_addr == boot_ec->data_addr && 1630 !EC_FLAGS_TRUST_DSDT_GPE) { 1631 /* 1632 * Trust PNP0C09 namespace location rather than 1633 * ECDT ID. But trust ECDT GPE rather than _GPE 1634 * because of ASUS quirks, so do not change 1635 * boot_ec->gpe to ec->gpe. 1636 */ 1637 boot_ec->handle = ec->handle; 1638 acpi_handle_debug(ec->handle, "duplicated.\n"); 1639 acpi_ec_free(ec); 1640 ec = boot_ec; 1641 } 1642 } 1643 1644 ret = acpi_ec_setup(ec, device); 1645 if (ret) 1646 goto err; 1647 1648 if (ec == boot_ec) 1649 acpi_handle_info(boot_ec->handle, 1650 "Boot %s EC initialization complete\n", 1651 boot_ec_is_ecdt ? "ECDT" : "DSDT"); 1652 1653 acpi_handle_info(ec->handle, 1654 "EC: Used to handle transactions and events\n"); 1655 1656 device->driver_data = ec; 1657 1658 ret = !!request_region(ec->data_addr, 1, "EC data"); 1659 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr); 1660 ret = !!request_region(ec->command_addr, 1, "EC cmd"); 1661 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr); 1662 1663 /* Reprobe devices depending on the EC */ 1664 acpi_dev_clear_dependencies(device); 1665 1666 acpi_handle_debug(ec->handle, "enumerated.\n"); 1667 return 0; 1668 1669 err: 1670 if (ec != boot_ec) 1671 acpi_ec_free(ec); 1672 1673 return ret; 1674 } 1675 1676 static int acpi_ec_remove(struct acpi_device *device) 1677 { 1678 struct acpi_ec *ec; 1679 1680 if (!device) 1681 return -EINVAL; 1682 1683 ec = acpi_driver_data(device); 1684 release_region(ec->data_addr, 1); 1685 release_region(ec->command_addr, 1); 1686 device->driver_data = NULL; 1687 if (ec != boot_ec) { 1688 ec_remove_handlers(ec); 1689 acpi_ec_free(ec); 1690 } 1691 return 0; 1692 } 1693 1694 static acpi_status 1695 ec_parse_io_ports(struct acpi_resource *resource, void *context) 1696 { 1697 struct acpi_ec *ec = context; 1698 1699 if (resource->type != ACPI_RESOURCE_TYPE_IO) 1700 return AE_OK; 1701 1702 /* 1703 * The first address region returned is the data port, and 1704 * the second address region returned is the status/command 1705 * port. 1706 */ 1707 if (ec->data_addr == 0) 1708 ec->data_addr = resource->data.io.minimum; 1709 else if (ec->command_addr == 0) 1710 ec->command_addr = resource->data.io.minimum; 1711 else 1712 return AE_CTRL_TERMINATE; 1713 1714 return AE_OK; 1715 } 1716 1717 static const struct acpi_device_id ec_device_ids[] = { 1718 {"PNP0C09", 0}, 1719 {ACPI_ECDT_HID, 0}, 1720 {"", 0}, 1721 }; 1722 1723 /* 1724 * This function is not Windows-compatible as Windows never enumerates the 1725 * namespace EC before the main ACPI device enumeration process. It is 1726 * retained for historical reason and will be deprecated in the future. 1727 */ 1728 void __init acpi_ec_dsdt_probe(void) 1729 { 1730 struct acpi_ec *ec; 1731 acpi_status status; 1732 int ret; 1733 1734 /* 1735 * If a platform has ECDT, there is no need to proceed as the 1736 * following probe is not a part of the ACPI device enumeration, 1737 * executing _STA is not safe, and thus this probe may risk of 1738 * picking up an invalid EC device. 1739 */ 1740 if (boot_ec) 1741 return; 1742 1743 ec = acpi_ec_alloc(); 1744 if (!ec) 1745 return; 1746 1747 /* 1748 * At this point, the namespace is initialized, so start to find 1749 * the namespace objects. 1750 */ 1751 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL); 1752 if (ACPI_FAILURE(status) || !ec->handle) { 1753 acpi_ec_free(ec); 1754 return; 1755 } 1756 1757 /* 1758 * When the DSDT EC is available, always re-configure boot EC to 1759 * have _REG evaluated. _REG can only be evaluated after the 1760 * namespace initialization. 1761 * At this point, the GPE is not fully initialized, so do not to 1762 * handle the events. 1763 */ 1764 ret = acpi_ec_setup(ec, NULL); 1765 if (ret) { 1766 acpi_ec_free(ec); 1767 return; 1768 } 1769 1770 boot_ec = ec; 1771 1772 acpi_handle_info(ec->handle, 1773 "Boot DSDT EC used to handle transactions\n"); 1774 } 1775 1776 /* 1777 * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization. 1778 * 1779 * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not 1780 * found a matching object in the namespace. 1781 * 1782 * Next, in case the DSDT EC is not functioning, it is still necessary to 1783 * provide a functional ECDT EC to handle events, so add an extra device object 1784 * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021). 1785 * 1786 * This is useful on platforms with valid ECDT and invalid DSDT EC settings, 1787 * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847). 1788 */ 1789 static void __init acpi_ec_ecdt_start(void) 1790 { 1791 struct acpi_table_ecdt *ecdt_ptr; 1792 acpi_handle handle; 1793 acpi_status status; 1794 1795 /* Bail out if a matching EC has been found in the namespace. */ 1796 if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT) 1797 return; 1798 1799 /* Look up the object pointed to from the ECDT in the namespace. */ 1800 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1801 (struct acpi_table_header **)&ecdt_ptr); 1802 if (ACPI_FAILURE(status)) 1803 return; 1804 1805 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle); 1806 if (ACPI_SUCCESS(status)) { 1807 boot_ec->handle = handle; 1808 1809 /* Add a special ACPI device object to represent the boot EC. */ 1810 acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC); 1811 } 1812 1813 acpi_put_table((struct acpi_table_header *)ecdt_ptr); 1814 } 1815 1816 /* 1817 * On some hardware it is necessary to clear events accumulated by the EC during 1818 * sleep. These ECs stop reporting GPEs until they are manually polled, if too 1819 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks) 1820 * 1821 * https://bugzilla.kernel.org/show_bug.cgi?id=44161 1822 * 1823 * Ideally, the EC should also be instructed NOT to accumulate events during 1824 * sleep (which Windows seems to do somehow), but the interface to control this 1825 * behaviour is not known at this time. 1826 * 1827 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx, 1828 * however it is very likely that other Samsung models are affected. 1829 * 1830 * On systems which don't accumulate _Q events during sleep, this extra check 1831 * should be harmless. 1832 */ 1833 static int ec_clear_on_resume(const struct dmi_system_id *id) 1834 { 1835 pr_debug("Detected system needing EC poll on resume.\n"); 1836 EC_FLAGS_CLEAR_ON_RESUME = 1; 1837 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 1838 return 0; 1839 } 1840 1841 /* 1842 * Some ECDTs contain wrong register addresses. 1843 * MSI MS-171F 1844 * https://bugzilla.kernel.org/show_bug.cgi?id=12461 1845 */ 1846 static int ec_correct_ecdt(const struct dmi_system_id *id) 1847 { 1848 pr_debug("Detected system needing ECDT address correction.\n"); 1849 EC_FLAGS_CORRECT_ECDT = 1; 1850 return 0; 1851 } 1852 1853 /* 1854 * Some ECDTs contain wrong GPE setting, but they share the same port addresses 1855 * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case. 1856 * https://bugzilla.kernel.org/show_bug.cgi?id=209989 1857 */ 1858 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id) 1859 { 1860 pr_debug("Detected system needing DSDT GPE setting.\n"); 1861 EC_FLAGS_TRUST_DSDT_GPE = 1; 1862 return 0; 1863 } 1864 1865 /* 1866 * Some DSDTs contain wrong GPE setting. 1867 * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD 1868 * https://bugzilla.kernel.org/show_bug.cgi?id=195651 1869 */ 1870 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id) 1871 { 1872 pr_debug("Detected system needing ignore DSDT GPE setting.\n"); 1873 EC_FLAGS_IGNORE_DSDT_GPE = 1; 1874 return 0; 1875 } 1876 1877 static const struct dmi_system_id ec_dmi_table[] __initconst = { 1878 { 1879 ec_correct_ecdt, "MSI MS-171F", { 1880 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"), 1881 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL}, 1882 { 1883 ec_honor_ecdt_gpe, "ASUS FX502VD", { 1884 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1885 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL}, 1886 { 1887 ec_honor_ecdt_gpe, "ASUS FX502VE", { 1888 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1889 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL}, 1890 { 1891 ec_honor_ecdt_gpe, "ASUS GL702VMK", { 1892 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1893 DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL}, 1894 { 1895 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BA", { 1896 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1897 DMI_MATCH(DMI_PRODUCT_NAME, "X505BA"),}, NULL}, 1898 { 1899 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BP", { 1900 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1901 DMI_MATCH(DMI_PRODUCT_NAME, "X505BP"),}, NULL}, 1902 { 1903 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BA", { 1904 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1905 DMI_MATCH(DMI_PRODUCT_NAME, "X542BA"),}, NULL}, 1906 { 1907 ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BP", { 1908 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1909 DMI_MATCH(DMI_PRODUCT_NAME, "X542BP"),}, NULL}, 1910 { 1911 ec_honor_ecdt_gpe, "ASUS X550VXK", { 1912 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1913 DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL}, 1914 { 1915 ec_honor_ecdt_gpe, "ASUS X580VD", { 1916 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 1917 DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL}, 1918 { 1919 /* https://bugzilla.kernel.org/show_bug.cgi?id=209989 */ 1920 ec_honor_dsdt_gpe, "HP Pavilion Gaming Laptop 15-cx0xxx", { 1921 DMI_MATCH(DMI_SYS_VENDOR, "HP"), 1922 DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),}, NULL}, 1923 { 1924 ec_clear_on_resume, "Samsung hardware", { 1925 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL}, 1926 {}, 1927 }; 1928 1929 void __init acpi_ec_ecdt_probe(void) 1930 { 1931 struct acpi_table_ecdt *ecdt_ptr; 1932 struct acpi_ec *ec; 1933 acpi_status status; 1934 int ret; 1935 1936 /* Generate a boot ec context. */ 1937 dmi_check_system(ec_dmi_table); 1938 status = acpi_get_table(ACPI_SIG_ECDT, 1, 1939 (struct acpi_table_header **)&ecdt_ptr); 1940 if (ACPI_FAILURE(status)) 1941 return; 1942 1943 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) { 1944 /* 1945 * Asus X50GL: 1946 * https://bugzilla.kernel.org/show_bug.cgi?id=11880 1947 */ 1948 goto out; 1949 } 1950 1951 ec = acpi_ec_alloc(); 1952 if (!ec) 1953 goto out; 1954 1955 if (EC_FLAGS_CORRECT_ECDT) { 1956 ec->command_addr = ecdt_ptr->data.address; 1957 ec->data_addr = ecdt_ptr->control.address; 1958 } else { 1959 ec->command_addr = ecdt_ptr->control.address; 1960 ec->data_addr = ecdt_ptr->data.address; 1961 } 1962 1963 /* 1964 * Ignore the GPE value on Reduced Hardware platforms. 1965 * Some products have this set to an erroneous value. 1966 */ 1967 if (!acpi_gbl_reduced_hardware) 1968 ec->gpe = ecdt_ptr->gpe; 1969 1970 ec->handle = ACPI_ROOT_OBJECT; 1971 1972 /* 1973 * At this point, the namespace is not initialized, so do not find 1974 * the namespace objects, or handle the events. 1975 */ 1976 ret = acpi_ec_setup(ec, NULL); 1977 if (ret) { 1978 acpi_ec_free(ec); 1979 goto out; 1980 } 1981 1982 boot_ec = ec; 1983 boot_ec_is_ecdt = true; 1984 1985 pr_info("Boot ECDT EC used to handle transactions\n"); 1986 1987 out: 1988 acpi_put_table((struct acpi_table_header *)ecdt_ptr); 1989 } 1990 1991 #ifdef CONFIG_PM_SLEEP 1992 static int acpi_ec_suspend(struct device *dev) 1993 { 1994 struct acpi_ec *ec = 1995 acpi_driver_data(to_acpi_device(dev)); 1996 1997 if (!pm_suspend_no_platform() && ec_freeze_events) 1998 acpi_ec_disable_event(ec); 1999 return 0; 2000 } 2001 2002 static int acpi_ec_suspend_noirq(struct device *dev) 2003 { 2004 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 2005 2006 /* 2007 * The SCI handler doesn't run at this point, so the GPE can be 2008 * masked at the low level without side effects. 2009 */ 2010 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 2011 ec->gpe >= 0 && ec->reference_count >= 1) 2012 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); 2013 2014 acpi_ec_enter_noirq(ec); 2015 2016 return 0; 2017 } 2018 2019 static int acpi_ec_resume_noirq(struct device *dev) 2020 { 2021 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); 2022 2023 acpi_ec_leave_noirq(ec); 2024 2025 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && 2026 ec->gpe >= 0 && ec->reference_count >= 1) 2027 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); 2028 2029 return 0; 2030 } 2031 2032 static int acpi_ec_resume(struct device *dev) 2033 { 2034 struct acpi_ec *ec = 2035 acpi_driver_data(to_acpi_device(dev)); 2036 2037 acpi_ec_enable_event(ec); 2038 return 0; 2039 } 2040 2041 void acpi_ec_mark_gpe_for_wake(void) 2042 { 2043 if (first_ec && !ec_no_wakeup) 2044 acpi_mark_gpe_for_wake(NULL, first_ec->gpe); 2045 } 2046 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake); 2047 2048 void acpi_ec_set_gpe_wake_mask(u8 action) 2049 { 2050 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup) 2051 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action); 2052 } 2053 2054 bool acpi_ec_dispatch_gpe(void) 2055 { 2056 bool work_in_progress = false; 2057 2058 if (!first_ec) 2059 return acpi_any_gpe_status_set(U32_MAX); 2060 2061 /* 2062 * Report wakeup if the status bit is set for any enabled GPE other 2063 * than the EC one. 2064 */ 2065 if (acpi_any_gpe_status_set(first_ec->gpe)) 2066 return true; 2067 2068 /* 2069 * Cancel the SCI wakeup and process all pending events in case there 2070 * are any wakeup ones in there. 2071 * 2072 * Note that if any non-EC GPEs are active at this point, the SCI will 2073 * retrigger after the rearming in acpi_s2idle_wake(), so no events 2074 * should be missed by canceling the wakeup here. 2075 */ 2076 pm_system_cancel_wakeup(); 2077 2078 /* 2079 * Dispatch the EC GPE in-band, but do not report wakeup in any case 2080 * to allow the caller to process events properly after that. 2081 */ 2082 spin_lock_irq(&first_ec->lock); 2083 2084 if (acpi_ec_gpe_status_set(first_ec)) 2085 work_in_progress = advance_transaction(first_ec, false); 2086 2087 spin_unlock_irq(&first_ec->lock); 2088 2089 if (!work_in_progress) 2090 return false; 2091 2092 pm_pr_dbg("ACPI EC GPE dispatched\n"); 2093 2094 /* Drain EC work. */ 2095 do { 2096 acpi_ec_flush_work(); 2097 2098 pm_pr_dbg("ACPI EC work flushed\n"); 2099 2100 spin_lock_irq(&first_ec->lock); 2101 2102 work_in_progress = first_ec->events_in_progress + 2103 first_ec->queries_in_progress > 0; 2104 2105 spin_unlock_irq(&first_ec->lock); 2106 } while (work_in_progress && !pm_wakeup_pending()); 2107 2108 return false; 2109 } 2110 #endif /* CONFIG_PM_SLEEP */ 2111 2112 static const struct dev_pm_ops acpi_ec_pm = { 2113 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq) 2114 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume) 2115 }; 2116 2117 static int param_set_event_clearing(const char *val, 2118 const struct kernel_param *kp) 2119 { 2120 int result = 0; 2121 2122 if (!strncmp(val, "status", sizeof("status") - 1)) { 2123 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; 2124 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n"); 2125 } else if (!strncmp(val, "query", sizeof("query") - 1)) { 2126 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY; 2127 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n"); 2128 } else if (!strncmp(val, "event", sizeof("event") - 1)) { 2129 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT; 2130 pr_info("Assuming SCI_EVT clearing on event reads\n"); 2131 } else 2132 result = -EINVAL; 2133 return result; 2134 } 2135 2136 static int param_get_event_clearing(char *buffer, 2137 const struct kernel_param *kp) 2138 { 2139 switch (ec_event_clearing) { 2140 case ACPI_EC_EVT_TIMING_STATUS: 2141 return sprintf(buffer, "status\n"); 2142 case ACPI_EC_EVT_TIMING_QUERY: 2143 return sprintf(buffer, "query\n"); 2144 case ACPI_EC_EVT_TIMING_EVENT: 2145 return sprintf(buffer, "event\n"); 2146 default: 2147 return sprintf(buffer, "invalid\n"); 2148 } 2149 return 0; 2150 } 2151 2152 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing, 2153 NULL, 0644); 2154 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing"); 2155 2156 static struct acpi_driver acpi_ec_driver = { 2157 .name = "ec", 2158 .class = ACPI_EC_CLASS, 2159 .ids = ec_device_ids, 2160 .ops = { 2161 .add = acpi_ec_add, 2162 .remove = acpi_ec_remove, 2163 }, 2164 .drv.pm = &acpi_ec_pm, 2165 }; 2166 2167 static void acpi_ec_destroy_workqueues(void) 2168 { 2169 if (ec_wq) { 2170 destroy_workqueue(ec_wq); 2171 ec_wq = NULL; 2172 } 2173 if (ec_query_wq) { 2174 destroy_workqueue(ec_query_wq); 2175 ec_query_wq = NULL; 2176 } 2177 } 2178 2179 static int acpi_ec_init_workqueues(void) 2180 { 2181 if (!ec_wq) 2182 ec_wq = alloc_ordered_workqueue("kec", 0); 2183 2184 if (!ec_query_wq) 2185 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries); 2186 2187 if (!ec_wq || !ec_query_wq) { 2188 acpi_ec_destroy_workqueues(); 2189 return -ENODEV; 2190 } 2191 return 0; 2192 } 2193 2194 static const struct dmi_system_id acpi_ec_no_wakeup[] = { 2195 { 2196 .ident = "Thinkpad X1 Carbon 6th", 2197 .matches = { 2198 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2199 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"), 2200 }, 2201 }, 2202 { 2203 .ident = "ThinkPad X1 Carbon 6th", 2204 .matches = { 2205 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2206 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Carbon 6th"), 2207 }, 2208 }, 2209 { 2210 .ident = "ThinkPad X1 Yoga 3rd", 2211 .matches = { 2212 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 2213 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"), 2214 }, 2215 }, 2216 { 2217 .ident = "HP ZHAN 66 Pro", 2218 .matches = { 2219 DMI_MATCH(DMI_SYS_VENDOR, "HP"), 2220 DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"), 2221 }, 2222 }, 2223 { }, 2224 }; 2225 2226 void __init acpi_ec_init(void) 2227 { 2228 int result; 2229 2230 result = acpi_ec_init_workqueues(); 2231 if (result) 2232 return; 2233 2234 /* 2235 * Disable EC wakeup on following systems to prevent periodic 2236 * wakeup from EC GPE. 2237 */ 2238 if (dmi_check_system(acpi_ec_no_wakeup)) { 2239 ec_no_wakeup = true; 2240 pr_debug("Disabling EC wakeup on suspend-to-idle\n"); 2241 } 2242 2243 /* Driver must be registered after acpi_ec_init_workqueues(). */ 2244 acpi_bus_register_driver(&acpi_ec_driver); 2245 2246 acpi_ec_ecdt_start(); 2247 } 2248 2249 /* EC driver currently not unloadable */ 2250 #if 0 2251 static void __exit acpi_ec_exit(void) 2252 { 2253 2254 acpi_bus_unregister_driver(&acpi_ec_driver); 2255 acpi_ec_destroy_workqueues(); 2256 } 2257 #endif /* 0 */ 2258