1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/device_pm.c - ACPI device power management routines. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/export.h> 15 #include <linux/mutex.h> 16 #include <linux/pm_qos.h> 17 #include <linux/pm_domain.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/suspend.h> 20 21 #include "internal.h" 22 23 #define _COMPONENT ACPI_POWER_COMPONENT 24 ACPI_MODULE_NAME("device_pm"); 25 26 /** 27 * acpi_power_state_string - String representation of ACPI device power state. 28 * @state: ACPI device power state to return the string representation of. 29 */ 30 const char *acpi_power_state_string(int state) 31 { 32 switch (state) { 33 case ACPI_STATE_D0: 34 return "D0"; 35 case ACPI_STATE_D1: 36 return "D1"; 37 case ACPI_STATE_D2: 38 return "D2"; 39 case ACPI_STATE_D3_HOT: 40 return "D3hot"; 41 case ACPI_STATE_D3_COLD: 42 return "D3cold"; 43 default: 44 return "(unknown)"; 45 } 46 } 47 48 /** 49 * acpi_device_get_power - Get power state of an ACPI device. 50 * @device: Device to get the power state of. 51 * @state: Place to store the power state of the device. 52 * 53 * This function does not update the device's power.state field, but it may 54 * update its parent's power.state field (when the parent's power state is 55 * unknown and the device's power state turns out to be D0). 56 */ 57 int acpi_device_get_power(struct acpi_device *device, int *state) 58 { 59 int result = ACPI_STATE_UNKNOWN; 60 61 if (!device || !state) 62 return -EINVAL; 63 64 if (!device->flags.power_manageable) { 65 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 66 *state = device->parent ? 67 device->parent->power.state : ACPI_STATE_D0; 68 goto out; 69 } 70 71 /* 72 * Get the device's power state from power resources settings and _PSC, 73 * if available. 74 */ 75 if (device->power.flags.power_resources) { 76 int error = acpi_power_get_inferred_state(device, &result); 77 if (error) 78 return error; 79 } 80 if (device->power.flags.explicit_get) { 81 acpi_handle handle = device->handle; 82 unsigned long long psc; 83 acpi_status status; 84 85 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc); 86 if (ACPI_FAILURE(status)) 87 return -ENODEV; 88 89 /* 90 * The power resources settings may indicate a power state 91 * shallower than the actual power state of the device, because 92 * the same power resources may be referenced by other devices. 93 * 94 * For systems predating ACPI 4.0 we assume that D3hot is the 95 * deepest state that can be supported. 96 */ 97 if (psc > result && psc < ACPI_STATE_D3_COLD) 98 result = psc; 99 else if (result == ACPI_STATE_UNKNOWN) 100 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc; 101 } 102 103 /* 104 * If we were unsure about the device parent's power state up to this 105 * point, the fact that the device is in D0 implies that the parent has 106 * to be in D0 too, except if ignore_parent is set. 107 */ 108 if (!device->power.flags.ignore_parent && device->parent 109 && device->parent->power.state == ACPI_STATE_UNKNOWN 110 && result == ACPI_STATE_D0) 111 device->parent->power.state = ACPI_STATE_D0; 112 113 *state = result; 114 115 out: 116 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n", 117 device->pnp.bus_id, acpi_power_state_string(*state))); 118 119 return 0; 120 } 121 EXPORT_SYMBOL(acpi_device_get_power); 122 123 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 124 { 125 if (adev->power.states[state].flags.explicit_set) { 126 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 127 acpi_status status; 128 129 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 130 if (ACPI_FAILURE(status)) 131 return -ENODEV; 132 } 133 return 0; 134 } 135 136 /** 137 * acpi_device_set_power - Set power state of an ACPI device. 138 * @device: Device to set the power state of. 139 * @state: New power state to set. 140 * 141 * Callers must ensure that the device is power manageable before using this 142 * function. 143 */ 144 int acpi_device_set_power(struct acpi_device *device, int state) 145 { 146 int target_state = state; 147 int result = 0; 148 149 if (!device || !device->flags.power_manageable 150 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 151 return -EINVAL; 152 153 /* Make sure this is a valid target state */ 154 155 if (state == device->power.state) { 156 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n", 157 device->pnp.bus_id, 158 acpi_power_state_string(state))); 159 return 0; 160 } 161 162 if (state == ACPI_STATE_D3_COLD) { 163 /* 164 * For transitions to D3cold we need to execute _PS3 and then 165 * possibly drop references to the power resources in use. 166 */ 167 state = ACPI_STATE_D3_HOT; 168 /* If _PR3 is not available, use D3hot as the target state. */ 169 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid) 170 target_state = state; 171 } else if (!device->power.states[state].flags.valid) { 172 dev_warn(&device->dev, "Power state %s not supported\n", 173 acpi_power_state_string(state)); 174 return -ENODEV; 175 } 176 177 if (!device->power.flags.ignore_parent && 178 device->parent && (state < device->parent->power.state)) { 179 dev_warn(&device->dev, 180 "Cannot transition to power state %s for parent in %s\n", 181 acpi_power_state_string(state), 182 acpi_power_state_string(device->parent->power.state)); 183 return -ENODEV; 184 } 185 186 /* 187 * Transition Power 188 * ---------------- 189 * In accordance with ACPI 6, _PSx is executed before manipulating power 190 * resources, unless the target state is D0, in which case _PS0 is 191 * supposed to be executed after turning the power resources on. 192 */ 193 if (state > ACPI_STATE_D0) { 194 /* 195 * According to ACPI 6, devices cannot go from lower-power 196 * (deeper) states to higher-power (shallower) states. 197 */ 198 if (state < device->power.state) { 199 dev_warn(&device->dev, "Cannot transition from %s to %s\n", 200 acpi_power_state_string(device->power.state), 201 acpi_power_state_string(state)); 202 return -ENODEV; 203 } 204 205 result = acpi_dev_pm_explicit_set(device, state); 206 if (result) 207 goto end; 208 209 if (device->power.flags.power_resources) 210 result = acpi_power_transition(device, target_state); 211 } else { 212 if (device->power.flags.power_resources) { 213 result = acpi_power_transition(device, ACPI_STATE_D0); 214 if (result) 215 goto end; 216 } 217 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 218 } 219 220 end: 221 if (result) { 222 dev_warn(&device->dev, "Failed to change power state to %s\n", 223 acpi_power_state_string(state)); 224 } else { 225 device->power.state = target_state; 226 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 227 "Device [%s] transitioned to %s\n", 228 device->pnp.bus_id, 229 acpi_power_state_string(state))); 230 } 231 232 return result; 233 } 234 EXPORT_SYMBOL(acpi_device_set_power); 235 236 int acpi_bus_set_power(acpi_handle handle, int state) 237 { 238 struct acpi_device *device; 239 int result; 240 241 result = acpi_bus_get_device(handle, &device); 242 if (result) 243 return result; 244 245 return acpi_device_set_power(device, state); 246 } 247 EXPORT_SYMBOL(acpi_bus_set_power); 248 249 int acpi_bus_init_power(struct acpi_device *device) 250 { 251 int state; 252 int result; 253 254 if (!device) 255 return -EINVAL; 256 257 device->power.state = ACPI_STATE_UNKNOWN; 258 if (!acpi_device_is_present(device)) { 259 device->flags.initialized = false; 260 return -ENXIO; 261 } 262 263 result = acpi_device_get_power(device, &state); 264 if (result) 265 return result; 266 267 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 268 /* Reference count the power resources. */ 269 result = acpi_power_on_resources(device, state); 270 if (result) 271 return result; 272 273 if (state == ACPI_STATE_D0) { 274 /* 275 * If _PSC is not present and the state inferred from 276 * power resources appears to be D0, it still may be 277 * necessary to execute _PS0 at this point, because 278 * another device using the same power resources may 279 * have been put into D0 previously and that's why we 280 * see D0 here. 281 */ 282 result = acpi_dev_pm_explicit_set(device, state); 283 if (result) 284 return result; 285 } 286 } else if (state == ACPI_STATE_UNKNOWN) { 287 /* 288 * No power resources and missing _PSC? Cross fingers and make 289 * it D0 in hope that this is what the BIOS put the device into. 290 * [We tried to force D0 here by executing _PS0, but that broke 291 * Toshiba P870-303 in a nasty way.] 292 */ 293 state = ACPI_STATE_D0; 294 } 295 device->power.state = state; 296 return 0; 297 } 298 299 /** 300 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 301 * @device: Device object whose power state is to be fixed up. 302 * 303 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 304 * are assumed to be put into D0 by the BIOS. However, in some cases that may 305 * not be the case and this function should be used then. 306 */ 307 int acpi_device_fix_up_power(struct acpi_device *device) 308 { 309 int ret = 0; 310 311 if (!device->power.flags.power_resources 312 && !device->power.flags.explicit_get 313 && device->power.state == ACPI_STATE_D0) 314 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 315 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power); 319 320 int acpi_device_update_power(struct acpi_device *device, int *state_p) 321 { 322 int state; 323 int result; 324 325 if (device->power.state == ACPI_STATE_UNKNOWN) { 326 result = acpi_bus_init_power(device); 327 if (!result && state_p) 328 *state_p = device->power.state; 329 330 return result; 331 } 332 333 result = acpi_device_get_power(device, &state); 334 if (result) 335 return result; 336 337 if (state == ACPI_STATE_UNKNOWN) { 338 state = ACPI_STATE_D0; 339 result = acpi_device_set_power(device, state); 340 if (result) 341 return result; 342 } else { 343 if (device->power.flags.power_resources) { 344 /* 345 * We don't need to really switch the state, bu we need 346 * to update the power resources' reference counters. 347 */ 348 result = acpi_power_transition(device, state); 349 if (result) 350 return result; 351 } 352 device->power.state = state; 353 } 354 if (state_p) 355 *state_p = state; 356 357 return 0; 358 } 359 EXPORT_SYMBOL_GPL(acpi_device_update_power); 360 361 int acpi_bus_update_power(acpi_handle handle, int *state_p) 362 { 363 struct acpi_device *device; 364 int result; 365 366 result = acpi_bus_get_device(handle, &device); 367 return result ? result : acpi_device_update_power(device, state_p); 368 } 369 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 370 371 bool acpi_bus_power_manageable(acpi_handle handle) 372 { 373 struct acpi_device *device; 374 int result; 375 376 result = acpi_bus_get_device(handle, &device); 377 return result ? false : device->flags.power_manageable; 378 } 379 EXPORT_SYMBOL(acpi_bus_power_manageable); 380 381 #ifdef CONFIG_PM 382 static DEFINE_MUTEX(acpi_pm_notifier_lock); 383 static DEFINE_MUTEX(acpi_pm_notifier_install_lock); 384 385 void acpi_pm_wakeup_event(struct device *dev) 386 { 387 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup()); 388 } 389 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event); 390 391 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used) 392 { 393 struct acpi_device *adev; 394 395 if (val != ACPI_NOTIFY_DEVICE_WAKE) 396 return; 397 398 acpi_handle_debug(handle, "Wake notify\n"); 399 400 adev = acpi_bus_get_acpi_device(handle); 401 if (!adev) 402 return; 403 404 mutex_lock(&acpi_pm_notifier_lock); 405 406 if (adev->wakeup.flags.notifier_present) { 407 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup()); 408 if (adev->wakeup.context.func) { 409 acpi_handle_debug(handle, "Running %pS for %s\n", 410 adev->wakeup.context.func, 411 dev_name(adev->wakeup.context.dev)); 412 adev->wakeup.context.func(&adev->wakeup.context); 413 } 414 } 415 416 mutex_unlock(&acpi_pm_notifier_lock); 417 418 acpi_bus_put_acpi_device(adev); 419 } 420 421 /** 422 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device. 423 * @adev: ACPI device to add the notify handler for. 424 * @dev: Device to generate a wakeup event for while handling the notification. 425 * @func: Work function to execute when handling the notification. 426 * 427 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 428 * PM wakeup events. For example, wakeup events may be generated for bridges 429 * if one of the devices below the bridge is signaling wakeup, even if the 430 * bridge itself doesn't have a wakeup GPE associated with it. 431 */ 432 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, 433 void (*func)(struct acpi_device_wakeup_context *context)) 434 { 435 acpi_status status = AE_ALREADY_EXISTS; 436 437 if (!dev && !func) 438 return AE_BAD_PARAMETER; 439 440 mutex_lock(&acpi_pm_notifier_install_lock); 441 442 if (adev->wakeup.flags.notifier_present) 443 goto out; 444 445 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY, 446 acpi_pm_notify_handler, NULL); 447 if (ACPI_FAILURE(status)) 448 goto out; 449 450 mutex_lock(&acpi_pm_notifier_lock); 451 adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev)); 452 adev->wakeup.context.dev = dev; 453 adev->wakeup.context.func = func; 454 adev->wakeup.flags.notifier_present = true; 455 mutex_unlock(&acpi_pm_notifier_lock); 456 457 out: 458 mutex_unlock(&acpi_pm_notifier_install_lock); 459 return status; 460 } 461 462 /** 463 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 464 * @adev: ACPI device to remove the notifier from. 465 */ 466 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) 467 { 468 acpi_status status = AE_BAD_PARAMETER; 469 470 mutex_lock(&acpi_pm_notifier_install_lock); 471 472 if (!adev->wakeup.flags.notifier_present) 473 goto out; 474 475 status = acpi_remove_notify_handler(adev->handle, 476 ACPI_SYSTEM_NOTIFY, 477 acpi_pm_notify_handler); 478 if (ACPI_FAILURE(status)) 479 goto out; 480 481 mutex_lock(&acpi_pm_notifier_lock); 482 adev->wakeup.context.func = NULL; 483 adev->wakeup.context.dev = NULL; 484 wakeup_source_unregister(adev->wakeup.ws); 485 adev->wakeup.flags.notifier_present = false; 486 mutex_unlock(&acpi_pm_notifier_lock); 487 488 out: 489 mutex_unlock(&acpi_pm_notifier_install_lock); 490 return status; 491 } 492 493 bool acpi_bus_can_wakeup(acpi_handle handle) 494 { 495 struct acpi_device *device; 496 int result; 497 498 result = acpi_bus_get_device(handle, &device); 499 return result ? false : device->wakeup.flags.valid; 500 } 501 EXPORT_SYMBOL(acpi_bus_can_wakeup); 502 503 bool acpi_pm_device_can_wakeup(struct device *dev) 504 { 505 struct acpi_device *adev = ACPI_COMPANION(dev); 506 507 return adev ? acpi_device_can_wakeup(adev) : false; 508 } 509 510 /** 511 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 512 * @dev: Device whose preferred target power state to return. 513 * @adev: ACPI device node corresponding to @dev. 514 * @target_state: System state to match the resultant device state. 515 * @d_min_p: Location to store the highest power state available to the device. 516 * @d_max_p: Location to store the lowest power state available to the device. 517 * 518 * Find the lowest power (highest number) and highest power (lowest number) ACPI 519 * device power states that the device can be in while the system is in the 520 * state represented by @target_state. Store the integer numbers representing 521 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 522 * respectively. 523 * 524 * Callers must ensure that @dev and @adev are valid pointers and that @adev 525 * actually corresponds to @dev before using this function. 526 * 527 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 528 * returns a value that doesn't make sense. The memory locations pointed to by 529 * @d_max_p and @d_min_p are only modified on success. 530 */ 531 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 532 u32 target_state, int *d_min_p, int *d_max_p) 533 { 534 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 535 acpi_handle handle = adev->handle; 536 unsigned long long ret; 537 int d_min, d_max; 538 bool wakeup = false; 539 bool has_sxd = false; 540 acpi_status status; 541 542 /* 543 * If the system state is S0, the lowest power state the device can be 544 * in is D3cold, unless the device has _S0W and is supposed to signal 545 * wakeup, in which case the return value of _S0W has to be used as the 546 * lowest power state available to the device. 547 */ 548 d_min = ACPI_STATE_D0; 549 d_max = ACPI_STATE_D3_COLD; 550 551 /* 552 * If present, _SxD methods return the minimum D-state (highest power 553 * state) we can use for the corresponding S-states. Otherwise, the 554 * minimum D-state is D0 (ACPI 3.x). 555 */ 556 if (target_state > ACPI_STATE_S0) { 557 /* 558 * We rely on acpi_evaluate_integer() not clobbering the integer 559 * provided if AE_NOT_FOUND is returned. 560 */ 561 ret = d_min; 562 status = acpi_evaluate_integer(handle, method, NULL, &ret); 563 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 564 || ret > ACPI_STATE_D3_COLD) 565 return -ENODATA; 566 567 /* 568 * We need to handle legacy systems where D3hot and D3cold are 569 * the same and 3 is returned in both cases, so fall back to 570 * D3cold if D3hot is not a valid state. 571 */ 572 if (!adev->power.states[ret].flags.valid) { 573 if (ret == ACPI_STATE_D3_HOT) 574 ret = ACPI_STATE_D3_COLD; 575 else 576 return -ENODATA; 577 } 578 579 if (status == AE_OK) 580 has_sxd = true; 581 582 d_min = ret; 583 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 584 && adev->wakeup.sleep_state >= target_state; 585 } else { 586 wakeup = adev->wakeup.flags.valid; 587 } 588 589 /* 590 * If _PRW says we can wake up the system from the target sleep state, 591 * the D-state returned by _SxD is sufficient for that (we assume a 592 * wakeup-aware driver if wake is set). Still, if _SxW exists 593 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 594 * can wake the system. _S0W may be valid, too. 595 */ 596 if (wakeup) { 597 method[3] = 'W'; 598 status = acpi_evaluate_integer(handle, method, NULL, &ret); 599 if (status == AE_NOT_FOUND) { 600 /* No _SxW. In this case, the ACPI spec says that we 601 * must not go into any power state deeper than the 602 * value returned from _SxD. 603 */ 604 if (has_sxd && target_state > ACPI_STATE_S0) 605 d_max = d_min; 606 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 607 /* Fall back to D3cold if ret is not a valid state. */ 608 if (!adev->power.states[ret].flags.valid) 609 ret = ACPI_STATE_D3_COLD; 610 611 d_max = ret > d_min ? ret : d_min; 612 } else { 613 return -ENODATA; 614 } 615 } 616 617 if (d_min_p) 618 *d_min_p = d_min; 619 620 if (d_max_p) 621 *d_max_p = d_max; 622 623 return 0; 624 } 625 626 /** 627 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 628 * @dev: Device whose preferred target power state to return. 629 * @d_min_p: Location to store the upper limit of the allowed states range. 630 * @d_max_in: Deepest low-power state to take into consideration. 631 * Return value: Preferred power state of the device on success, -ENODEV 632 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 633 * incorrect, or -ENODATA on ACPI method failure. 634 * 635 * The caller must ensure that @dev is valid before using this function. 636 */ 637 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 638 { 639 struct acpi_device *adev; 640 int ret, d_min, d_max; 641 642 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 643 return -EINVAL; 644 645 if (d_max_in > ACPI_STATE_D2) { 646 enum pm_qos_flags_status stat; 647 648 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 649 if (stat == PM_QOS_FLAGS_ALL) 650 d_max_in = ACPI_STATE_D2; 651 } 652 653 adev = ACPI_COMPANION(dev); 654 if (!adev) { 655 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 656 return -ENODEV; 657 } 658 659 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 660 &d_min, &d_max); 661 if (ret) 662 return ret; 663 664 if (d_max_in < d_min) 665 return -EINVAL; 666 667 if (d_max > d_max_in) { 668 for (d_max = d_max_in; d_max > d_min; d_max--) { 669 if (adev->power.states[d_max].flags.valid) 670 break; 671 } 672 } 673 674 if (d_min_p) 675 *d_min_p = d_min; 676 677 return d_max; 678 } 679 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 680 681 /** 682 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function. 683 * @context: Device wakeup context. 684 */ 685 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context) 686 { 687 struct device *dev = context->dev; 688 689 if (dev) { 690 pm_wakeup_event(dev, 0); 691 pm_request_resume(dev); 692 } 693 } 694 695 static DEFINE_MUTEX(acpi_wakeup_lock); 696 697 static int __acpi_device_wakeup_enable(struct acpi_device *adev, 698 u32 target_state, int max_count) 699 { 700 struct acpi_device_wakeup *wakeup = &adev->wakeup; 701 acpi_status status; 702 int error = 0; 703 704 mutex_lock(&acpi_wakeup_lock); 705 706 if (wakeup->enable_count >= max_count) 707 goto out; 708 709 if (wakeup->enable_count > 0) 710 goto inc; 711 712 error = acpi_enable_wakeup_device_power(adev, target_state); 713 if (error) 714 goto out; 715 716 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 717 if (ACPI_FAILURE(status)) { 718 acpi_disable_wakeup_device_power(adev); 719 error = -EIO; 720 goto out; 721 } 722 723 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n", 724 (unsigned int)wakeup->gpe_number); 725 726 inc: 727 wakeup->enable_count++; 728 729 out: 730 mutex_unlock(&acpi_wakeup_lock); 731 return error; 732 } 733 734 /** 735 * acpi_device_wakeup_enable - Enable wakeup functionality for device. 736 * @adev: ACPI device to enable wakeup functionality for. 737 * @target_state: State the system is transitioning into. 738 * 739 * Enable the GPE associated with @adev so that it can generate wakeup signals 740 * for the device in response to external (remote) events and enable wakeup 741 * power for it. 742 * 743 * Callers must ensure that @adev is a valid ACPI device node before executing 744 * this function. 745 */ 746 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state) 747 { 748 return __acpi_device_wakeup_enable(adev, target_state, 1); 749 } 750 751 /** 752 * acpi_device_wakeup_disable - Disable wakeup functionality for device. 753 * @adev: ACPI device to disable wakeup functionality for. 754 * 755 * Disable the GPE associated with @adev and disable wakeup power for it. 756 * 757 * Callers must ensure that @adev is a valid ACPI device node before executing 758 * this function. 759 */ 760 static void acpi_device_wakeup_disable(struct acpi_device *adev) 761 { 762 struct acpi_device_wakeup *wakeup = &adev->wakeup; 763 764 mutex_lock(&acpi_wakeup_lock); 765 766 if (!wakeup->enable_count) 767 goto out; 768 769 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 770 acpi_disable_wakeup_device_power(adev); 771 772 wakeup->enable_count--; 773 774 out: 775 mutex_unlock(&acpi_wakeup_lock); 776 } 777 778 static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable, 779 int max_count) 780 { 781 struct acpi_device *adev; 782 int error; 783 784 adev = ACPI_COMPANION(dev); 785 if (!adev) { 786 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 787 return -ENODEV; 788 } 789 790 if (!acpi_device_can_wakeup(adev)) 791 return -EINVAL; 792 793 if (!enable) { 794 acpi_device_wakeup_disable(adev); 795 dev_dbg(dev, "Wakeup disabled by ACPI\n"); 796 return 0; 797 } 798 799 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(), 800 max_count); 801 if (!error) 802 dev_dbg(dev, "Wakeup enabled by ACPI\n"); 803 804 return error; 805 } 806 807 /** 808 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device. 809 * @dev: Device to enable/disable to generate wakeup events. 810 * @enable: Whether to enable or disable the wakeup functionality. 811 */ 812 int acpi_pm_set_device_wakeup(struct device *dev, bool enable) 813 { 814 return __acpi_pm_set_device_wakeup(dev, enable, 1); 815 } 816 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup); 817 818 /** 819 * acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge. 820 * @dev: Bridge device to enable/disable to generate wakeup events. 821 * @enable: Whether to enable or disable the wakeup functionality. 822 */ 823 int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable) 824 { 825 return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX); 826 } 827 EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup); 828 829 /** 830 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 831 * @dev: Device to put into a low-power state. 832 * @adev: ACPI device node corresponding to @dev. 833 * @system_state: System state to choose the device state for. 834 */ 835 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 836 u32 system_state) 837 { 838 int ret, state; 839 840 if (!acpi_device_power_manageable(adev)) 841 return 0; 842 843 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 844 return ret ? ret : acpi_device_set_power(adev, state); 845 } 846 847 /** 848 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 849 * @adev: ACPI device node to put into the full-power state. 850 */ 851 static int acpi_dev_pm_full_power(struct acpi_device *adev) 852 { 853 return acpi_device_power_manageable(adev) ? 854 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 855 } 856 857 /** 858 * acpi_dev_suspend - Put device into a low-power state using ACPI. 859 * @dev: Device to put into a low-power state. 860 * @wakeup: Whether or not to enable wakeup for the device. 861 * 862 * Put the given device into a low-power state using the standard ACPI 863 * mechanism. Set up remote wakeup if desired, choose the state to put the 864 * device into (this checks if remote wakeup is expected to work too), and set 865 * the power state of the device. 866 */ 867 int acpi_dev_suspend(struct device *dev, bool wakeup) 868 { 869 struct acpi_device *adev = ACPI_COMPANION(dev); 870 u32 target_state = acpi_target_system_state(); 871 int error; 872 873 if (!adev) 874 return 0; 875 876 if (wakeup && acpi_device_can_wakeup(adev)) { 877 error = acpi_device_wakeup_enable(adev, target_state); 878 if (error) 879 return -EAGAIN; 880 } else { 881 wakeup = false; 882 } 883 884 error = acpi_dev_pm_low_power(dev, adev, target_state); 885 if (error && wakeup) 886 acpi_device_wakeup_disable(adev); 887 888 return error; 889 } 890 EXPORT_SYMBOL_GPL(acpi_dev_suspend); 891 892 /** 893 * acpi_dev_resume - Put device into the full-power state using ACPI. 894 * @dev: Device to put into the full-power state. 895 * 896 * Put the given device into the full-power state using the standard ACPI 897 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup. 898 */ 899 int acpi_dev_resume(struct device *dev) 900 { 901 struct acpi_device *adev = ACPI_COMPANION(dev); 902 int error; 903 904 if (!adev) 905 return 0; 906 907 error = acpi_dev_pm_full_power(adev); 908 acpi_device_wakeup_disable(adev); 909 return error; 910 } 911 EXPORT_SYMBOL_GPL(acpi_dev_resume); 912 913 /** 914 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 915 * @dev: Device to suspend. 916 * 917 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 918 * it into a runtime low-power state. 919 */ 920 int acpi_subsys_runtime_suspend(struct device *dev) 921 { 922 int ret = pm_generic_runtime_suspend(dev); 923 return ret ? ret : acpi_dev_suspend(dev, true); 924 } 925 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 926 927 /** 928 * acpi_subsys_runtime_resume - Resume device using ACPI. 929 * @dev: Device to Resume. 930 * 931 * Use ACPI to put the given device into the full-power state and carry out the 932 * generic runtime resume procedure for it. 933 */ 934 int acpi_subsys_runtime_resume(struct device *dev) 935 { 936 int ret = acpi_dev_resume(dev); 937 return ret ? ret : pm_generic_runtime_resume(dev); 938 } 939 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 940 941 #ifdef CONFIG_PM_SLEEP 942 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev) 943 { 944 u32 sys_target = acpi_target_system_state(); 945 int ret, state; 946 947 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid && 948 device_may_wakeup(dev) != !!adev->wakeup.prepare_count)) 949 return true; 950 951 if (sys_target == ACPI_STATE_S0) 952 return false; 953 954 if (adev->power.flags.dsw_present) 955 return true; 956 957 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state); 958 if (ret) 959 return true; 960 961 return state != adev->power.state; 962 } 963 964 /** 965 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 966 * @dev: Device to prepare. 967 */ 968 int acpi_subsys_prepare(struct device *dev) 969 { 970 struct acpi_device *adev = ACPI_COMPANION(dev); 971 972 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) { 973 int ret = dev->driver->pm->prepare(dev); 974 975 if (ret < 0) 976 return ret; 977 978 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 979 return 0; 980 } 981 982 return !acpi_dev_needs_resume(dev, adev); 983 } 984 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 985 986 /** 987 * acpi_subsys_complete - Finalize device's resume during system resume. 988 * @dev: Device to handle. 989 */ 990 void acpi_subsys_complete(struct device *dev) 991 { 992 pm_generic_complete(dev); 993 /* 994 * If the device had been runtime-suspended before the system went into 995 * the sleep state it is going out of and it has never been resumed till 996 * now, resume it in case the firmware powered it up. 997 */ 998 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) 999 pm_request_resume(dev); 1000 } 1001 EXPORT_SYMBOL_GPL(acpi_subsys_complete); 1002 1003 /** 1004 * acpi_subsys_suspend - Run the device driver's suspend callback. 1005 * @dev: Device to handle. 1006 * 1007 * Follow PCI and resume devices from runtime suspend before running their 1008 * system suspend callbacks, unless the driver can cope with runtime-suspended 1009 * devices during system suspend and there are no ACPI-specific reasons for 1010 * resuming them. 1011 */ 1012 int acpi_subsys_suspend(struct device *dev) 1013 { 1014 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1015 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev))) 1016 pm_runtime_resume(dev); 1017 1018 return pm_generic_suspend(dev); 1019 } 1020 EXPORT_SYMBOL_GPL(acpi_subsys_suspend); 1021 1022 /** 1023 * acpi_subsys_suspend_late - Suspend device using ACPI. 1024 * @dev: Device to suspend. 1025 * 1026 * Carry out the generic late suspend procedure for @dev and use ACPI to put 1027 * it into a low-power state during system transition into a sleep state. 1028 */ 1029 int acpi_subsys_suspend_late(struct device *dev) 1030 { 1031 int ret; 1032 1033 if (dev_pm_smart_suspend_and_suspended(dev)) 1034 return 0; 1035 1036 ret = pm_generic_suspend_late(dev); 1037 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev)); 1038 } 1039 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 1040 1041 /** 1042 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback. 1043 * @dev: Device to suspend. 1044 */ 1045 int acpi_subsys_suspend_noirq(struct device *dev) 1046 { 1047 int ret; 1048 1049 if (dev_pm_smart_suspend_and_suspended(dev)) { 1050 dev->power.may_skip_resume = true; 1051 return 0; 1052 } 1053 1054 ret = pm_generic_suspend_noirq(dev); 1055 if (ret) 1056 return ret; 1057 1058 /* 1059 * If the target system sleep state is suspend-to-idle, it is sufficient 1060 * to check whether or not the device's wakeup settings are good for 1061 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause 1062 * acpi_subsys_complete() to take care of fixing up the device's state 1063 * anyway, if need be. 1064 */ 1065 dev->power.may_skip_resume = device_may_wakeup(dev) || 1066 !device_can_wakeup(dev); 1067 1068 return 0; 1069 } 1070 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq); 1071 1072 /** 1073 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback. 1074 * @dev: Device to handle. 1075 */ 1076 int acpi_subsys_resume_noirq(struct device *dev) 1077 { 1078 if (dev_pm_may_skip_resume(dev)) 1079 return 0; 1080 1081 /* 1082 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend 1083 * during system suspend, so update their runtime PM status to "active" 1084 * as they will be put into D0 going forward. 1085 */ 1086 if (dev_pm_smart_suspend_and_suspended(dev)) 1087 pm_runtime_set_active(dev); 1088 1089 return pm_generic_resume_noirq(dev); 1090 } 1091 EXPORT_SYMBOL_GPL(acpi_subsys_resume_noirq); 1092 1093 /** 1094 * acpi_subsys_resume_early - Resume device using ACPI. 1095 * @dev: Device to Resume. 1096 * 1097 * Use ACPI to put the given device into the full-power state and carry out the 1098 * generic early resume procedure for it during system transition into the 1099 * working state. 1100 */ 1101 int acpi_subsys_resume_early(struct device *dev) 1102 { 1103 int ret = acpi_dev_resume(dev); 1104 return ret ? ret : pm_generic_resume_early(dev); 1105 } 1106 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early); 1107 1108 /** 1109 * acpi_subsys_freeze - Run the device driver's freeze callback. 1110 * @dev: Device to handle. 1111 */ 1112 int acpi_subsys_freeze(struct device *dev) 1113 { 1114 /* 1115 * This used to be done in acpi_subsys_prepare() for all devices and 1116 * some drivers may depend on it, so do it here. Ideally, however, 1117 * runtime-suspended devices should not be touched during freeze/thaw 1118 * transitions. 1119 */ 1120 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND)) 1121 pm_runtime_resume(dev); 1122 1123 return pm_generic_freeze(dev); 1124 } 1125 EXPORT_SYMBOL_GPL(acpi_subsys_freeze); 1126 1127 /** 1128 * acpi_subsys_freeze_late - Run the device driver's "late" freeze callback. 1129 * @dev: Device to handle. 1130 */ 1131 int acpi_subsys_freeze_late(struct device *dev) 1132 { 1133 1134 if (dev_pm_smart_suspend_and_suspended(dev)) 1135 return 0; 1136 1137 return pm_generic_freeze_late(dev); 1138 } 1139 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_late); 1140 1141 /** 1142 * acpi_subsys_freeze_noirq - Run the device driver's "noirq" freeze callback. 1143 * @dev: Device to handle. 1144 */ 1145 int acpi_subsys_freeze_noirq(struct device *dev) 1146 { 1147 1148 if (dev_pm_smart_suspend_and_suspended(dev)) 1149 return 0; 1150 1151 return pm_generic_freeze_noirq(dev); 1152 } 1153 EXPORT_SYMBOL_GPL(acpi_subsys_freeze_noirq); 1154 1155 /** 1156 * acpi_subsys_thaw_noirq - Run the device driver's "noirq" thaw callback. 1157 * @dev: Device to handle. 1158 */ 1159 int acpi_subsys_thaw_noirq(struct device *dev) 1160 { 1161 /* 1162 * If the device is in runtime suspend, the "thaw" code may not work 1163 * correctly with it, so skip the driver callback and make the PM core 1164 * skip all of the subsequent "thaw" callbacks for the device. 1165 */ 1166 if (dev_pm_smart_suspend_and_suspended(dev)) { 1167 dev_pm_skip_next_resume_phases(dev); 1168 return 0; 1169 } 1170 1171 return pm_generic_thaw_noirq(dev); 1172 } 1173 EXPORT_SYMBOL_GPL(acpi_subsys_thaw_noirq); 1174 #endif /* CONFIG_PM_SLEEP */ 1175 1176 static struct dev_pm_domain acpi_general_pm_domain = { 1177 .ops = { 1178 .runtime_suspend = acpi_subsys_runtime_suspend, 1179 .runtime_resume = acpi_subsys_runtime_resume, 1180 #ifdef CONFIG_PM_SLEEP 1181 .prepare = acpi_subsys_prepare, 1182 .complete = acpi_subsys_complete, 1183 .suspend = acpi_subsys_suspend, 1184 .suspend_late = acpi_subsys_suspend_late, 1185 .suspend_noirq = acpi_subsys_suspend_noirq, 1186 .resume_noirq = acpi_subsys_resume_noirq, 1187 .resume_early = acpi_subsys_resume_early, 1188 .freeze = acpi_subsys_freeze, 1189 .freeze_late = acpi_subsys_freeze_late, 1190 .freeze_noirq = acpi_subsys_freeze_noirq, 1191 .thaw_noirq = acpi_subsys_thaw_noirq, 1192 .poweroff = acpi_subsys_suspend, 1193 .poweroff_late = acpi_subsys_suspend_late, 1194 .poweroff_noirq = acpi_subsys_suspend_noirq, 1195 .restore_noirq = acpi_subsys_resume_noirq, 1196 .restore_early = acpi_subsys_resume_early, 1197 #endif 1198 }, 1199 }; 1200 1201 /** 1202 * acpi_dev_pm_detach - Remove ACPI power management from the device. 1203 * @dev: Device to take care of. 1204 * @power_off: Whether or not to try to remove power from the device. 1205 * 1206 * Remove the device from the general ACPI PM domain and remove its wakeup 1207 * notifier. If @power_off is set, additionally remove power from the device if 1208 * possible. 1209 * 1210 * Callers must ensure proper synchronization of this function with power 1211 * management callbacks. 1212 */ 1213 static void acpi_dev_pm_detach(struct device *dev, bool power_off) 1214 { 1215 struct acpi_device *adev = ACPI_COMPANION(dev); 1216 1217 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1218 dev_pm_domain_set(dev, NULL); 1219 acpi_remove_pm_notifier(adev); 1220 if (power_off) { 1221 /* 1222 * If the device's PM QoS resume latency limit or flags 1223 * have been exposed to user space, they have to be 1224 * hidden at this point, so that they don't affect the 1225 * choice of the low-power state to put the device into. 1226 */ 1227 dev_pm_qos_hide_latency_limit(dev); 1228 dev_pm_qos_hide_flags(dev); 1229 acpi_device_wakeup_disable(adev); 1230 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1231 } 1232 } 1233 } 1234 1235 /** 1236 * acpi_dev_pm_attach - Prepare device for ACPI power management. 1237 * @dev: Device to prepare. 1238 * @power_on: Whether or not to power on the device. 1239 * 1240 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 1241 * attached to it, install a wakeup notification handler for the device and 1242 * add it to the general ACPI PM domain. If @power_on is set, the device will 1243 * be put into the ACPI D0 state before the function returns. 1244 * 1245 * This assumes that the @dev's bus type uses generic power management callbacks 1246 * (or doesn't use any power management callbacks at all). 1247 * 1248 * Callers must ensure proper synchronization of this function with power 1249 * management callbacks. 1250 */ 1251 int acpi_dev_pm_attach(struct device *dev, bool power_on) 1252 { 1253 struct acpi_device *adev = ACPI_COMPANION(dev); 1254 1255 if (!adev) 1256 return 0; 1257 1258 /* 1259 * Only attach the power domain to the first device if the 1260 * companion is shared by multiple. This is to prevent doing power 1261 * management twice. 1262 */ 1263 if (!acpi_device_is_first_physical_node(adev, dev)) 1264 return 0; 1265 1266 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func); 1267 dev_pm_domain_set(dev, &acpi_general_pm_domain); 1268 if (power_on) { 1269 acpi_dev_pm_full_power(adev); 1270 acpi_device_wakeup_disable(adev); 1271 } 1272 1273 dev->pm_domain->detach = acpi_dev_pm_detach; 1274 return 1; 1275 } 1276 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 1277 #endif /* CONFIG_PM */ 1278