1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/device_pm.c - ACPI device power management routines. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/acpi.h> 16 #include <linux/export.h> 17 #include <linux/mutex.h> 18 #include <linux/pm_qos.h> 19 #include <linux/pm_domain.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 23 #include "fan.h" 24 #include "internal.h" 25 26 /** 27 * acpi_power_state_string - String representation of ACPI device power state. 28 * @state: ACPI device power state to return the string representation of. 29 */ 30 const char *acpi_power_state_string(int state) 31 { 32 switch (state) { 33 case ACPI_STATE_D0: 34 return "D0"; 35 case ACPI_STATE_D1: 36 return "D1"; 37 case ACPI_STATE_D2: 38 return "D2"; 39 case ACPI_STATE_D3_HOT: 40 return "D3hot"; 41 case ACPI_STATE_D3_COLD: 42 return "D3cold"; 43 default: 44 return "(unknown)"; 45 } 46 } 47 48 static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state) 49 { 50 unsigned long long psc; 51 acpi_status status; 52 53 status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc); 54 if (ACPI_FAILURE(status)) 55 return -ENODEV; 56 57 *state = psc; 58 return 0; 59 } 60 61 /** 62 * acpi_device_get_power - Get power state of an ACPI device. 63 * @device: Device to get the power state of. 64 * @state: Place to store the power state of the device. 65 * 66 * This function does not update the device's power.state field, but it may 67 * update its parent's power.state field (when the parent's power state is 68 * unknown and the device's power state turns out to be D0). 69 * 70 * Also, it does not update power resource reference counters to ensure that 71 * the power state returned by it will be persistent and it may return a power 72 * state shallower than previously set by acpi_device_set_power() for @device 73 * (if that power state depends on any power resources). 74 */ 75 int acpi_device_get_power(struct acpi_device *device, int *state) 76 { 77 int result = ACPI_STATE_UNKNOWN; 78 struct acpi_device *parent; 79 int error; 80 81 if (!device || !state) 82 return -EINVAL; 83 84 parent = acpi_dev_parent(device); 85 86 if (!device->flags.power_manageable) { 87 /* TBD: Non-recursive algorithm for walking up hierarchy. */ 88 *state = parent ? parent->power.state : ACPI_STATE_D0; 89 goto out; 90 } 91 92 /* 93 * Get the device's power state from power resources settings and _PSC, 94 * if available. 95 */ 96 if (device->power.flags.power_resources) { 97 error = acpi_power_get_inferred_state(device, &result); 98 if (error) 99 return error; 100 } 101 if (device->power.flags.explicit_get) { 102 int psc; 103 104 error = acpi_dev_pm_explicit_get(device, &psc); 105 if (error) 106 return error; 107 108 /* 109 * The power resources settings may indicate a power state 110 * shallower than the actual power state of the device, because 111 * the same power resources may be referenced by other devices. 112 * 113 * For systems predating ACPI 4.0 we assume that D3hot is the 114 * deepest state that can be supported. 115 */ 116 if (psc > result && psc < ACPI_STATE_D3_COLD) 117 result = psc; 118 else if (result == ACPI_STATE_UNKNOWN) 119 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc; 120 } 121 122 /* 123 * If we were unsure about the device parent's power state up to this 124 * point, the fact that the device is in D0 implies that the parent has 125 * to be in D0 too, except if ignore_parent is set. 126 */ 127 if (!device->power.flags.ignore_parent && parent && 128 parent->power.state == ACPI_STATE_UNKNOWN && 129 result == ACPI_STATE_D0) 130 parent->power.state = ACPI_STATE_D0; 131 132 *state = result; 133 134 out: 135 acpi_handle_debug(device->handle, "Power state: %s\n", 136 acpi_power_state_string(*state)); 137 138 return 0; 139 } 140 141 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state) 142 { 143 if (adev->power.states[state].flags.explicit_set) { 144 char method[5] = { '_', 'P', 'S', '0' + state, '\0' }; 145 acpi_status status; 146 147 status = acpi_evaluate_object(adev->handle, method, NULL, NULL); 148 if (ACPI_FAILURE(status)) 149 return -ENODEV; 150 } 151 return 0; 152 } 153 154 /** 155 * acpi_device_set_power - Set power state of an ACPI device. 156 * @device: Device to set the power state of. 157 * @state: New power state to set. 158 * 159 * Callers must ensure that the device is power manageable before using this 160 * function. 161 */ 162 int acpi_device_set_power(struct acpi_device *device, int state) 163 { 164 int target_state = state; 165 int result = 0; 166 167 if (!device || !device->flags.power_manageable 168 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 169 return -EINVAL; 170 171 acpi_handle_debug(device->handle, "Power state change: %s -> %s\n", 172 acpi_power_state_string(device->power.state), 173 acpi_power_state_string(state)); 174 175 /* Make sure this is a valid target state */ 176 177 /* There is a special case for D0 addressed below. */ 178 if (state > ACPI_STATE_D0 && state == device->power.state) 179 goto no_change; 180 181 if (state == ACPI_STATE_D3_COLD) { 182 /* 183 * For transitions to D3cold we need to execute _PS3 and then 184 * possibly drop references to the power resources in use. 185 */ 186 state = ACPI_STATE_D3_HOT; 187 /* If D3cold is not supported, use D3hot as the target state. */ 188 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid) 189 target_state = state; 190 } else if (!device->power.states[state].flags.valid) { 191 acpi_handle_debug(device->handle, "Power state %s not supported\n", 192 acpi_power_state_string(state)); 193 return -ENODEV; 194 } 195 196 if (!device->power.flags.ignore_parent) { 197 struct acpi_device *parent; 198 199 parent = acpi_dev_parent(device); 200 if (parent && state < parent->power.state) { 201 acpi_handle_debug(device->handle, 202 "Cannot transition to %s for parent in %s\n", 203 acpi_power_state_string(state), 204 acpi_power_state_string(parent->power.state)); 205 return -ENODEV; 206 } 207 } 208 209 /* 210 * Transition Power 211 * ---------------- 212 * In accordance with ACPI 6, _PSx is executed before manipulating power 213 * resources, unless the target state is D0, in which case _PS0 is 214 * supposed to be executed after turning the power resources on. 215 */ 216 if (state > ACPI_STATE_D0) { 217 /* 218 * According to ACPI 6, devices cannot go from lower-power 219 * (deeper) states to higher-power (shallower) states. 220 */ 221 if (state < device->power.state) { 222 acpi_handle_debug(device->handle, 223 "Cannot transition from %s to %s\n", 224 acpi_power_state_string(device->power.state), 225 acpi_power_state_string(state)); 226 return -ENODEV; 227 } 228 229 /* 230 * If the device goes from D3hot to D3cold, _PS3 has been 231 * evaluated for it already, so skip it in that case. 232 */ 233 if (device->power.state < ACPI_STATE_D3_HOT) { 234 result = acpi_dev_pm_explicit_set(device, state); 235 if (result) 236 goto end; 237 } 238 239 if (device->power.flags.power_resources) 240 result = acpi_power_transition(device, target_state); 241 } else { 242 int cur_state = device->power.state; 243 244 if (device->power.flags.power_resources) { 245 result = acpi_power_transition(device, ACPI_STATE_D0); 246 if (result) 247 goto end; 248 } 249 250 if (cur_state == ACPI_STATE_D0) { 251 int psc; 252 253 /* Nothing to do here if _PSC is not present. */ 254 if (!device->power.flags.explicit_get) 255 goto no_change; 256 257 /* 258 * The power state of the device was set to D0 last 259 * time, but that might have happened before a 260 * system-wide transition involving the platform 261 * firmware, so it may be necessary to evaluate _PS0 262 * for the device here. However, use extra care here 263 * and evaluate _PSC to check the device's current power 264 * state, and only invoke _PS0 if the evaluation of _PSC 265 * is successful and it returns a power state different 266 * from D0. 267 */ 268 result = acpi_dev_pm_explicit_get(device, &psc); 269 if (result || psc == ACPI_STATE_D0) 270 goto no_change; 271 } 272 273 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 274 } 275 276 end: 277 if (result) { 278 acpi_handle_debug(device->handle, 279 "Failed to change power state to %s\n", 280 acpi_power_state_string(target_state)); 281 } else { 282 device->power.state = target_state; 283 acpi_handle_debug(device->handle, "Power state changed to %s\n", 284 acpi_power_state_string(target_state)); 285 } 286 287 return result; 288 289 no_change: 290 acpi_handle_debug(device->handle, "Already in %s\n", 291 acpi_power_state_string(state)); 292 return 0; 293 } 294 EXPORT_SYMBOL(acpi_device_set_power); 295 296 int acpi_bus_set_power(acpi_handle handle, int state) 297 { 298 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 299 300 if (device) 301 return acpi_device_set_power(device, state); 302 303 return -ENODEV; 304 } 305 EXPORT_SYMBOL(acpi_bus_set_power); 306 307 int acpi_bus_init_power(struct acpi_device *device) 308 { 309 int state; 310 int result; 311 312 if (!device) 313 return -EINVAL; 314 315 device->power.state = ACPI_STATE_UNKNOWN; 316 if (!acpi_device_is_present(device)) { 317 device->flags.initialized = false; 318 return -ENXIO; 319 } 320 321 result = acpi_device_get_power(device, &state); 322 if (result) 323 return result; 324 325 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) { 326 /* Reference count the power resources. */ 327 result = acpi_power_on_resources(device, state); 328 if (result) 329 return result; 330 331 if (state == ACPI_STATE_D0) { 332 /* 333 * If _PSC is not present and the state inferred from 334 * power resources appears to be D0, it still may be 335 * necessary to execute _PS0 at this point, because 336 * another device using the same power resources may 337 * have been put into D0 previously and that's why we 338 * see D0 here. 339 */ 340 result = acpi_dev_pm_explicit_set(device, state); 341 if (result) 342 return result; 343 } 344 } else if (state == ACPI_STATE_UNKNOWN) { 345 /* 346 * No power resources and missing _PSC? Cross fingers and make 347 * it D0 in hope that this is what the BIOS put the device into. 348 * [We tried to force D0 here by executing _PS0, but that broke 349 * Toshiba P870-303 in a nasty way.] 350 */ 351 state = ACPI_STATE_D0; 352 } 353 device->power.state = state; 354 return 0; 355 } 356 357 /** 358 * acpi_device_fix_up_power - Force device with missing _PSC into D0. 359 * @device: Device object whose power state is to be fixed up. 360 * 361 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined, 362 * are assumed to be put into D0 by the BIOS. However, in some cases that may 363 * not be the case and this function should be used then. 364 */ 365 int acpi_device_fix_up_power(struct acpi_device *device) 366 { 367 int ret = 0; 368 369 if (!device->power.flags.power_resources 370 && !device->power.flags.explicit_get 371 && device->power.state == ACPI_STATE_D0) 372 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0); 373 374 return ret; 375 } 376 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power); 377 378 static int fix_up_power_if_applicable(struct acpi_device *adev, void *not_used) 379 { 380 if (adev->status.present && adev->status.enabled) 381 acpi_device_fix_up_power(adev); 382 383 return 0; 384 } 385 386 /** 387 * acpi_device_fix_up_power_extended - Force device and its children into D0. 388 * @adev: Parent device object whose power state is to be fixed up. 389 * 390 * Call acpi_device_fix_up_power() for @adev and its children so long as they 391 * are reported as present and enabled. 392 */ 393 void acpi_device_fix_up_power_extended(struct acpi_device *adev) 394 { 395 acpi_device_fix_up_power(adev); 396 acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL); 397 } 398 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_extended); 399 400 int acpi_device_update_power(struct acpi_device *device, int *state_p) 401 { 402 int state; 403 int result; 404 405 if (device->power.state == ACPI_STATE_UNKNOWN) { 406 result = acpi_bus_init_power(device); 407 if (!result && state_p) 408 *state_p = device->power.state; 409 410 return result; 411 } 412 413 result = acpi_device_get_power(device, &state); 414 if (result) 415 return result; 416 417 if (state == ACPI_STATE_UNKNOWN) { 418 state = ACPI_STATE_D0; 419 result = acpi_device_set_power(device, state); 420 if (result) 421 return result; 422 } else { 423 if (device->power.flags.power_resources) { 424 /* 425 * We don't need to really switch the state, bu we need 426 * to update the power resources' reference counters. 427 */ 428 result = acpi_power_transition(device, state); 429 if (result) 430 return result; 431 } 432 device->power.state = state; 433 } 434 if (state_p) 435 *state_p = state; 436 437 return 0; 438 } 439 EXPORT_SYMBOL_GPL(acpi_device_update_power); 440 441 int acpi_bus_update_power(acpi_handle handle, int *state_p) 442 { 443 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 444 445 if (device) 446 return acpi_device_update_power(device, state_p); 447 448 return -ENODEV; 449 } 450 EXPORT_SYMBOL_GPL(acpi_bus_update_power); 451 452 bool acpi_bus_power_manageable(acpi_handle handle) 453 { 454 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 455 456 return device && device->flags.power_manageable; 457 } 458 EXPORT_SYMBOL(acpi_bus_power_manageable); 459 460 static int acpi_power_up_if_adr_present(struct acpi_device *adev, void *not_used) 461 { 462 if (!(adev->flags.power_manageable && adev->pnp.type.bus_address)) 463 return 0; 464 465 acpi_handle_debug(adev->handle, "Power state: %s\n", 466 acpi_power_state_string(adev->power.state)); 467 468 if (adev->power.state == ACPI_STATE_D3_COLD) 469 return acpi_device_set_power(adev, ACPI_STATE_D0); 470 471 return 0; 472 } 473 474 /** 475 * acpi_dev_power_up_children_with_adr - Power up childres with valid _ADR 476 * @adev: Parent ACPI device object. 477 * 478 * Change the power states of the direct children of @adev that are in D3cold 479 * and hold valid _ADR objects to D0 in order to allow bus (e.g. PCI) 480 * enumeration code to access them. 481 */ 482 void acpi_dev_power_up_children_with_adr(struct acpi_device *adev) 483 { 484 acpi_dev_for_each_child(adev, acpi_power_up_if_adr_present, NULL); 485 } 486 487 #ifdef CONFIG_PM 488 static DEFINE_MUTEX(acpi_pm_notifier_lock); 489 static DEFINE_MUTEX(acpi_pm_notifier_install_lock); 490 491 void acpi_pm_wakeup_event(struct device *dev) 492 { 493 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup()); 494 } 495 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event); 496 497 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used) 498 { 499 struct acpi_device *adev; 500 501 if (val != ACPI_NOTIFY_DEVICE_WAKE) 502 return; 503 504 acpi_handle_debug(handle, "Wake notify\n"); 505 506 adev = acpi_get_acpi_dev(handle); 507 if (!adev) 508 return; 509 510 mutex_lock(&acpi_pm_notifier_lock); 511 512 if (adev->wakeup.flags.notifier_present) { 513 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup()); 514 if (adev->wakeup.context.func) { 515 acpi_handle_debug(handle, "Running %pS for %s\n", 516 adev->wakeup.context.func, 517 dev_name(adev->wakeup.context.dev)); 518 adev->wakeup.context.func(&adev->wakeup.context); 519 } 520 } 521 522 mutex_unlock(&acpi_pm_notifier_lock); 523 524 acpi_put_acpi_dev(adev); 525 } 526 527 /** 528 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device. 529 * @adev: ACPI device to add the notify handler for. 530 * @dev: Device to generate a wakeup event for while handling the notification. 531 * @func: Work function to execute when handling the notification. 532 * 533 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of 534 * PM wakeup events. For example, wakeup events may be generated for bridges 535 * if one of the devices below the bridge is signaling wakeup, even if the 536 * bridge itself doesn't have a wakeup GPE associated with it. 537 */ 538 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, 539 void (*func)(struct acpi_device_wakeup_context *context)) 540 { 541 acpi_status status = AE_ALREADY_EXISTS; 542 543 if (!dev && !func) 544 return AE_BAD_PARAMETER; 545 546 mutex_lock(&acpi_pm_notifier_install_lock); 547 548 if (adev->wakeup.flags.notifier_present) 549 goto out; 550 551 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY, 552 acpi_pm_notify_handler, NULL); 553 if (ACPI_FAILURE(status)) 554 goto out; 555 556 mutex_lock(&acpi_pm_notifier_lock); 557 adev->wakeup.ws = wakeup_source_register(&adev->dev, 558 dev_name(&adev->dev)); 559 adev->wakeup.context.dev = dev; 560 adev->wakeup.context.func = func; 561 adev->wakeup.flags.notifier_present = true; 562 mutex_unlock(&acpi_pm_notifier_lock); 563 564 out: 565 mutex_unlock(&acpi_pm_notifier_install_lock); 566 return status; 567 } 568 569 /** 570 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device. 571 * @adev: ACPI device to remove the notifier from. 572 */ 573 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) 574 { 575 acpi_status status = AE_BAD_PARAMETER; 576 577 mutex_lock(&acpi_pm_notifier_install_lock); 578 579 if (!adev->wakeup.flags.notifier_present) 580 goto out; 581 582 status = acpi_remove_notify_handler(adev->handle, 583 ACPI_SYSTEM_NOTIFY, 584 acpi_pm_notify_handler); 585 if (ACPI_FAILURE(status)) 586 goto out; 587 588 mutex_lock(&acpi_pm_notifier_lock); 589 adev->wakeup.context.func = NULL; 590 adev->wakeup.context.dev = NULL; 591 wakeup_source_unregister(adev->wakeup.ws); 592 adev->wakeup.flags.notifier_present = false; 593 mutex_unlock(&acpi_pm_notifier_lock); 594 595 out: 596 mutex_unlock(&acpi_pm_notifier_install_lock); 597 return status; 598 } 599 600 bool acpi_bus_can_wakeup(acpi_handle handle) 601 { 602 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 603 604 return device && device->wakeup.flags.valid; 605 } 606 EXPORT_SYMBOL(acpi_bus_can_wakeup); 607 608 bool acpi_pm_device_can_wakeup(struct device *dev) 609 { 610 struct acpi_device *adev = ACPI_COMPANION(dev); 611 612 return adev ? acpi_device_can_wakeup(adev) : false; 613 } 614 615 /** 616 * acpi_dev_pm_get_state - Get preferred power state of ACPI device. 617 * @dev: Device whose preferred target power state to return. 618 * @adev: ACPI device node corresponding to @dev. 619 * @target_state: System state to match the resultant device state. 620 * @d_min_p: Location to store the highest power state available to the device. 621 * @d_max_p: Location to store the lowest power state available to the device. 622 * 623 * Find the lowest power (highest number) and highest power (lowest number) ACPI 624 * device power states that the device can be in while the system is in the 625 * state represented by @target_state. Store the integer numbers representing 626 * those stats in the memory locations pointed to by @d_max_p and @d_min_p, 627 * respectively. 628 * 629 * Callers must ensure that @dev and @adev are valid pointers and that @adev 630 * actually corresponds to @dev before using this function. 631 * 632 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or 633 * returns a value that doesn't make sense. The memory locations pointed to by 634 * @d_max_p and @d_min_p are only modified on success. 635 */ 636 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev, 637 u32 target_state, int *d_min_p, int *d_max_p) 638 { 639 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' }; 640 acpi_handle handle = adev->handle; 641 unsigned long long ret; 642 int d_min, d_max; 643 bool wakeup = false; 644 bool has_sxd = false; 645 acpi_status status; 646 647 /* 648 * If the system state is S0, the lowest power state the device can be 649 * in is D3cold, unless the device has _S0W and is supposed to signal 650 * wakeup, in which case the return value of _S0W has to be used as the 651 * lowest power state available to the device. 652 */ 653 d_min = ACPI_STATE_D0; 654 d_max = ACPI_STATE_D3_COLD; 655 656 /* 657 * If present, _SxD methods return the minimum D-state (highest power 658 * state) we can use for the corresponding S-states. Otherwise, the 659 * minimum D-state is D0 (ACPI 3.x). 660 */ 661 if (target_state > ACPI_STATE_S0) { 662 /* 663 * We rely on acpi_evaluate_integer() not clobbering the integer 664 * provided if AE_NOT_FOUND is returned. 665 */ 666 ret = d_min; 667 status = acpi_evaluate_integer(handle, method, NULL, &ret); 668 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND) 669 || ret > ACPI_STATE_D3_COLD) 670 return -ENODATA; 671 672 /* 673 * We need to handle legacy systems where D3hot and D3cold are 674 * the same and 3 is returned in both cases, so fall back to 675 * D3cold if D3hot is not a valid state. 676 */ 677 if (!adev->power.states[ret].flags.valid) { 678 if (ret == ACPI_STATE_D3_HOT) 679 ret = ACPI_STATE_D3_COLD; 680 else 681 return -ENODATA; 682 } 683 684 if (status == AE_OK) 685 has_sxd = true; 686 687 d_min = ret; 688 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid 689 && adev->wakeup.sleep_state >= target_state; 690 } else { 691 wakeup = adev->wakeup.flags.valid; 692 } 693 694 /* 695 * If _PRW says we can wake up the system from the target sleep state, 696 * the D-state returned by _SxD is sufficient for that (we assume a 697 * wakeup-aware driver if wake is set). Still, if _SxW exists 698 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 699 * can wake the system. _S0W may be valid, too. 700 */ 701 if (wakeup) { 702 method[3] = 'W'; 703 status = acpi_evaluate_integer(handle, method, NULL, &ret); 704 if (status == AE_NOT_FOUND) { 705 /* No _SxW. In this case, the ACPI spec says that we 706 * must not go into any power state deeper than the 707 * value returned from _SxD. 708 */ 709 if (has_sxd && target_state > ACPI_STATE_S0) 710 d_max = d_min; 711 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) { 712 /* Fall back to D3cold if ret is not a valid state. */ 713 if (!adev->power.states[ret].flags.valid) 714 ret = ACPI_STATE_D3_COLD; 715 716 d_max = ret > d_min ? ret : d_min; 717 } else { 718 return -ENODATA; 719 } 720 } 721 722 if (d_min_p) 723 *d_min_p = d_min; 724 725 if (d_max_p) 726 *d_max_p = d_max; 727 728 return 0; 729 } 730 731 /** 732 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device. 733 * @dev: Device whose preferred target power state to return. 734 * @d_min_p: Location to store the upper limit of the allowed states range. 735 * @d_max_in: Deepest low-power state to take into consideration. 736 * Return value: Preferred power state of the device on success, -ENODEV 737 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is 738 * incorrect, or -ENODATA on ACPI method failure. 739 * 740 * The caller must ensure that @dev is valid before using this function. 741 */ 742 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in) 743 { 744 struct acpi_device *adev; 745 int ret, d_min, d_max; 746 747 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD) 748 return -EINVAL; 749 750 if (d_max_in > ACPI_STATE_D2) { 751 enum pm_qos_flags_status stat; 752 753 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF); 754 if (stat == PM_QOS_FLAGS_ALL) 755 d_max_in = ACPI_STATE_D2; 756 } 757 758 adev = ACPI_COMPANION(dev); 759 if (!adev) { 760 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 761 return -ENODEV; 762 } 763 764 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(), 765 &d_min, &d_max); 766 if (ret) 767 return ret; 768 769 if (d_max_in < d_min) 770 return -EINVAL; 771 772 if (d_max > d_max_in) { 773 for (d_max = d_max_in; d_max > d_min; d_max--) { 774 if (adev->power.states[d_max].flags.valid) 775 break; 776 } 777 } 778 779 if (d_min_p) 780 *d_min_p = d_min; 781 782 return d_max; 783 } 784 EXPORT_SYMBOL(acpi_pm_device_sleep_state); 785 786 /** 787 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function. 788 * @context: Device wakeup context. 789 */ 790 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context) 791 { 792 struct device *dev = context->dev; 793 794 if (dev) { 795 pm_wakeup_event(dev, 0); 796 pm_request_resume(dev); 797 } 798 } 799 800 static DEFINE_MUTEX(acpi_wakeup_lock); 801 802 static int __acpi_device_wakeup_enable(struct acpi_device *adev, 803 u32 target_state) 804 { 805 struct acpi_device_wakeup *wakeup = &adev->wakeup; 806 acpi_status status; 807 int error = 0; 808 809 mutex_lock(&acpi_wakeup_lock); 810 811 /* 812 * If the device wakeup power is already enabled, disable it and enable 813 * it again in case it depends on the configuration of subordinate 814 * devices and the conditions have changed since it was enabled last 815 * time. 816 */ 817 if (wakeup->enable_count > 0) 818 acpi_disable_wakeup_device_power(adev); 819 820 error = acpi_enable_wakeup_device_power(adev, target_state); 821 if (error) { 822 if (wakeup->enable_count > 0) { 823 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 824 wakeup->enable_count = 0; 825 } 826 goto out; 827 } 828 829 if (wakeup->enable_count > 0) 830 goto inc; 831 832 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number); 833 if (ACPI_FAILURE(status)) { 834 acpi_disable_wakeup_device_power(adev); 835 error = -EIO; 836 goto out; 837 } 838 839 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n", 840 (unsigned int)wakeup->gpe_number); 841 842 inc: 843 if (wakeup->enable_count < INT_MAX) 844 wakeup->enable_count++; 845 else 846 acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n"); 847 848 out: 849 mutex_unlock(&acpi_wakeup_lock); 850 return error; 851 } 852 853 /** 854 * acpi_device_wakeup_enable - Enable wakeup functionality for device. 855 * @adev: ACPI device to enable wakeup functionality for. 856 * @target_state: State the system is transitioning into. 857 * 858 * Enable the GPE associated with @adev so that it can generate wakeup signals 859 * for the device in response to external (remote) events and enable wakeup 860 * power for it. 861 * 862 * Callers must ensure that @adev is a valid ACPI device node before executing 863 * this function. 864 */ 865 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state) 866 { 867 return __acpi_device_wakeup_enable(adev, target_state); 868 } 869 870 /** 871 * acpi_device_wakeup_disable - Disable wakeup functionality for device. 872 * @adev: ACPI device to disable wakeup functionality for. 873 * 874 * Disable the GPE associated with @adev and disable wakeup power for it. 875 * 876 * Callers must ensure that @adev is a valid ACPI device node before executing 877 * this function. 878 */ 879 static void acpi_device_wakeup_disable(struct acpi_device *adev) 880 { 881 struct acpi_device_wakeup *wakeup = &adev->wakeup; 882 883 mutex_lock(&acpi_wakeup_lock); 884 885 if (!wakeup->enable_count) 886 goto out; 887 888 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number); 889 acpi_disable_wakeup_device_power(adev); 890 891 wakeup->enable_count--; 892 893 out: 894 mutex_unlock(&acpi_wakeup_lock); 895 } 896 897 /** 898 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device. 899 * @dev: Device to enable/disable to generate wakeup events. 900 * @enable: Whether to enable or disable the wakeup functionality. 901 */ 902 int acpi_pm_set_device_wakeup(struct device *dev, bool enable) 903 { 904 struct acpi_device *adev; 905 int error; 906 907 adev = ACPI_COMPANION(dev); 908 if (!adev) { 909 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__); 910 return -ENODEV; 911 } 912 913 if (!acpi_device_can_wakeup(adev)) 914 return -EINVAL; 915 916 if (!enable) { 917 acpi_device_wakeup_disable(adev); 918 dev_dbg(dev, "Wakeup disabled by ACPI\n"); 919 return 0; 920 } 921 922 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state()); 923 if (!error) 924 dev_dbg(dev, "Wakeup enabled by ACPI\n"); 925 926 return error; 927 } 928 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup); 929 930 /** 931 * acpi_dev_pm_low_power - Put ACPI device into a low-power state. 932 * @dev: Device to put into a low-power state. 933 * @adev: ACPI device node corresponding to @dev. 934 * @system_state: System state to choose the device state for. 935 */ 936 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev, 937 u32 system_state) 938 { 939 int ret, state; 940 941 if (!acpi_device_power_manageable(adev)) 942 return 0; 943 944 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state); 945 return ret ? ret : acpi_device_set_power(adev, state); 946 } 947 948 /** 949 * acpi_dev_pm_full_power - Put ACPI device into the full-power state. 950 * @adev: ACPI device node to put into the full-power state. 951 */ 952 static int acpi_dev_pm_full_power(struct acpi_device *adev) 953 { 954 return acpi_device_power_manageable(adev) ? 955 acpi_device_set_power(adev, ACPI_STATE_D0) : 0; 956 } 957 958 /** 959 * acpi_dev_suspend - Put device into a low-power state using ACPI. 960 * @dev: Device to put into a low-power state. 961 * @wakeup: Whether or not to enable wakeup for the device. 962 * 963 * Put the given device into a low-power state using the standard ACPI 964 * mechanism. Set up remote wakeup if desired, choose the state to put the 965 * device into (this checks if remote wakeup is expected to work too), and set 966 * the power state of the device. 967 */ 968 int acpi_dev_suspend(struct device *dev, bool wakeup) 969 { 970 struct acpi_device *adev = ACPI_COMPANION(dev); 971 u32 target_state = acpi_target_system_state(); 972 int error; 973 974 if (!adev) 975 return 0; 976 977 if (wakeup && acpi_device_can_wakeup(adev)) { 978 error = acpi_device_wakeup_enable(adev, target_state); 979 if (error) 980 return -EAGAIN; 981 } else { 982 wakeup = false; 983 } 984 985 error = acpi_dev_pm_low_power(dev, adev, target_state); 986 if (error && wakeup) 987 acpi_device_wakeup_disable(adev); 988 989 return error; 990 } 991 EXPORT_SYMBOL_GPL(acpi_dev_suspend); 992 993 /** 994 * acpi_dev_resume - Put device into the full-power state using ACPI. 995 * @dev: Device to put into the full-power state. 996 * 997 * Put the given device into the full-power state using the standard ACPI 998 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup. 999 */ 1000 int acpi_dev_resume(struct device *dev) 1001 { 1002 struct acpi_device *adev = ACPI_COMPANION(dev); 1003 int error; 1004 1005 if (!adev) 1006 return 0; 1007 1008 error = acpi_dev_pm_full_power(adev); 1009 acpi_device_wakeup_disable(adev); 1010 return error; 1011 } 1012 EXPORT_SYMBOL_GPL(acpi_dev_resume); 1013 1014 /** 1015 * acpi_subsys_runtime_suspend - Suspend device using ACPI. 1016 * @dev: Device to suspend. 1017 * 1018 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put 1019 * it into a runtime low-power state. 1020 */ 1021 int acpi_subsys_runtime_suspend(struct device *dev) 1022 { 1023 int ret = pm_generic_runtime_suspend(dev); 1024 1025 return ret ? ret : acpi_dev_suspend(dev, true); 1026 } 1027 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend); 1028 1029 /** 1030 * acpi_subsys_runtime_resume - Resume device using ACPI. 1031 * @dev: Device to Resume. 1032 * 1033 * Use ACPI to put the given device into the full-power state and carry out the 1034 * generic runtime resume procedure for it. 1035 */ 1036 int acpi_subsys_runtime_resume(struct device *dev) 1037 { 1038 int ret = acpi_dev_resume(dev); 1039 1040 return ret ? ret : pm_generic_runtime_resume(dev); 1041 } 1042 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume); 1043 1044 #ifdef CONFIG_PM_SLEEP 1045 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev) 1046 { 1047 u32 sys_target = acpi_target_system_state(); 1048 int ret, state; 1049 1050 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid && 1051 device_may_wakeup(dev) != !!adev->wakeup.prepare_count)) 1052 return true; 1053 1054 if (sys_target == ACPI_STATE_S0) 1055 return false; 1056 1057 if (adev->power.flags.dsw_present) 1058 return true; 1059 1060 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state); 1061 if (ret) 1062 return true; 1063 1064 return state != adev->power.state; 1065 } 1066 1067 /** 1068 * acpi_subsys_prepare - Prepare device for system transition to a sleep state. 1069 * @dev: Device to prepare. 1070 */ 1071 int acpi_subsys_prepare(struct device *dev) 1072 { 1073 struct acpi_device *adev = ACPI_COMPANION(dev); 1074 1075 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) { 1076 int ret = dev->driver->pm->prepare(dev); 1077 1078 if (ret < 0) 1079 return ret; 1080 1081 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 1082 return 0; 1083 } 1084 1085 return !acpi_dev_needs_resume(dev, adev); 1086 } 1087 EXPORT_SYMBOL_GPL(acpi_subsys_prepare); 1088 1089 /** 1090 * acpi_subsys_complete - Finalize device's resume during system resume. 1091 * @dev: Device to handle. 1092 */ 1093 void acpi_subsys_complete(struct device *dev) 1094 { 1095 pm_generic_complete(dev); 1096 /* 1097 * If the device had been runtime-suspended before the system went into 1098 * the sleep state it is going out of and it has never been resumed till 1099 * now, resume it in case the firmware powered it up. 1100 */ 1101 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) 1102 pm_request_resume(dev); 1103 } 1104 EXPORT_SYMBOL_GPL(acpi_subsys_complete); 1105 1106 /** 1107 * acpi_subsys_suspend - Run the device driver's suspend callback. 1108 * @dev: Device to handle. 1109 * 1110 * Follow PCI and resume devices from runtime suspend before running their 1111 * system suspend callbacks, unless the driver can cope with runtime-suspended 1112 * devices during system suspend and there are no ACPI-specific reasons for 1113 * resuming them. 1114 */ 1115 int acpi_subsys_suspend(struct device *dev) 1116 { 1117 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1118 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev))) 1119 pm_runtime_resume(dev); 1120 1121 return pm_generic_suspend(dev); 1122 } 1123 EXPORT_SYMBOL_GPL(acpi_subsys_suspend); 1124 1125 /** 1126 * acpi_subsys_suspend_late - Suspend device using ACPI. 1127 * @dev: Device to suspend. 1128 * 1129 * Carry out the generic late suspend procedure for @dev and use ACPI to put 1130 * it into a low-power state during system transition into a sleep state. 1131 */ 1132 int acpi_subsys_suspend_late(struct device *dev) 1133 { 1134 int ret; 1135 1136 if (dev_pm_skip_suspend(dev)) 1137 return 0; 1138 1139 ret = pm_generic_suspend_late(dev); 1140 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev)); 1141 } 1142 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late); 1143 1144 /** 1145 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback. 1146 * @dev: Device to suspend. 1147 */ 1148 int acpi_subsys_suspend_noirq(struct device *dev) 1149 { 1150 int ret; 1151 1152 if (dev_pm_skip_suspend(dev)) 1153 return 0; 1154 1155 ret = pm_generic_suspend_noirq(dev); 1156 if (ret) 1157 return ret; 1158 1159 /* 1160 * If the target system sleep state is suspend-to-idle, it is sufficient 1161 * to check whether or not the device's wakeup settings are good for 1162 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause 1163 * acpi_subsys_complete() to take care of fixing up the device's state 1164 * anyway, if need be. 1165 */ 1166 if (device_can_wakeup(dev) && !device_may_wakeup(dev)) 1167 dev->power.may_skip_resume = false; 1168 1169 return 0; 1170 } 1171 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq); 1172 1173 /** 1174 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback. 1175 * @dev: Device to handle. 1176 */ 1177 static int acpi_subsys_resume_noirq(struct device *dev) 1178 { 1179 if (dev_pm_skip_resume(dev)) 1180 return 0; 1181 1182 return pm_generic_resume_noirq(dev); 1183 } 1184 1185 /** 1186 * acpi_subsys_resume_early - Resume device using ACPI. 1187 * @dev: Device to Resume. 1188 * 1189 * Use ACPI to put the given device into the full-power state and carry out the 1190 * generic early resume procedure for it during system transition into the 1191 * working state, but only do that if device either defines early resume 1192 * handler, or does not define power operations at all. Otherwise powering up 1193 * of the device is postponed to the normal resume phase. 1194 */ 1195 static int acpi_subsys_resume_early(struct device *dev) 1196 { 1197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1198 int ret; 1199 1200 if (dev_pm_skip_resume(dev)) 1201 return 0; 1202 1203 if (pm && !pm->resume_early) { 1204 dev_dbg(dev, "postponing D0 transition to normal resume stage\n"); 1205 return 0; 1206 } 1207 1208 ret = acpi_dev_resume(dev); 1209 return ret ? ret : pm_generic_resume_early(dev); 1210 } 1211 1212 /** 1213 * acpi_subsys_resume - Resume device using ACPI. 1214 * @dev: Device to Resume. 1215 * 1216 * Use ACPI to put the given device into the full-power state if it has not been 1217 * powered up during early resume phase, and carry out the generic resume 1218 * procedure for it during system transition into the working state. 1219 */ 1220 static int acpi_subsys_resume(struct device *dev) 1221 { 1222 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1223 int ret = 0; 1224 1225 if (!dev_pm_skip_resume(dev) && pm && !pm->resume_early) { 1226 dev_dbg(dev, "executing postponed D0 transition\n"); 1227 ret = acpi_dev_resume(dev); 1228 } 1229 1230 return ret ? ret : pm_generic_resume(dev); 1231 } 1232 1233 /** 1234 * acpi_subsys_freeze - Run the device driver's freeze callback. 1235 * @dev: Device to handle. 1236 */ 1237 int acpi_subsys_freeze(struct device *dev) 1238 { 1239 /* 1240 * Resume all runtime-suspended devices before creating a snapshot 1241 * image of system memory, because the restore kernel generally cannot 1242 * be expected to always handle them consistently and they need to be 1243 * put into the runtime-active metastate during system resume anyway, 1244 * so it is better to ensure that the state saved in the image will be 1245 * always consistent with that. 1246 */ 1247 pm_runtime_resume(dev); 1248 1249 return pm_generic_freeze(dev); 1250 } 1251 EXPORT_SYMBOL_GPL(acpi_subsys_freeze); 1252 1253 /** 1254 * acpi_subsys_restore_early - Restore device using ACPI. 1255 * @dev: Device to restore. 1256 */ 1257 int acpi_subsys_restore_early(struct device *dev) 1258 { 1259 int ret = acpi_dev_resume(dev); 1260 1261 return ret ? ret : pm_generic_restore_early(dev); 1262 } 1263 EXPORT_SYMBOL_GPL(acpi_subsys_restore_early); 1264 1265 /** 1266 * acpi_subsys_poweroff - Run the device driver's poweroff callback. 1267 * @dev: Device to handle. 1268 * 1269 * Follow PCI and resume devices from runtime suspend before running their 1270 * system poweroff callbacks, unless the driver can cope with runtime-suspended 1271 * devices during system suspend and there are no ACPI-specific reasons for 1272 * resuming them. 1273 */ 1274 int acpi_subsys_poweroff(struct device *dev) 1275 { 1276 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1277 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev))) 1278 pm_runtime_resume(dev); 1279 1280 return pm_generic_poweroff(dev); 1281 } 1282 EXPORT_SYMBOL_GPL(acpi_subsys_poweroff); 1283 1284 /** 1285 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback. 1286 * @dev: Device to handle. 1287 * 1288 * Carry out the generic late poweroff procedure for @dev and use ACPI to put 1289 * it into a low-power state during system transition into a sleep state. 1290 */ 1291 static int acpi_subsys_poweroff_late(struct device *dev) 1292 { 1293 int ret; 1294 1295 if (dev_pm_skip_suspend(dev)) 1296 return 0; 1297 1298 ret = pm_generic_poweroff_late(dev); 1299 if (ret) 1300 return ret; 1301 1302 return acpi_dev_suspend(dev, device_may_wakeup(dev)); 1303 } 1304 1305 /** 1306 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback. 1307 * @dev: Device to suspend. 1308 */ 1309 static int acpi_subsys_poweroff_noirq(struct device *dev) 1310 { 1311 if (dev_pm_skip_suspend(dev)) 1312 return 0; 1313 1314 return pm_generic_poweroff_noirq(dev); 1315 } 1316 #endif /* CONFIG_PM_SLEEP */ 1317 1318 static struct dev_pm_domain acpi_general_pm_domain = { 1319 .ops = { 1320 .runtime_suspend = acpi_subsys_runtime_suspend, 1321 .runtime_resume = acpi_subsys_runtime_resume, 1322 #ifdef CONFIG_PM_SLEEP 1323 .prepare = acpi_subsys_prepare, 1324 .complete = acpi_subsys_complete, 1325 .suspend = acpi_subsys_suspend, 1326 .resume = acpi_subsys_resume, 1327 .suspend_late = acpi_subsys_suspend_late, 1328 .suspend_noirq = acpi_subsys_suspend_noirq, 1329 .resume_noirq = acpi_subsys_resume_noirq, 1330 .resume_early = acpi_subsys_resume_early, 1331 .freeze = acpi_subsys_freeze, 1332 .poweroff = acpi_subsys_poweroff, 1333 .poweroff_late = acpi_subsys_poweroff_late, 1334 .poweroff_noirq = acpi_subsys_poweroff_noirq, 1335 .restore_early = acpi_subsys_restore_early, 1336 #endif 1337 }, 1338 }; 1339 1340 /** 1341 * acpi_dev_pm_detach - Remove ACPI power management from the device. 1342 * @dev: Device to take care of. 1343 * @power_off: Whether or not to try to remove power from the device. 1344 * 1345 * Remove the device from the general ACPI PM domain and remove its wakeup 1346 * notifier. If @power_off is set, additionally remove power from the device if 1347 * possible. 1348 * 1349 * Callers must ensure proper synchronization of this function with power 1350 * management callbacks. 1351 */ 1352 static void acpi_dev_pm_detach(struct device *dev, bool power_off) 1353 { 1354 struct acpi_device *adev = ACPI_COMPANION(dev); 1355 1356 if (adev && dev->pm_domain == &acpi_general_pm_domain) { 1357 dev_pm_domain_set(dev, NULL); 1358 acpi_remove_pm_notifier(adev); 1359 if (power_off) { 1360 /* 1361 * If the device's PM QoS resume latency limit or flags 1362 * have been exposed to user space, they have to be 1363 * hidden at this point, so that they don't affect the 1364 * choice of the low-power state to put the device into. 1365 */ 1366 dev_pm_qos_hide_latency_limit(dev); 1367 dev_pm_qos_hide_flags(dev); 1368 acpi_device_wakeup_disable(adev); 1369 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0); 1370 } 1371 } 1372 } 1373 1374 /** 1375 * acpi_dev_pm_attach - Prepare device for ACPI power management. 1376 * @dev: Device to prepare. 1377 * @power_on: Whether or not to power on the device. 1378 * 1379 * If @dev has a valid ACPI handle that has a valid struct acpi_device object 1380 * attached to it, install a wakeup notification handler for the device and 1381 * add it to the general ACPI PM domain. If @power_on is set, the device will 1382 * be put into the ACPI D0 state before the function returns. 1383 * 1384 * This assumes that the @dev's bus type uses generic power management callbacks 1385 * (or doesn't use any power management callbacks at all). 1386 * 1387 * Callers must ensure proper synchronization of this function with power 1388 * management callbacks. 1389 */ 1390 int acpi_dev_pm_attach(struct device *dev, bool power_on) 1391 { 1392 /* 1393 * Skip devices whose ACPI companions match the device IDs below, 1394 * because they require special power management handling incompatible 1395 * with the generic ACPI PM domain. 1396 */ 1397 static const struct acpi_device_id special_pm_ids[] = { 1398 ACPI_FAN_DEVICE_IDS, 1399 {} 1400 }; 1401 struct acpi_device *adev = ACPI_COMPANION(dev); 1402 1403 if (!adev || !acpi_match_device_ids(adev, special_pm_ids)) 1404 return 0; 1405 1406 /* 1407 * Only attach the power domain to the first device if the 1408 * companion is shared by multiple. This is to prevent doing power 1409 * management twice. 1410 */ 1411 if (!acpi_device_is_first_physical_node(adev, dev)) 1412 return 0; 1413 1414 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func); 1415 dev_pm_domain_set(dev, &acpi_general_pm_domain); 1416 if (power_on) { 1417 acpi_dev_pm_full_power(adev); 1418 acpi_device_wakeup_disable(adev); 1419 } 1420 1421 dev->pm_domain->detach = acpi_dev_pm_detach; 1422 return 1; 1423 } 1424 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach); 1425 1426 /** 1427 * acpi_storage_d3 - Check if D3 should be used in the suspend path 1428 * @dev: Device to check 1429 * 1430 * Return %true if the platform firmware wants @dev to be programmed 1431 * into D3hot or D3cold (if supported) in the suspend path, or %false 1432 * when there is no specific preference. On some platforms, if this 1433 * hint is ignored, @dev may remain unresponsive after suspending the 1434 * platform as a whole. 1435 * 1436 * Although the property has storage in the name it actually is 1437 * applied to the PCIe slot and plugging in a non-storage device the 1438 * same platform restrictions will likely apply. 1439 */ 1440 bool acpi_storage_d3(struct device *dev) 1441 { 1442 struct acpi_device *adev = ACPI_COMPANION(dev); 1443 u8 val; 1444 1445 if (force_storage_d3()) 1446 return true; 1447 1448 if (!adev) 1449 return false; 1450 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 1451 &val)) 1452 return false; 1453 return val == 1; 1454 } 1455 EXPORT_SYMBOL_GPL(acpi_storage_d3); 1456 1457 /** 1458 * acpi_dev_state_d0 - Tell if the device is in D0 power state 1459 * @dev: Physical device the ACPI power state of which to check 1460 * 1461 * On a system without ACPI, return true. On a system with ACPI, return true if 1462 * the current ACPI power state of the device is D0, or false otherwise. 1463 * 1464 * Note that the power state of a device is not well-defined after it has been 1465 * passed to acpi_device_set_power() and before that function returns, so it is 1466 * not valid to ask for the ACPI power state of the device in that time frame. 1467 * 1468 * This function is intended to be used in a driver's probe or remove 1469 * function. See Documentation/firmware-guide/acpi/non-d0-probe.rst for 1470 * more information. 1471 */ 1472 bool acpi_dev_state_d0(struct device *dev) 1473 { 1474 struct acpi_device *adev = ACPI_COMPANION(dev); 1475 1476 if (!adev) 1477 return true; 1478 1479 return adev->power.state == ACPI_STATE_D0; 1480 } 1481 EXPORT_SYMBOL_GPL(acpi_dev_state_d0); 1482 1483 #endif /* CONFIG_PM */ 1484