xref: /linux/drivers/acpi/device_pm.c (revision 508ecc78b6c983a7921bee2f4bd22682f9f0396e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/acpi/device_pm.c - ACPI device power management routines.
4  *
5  * Copyright (C) 2012, Intel Corp.
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/acpi.h>
16 #include <linux/export.h>
17 #include <linux/mutex.h>
18 #include <linux/pm_qos.h>
19 #include <linux/pm_domain.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 
23 #include "fan.h"
24 #include "internal.h"
25 
26 /**
27  * acpi_power_state_string - String representation of ACPI device power state.
28  * @state: ACPI device power state to return the string representation of.
29  */
30 const char *acpi_power_state_string(int state)
31 {
32 	switch (state) {
33 	case ACPI_STATE_D0:
34 		return "D0";
35 	case ACPI_STATE_D1:
36 		return "D1";
37 	case ACPI_STATE_D2:
38 		return "D2";
39 	case ACPI_STATE_D3_HOT:
40 		return "D3hot";
41 	case ACPI_STATE_D3_COLD:
42 		return "D3cold";
43 	default:
44 		return "(unknown)";
45 	}
46 }
47 
48 static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
49 {
50 	unsigned long long psc;
51 	acpi_status status;
52 
53 	status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
54 	if (ACPI_FAILURE(status))
55 		return -ENODEV;
56 
57 	*state = psc;
58 	return 0;
59 }
60 
61 /**
62  * acpi_device_get_power - Get power state of an ACPI device.
63  * @device: Device to get the power state of.
64  * @state: Place to store the power state of the device.
65  *
66  * This function does not update the device's power.state field, but it may
67  * update its parent's power.state field (when the parent's power state is
68  * unknown and the device's power state turns out to be D0).
69  *
70  * Also, it does not update power resource reference counters to ensure that
71  * the power state returned by it will be persistent and it may return a power
72  * state shallower than previously set by acpi_device_set_power() for @device
73  * (if that power state depends on any power resources).
74  */
75 int acpi_device_get_power(struct acpi_device *device, int *state)
76 {
77 	int result = ACPI_STATE_UNKNOWN;
78 	struct acpi_device *parent;
79 	int error;
80 
81 	if (!device || !state)
82 		return -EINVAL;
83 
84 	parent = acpi_dev_parent(device);
85 
86 	if (!device->flags.power_manageable) {
87 		/* TBD: Non-recursive algorithm for walking up hierarchy. */
88 		*state = parent ? parent->power.state : ACPI_STATE_D0;
89 		goto out;
90 	}
91 
92 	/*
93 	 * Get the device's power state from power resources settings and _PSC,
94 	 * if available.
95 	 */
96 	if (device->power.flags.power_resources) {
97 		error = acpi_power_get_inferred_state(device, &result);
98 		if (error)
99 			return error;
100 	}
101 	if (device->power.flags.explicit_get) {
102 		int psc;
103 
104 		error = acpi_dev_pm_explicit_get(device, &psc);
105 		if (error)
106 			return error;
107 
108 		/*
109 		 * The power resources settings may indicate a power state
110 		 * shallower than the actual power state of the device, because
111 		 * the same power resources may be referenced by other devices.
112 		 *
113 		 * For systems predating ACPI 4.0 we assume that D3hot is the
114 		 * deepest state that can be supported.
115 		 */
116 		if (psc > result && psc < ACPI_STATE_D3_COLD)
117 			result = psc;
118 		else if (result == ACPI_STATE_UNKNOWN)
119 			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
120 	}
121 
122 	/*
123 	 * If we were unsure about the device parent's power state up to this
124 	 * point, the fact that the device is in D0 implies that the parent has
125 	 * to be in D0 too, except if ignore_parent is set.
126 	 */
127 	if (!device->power.flags.ignore_parent && parent &&
128 	    parent->power.state == ACPI_STATE_UNKNOWN &&
129 	    result == ACPI_STATE_D0)
130 		parent->power.state = ACPI_STATE_D0;
131 
132 	*state = result;
133 
134  out:
135 	acpi_handle_debug(device->handle, "Power state: %s\n",
136 			  acpi_power_state_string(*state));
137 
138 	return 0;
139 }
140 
141 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
142 {
143 	if (adev->power.states[state].flags.explicit_set) {
144 		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
145 		acpi_status status;
146 
147 		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
148 		if (ACPI_FAILURE(status))
149 			return -ENODEV;
150 	}
151 	return 0;
152 }
153 
154 /**
155  * acpi_device_set_power - Set power state of an ACPI device.
156  * @device: Device to set the power state of.
157  * @state: New power state to set.
158  *
159  * Callers must ensure that the device is power manageable before using this
160  * function.
161  */
162 int acpi_device_set_power(struct acpi_device *device, int state)
163 {
164 	int target_state = state;
165 	int result = 0;
166 
167 	if (!device || !device->flags.power_manageable
168 	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
169 		return -EINVAL;
170 
171 	acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
172 			  acpi_power_state_string(device->power.state),
173 			  acpi_power_state_string(state));
174 
175 	/* Make sure this is a valid target state */
176 
177 	/* There is a special case for D0 addressed below. */
178 	if (state > ACPI_STATE_D0 && state == device->power.state)
179 		goto no_change;
180 
181 	if (state == ACPI_STATE_D3_COLD) {
182 		/*
183 		 * For transitions to D3cold we need to execute _PS3 and then
184 		 * possibly drop references to the power resources in use.
185 		 */
186 		state = ACPI_STATE_D3_HOT;
187 		/* If D3cold is not supported, use D3hot as the target state. */
188 		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
189 			target_state = state;
190 	} else if (!device->power.states[state].flags.valid) {
191 		acpi_handle_debug(device->handle, "Power state %s not supported\n",
192 				  acpi_power_state_string(state));
193 		return -ENODEV;
194 	}
195 
196 	if (!device->power.flags.ignore_parent) {
197 		struct acpi_device *parent;
198 
199 		parent = acpi_dev_parent(device);
200 		if (parent && state < parent->power.state) {
201 			acpi_handle_debug(device->handle,
202 					  "Cannot transition to %s for parent in %s\n",
203 					  acpi_power_state_string(state),
204 					  acpi_power_state_string(parent->power.state));
205 			return -ENODEV;
206 		}
207 	}
208 
209 	/*
210 	 * Transition Power
211 	 * ----------------
212 	 * In accordance with ACPI 6, _PSx is executed before manipulating power
213 	 * resources, unless the target state is D0, in which case _PS0 is
214 	 * supposed to be executed after turning the power resources on.
215 	 */
216 	if (state > ACPI_STATE_D0) {
217 		/*
218 		 * According to ACPI 6, devices cannot go from lower-power
219 		 * (deeper) states to higher-power (shallower) states.
220 		 */
221 		if (state < device->power.state) {
222 			acpi_handle_debug(device->handle,
223 					  "Cannot transition from %s to %s\n",
224 					  acpi_power_state_string(device->power.state),
225 					  acpi_power_state_string(state));
226 			return -ENODEV;
227 		}
228 
229 		/*
230 		 * If the device goes from D3hot to D3cold, _PS3 has been
231 		 * evaluated for it already, so skip it in that case.
232 		 */
233 		if (device->power.state < ACPI_STATE_D3_HOT) {
234 			result = acpi_dev_pm_explicit_set(device, state);
235 			if (result)
236 				goto end;
237 		}
238 
239 		if (device->power.flags.power_resources)
240 			result = acpi_power_transition(device, target_state);
241 	} else {
242 		int cur_state = device->power.state;
243 
244 		if (device->power.flags.power_resources) {
245 			result = acpi_power_transition(device, ACPI_STATE_D0);
246 			if (result)
247 				goto end;
248 		}
249 
250 		if (cur_state == ACPI_STATE_D0) {
251 			int psc;
252 
253 			/* Nothing to do here if _PSC is not present. */
254 			if (!device->power.flags.explicit_get)
255 				goto no_change;
256 
257 			/*
258 			 * The power state of the device was set to D0 last
259 			 * time, but that might have happened before a
260 			 * system-wide transition involving the platform
261 			 * firmware, so it may be necessary to evaluate _PS0
262 			 * for the device here.  However, use extra care here
263 			 * and evaluate _PSC to check the device's current power
264 			 * state, and only invoke _PS0 if the evaluation of _PSC
265 			 * is successful and it returns a power state different
266 			 * from D0.
267 			 */
268 			result = acpi_dev_pm_explicit_get(device, &psc);
269 			if (result || psc == ACPI_STATE_D0)
270 				goto no_change;
271 		}
272 
273 		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
274 	}
275 
276 end:
277 	if (result) {
278 		acpi_handle_debug(device->handle,
279 				  "Failed to change power state to %s\n",
280 				  acpi_power_state_string(target_state));
281 	} else {
282 		device->power.state = target_state;
283 		acpi_handle_debug(device->handle, "Power state changed to %s\n",
284 				  acpi_power_state_string(target_state));
285 	}
286 
287 	return result;
288 
289 no_change:
290 	acpi_handle_debug(device->handle, "Already in %s\n",
291 			  acpi_power_state_string(state));
292 	return 0;
293 }
294 EXPORT_SYMBOL(acpi_device_set_power);
295 
296 int acpi_bus_set_power(acpi_handle handle, int state)
297 {
298 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
299 
300 	if (device)
301 		return acpi_device_set_power(device, state);
302 
303 	return -ENODEV;
304 }
305 EXPORT_SYMBOL(acpi_bus_set_power);
306 
307 int acpi_bus_init_power(struct acpi_device *device)
308 {
309 	int state;
310 	int result;
311 
312 	if (!device)
313 		return -EINVAL;
314 
315 	device->power.state = ACPI_STATE_UNKNOWN;
316 	if (!acpi_device_is_present(device)) {
317 		device->flags.initialized = false;
318 		return -ENXIO;
319 	}
320 
321 	result = acpi_device_get_power(device, &state);
322 	if (result)
323 		return result;
324 
325 	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
326 		/* Reference count the power resources. */
327 		result = acpi_power_on_resources(device, state);
328 		if (result)
329 			return result;
330 
331 		if (state == ACPI_STATE_D0) {
332 			/*
333 			 * If _PSC is not present and the state inferred from
334 			 * power resources appears to be D0, it still may be
335 			 * necessary to execute _PS0 at this point, because
336 			 * another device using the same power resources may
337 			 * have been put into D0 previously and that's why we
338 			 * see D0 here.
339 			 */
340 			result = acpi_dev_pm_explicit_set(device, state);
341 			if (result)
342 				return result;
343 		}
344 	} else if (state == ACPI_STATE_UNKNOWN) {
345 		/*
346 		 * No power resources and missing _PSC?  Cross fingers and make
347 		 * it D0 in hope that this is what the BIOS put the device into.
348 		 * [We tried to force D0 here by executing _PS0, but that broke
349 		 * Toshiba P870-303 in a nasty way.]
350 		 */
351 		state = ACPI_STATE_D0;
352 	}
353 	device->power.state = state;
354 	return 0;
355 }
356 
357 /**
358  * acpi_device_fix_up_power - Force device with missing _PSC into D0.
359  * @device: Device object whose power state is to be fixed up.
360  *
361  * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
362  * are assumed to be put into D0 by the BIOS.  However, in some cases that may
363  * not be the case and this function should be used then.
364  */
365 int acpi_device_fix_up_power(struct acpi_device *device)
366 {
367 	int ret = 0;
368 
369 	if (!device->power.flags.power_resources
370 	    && !device->power.flags.explicit_get
371 	    && device->power.state == ACPI_STATE_D0)
372 		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
373 
374 	return ret;
375 }
376 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
377 
378 static int fix_up_power_if_applicable(struct acpi_device *adev, void *not_used)
379 {
380 	if (adev->status.present && adev->status.enabled)
381 		acpi_device_fix_up_power(adev);
382 
383 	return 0;
384 }
385 
386 /**
387  * acpi_device_fix_up_power_extended - Force device and its children into D0.
388  * @adev: Parent device object whose power state is to be fixed up.
389  *
390  * Call acpi_device_fix_up_power() for @adev and its children so long as they
391  * are reported as present and enabled.
392  */
393 void acpi_device_fix_up_power_extended(struct acpi_device *adev)
394 {
395 	acpi_device_fix_up_power(adev);
396 	acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL);
397 }
398 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_extended);
399 
400 /**
401  * acpi_device_fix_up_power_children - Force a device's children into D0.
402  * @adev: Parent device object whose children's power state is to be fixed up.
403  *
404  * Call acpi_device_fix_up_power() for @adev's children so long as they
405  * are reported as present and enabled.
406  */
407 void acpi_device_fix_up_power_children(struct acpi_device *adev)
408 {
409 	acpi_dev_for_each_child(adev, fix_up_power_if_applicable, NULL);
410 }
411 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power_children);
412 
413 int acpi_device_update_power(struct acpi_device *device, int *state_p)
414 {
415 	int state;
416 	int result;
417 
418 	if (device->power.state == ACPI_STATE_UNKNOWN) {
419 		result = acpi_bus_init_power(device);
420 		if (!result && state_p)
421 			*state_p = device->power.state;
422 
423 		return result;
424 	}
425 
426 	result = acpi_device_get_power(device, &state);
427 	if (result)
428 		return result;
429 
430 	if (state == ACPI_STATE_UNKNOWN) {
431 		state = ACPI_STATE_D0;
432 		result = acpi_device_set_power(device, state);
433 		if (result)
434 			return result;
435 	} else {
436 		if (device->power.flags.power_resources) {
437 			/*
438 			 * We don't need to really switch the state, bu we need
439 			 * to update the power resources' reference counters.
440 			 */
441 			result = acpi_power_transition(device, state);
442 			if (result)
443 				return result;
444 		}
445 		device->power.state = state;
446 	}
447 	if (state_p)
448 		*state_p = state;
449 
450 	return 0;
451 }
452 EXPORT_SYMBOL_GPL(acpi_device_update_power);
453 
454 int acpi_bus_update_power(acpi_handle handle, int *state_p)
455 {
456 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
457 
458 	if (device)
459 		return acpi_device_update_power(device, state_p);
460 
461 	return -ENODEV;
462 }
463 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
464 
465 bool acpi_bus_power_manageable(acpi_handle handle)
466 {
467 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
468 
469 	return device && device->flags.power_manageable;
470 }
471 EXPORT_SYMBOL(acpi_bus_power_manageable);
472 
473 static int acpi_power_up_if_adr_present(struct acpi_device *adev, void *not_used)
474 {
475 	if (!(adev->flags.power_manageable && adev->pnp.type.bus_address))
476 		return 0;
477 
478 	acpi_handle_debug(adev->handle, "Power state: %s\n",
479 			  acpi_power_state_string(adev->power.state));
480 
481 	if (adev->power.state == ACPI_STATE_D3_COLD)
482 		return acpi_device_set_power(adev, ACPI_STATE_D0);
483 
484 	return 0;
485 }
486 
487 /**
488  * acpi_dev_power_up_children_with_adr - Power up childres with valid _ADR
489  * @adev: Parent ACPI device object.
490  *
491  * Change the power states of the direct children of @adev that are in D3cold
492  * and hold valid _ADR objects to D0 in order to allow bus (e.g. PCI)
493  * enumeration code to access them.
494  */
495 void acpi_dev_power_up_children_with_adr(struct acpi_device *adev)
496 {
497 	acpi_dev_for_each_child(adev, acpi_power_up_if_adr_present, NULL);
498 }
499 
500 /**
501  * acpi_dev_power_state_for_wake - Deepest power state for wakeup signaling
502  * @adev: ACPI companion of the target device.
503  *
504  * Evaluate _S0W for @adev and return the value produced by it or return
505  * ACPI_STATE_UNKNOWN on errors (including _S0W not present).
506  */
507 u8 acpi_dev_power_state_for_wake(struct acpi_device *adev)
508 {
509 	unsigned long long state;
510 	acpi_status status;
511 
512 	status = acpi_evaluate_integer(adev->handle, "_S0W", NULL, &state);
513 	if (ACPI_FAILURE(status))
514 		return ACPI_STATE_UNKNOWN;
515 
516 	return state;
517 }
518 
519 #ifdef CONFIG_PM
520 static DEFINE_MUTEX(acpi_pm_notifier_lock);
521 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
522 
523 void acpi_pm_wakeup_event(struct device *dev)
524 {
525 	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
526 }
527 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
528 
529 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
530 {
531 	struct acpi_device *adev;
532 
533 	if (val != ACPI_NOTIFY_DEVICE_WAKE)
534 		return;
535 
536 	acpi_handle_debug(handle, "Wake notify\n");
537 
538 	adev = acpi_get_acpi_dev(handle);
539 	if (!adev)
540 		return;
541 
542 	mutex_lock(&acpi_pm_notifier_lock);
543 
544 	if (adev->wakeup.flags.notifier_present) {
545 		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
546 		if (adev->wakeup.context.func) {
547 			acpi_handle_debug(handle, "Running %pS for %s\n",
548 					  adev->wakeup.context.func,
549 					  dev_name(adev->wakeup.context.dev));
550 			adev->wakeup.context.func(&adev->wakeup.context);
551 		}
552 	}
553 
554 	mutex_unlock(&acpi_pm_notifier_lock);
555 
556 	acpi_put_acpi_dev(adev);
557 }
558 
559 /**
560  * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
561  * @adev: ACPI device to add the notify handler for.
562  * @dev: Device to generate a wakeup event for while handling the notification.
563  * @func: Work function to execute when handling the notification.
564  *
565  * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
566  * PM wakeup events.  For example, wakeup events may be generated for bridges
567  * if one of the devices below the bridge is signaling wakeup, even if the
568  * bridge itself doesn't have a wakeup GPE associated with it.
569  */
570 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
571 			void (*func)(struct acpi_device_wakeup_context *context))
572 {
573 	acpi_status status = AE_ALREADY_EXISTS;
574 
575 	if (!dev && !func)
576 		return AE_BAD_PARAMETER;
577 
578 	mutex_lock(&acpi_pm_notifier_install_lock);
579 
580 	if (adev->wakeup.flags.notifier_present)
581 		goto out;
582 
583 	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
584 					     acpi_pm_notify_handler, NULL);
585 	if (ACPI_FAILURE(status))
586 		goto out;
587 
588 	mutex_lock(&acpi_pm_notifier_lock);
589 	adev->wakeup.ws = wakeup_source_register(&adev->dev,
590 						 dev_name(&adev->dev));
591 	adev->wakeup.context.dev = dev;
592 	adev->wakeup.context.func = func;
593 	adev->wakeup.flags.notifier_present = true;
594 	mutex_unlock(&acpi_pm_notifier_lock);
595 
596  out:
597 	mutex_unlock(&acpi_pm_notifier_install_lock);
598 	return status;
599 }
600 
601 /**
602  * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
603  * @adev: ACPI device to remove the notifier from.
604  */
605 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
606 {
607 	acpi_status status = AE_BAD_PARAMETER;
608 
609 	mutex_lock(&acpi_pm_notifier_install_lock);
610 
611 	if (!adev->wakeup.flags.notifier_present)
612 		goto out;
613 
614 	status = acpi_remove_notify_handler(adev->handle,
615 					    ACPI_SYSTEM_NOTIFY,
616 					    acpi_pm_notify_handler);
617 	if (ACPI_FAILURE(status))
618 		goto out;
619 
620 	mutex_lock(&acpi_pm_notifier_lock);
621 	adev->wakeup.context.func = NULL;
622 	adev->wakeup.context.dev = NULL;
623 	wakeup_source_unregister(adev->wakeup.ws);
624 	adev->wakeup.flags.notifier_present = false;
625 	mutex_unlock(&acpi_pm_notifier_lock);
626 
627  out:
628 	mutex_unlock(&acpi_pm_notifier_install_lock);
629 	return status;
630 }
631 
632 bool acpi_bus_can_wakeup(acpi_handle handle)
633 {
634 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
635 
636 	return device && device->wakeup.flags.valid;
637 }
638 EXPORT_SYMBOL(acpi_bus_can_wakeup);
639 
640 bool acpi_pm_device_can_wakeup(struct device *dev)
641 {
642 	struct acpi_device *adev = ACPI_COMPANION(dev);
643 
644 	return adev ? acpi_device_can_wakeup(adev) : false;
645 }
646 
647 /**
648  * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
649  * @dev: Device whose preferred target power state to return.
650  * @adev: ACPI device node corresponding to @dev.
651  * @target_state: System state to match the resultant device state.
652  * @d_min_p: Location to store the highest power state available to the device.
653  * @d_max_p: Location to store the lowest power state available to the device.
654  *
655  * Find the lowest power (highest number) and highest power (lowest number) ACPI
656  * device power states that the device can be in while the system is in the
657  * state represented by @target_state.  Store the integer numbers representing
658  * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
659  * respectively.
660  *
661  * Callers must ensure that @dev and @adev are valid pointers and that @adev
662  * actually corresponds to @dev before using this function.
663  *
664  * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
665  * returns a value that doesn't make sense.  The memory locations pointed to by
666  * @d_max_p and @d_min_p are only modified on success.
667  */
668 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
669 				 u32 target_state, int *d_min_p, int *d_max_p)
670 {
671 	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
672 	acpi_handle handle = adev->handle;
673 	unsigned long long ret;
674 	int d_min, d_max;
675 	bool wakeup = false;
676 	bool has_sxd = false;
677 	acpi_status status;
678 
679 	/*
680 	 * If the system state is S0, the lowest power state the device can be
681 	 * in is D3cold, unless the device has _S0W and is supposed to signal
682 	 * wakeup, in which case the return value of _S0W has to be used as the
683 	 * lowest power state available to the device.
684 	 */
685 	d_min = ACPI_STATE_D0;
686 	d_max = ACPI_STATE_D3_COLD;
687 
688 	/*
689 	 * If present, _SxD methods return the minimum D-state (highest power
690 	 * state) we can use for the corresponding S-states.  Otherwise, the
691 	 * minimum D-state is D0 (ACPI 3.x).
692 	 */
693 	if (target_state > ACPI_STATE_S0) {
694 		/*
695 		 * We rely on acpi_evaluate_integer() not clobbering the integer
696 		 * provided if AE_NOT_FOUND is returned.
697 		 */
698 		ret = d_min;
699 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
700 		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
701 		    || ret > ACPI_STATE_D3_COLD)
702 			return -ENODATA;
703 
704 		/*
705 		 * We need to handle legacy systems where D3hot and D3cold are
706 		 * the same and 3 is returned in both cases, so fall back to
707 		 * D3cold if D3hot is not a valid state.
708 		 */
709 		if (!adev->power.states[ret].flags.valid) {
710 			if (ret == ACPI_STATE_D3_HOT)
711 				ret = ACPI_STATE_D3_COLD;
712 			else
713 				return -ENODATA;
714 		}
715 
716 		if (status == AE_OK)
717 			has_sxd = true;
718 
719 		d_min = ret;
720 		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
721 			&& adev->wakeup.sleep_state >= target_state;
722 	} else if (device_may_wakeup(dev) && dev->power.wakeirq) {
723 		/*
724 		 * The ACPI subsystem doesn't manage the wake bit for IRQs
725 		 * defined with ExclusiveAndWake and SharedAndWake. Instead we
726 		 * expect them to be managed via the PM subsystem. Drivers
727 		 * should call dev_pm_set_wake_irq to register an IRQ as a wake
728 		 * source.
729 		 *
730 		 * If a device has a wake IRQ attached we need to check the
731 		 * _S0W method to get the correct wake D-state. Otherwise we
732 		 * end up putting the device into D3Cold which will more than
733 		 * likely disable wake functionality.
734 		 */
735 		wakeup = true;
736 	} else {
737 		/* ACPI GPE is specified in _PRW. */
738 		wakeup = adev->wakeup.flags.valid;
739 	}
740 
741 	/*
742 	 * If _PRW says we can wake up the system from the target sleep state,
743 	 * the D-state returned by _SxD is sufficient for that (we assume a
744 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
745 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
746 	 * can wake the system.  _S0W may be valid, too.
747 	 */
748 	if (wakeup) {
749 		method[3] = 'W';
750 		status = acpi_evaluate_integer(handle, method, NULL, &ret);
751 		if (status == AE_NOT_FOUND) {
752 			/* No _SxW. In this case, the ACPI spec says that we
753 			 * must not go into any power state deeper than the
754 			 * value returned from _SxD.
755 			 */
756 			if (has_sxd && target_state > ACPI_STATE_S0)
757 				d_max = d_min;
758 		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
759 			/* Fall back to D3cold if ret is not a valid state. */
760 			if (!adev->power.states[ret].flags.valid)
761 				ret = ACPI_STATE_D3_COLD;
762 
763 			d_max = ret > d_min ? ret : d_min;
764 		} else {
765 			return -ENODATA;
766 		}
767 	}
768 
769 	if (d_min_p)
770 		*d_min_p = d_min;
771 
772 	if (d_max_p)
773 		*d_max_p = d_max;
774 
775 	return 0;
776 }
777 
778 /**
779  * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
780  * @dev: Device whose preferred target power state to return.
781  * @d_min_p: Location to store the upper limit of the allowed states range.
782  * @d_max_in: Deepest low-power state to take into consideration.
783  * Return value: Preferred power state of the device on success, -ENODEV
784  * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
785  * incorrect, or -ENODATA on ACPI method failure.
786  *
787  * The caller must ensure that @dev is valid before using this function.
788  */
789 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
790 {
791 	struct acpi_device *adev;
792 	int ret, d_min, d_max;
793 
794 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
795 		return -EINVAL;
796 
797 	if (d_max_in > ACPI_STATE_D2) {
798 		enum pm_qos_flags_status stat;
799 
800 		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
801 		if (stat == PM_QOS_FLAGS_ALL)
802 			d_max_in = ACPI_STATE_D2;
803 	}
804 
805 	adev = ACPI_COMPANION(dev);
806 	if (!adev) {
807 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
808 		return -ENODEV;
809 	}
810 
811 	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
812 				    &d_min, &d_max);
813 	if (ret)
814 		return ret;
815 
816 	if (d_max_in < d_min)
817 		return -EINVAL;
818 
819 	if (d_max > d_max_in) {
820 		for (d_max = d_max_in; d_max > d_min; d_max--) {
821 			if (adev->power.states[d_max].flags.valid)
822 				break;
823 		}
824 	}
825 
826 	if (d_min_p)
827 		*d_min_p = d_min;
828 
829 	return d_max;
830 }
831 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
832 
833 /**
834  * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
835  * @context: Device wakeup context.
836  */
837 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
838 {
839 	struct device *dev = context->dev;
840 
841 	if (dev) {
842 		pm_wakeup_event(dev, 0);
843 		pm_request_resume(dev);
844 	}
845 }
846 
847 static DEFINE_MUTEX(acpi_wakeup_lock);
848 
849 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
850 				       u32 target_state)
851 {
852 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
853 	acpi_status status;
854 	int error = 0;
855 
856 	mutex_lock(&acpi_wakeup_lock);
857 
858 	/*
859 	 * If the device wakeup power is already enabled, disable it and enable
860 	 * it again in case it depends on the configuration of subordinate
861 	 * devices and the conditions have changed since it was enabled last
862 	 * time.
863 	 */
864 	if (wakeup->enable_count > 0)
865 		acpi_disable_wakeup_device_power(adev);
866 
867 	error = acpi_enable_wakeup_device_power(adev, target_state);
868 	if (error) {
869 		if (wakeup->enable_count > 0) {
870 			acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
871 			wakeup->enable_count = 0;
872 		}
873 		goto out;
874 	}
875 
876 	if (wakeup->enable_count > 0)
877 		goto inc;
878 
879 	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
880 	if (ACPI_FAILURE(status)) {
881 		acpi_disable_wakeup_device_power(adev);
882 		error = -EIO;
883 		goto out;
884 	}
885 
886 	acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
887 			  (unsigned int)wakeup->gpe_number);
888 
889 inc:
890 	if (wakeup->enable_count < INT_MAX)
891 		wakeup->enable_count++;
892 	else
893 		acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n");
894 
895 out:
896 	mutex_unlock(&acpi_wakeup_lock);
897 	return error;
898 }
899 
900 /**
901  * acpi_device_wakeup_enable - Enable wakeup functionality for device.
902  * @adev: ACPI device to enable wakeup functionality for.
903  * @target_state: State the system is transitioning into.
904  *
905  * Enable the GPE associated with @adev so that it can generate wakeup signals
906  * for the device in response to external (remote) events and enable wakeup
907  * power for it.
908  *
909  * Callers must ensure that @adev is a valid ACPI device node before executing
910  * this function.
911  */
912 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
913 {
914 	return __acpi_device_wakeup_enable(adev, target_state);
915 }
916 
917 /**
918  * acpi_device_wakeup_disable - Disable wakeup functionality for device.
919  * @adev: ACPI device to disable wakeup functionality for.
920  *
921  * Disable the GPE associated with @adev and disable wakeup power for it.
922  *
923  * Callers must ensure that @adev is a valid ACPI device node before executing
924  * this function.
925  */
926 static void acpi_device_wakeup_disable(struct acpi_device *adev)
927 {
928 	struct acpi_device_wakeup *wakeup = &adev->wakeup;
929 
930 	mutex_lock(&acpi_wakeup_lock);
931 
932 	if (!wakeup->enable_count)
933 		goto out;
934 
935 	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
936 	acpi_disable_wakeup_device_power(adev);
937 
938 	wakeup->enable_count--;
939 
940 out:
941 	mutex_unlock(&acpi_wakeup_lock);
942 }
943 
944 /**
945  * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
946  * @dev: Device to enable/disable to generate wakeup events.
947  * @enable: Whether to enable or disable the wakeup functionality.
948  */
949 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
950 {
951 	struct acpi_device *adev;
952 	int error;
953 
954 	adev = ACPI_COMPANION(dev);
955 	if (!adev) {
956 		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
957 		return -ENODEV;
958 	}
959 
960 	if (!acpi_device_can_wakeup(adev))
961 		return -EINVAL;
962 
963 	if (!enable) {
964 		acpi_device_wakeup_disable(adev);
965 		dev_dbg(dev, "Wakeup disabled by ACPI\n");
966 		return 0;
967 	}
968 
969 	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state());
970 	if (!error)
971 		dev_dbg(dev, "Wakeup enabled by ACPI\n");
972 
973 	return error;
974 }
975 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
976 
977 /**
978  * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
979  * @dev: Device to put into a low-power state.
980  * @adev: ACPI device node corresponding to @dev.
981  * @system_state: System state to choose the device state for.
982  */
983 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
984 				 u32 system_state)
985 {
986 	int ret, state;
987 
988 	if (!acpi_device_power_manageable(adev))
989 		return 0;
990 
991 	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
992 	return ret ? ret : acpi_device_set_power(adev, state);
993 }
994 
995 /**
996  * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
997  * @adev: ACPI device node to put into the full-power state.
998  */
999 static int acpi_dev_pm_full_power(struct acpi_device *adev)
1000 {
1001 	return acpi_device_power_manageable(adev) ?
1002 		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
1003 }
1004 
1005 /**
1006  * acpi_dev_suspend - Put device into a low-power state using ACPI.
1007  * @dev: Device to put into a low-power state.
1008  * @wakeup: Whether or not to enable wakeup for the device.
1009  *
1010  * Put the given device into a low-power state using the standard ACPI
1011  * mechanism.  Set up remote wakeup if desired, choose the state to put the
1012  * device into (this checks if remote wakeup is expected to work too), and set
1013  * the power state of the device.
1014  */
1015 int acpi_dev_suspend(struct device *dev, bool wakeup)
1016 {
1017 	struct acpi_device *adev = ACPI_COMPANION(dev);
1018 	u32 target_state = acpi_target_system_state();
1019 	int error;
1020 
1021 	if (!adev)
1022 		return 0;
1023 
1024 	if (wakeup && acpi_device_can_wakeup(adev)) {
1025 		error = acpi_device_wakeup_enable(adev, target_state);
1026 		if (error)
1027 			return -EAGAIN;
1028 	} else {
1029 		wakeup = false;
1030 	}
1031 
1032 	error = acpi_dev_pm_low_power(dev, adev, target_state);
1033 	if (error && wakeup)
1034 		acpi_device_wakeup_disable(adev);
1035 
1036 	return error;
1037 }
1038 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
1039 
1040 /**
1041  * acpi_dev_resume - Put device into the full-power state using ACPI.
1042  * @dev: Device to put into the full-power state.
1043  *
1044  * Put the given device into the full-power state using the standard ACPI
1045  * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
1046  */
1047 int acpi_dev_resume(struct device *dev)
1048 {
1049 	struct acpi_device *adev = ACPI_COMPANION(dev);
1050 	int error;
1051 
1052 	if (!adev)
1053 		return 0;
1054 
1055 	error = acpi_dev_pm_full_power(adev);
1056 	acpi_device_wakeup_disable(adev);
1057 	return error;
1058 }
1059 EXPORT_SYMBOL_GPL(acpi_dev_resume);
1060 
1061 /**
1062  * acpi_subsys_runtime_suspend - Suspend device using ACPI.
1063  * @dev: Device to suspend.
1064  *
1065  * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
1066  * it into a runtime low-power state.
1067  */
1068 int acpi_subsys_runtime_suspend(struct device *dev)
1069 {
1070 	int ret = pm_generic_runtime_suspend(dev);
1071 
1072 	return ret ? ret : acpi_dev_suspend(dev, true);
1073 }
1074 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
1075 
1076 /**
1077  * acpi_subsys_runtime_resume - Resume device using ACPI.
1078  * @dev: Device to Resume.
1079  *
1080  * Use ACPI to put the given device into the full-power state and carry out the
1081  * generic runtime resume procedure for it.
1082  */
1083 int acpi_subsys_runtime_resume(struct device *dev)
1084 {
1085 	int ret = acpi_dev_resume(dev);
1086 
1087 	return ret ? ret : pm_generic_runtime_resume(dev);
1088 }
1089 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
1090 
1091 #ifdef CONFIG_PM_SLEEP
1092 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
1093 {
1094 	u32 sys_target = acpi_target_system_state();
1095 	int ret, state;
1096 
1097 	if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
1098 	    device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
1099 		return true;
1100 
1101 	if (sys_target == ACPI_STATE_S0)
1102 		return false;
1103 
1104 	if (adev->power.flags.dsw_present)
1105 		return true;
1106 
1107 	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
1108 	if (ret)
1109 		return true;
1110 
1111 	return state != adev->power.state;
1112 }
1113 
1114 /**
1115  * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1116  * @dev: Device to prepare.
1117  */
1118 int acpi_subsys_prepare(struct device *dev)
1119 {
1120 	struct acpi_device *adev = ACPI_COMPANION(dev);
1121 
1122 	if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1123 		int ret = dev->driver->pm->prepare(dev);
1124 
1125 		if (ret < 0)
1126 			return ret;
1127 
1128 		if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1129 			return 0;
1130 	}
1131 
1132 	return !acpi_dev_needs_resume(dev, adev);
1133 }
1134 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1135 
1136 /**
1137  * acpi_subsys_complete - Finalize device's resume during system resume.
1138  * @dev: Device to handle.
1139  */
1140 void acpi_subsys_complete(struct device *dev)
1141 {
1142 	pm_generic_complete(dev);
1143 	/*
1144 	 * If the device had been runtime-suspended before the system went into
1145 	 * the sleep state it is going out of and it has never been resumed till
1146 	 * now, resume it in case the firmware powered it up.
1147 	 */
1148 	if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1149 		pm_request_resume(dev);
1150 }
1151 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1152 
1153 /**
1154  * acpi_subsys_suspend - Run the device driver's suspend callback.
1155  * @dev: Device to handle.
1156  *
1157  * Follow PCI and resume devices from runtime suspend before running their
1158  * system suspend callbacks, unless the driver can cope with runtime-suspended
1159  * devices during system suspend and there are no ACPI-specific reasons for
1160  * resuming them.
1161  */
1162 int acpi_subsys_suspend(struct device *dev)
1163 {
1164 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1165 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1166 		pm_runtime_resume(dev);
1167 
1168 	return pm_generic_suspend(dev);
1169 }
1170 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1171 
1172 /**
1173  * acpi_subsys_suspend_late - Suspend device using ACPI.
1174  * @dev: Device to suspend.
1175  *
1176  * Carry out the generic late suspend procedure for @dev and use ACPI to put
1177  * it into a low-power state during system transition into a sleep state.
1178  */
1179 int acpi_subsys_suspend_late(struct device *dev)
1180 {
1181 	int ret;
1182 
1183 	if (dev_pm_skip_suspend(dev))
1184 		return 0;
1185 
1186 	ret = pm_generic_suspend_late(dev);
1187 	return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1188 }
1189 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1190 
1191 /**
1192  * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1193  * @dev: Device to suspend.
1194  */
1195 int acpi_subsys_suspend_noirq(struct device *dev)
1196 {
1197 	int ret;
1198 
1199 	if (dev_pm_skip_suspend(dev))
1200 		return 0;
1201 
1202 	ret = pm_generic_suspend_noirq(dev);
1203 	if (ret)
1204 		return ret;
1205 
1206 	/*
1207 	 * If the target system sleep state is suspend-to-idle, it is sufficient
1208 	 * to check whether or not the device's wakeup settings are good for
1209 	 * runtime PM.  Otherwise, the pm_resume_via_firmware() check will cause
1210 	 * acpi_subsys_complete() to take care of fixing up the device's state
1211 	 * anyway, if need be.
1212 	 */
1213 	if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1214 		dev->power.may_skip_resume = false;
1215 
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1219 
1220 /**
1221  * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1222  * @dev: Device to handle.
1223  */
1224 static int acpi_subsys_resume_noirq(struct device *dev)
1225 {
1226 	if (dev_pm_skip_resume(dev))
1227 		return 0;
1228 
1229 	return pm_generic_resume_noirq(dev);
1230 }
1231 
1232 /**
1233  * acpi_subsys_resume_early - Resume device using ACPI.
1234  * @dev: Device to Resume.
1235  *
1236  * Use ACPI to put the given device into the full-power state and carry out the
1237  * generic early resume procedure for it during system transition into the
1238  * working state, but only do that if device either defines early resume
1239  * handler, or does not define power operations at all. Otherwise powering up
1240  * of the device is postponed to the normal resume phase.
1241  */
1242 static int acpi_subsys_resume_early(struct device *dev)
1243 {
1244 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1245 	int ret;
1246 
1247 	if (dev_pm_skip_resume(dev))
1248 		return 0;
1249 
1250 	if (pm && !pm->resume_early) {
1251 		dev_dbg(dev, "postponing D0 transition to normal resume stage\n");
1252 		return 0;
1253 	}
1254 
1255 	ret = acpi_dev_resume(dev);
1256 	return ret ? ret : pm_generic_resume_early(dev);
1257 }
1258 
1259 /**
1260  * acpi_subsys_resume - Resume device using ACPI.
1261  * @dev: Device to Resume.
1262  *
1263  * Use ACPI to put the given device into the full-power state if it has not been
1264  * powered up during early resume phase, and carry out the generic resume
1265  * procedure for it during system transition into the working state.
1266  */
1267 static int acpi_subsys_resume(struct device *dev)
1268 {
1269 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1270 	int ret = 0;
1271 
1272 	if (!dev_pm_skip_resume(dev) && pm && !pm->resume_early) {
1273 		dev_dbg(dev, "executing postponed D0 transition\n");
1274 		ret = acpi_dev_resume(dev);
1275 	}
1276 
1277 	return ret ? ret : pm_generic_resume(dev);
1278 }
1279 
1280 /**
1281  * acpi_subsys_freeze - Run the device driver's freeze callback.
1282  * @dev: Device to handle.
1283  */
1284 int acpi_subsys_freeze(struct device *dev)
1285 {
1286 	/*
1287 	 * Resume all runtime-suspended devices before creating a snapshot
1288 	 * image of system memory, because the restore kernel generally cannot
1289 	 * be expected to always handle them consistently and they need to be
1290 	 * put into the runtime-active metastate during system resume anyway,
1291 	 * so it is better to ensure that the state saved in the image will be
1292 	 * always consistent with that.
1293 	 */
1294 	pm_runtime_resume(dev);
1295 
1296 	return pm_generic_freeze(dev);
1297 }
1298 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1299 
1300 /**
1301  * acpi_subsys_restore_early - Restore device using ACPI.
1302  * @dev: Device to restore.
1303  */
1304 int acpi_subsys_restore_early(struct device *dev)
1305 {
1306 	int ret = acpi_dev_resume(dev);
1307 
1308 	return ret ? ret : pm_generic_restore_early(dev);
1309 }
1310 EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1311 
1312 /**
1313  * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1314  * @dev: Device to handle.
1315  *
1316  * Follow PCI and resume devices from runtime suspend before running their
1317  * system poweroff callbacks, unless the driver can cope with runtime-suspended
1318  * devices during system suspend and there are no ACPI-specific reasons for
1319  * resuming them.
1320  */
1321 int acpi_subsys_poweroff(struct device *dev)
1322 {
1323 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1324 	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1325 		pm_runtime_resume(dev);
1326 
1327 	return pm_generic_poweroff(dev);
1328 }
1329 EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1330 
1331 /**
1332  * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1333  * @dev: Device to handle.
1334  *
1335  * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1336  * it into a low-power state during system transition into a sleep state.
1337  */
1338 static int acpi_subsys_poweroff_late(struct device *dev)
1339 {
1340 	int ret;
1341 
1342 	if (dev_pm_skip_suspend(dev))
1343 		return 0;
1344 
1345 	ret = pm_generic_poweroff_late(dev);
1346 	if (ret)
1347 		return ret;
1348 
1349 	return acpi_dev_suspend(dev, device_may_wakeup(dev));
1350 }
1351 
1352 /**
1353  * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1354  * @dev: Device to suspend.
1355  */
1356 static int acpi_subsys_poweroff_noirq(struct device *dev)
1357 {
1358 	if (dev_pm_skip_suspend(dev))
1359 		return 0;
1360 
1361 	return pm_generic_poweroff_noirq(dev);
1362 }
1363 #endif /* CONFIG_PM_SLEEP */
1364 
1365 static struct dev_pm_domain acpi_general_pm_domain = {
1366 	.ops = {
1367 		.runtime_suspend = acpi_subsys_runtime_suspend,
1368 		.runtime_resume = acpi_subsys_runtime_resume,
1369 #ifdef CONFIG_PM_SLEEP
1370 		.prepare = acpi_subsys_prepare,
1371 		.complete = acpi_subsys_complete,
1372 		.suspend = acpi_subsys_suspend,
1373 		.resume = acpi_subsys_resume,
1374 		.suspend_late = acpi_subsys_suspend_late,
1375 		.suspend_noirq = acpi_subsys_suspend_noirq,
1376 		.resume_noirq = acpi_subsys_resume_noirq,
1377 		.resume_early = acpi_subsys_resume_early,
1378 		.freeze = acpi_subsys_freeze,
1379 		.poweroff = acpi_subsys_poweroff,
1380 		.poweroff_late = acpi_subsys_poweroff_late,
1381 		.poweroff_noirq = acpi_subsys_poweroff_noirq,
1382 		.restore_early = acpi_subsys_restore_early,
1383 #endif
1384 	},
1385 };
1386 
1387 /**
1388  * acpi_dev_pm_detach - Remove ACPI power management from the device.
1389  * @dev: Device to take care of.
1390  * @power_off: Whether or not to try to remove power from the device.
1391  *
1392  * Remove the device from the general ACPI PM domain and remove its wakeup
1393  * notifier.  If @power_off is set, additionally remove power from the device if
1394  * possible.
1395  *
1396  * Callers must ensure proper synchronization of this function with power
1397  * management callbacks.
1398  */
1399 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1400 {
1401 	struct acpi_device *adev = ACPI_COMPANION(dev);
1402 
1403 	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1404 		dev_pm_domain_set(dev, NULL);
1405 		acpi_remove_pm_notifier(adev);
1406 		if (power_off) {
1407 			/*
1408 			 * If the device's PM QoS resume latency limit or flags
1409 			 * have been exposed to user space, they have to be
1410 			 * hidden at this point, so that they don't affect the
1411 			 * choice of the low-power state to put the device into.
1412 			 */
1413 			dev_pm_qos_hide_latency_limit(dev);
1414 			dev_pm_qos_hide_flags(dev);
1415 			acpi_device_wakeup_disable(adev);
1416 			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1417 		}
1418 	}
1419 }
1420 
1421 /**
1422  * acpi_dev_pm_attach - Prepare device for ACPI power management.
1423  * @dev: Device to prepare.
1424  * @power_on: Whether or not to power on the device.
1425  *
1426  * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1427  * attached to it, install a wakeup notification handler for the device and
1428  * add it to the general ACPI PM domain.  If @power_on is set, the device will
1429  * be put into the ACPI D0 state before the function returns.
1430  *
1431  * This assumes that the @dev's bus type uses generic power management callbacks
1432  * (or doesn't use any power management callbacks at all).
1433  *
1434  * Callers must ensure proper synchronization of this function with power
1435  * management callbacks.
1436  */
1437 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1438 {
1439 	/*
1440 	 * Skip devices whose ACPI companions match the device IDs below,
1441 	 * because they require special power management handling incompatible
1442 	 * with the generic ACPI PM domain.
1443 	 */
1444 	static const struct acpi_device_id special_pm_ids[] = {
1445 		ACPI_FAN_DEVICE_IDS,
1446 		{}
1447 	};
1448 	struct acpi_device *adev = ACPI_COMPANION(dev);
1449 
1450 	if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1451 		return 0;
1452 
1453 	/*
1454 	 * Only attach the power domain to the first device if the
1455 	 * companion is shared by multiple. This is to prevent doing power
1456 	 * management twice.
1457 	 */
1458 	if (!acpi_device_is_first_physical_node(adev, dev))
1459 		return 0;
1460 
1461 	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1462 	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1463 	if (power_on) {
1464 		acpi_dev_pm_full_power(adev);
1465 		acpi_device_wakeup_disable(adev);
1466 	}
1467 
1468 	dev->pm_domain->detach = acpi_dev_pm_detach;
1469 	return 1;
1470 }
1471 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1472 
1473 /**
1474  * acpi_storage_d3 - Check if D3 should be used in the suspend path
1475  * @dev: Device to check
1476  *
1477  * Return %true if the platform firmware wants @dev to be programmed
1478  * into D3hot or D3cold (if supported) in the suspend path, or %false
1479  * when there is no specific preference. On some platforms, if this
1480  * hint is ignored, @dev may remain unresponsive after suspending the
1481  * platform as a whole.
1482  *
1483  * Although the property has storage in the name it actually is
1484  * applied to the PCIe slot and plugging in a non-storage device the
1485  * same platform restrictions will likely apply.
1486  */
1487 bool acpi_storage_d3(struct device *dev)
1488 {
1489 	struct acpi_device *adev = ACPI_COMPANION(dev);
1490 	u8 val;
1491 
1492 	if (force_storage_d3())
1493 		return true;
1494 
1495 	if (!adev)
1496 		return false;
1497 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
1498 			&val))
1499 		return false;
1500 	return val == 1;
1501 }
1502 EXPORT_SYMBOL_GPL(acpi_storage_d3);
1503 
1504 /**
1505  * acpi_dev_state_d0 - Tell if the device is in D0 power state
1506  * @dev: Physical device the ACPI power state of which to check
1507  *
1508  * On a system without ACPI, return true. On a system with ACPI, return true if
1509  * the current ACPI power state of the device is D0, or false otherwise.
1510  *
1511  * Note that the power state of a device is not well-defined after it has been
1512  * passed to acpi_device_set_power() and before that function returns, so it is
1513  * not valid to ask for the ACPI power state of the device in that time frame.
1514  *
1515  * This function is intended to be used in a driver's probe or remove
1516  * function. See Documentation/firmware-guide/acpi/non-d0-probe.rst for
1517  * more information.
1518  */
1519 bool acpi_dev_state_d0(struct device *dev)
1520 {
1521 	struct acpi_device *adev = ACPI_COMPANION(dev);
1522 
1523 	if (!adev)
1524 		return true;
1525 
1526 	return adev->power.state == ACPI_STATE_D0;
1527 }
1528 EXPORT_SYMBOL_GPL(acpi_dev_state_d0);
1529 
1530 #endif /* CONFIG_PM */
1531