1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. 4 * 5 * (C) Copyright 2014, 2015 Linaro Ltd. 6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 7 * 8 * CPPC describes a few methods for controlling CPU performance using 9 * information from a per CPU table called CPC. This table is described in 10 * the ACPI v5.0+ specification. The table consists of a list of 11 * registers which may be memory mapped or hardware registers and also may 12 * include some static integer values. 13 * 14 * CPU performance is on an abstract continuous scale as against a discretized 15 * P-state scale which is tied to CPU frequency only. In brief, the basic 16 * operation involves: 17 * 18 * - OS makes a CPU performance request. (Can provide min and max bounds) 19 * 20 * - Platform (such as BMC) is free to optimize request within requested bounds 21 * depending on power/thermal budgets etc. 22 * 23 * - Platform conveys its decision back to OS 24 * 25 * The communication between OS and platform occurs through another medium 26 * called (PCC) Platform Communication Channel. This is a generic mailbox like 27 * mechanism which includes doorbell semantics to indicate register updates. 28 * See drivers/mailbox/pcc.c for details on PCC. 29 * 30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and 31 * above specifications. 32 */ 33 34 #define pr_fmt(fmt) "ACPI CPPC: " fmt 35 36 #include <linux/delay.h> 37 #include <linux/iopoll.h> 38 #include <linux/ktime.h> 39 #include <linux/rwsem.h> 40 #include <linux/wait.h> 41 #include <linux/topology.h> 42 43 #include <acpi/cppc_acpi.h> 44 45 struct cppc_pcc_data { 46 struct pcc_mbox_chan *pcc_channel; 47 void __iomem *pcc_comm_addr; 48 bool pcc_channel_acquired; 49 unsigned int deadline_us; 50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; 51 52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */ 53 bool platform_owns_pcc; /* Ownership of PCC subspace */ 54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */ 55 56 /* 57 * Lock to provide controlled access to the PCC channel. 58 * 59 * For performance critical usecases(currently cppc_set_perf) 60 * We need to take read_lock and check if channel belongs to OSPM 61 * before reading or writing to PCC subspace 62 * We need to take write_lock before transferring the channel 63 * ownership to the platform via a Doorbell 64 * This allows us to batch a number of CPPC requests if they happen 65 * to originate in about the same time 66 * 67 * For non-performance critical usecases(init) 68 * Take write_lock for all purposes which gives exclusive access 69 */ 70 struct rw_semaphore pcc_lock; 71 72 /* Wait queue for CPUs whose requests were batched */ 73 wait_queue_head_t pcc_write_wait_q; 74 ktime_t last_cmd_cmpl_time; 75 ktime_t last_mpar_reset; 76 int mpar_count; 77 int refcount; 78 }; 79 80 /* Array to represent the PCC channel per subspace ID */ 81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES]; 82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */ 83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx); 84 85 /* 86 * The cpc_desc structure contains the ACPI register details 87 * as described in the per CPU _CPC tables. The details 88 * include the type of register (e.g. PCC, System IO, FFH etc.) 89 * and destination addresses which lets us READ/WRITE CPU performance 90 * information using the appropriate I/O methods. 91 */ 92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); 93 94 /* pcc mapped address + header size + offset within PCC subspace */ 95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \ 96 0x8 + (offs)) 97 98 /* Check if a CPC register is in PCC */ 99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 100 (cpc)->cpc_entry.reg.space_id == \ 101 ACPI_ADR_SPACE_PLATFORM_COMM) 102 103 /* Check if a CPC register is in SystemMemory */ 104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 105 (cpc)->cpc_entry.reg.space_id == \ 106 ACPI_ADR_SPACE_SYSTEM_MEMORY) 107 108 /* Check if a CPC register is in SystemIo */ 109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 110 (cpc)->cpc_entry.reg.space_id == \ 111 ACPI_ADR_SPACE_SYSTEM_IO) 112 113 /* Evaluates to True if reg is a NULL register descriptor */ 114 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \ 115 (reg)->address == 0 && \ 116 (reg)->bit_width == 0 && \ 117 (reg)->bit_offset == 0 && \ 118 (reg)->access_width == 0) 119 120 /* Evaluates to True if an optional cpc field is supported */ 121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \ 122 !!(cpc)->cpc_entry.int_value : \ 123 !IS_NULL_REG(&(cpc)->cpc_entry.reg)) 124 /* 125 * Arbitrary Retries in case the remote processor is slow to respond 126 * to PCC commands. Keeping it high enough to cover emulators where 127 * the processors run painfully slow. 128 */ 129 #define NUM_RETRIES 500ULL 130 131 #define OVER_16BTS_MASK ~0xFFFFULL 132 133 #define define_one_cppc_ro(_name) \ 134 static struct kobj_attribute _name = \ 135 __ATTR(_name, 0444, show_##_name, NULL) 136 137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj) 138 139 #define show_cppc_data(access_fn, struct_name, member_name) \ 140 static ssize_t show_##member_name(struct kobject *kobj, \ 141 struct kobj_attribute *attr, char *buf) \ 142 { \ 143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \ 144 struct struct_name st_name = {0}; \ 145 int ret; \ 146 \ 147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \ 148 if (ret) \ 149 return ret; \ 150 \ 151 return sysfs_emit(buf, "%llu\n", \ 152 (u64)st_name.member_name); \ 153 } \ 154 define_one_cppc_ro(member_name) 155 156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); 157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); 158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); 159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); 160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq); 161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq); 162 163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); 164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); 165 166 static ssize_t show_feedback_ctrs(struct kobject *kobj, 167 struct kobj_attribute *attr, char *buf) 168 { 169 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); 170 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 171 int ret; 172 173 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs); 174 if (ret) 175 return ret; 176 177 return sysfs_emit(buf, "ref:%llu del:%llu\n", 178 fb_ctrs.reference, fb_ctrs.delivered); 179 } 180 define_one_cppc_ro(feedback_ctrs); 181 182 static struct attribute *cppc_attrs[] = { 183 &feedback_ctrs.attr, 184 &reference_perf.attr, 185 &wraparound_time.attr, 186 &highest_perf.attr, 187 &lowest_perf.attr, 188 &lowest_nonlinear_perf.attr, 189 &nominal_perf.attr, 190 &nominal_freq.attr, 191 &lowest_freq.attr, 192 NULL 193 }; 194 ATTRIBUTE_GROUPS(cppc); 195 196 static struct kobj_type cppc_ktype = { 197 .sysfs_ops = &kobj_sysfs_ops, 198 .default_groups = cppc_groups, 199 }; 200 201 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) 202 { 203 int ret, status; 204 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 205 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 206 pcc_ss_data->pcc_comm_addr; 207 208 if (!pcc_ss_data->platform_owns_pcc) 209 return 0; 210 211 /* 212 * Poll PCC status register every 3us(delay_us) for maximum of 213 * deadline_us(timeout_us) until PCC command complete bit is set(cond) 214 */ 215 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status, 216 status & PCC_CMD_COMPLETE_MASK, 3, 217 pcc_ss_data->deadline_us); 218 219 if (likely(!ret)) { 220 pcc_ss_data->platform_owns_pcc = false; 221 if (chk_err_bit && (status & PCC_ERROR_MASK)) 222 ret = -EIO; 223 } 224 225 if (unlikely(ret)) 226 pr_err("PCC check channel failed for ss: %d. ret=%d\n", 227 pcc_ss_id, ret); 228 229 return ret; 230 } 231 232 /* 233 * This function transfers the ownership of the PCC to the platform 234 * So it must be called while holding write_lock(pcc_lock) 235 */ 236 static int send_pcc_cmd(int pcc_ss_id, u16 cmd) 237 { 238 int ret = -EIO, i; 239 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 240 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 241 pcc_ss_data->pcc_comm_addr; 242 unsigned int time_delta; 243 244 /* 245 * For CMD_WRITE we know for a fact the caller should have checked 246 * the channel before writing to PCC space 247 */ 248 if (cmd == CMD_READ) { 249 /* 250 * If there are pending cpc_writes, then we stole the channel 251 * before write completion, so first send a WRITE command to 252 * platform 253 */ 254 if (pcc_ss_data->pending_pcc_write_cmd) 255 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 256 257 ret = check_pcc_chan(pcc_ss_id, false); 258 if (ret) 259 goto end; 260 } else /* CMD_WRITE */ 261 pcc_ss_data->pending_pcc_write_cmd = FALSE; 262 263 /* 264 * Handle the Minimum Request Turnaround Time(MRTT) 265 * "The minimum amount of time that OSPM must wait after the completion 266 * of a command before issuing the next command, in microseconds" 267 */ 268 if (pcc_ss_data->pcc_mrtt) { 269 time_delta = ktime_us_delta(ktime_get(), 270 pcc_ss_data->last_cmd_cmpl_time); 271 if (pcc_ss_data->pcc_mrtt > time_delta) 272 udelay(pcc_ss_data->pcc_mrtt - time_delta); 273 } 274 275 /* 276 * Handle the non-zero Maximum Periodic Access Rate(MPAR) 277 * "The maximum number of periodic requests that the subspace channel can 278 * support, reported in commands per minute. 0 indicates no limitation." 279 * 280 * This parameter should be ideally zero or large enough so that it can 281 * handle maximum number of requests that all the cores in the system can 282 * collectively generate. If it is not, we will follow the spec and just 283 * not send the request to the platform after hitting the MPAR limit in 284 * any 60s window 285 */ 286 if (pcc_ss_data->pcc_mpar) { 287 if (pcc_ss_data->mpar_count == 0) { 288 time_delta = ktime_ms_delta(ktime_get(), 289 pcc_ss_data->last_mpar_reset); 290 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) { 291 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit", 292 pcc_ss_id); 293 ret = -EIO; 294 goto end; 295 } 296 pcc_ss_data->last_mpar_reset = ktime_get(); 297 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar; 298 } 299 pcc_ss_data->mpar_count--; 300 } 301 302 /* Write to the shared comm region. */ 303 writew_relaxed(cmd, &generic_comm_base->command); 304 305 /* Flip CMD COMPLETE bit */ 306 writew_relaxed(0, &generic_comm_base->status); 307 308 pcc_ss_data->platform_owns_pcc = true; 309 310 /* Ring doorbell */ 311 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd); 312 if (ret < 0) { 313 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n", 314 pcc_ss_id, cmd, ret); 315 goto end; 316 } 317 318 /* wait for completion and check for PCC error bit */ 319 ret = check_pcc_chan(pcc_ss_id, true); 320 321 if (pcc_ss_data->pcc_mrtt) 322 pcc_ss_data->last_cmd_cmpl_time = ktime_get(); 323 324 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq) 325 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret); 326 else 327 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret); 328 329 end: 330 if (cmd == CMD_WRITE) { 331 if (unlikely(ret)) { 332 for_each_possible_cpu(i) { 333 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i); 334 335 if (!desc) 336 continue; 337 338 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt) 339 desc->write_cmd_status = ret; 340 } 341 } 342 pcc_ss_data->pcc_write_cnt++; 343 wake_up_all(&pcc_ss_data->pcc_write_wait_q); 344 } 345 346 return ret; 347 } 348 349 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) 350 { 351 if (ret < 0) 352 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", 353 *(u16 *)msg, ret); 354 else 355 pr_debug("TX completed. CMD sent:%x, ret:%d\n", 356 *(u16 *)msg, ret); 357 } 358 359 static struct mbox_client cppc_mbox_cl = { 360 .tx_done = cppc_chan_tx_done, 361 .knows_txdone = true, 362 }; 363 364 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) 365 { 366 int result = -EFAULT; 367 acpi_status status = AE_OK; 368 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 369 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; 370 struct acpi_buffer state = {0, NULL}; 371 union acpi_object *psd = NULL; 372 struct acpi_psd_package *pdomain; 373 374 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, 375 &buffer, ACPI_TYPE_PACKAGE); 376 if (status == AE_NOT_FOUND) /* _PSD is optional */ 377 return 0; 378 if (ACPI_FAILURE(status)) 379 return -ENODEV; 380 381 psd = buffer.pointer; 382 if (!psd || psd->package.count != 1) { 383 pr_debug("Invalid _PSD data\n"); 384 goto end; 385 } 386 387 pdomain = &(cpc_ptr->domain_info); 388 389 state.length = sizeof(struct acpi_psd_package); 390 state.pointer = pdomain; 391 392 status = acpi_extract_package(&(psd->package.elements[0]), 393 &format, &state); 394 if (ACPI_FAILURE(status)) { 395 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); 396 goto end; 397 } 398 399 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { 400 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); 401 goto end; 402 } 403 404 if (pdomain->revision != ACPI_PSD_REV0_REVISION) { 405 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); 406 goto end; 407 } 408 409 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && 410 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && 411 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { 412 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); 413 goto end; 414 } 415 416 result = 0; 417 end: 418 kfree(buffer.pointer); 419 return result; 420 } 421 422 bool acpi_cpc_valid(void) 423 { 424 struct cpc_desc *cpc_ptr; 425 int cpu; 426 427 if (acpi_disabled) 428 return false; 429 430 for_each_present_cpu(cpu) { 431 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 432 if (!cpc_ptr) 433 return false; 434 } 435 436 return true; 437 } 438 EXPORT_SYMBOL_GPL(acpi_cpc_valid); 439 440 bool cppc_allow_fast_switch(void) 441 { 442 struct cpc_register_resource *desired_reg; 443 struct cpc_desc *cpc_ptr; 444 int cpu; 445 446 for_each_possible_cpu(cpu) { 447 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 448 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF]; 449 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) && 450 !CPC_IN_SYSTEM_IO(desired_reg)) 451 return false; 452 } 453 454 return true; 455 } 456 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch); 457 458 /** 459 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu 460 * @cpu: Find all CPUs that share a domain with cpu. 461 * @cpu_data: Pointer to CPU specific CPPC data including PSD info. 462 * 463 * Return: 0 for success or negative value for err. 464 */ 465 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data) 466 { 467 struct cpc_desc *cpc_ptr, *match_cpc_ptr; 468 struct acpi_psd_package *match_pdomain; 469 struct acpi_psd_package *pdomain; 470 int count_target, i; 471 472 /* 473 * Now that we have _PSD data from all CPUs, let's setup P-state 474 * domain info. 475 */ 476 cpc_ptr = per_cpu(cpc_desc_ptr, cpu); 477 if (!cpc_ptr) 478 return -EFAULT; 479 480 pdomain = &(cpc_ptr->domain_info); 481 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 482 if (pdomain->num_processors <= 1) 483 return 0; 484 485 /* Validate the Domain info */ 486 count_target = pdomain->num_processors; 487 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) 488 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL; 489 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) 490 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW; 491 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) 492 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY; 493 494 for_each_possible_cpu(i) { 495 if (i == cpu) 496 continue; 497 498 match_cpc_ptr = per_cpu(cpc_desc_ptr, i); 499 if (!match_cpc_ptr) 500 goto err_fault; 501 502 match_pdomain = &(match_cpc_ptr->domain_info); 503 if (match_pdomain->domain != pdomain->domain) 504 continue; 505 506 /* Here i and cpu are in the same domain */ 507 if (match_pdomain->num_processors != count_target) 508 goto err_fault; 509 510 if (pdomain->coord_type != match_pdomain->coord_type) 511 goto err_fault; 512 513 cpumask_set_cpu(i, cpu_data->shared_cpu_map); 514 } 515 516 return 0; 517 518 err_fault: 519 /* Assume no coordination on any error parsing domain info */ 520 cpumask_clear(cpu_data->shared_cpu_map); 521 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map); 522 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE; 523 524 return -EFAULT; 525 } 526 EXPORT_SYMBOL_GPL(acpi_get_psd_map); 527 528 static int register_pcc_channel(int pcc_ss_idx) 529 { 530 struct pcc_mbox_chan *pcc_chan; 531 u64 usecs_lat; 532 533 if (pcc_ss_idx >= 0) { 534 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx); 535 536 if (IS_ERR(pcc_chan)) { 537 pr_err("Failed to find PCC channel for subspace %d\n", 538 pcc_ss_idx); 539 return -ENODEV; 540 } 541 542 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan; 543 /* 544 * cppc_ss->latency is just a Nominal value. In reality 545 * the remote processor could be much slower to reply. 546 * So add an arbitrary amount of wait on top of Nominal. 547 */ 548 usecs_lat = NUM_RETRIES * pcc_chan->latency; 549 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat; 550 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time; 551 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate; 552 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency; 553 554 pcc_data[pcc_ss_idx]->pcc_comm_addr = 555 acpi_os_ioremap(pcc_chan->shmem_base_addr, 556 pcc_chan->shmem_size); 557 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) { 558 pr_err("Failed to ioremap PCC comm region mem for %d\n", 559 pcc_ss_idx); 560 return -ENOMEM; 561 } 562 563 /* Set flag so that we don't come here for each CPU. */ 564 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true; 565 } 566 567 return 0; 568 } 569 570 /** 571 * cpc_ffh_supported() - check if FFH reading supported 572 * 573 * Check if the architecture has support for functional fixed hardware 574 * read/write capability. 575 * 576 * Return: true for supported, false for not supported 577 */ 578 bool __weak cpc_ffh_supported(void) 579 { 580 return false; 581 } 582 583 /** 584 * cpc_supported_by_cpu() - check if CPPC is supported by CPU 585 * 586 * Check if the architectural support for CPPC is present even 587 * if the _OSC hasn't prescribed it 588 * 589 * Return: true for supported, false for not supported 590 */ 591 bool __weak cpc_supported_by_cpu(void) 592 { 593 return false; 594 } 595 596 /** 597 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace 598 * 599 * Check and allocate the cppc_pcc_data memory. 600 * In some processor configurations it is possible that same subspace 601 * is shared between multiple CPUs. This is seen especially in CPUs 602 * with hardware multi-threading support. 603 * 604 * Return: 0 for success, errno for failure 605 */ 606 static int pcc_data_alloc(int pcc_ss_id) 607 { 608 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES) 609 return -EINVAL; 610 611 if (pcc_data[pcc_ss_id]) { 612 pcc_data[pcc_ss_id]->refcount++; 613 } else { 614 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data), 615 GFP_KERNEL); 616 if (!pcc_data[pcc_ss_id]) 617 return -ENOMEM; 618 pcc_data[pcc_ss_id]->refcount++; 619 } 620 621 return 0; 622 } 623 624 /* 625 * An example CPC table looks like the following. 626 * 627 * Name (_CPC, Package() { 628 * 17, // NumEntries 629 * 1, // Revision 630 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance 631 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance 632 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance 633 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance 634 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register 635 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register 636 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)}, 637 * ... 638 * ... 639 * ... 640 * } 641 * Each Register() encodes how to access that specific register. 642 * e.g. a sample PCC entry has the following encoding: 643 * 644 * Register ( 645 * PCC, // AddressSpaceKeyword 646 * 8, // RegisterBitWidth 647 * 8, // RegisterBitOffset 648 * 0x30, // RegisterAddress 649 * 9, // AccessSize (subspace ID) 650 * ) 651 */ 652 653 #ifndef arch_init_invariance_cppc 654 static inline void arch_init_invariance_cppc(void) { } 655 #endif 656 657 /** 658 * acpi_cppc_processor_probe - Search for per CPU _CPC objects. 659 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 660 * 661 * Return: 0 for success or negative value for err. 662 */ 663 int acpi_cppc_processor_probe(struct acpi_processor *pr) 664 { 665 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 666 union acpi_object *out_obj, *cpc_obj; 667 struct cpc_desc *cpc_ptr; 668 struct cpc_reg *gas_t; 669 struct device *cpu_dev; 670 acpi_handle handle = pr->handle; 671 unsigned int num_ent, i, cpc_rev; 672 int pcc_subspace_id = -1; 673 acpi_status status; 674 int ret = -ENODATA; 675 676 if (!osc_sb_cppc2_support_acked) { 677 pr_debug("CPPC v2 _OSC not acked\n"); 678 if (!cpc_supported_by_cpu()) 679 return -ENODEV; 680 } 681 682 /* Parse the ACPI _CPC table for this CPU. */ 683 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, 684 ACPI_TYPE_PACKAGE); 685 if (ACPI_FAILURE(status)) { 686 ret = -ENODEV; 687 goto out_buf_free; 688 } 689 690 out_obj = (union acpi_object *) output.pointer; 691 692 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); 693 if (!cpc_ptr) { 694 ret = -ENOMEM; 695 goto out_buf_free; 696 } 697 698 /* First entry is NumEntries. */ 699 cpc_obj = &out_obj->package.elements[0]; 700 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 701 num_ent = cpc_obj->integer.value; 702 if (num_ent <= 1) { 703 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n", 704 num_ent, pr->id); 705 goto out_free; 706 } 707 } else { 708 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n", 709 cpc_obj->type, pr->id); 710 goto out_free; 711 } 712 713 /* Second entry should be revision. */ 714 cpc_obj = &out_obj->package.elements[1]; 715 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 716 cpc_rev = cpc_obj->integer.value; 717 } else { 718 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n", 719 cpc_obj->type, pr->id); 720 goto out_free; 721 } 722 723 if (cpc_rev < CPPC_V2_REV) { 724 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev, 725 pr->id); 726 goto out_free; 727 } 728 729 /* 730 * Disregard _CPC if the number of entries in the return pachage is not 731 * as expected, but support future revisions being proper supersets of 732 * the v3 and only causing more entries to be returned by _CPC. 733 */ 734 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) || 735 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) || 736 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) { 737 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n", 738 num_ent, pr->id); 739 goto out_free; 740 } 741 if (cpc_rev > CPPC_V3_REV) { 742 num_ent = CPPC_V3_NUM_ENT; 743 cpc_rev = CPPC_V3_REV; 744 } 745 746 cpc_ptr->num_entries = num_ent; 747 cpc_ptr->version = cpc_rev; 748 749 /* Iterate through remaining entries in _CPC */ 750 for (i = 2; i < num_ent; i++) { 751 cpc_obj = &out_obj->package.elements[i]; 752 753 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 754 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; 755 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; 756 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { 757 gas_t = (struct cpc_reg *) 758 cpc_obj->buffer.pointer; 759 760 /* 761 * The PCC Subspace index is encoded inside 762 * the CPC table entries. The same PCC index 763 * will be used for all the PCC entries, 764 * so extract it only once. 765 */ 766 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 767 if (pcc_subspace_id < 0) { 768 pcc_subspace_id = gas_t->access_width; 769 if (pcc_data_alloc(pcc_subspace_id)) 770 goto out_free; 771 } else if (pcc_subspace_id != gas_t->access_width) { 772 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n", 773 pr->id); 774 goto out_free; 775 } 776 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 777 if (gas_t->address) { 778 void __iomem *addr; 779 780 if (!osc_cpc_flexible_adr_space_confirmed) { 781 pr_debug("Flexible address space capability not supported\n"); 782 if (!cpc_supported_by_cpu()) 783 goto out_free; 784 } 785 786 addr = ioremap(gas_t->address, gas_t->bit_width/8); 787 if (!addr) 788 goto out_free; 789 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr; 790 } 791 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 792 if (gas_t->access_width < 1 || gas_t->access_width > 3) { 793 /* 794 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit. 795 * SystemIO doesn't implement 64-bit 796 * registers. 797 */ 798 pr_debug("Invalid access width %d for SystemIO register in _CPC\n", 799 gas_t->access_width); 800 goto out_free; 801 } 802 if (gas_t->address & OVER_16BTS_MASK) { 803 /* SystemIO registers use 16-bit integer addresses */ 804 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n", 805 gas_t->address); 806 goto out_free; 807 } 808 if (!osc_cpc_flexible_adr_space_confirmed) { 809 pr_debug("Flexible address space capability not supported\n"); 810 if (!cpc_supported_by_cpu()) 811 goto out_free; 812 } 813 } else { 814 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) { 815 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */ 816 pr_debug("Unsupported register type (%d) in _CPC\n", 817 gas_t->space_id); 818 goto out_free; 819 } 820 } 821 822 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; 823 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); 824 } else { 825 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n", 826 i, pr->id); 827 goto out_free; 828 } 829 } 830 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; 831 832 /* 833 * Initialize the remaining cpc_regs as unsupported. 834 * Example: In case FW exposes CPPC v2, the below loop will initialize 835 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported 836 */ 837 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) { 838 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER; 839 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0; 840 } 841 842 843 /* Store CPU Logical ID */ 844 cpc_ptr->cpu_id = pr->id; 845 846 /* Parse PSD data for this CPU */ 847 ret = acpi_get_psd(cpc_ptr, handle); 848 if (ret) 849 goto out_free; 850 851 /* Register PCC channel once for all PCC subspace ID. */ 852 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) { 853 ret = register_pcc_channel(pcc_subspace_id); 854 if (ret) 855 goto out_free; 856 857 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock); 858 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q); 859 } 860 861 /* Everything looks okay */ 862 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); 863 864 /* Add per logical CPU nodes for reading its feedback counters. */ 865 cpu_dev = get_cpu_device(pr->id); 866 if (!cpu_dev) { 867 ret = -EINVAL; 868 goto out_free; 869 } 870 871 /* Plug PSD data into this CPU's CPC descriptor. */ 872 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; 873 874 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj, 875 "acpi_cppc"); 876 if (ret) { 877 per_cpu(cpc_desc_ptr, pr->id) = NULL; 878 kobject_put(&cpc_ptr->kobj); 879 goto out_free; 880 } 881 882 arch_init_invariance_cppc(); 883 884 kfree(output.pointer); 885 return 0; 886 887 out_free: 888 /* Free all the mapped sys mem areas for this CPU */ 889 for (i = 2; i < cpc_ptr->num_entries; i++) { 890 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 891 892 if (addr) 893 iounmap(addr); 894 } 895 kfree(cpc_ptr); 896 897 out_buf_free: 898 kfree(output.pointer); 899 return ret; 900 } 901 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); 902 903 /** 904 * acpi_cppc_processor_exit - Cleanup CPC structs. 905 * @pr: Ptr to acpi_processor containing this CPU's logical ID. 906 * 907 * Return: Void 908 */ 909 void acpi_cppc_processor_exit(struct acpi_processor *pr) 910 { 911 struct cpc_desc *cpc_ptr; 912 unsigned int i; 913 void __iomem *addr; 914 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id); 915 916 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) { 917 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) { 918 pcc_data[pcc_ss_id]->refcount--; 919 if (!pcc_data[pcc_ss_id]->refcount) { 920 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel); 921 kfree(pcc_data[pcc_ss_id]); 922 pcc_data[pcc_ss_id] = NULL; 923 } 924 } 925 } 926 927 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); 928 if (!cpc_ptr) 929 return; 930 931 /* Free all the mapped sys mem areas for this CPU */ 932 for (i = 2; i < cpc_ptr->num_entries; i++) { 933 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 934 if (addr) 935 iounmap(addr); 936 } 937 938 kobject_put(&cpc_ptr->kobj); 939 kfree(cpc_ptr); 940 } 941 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); 942 943 /** 944 * cpc_read_ffh() - Read FFH register 945 * @cpunum: CPU number to read 946 * @reg: cppc register information 947 * @val: place holder for return value 948 * 949 * Read bit_width bits from a specified address and bit_offset 950 * 951 * Return: 0 for success and error code 952 */ 953 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val) 954 { 955 return -ENOTSUPP; 956 } 957 958 /** 959 * cpc_write_ffh() - Write FFH register 960 * @cpunum: CPU number to write 961 * @reg: cppc register information 962 * @val: value to write 963 * 964 * Write value of bit_width bits to a specified address and bit_offset 965 * 966 * Return: 0 for success and error code 967 */ 968 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) 969 { 970 return -ENOTSUPP; 971 } 972 973 /* 974 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be 975 * as fast as possible. We have already mapped the PCC subspace during init, so 976 * we can directly write to it. 977 */ 978 979 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val) 980 { 981 void __iomem *vaddr = NULL; 982 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 983 struct cpc_reg *reg = ®_res->cpc_entry.reg; 984 985 if (reg_res->type == ACPI_TYPE_INTEGER) { 986 *val = reg_res->cpc_entry.int_value; 987 return 0; 988 } 989 990 *val = 0; 991 992 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 993 u32 width = 8 << (reg->access_width - 1); 994 u32 val_u32; 995 acpi_status status; 996 997 status = acpi_os_read_port((acpi_io_address)reg->address, 998 &val_u32, width); 999 if (ACPI_FAILURE(status)) { 1000 pr_debug("Error: Failed to read SystemIO port %llx\n", 1001 reg->address); 1002 return -EFAULT; 1003 } 1004 1005 *val = val_u32; 1006 return 0; 1007 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) 1008 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 1009 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1010 vaddr = reg_res->sys_mem_vaddr; 1011 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1012 return cpc_read_ffh(cpu, reg, val); 1013 else 1014 return acpi_os_read_memory((acpi_physical_address)reg->address, 1015 val, reg->bit_width); 1016 1017 switch (reg->bit_width) { 1018 case 8: 1019 *val = readb_relaxed(vaddr); 1020 break; 1021 case 16: 1022 *val = readw_relaxed(vaddr); 1023 break; 1024 case 32: 1025 *val = readl_relaxed(vaddr); 1026 break; 1027 case 64: 1028 *val = readq_relaxed(vaddr); 1029 break; 1030 default: 1031 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n", 1032 reg->bit_width, pcc_ss_id); 1033 return -EFAULT; 1034 } 1035 1036 return 0; 1037 } 1038 1039 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val) 1040 { 1041 int ret_val = 0; 1042 void __iomem *vaddr = NULL; 1043 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1044 struct cpc_reg *reg = ®_res->cpc_entry.reg; 1045 1046 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1047 u32 width = 8 << (reg->access_width - 1); 1048 acpi_status status; 1049 1050 status = acpi_os_write_port((acpi_io_address)reg->address, 1051 (u32)val, width); 1052 if (ACPI_FAILURE(status)) { 1053 pr_debug("Error: Failed to write SystemIO port %llx\n", 1054 reg->address); 1055 return -EFAULT; 1056 } 1057 1058 return 0; 1059 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) 1060 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 1061 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1062 vaddr = reg_res->sys_mem_vaddr; 1063 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1064 return cpc_write_ffh(cpu, reg, val); 1065 else 1066 return acpi_os_write_memory((acpi_physical_address)reg->address, 1067 val, reg->bit_width); 1068 1069 switch (reg->bit_width) { 1070 case 8: 1071 writeb_relaxed(val, vaddr); 1072 break; 1073 case 16: 1074 writew_relaxed(val, vaddr); 1075 break; 1076 case 32: 1077 writel_relaxed(val, vaddr); 1078 break; 1079 case 64: 1080 writeq_relaxed(val, vaddr); 1081 break; 1082 default: 1083 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n", 1084 reg->bit_width, pcc_ss_id); 1085 ret_val = -EFAULT; 1086 break; 1087 } 1088 1089 return ret_val; 1090 } 1091 1092 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf) 1093 { 1094 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1095 struct cpc_register_resource *reg; 1096 1097 if (!cpc_desc) { 1098 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1099 return -ENODEV; 1100 } 1101 1102 reg = &cpc_desc->cpc_regs[reg_idx]; 1103 1104 if (CPC_IN_PCC(reg)) { 1105 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1106 struct cppc_pcc_data *pcc_ss_data = NULL; 1107 int ret = 0; 1108 1109 if (pcc_ss_id < 0) 1110 return -EIO; 1111 1112 pcc_ss_data = pcc_data[pcc_ss_id]; 1113 1114 down_write(&pcc_ss_data->pcc_lock); 1115 1116 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) 1117 cpc_read(cpunum, reg, perf); 1118 else 1119 ret = -EIO; 1120 1121 up_write(&pcc_ss_data->pcc_lock); 1122 1123 return ret; 1124 } 1125 1126 cpc_read(cpunum, reg, perf); 1127 1128 return 0; 1129 } 1130 1131 /** 1132 * cppc_get_desired_perf - Get the desired performance register value. 1133 * @cpunum: CPU from which to get desired performance. 1134 * @desired_perf: Return address. 1135 * 1136 * Return: 0 for success, -EIO otherwise. 1137 */ 1138 int cppc_get_desired_perf(int cpunum, u64 *desired_perf) 1139 { 1140 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf); 1141 } 1142 EXPORT_SYMBOL_GPL(cppc_get_desired_perf); 1143 1144 /** 1145 * cppc_get_nominal_perf - Get the nominal performance register value. 1146 * @cpunum: CPU from which to get nominal performance. 1147 * @nominal_perf: Return address. 1148 * 1149 * Return: 0 for success, -EIO otherwise. 1150 */ 1151 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf) 1152 { 1153 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf); 1154 } 1155 1156 /** 1157 * cppc_get_perf_caps - Get a CPU's performance capabilities. 1158 * @cpunum: CPU from which to get capabilities info. 1159 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h 1160 * 1161 * Return: 0 for success with perf_caps populated else -ERRNO. 1162 */ 1163 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) 1164 { 1165 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1166 struct cpc_register_resource *highest_reg, *lowest_reg, 1167 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg, 1168 *low_freq_reg = NULL, *nom_freq_reg = NULL; 1169 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0; 1170 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1171 struct cppc_pcc_data *pcc_ss_data = NULL; 1172 int ret = 0, regs_in_pcc = 0; 1173 1174 if (!cpc_desc) { 1175 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1176 return -ENODEV; 1177 } 1178 1179 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; 1180 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; 1181 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; 1182 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1183 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ]; 1184 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ]; 1185 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF]; 1186 1187 /* Are any of the regs PCC ?*/ 1188 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || 1189 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) || 1190 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) { 1191 if (pcc_ss_id < 0) { 1192 pr_debug("Invalid pcc_ss_id\n"); 1193 return -ENODEV; 1194 } 1195 pcc_ss_data = pcc_data[pcc_ss_id]; 1196 regs_in_pcc = 1; 1197 down_write(&pcc_ss_data->pcc_lock); 1198 /* Ring doorbell once to update PCC subspace */ 1199 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1200 ret = -EIO; 1201 goto out_err; 1202 } 1203 } 1204 1205 cpc_read(cpunum, highest_reg, &high); 1206 perf_caps->highest_perf = high; 1207 1208 cpc_read(cpunum, lowest_reg, &low); 1209 perf_caps->lowest_perf = low; 1210 1211 cpc_read(cpunum, nominal_reg, &nom); 1212 perf_caps->nominal_perf = nom; 1213 1214 if (guaranteed_reg->type != ACPI_TYPE_BUFFER || 1215 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) { 1216 perf_caps->guaranteed_perf = 0; 1217 } else { 1218 cpc_read(cpunum, guaranteed_reg, &guaranteed); 1219 perf_caps->guaranteed_perf = guaranteed; 1220 } 1221 1222 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear); 1223 perf_caps->lowest_nonlinear_perf = min_nonlinear; 1224 1225 if (!high || !low || !nom || !min_nonlinear) 1226 ret = -EFAULT; 1227 1228 /* Read optional lowest and nominal frequencies if present */ 1229 if (CPC_SUPPORTED(low_freq_reg)) 1230 cpc_read(cpunum, low_freq_reg, &low_f); 1231 1232 if (CPC_SUPPORTED(nom_freq_reg)) 1233 cpc_read(cpunum, nom_freq_reg, &nom_f); 1234 1235 perf_caps->lowest_freq = low_f; 1236 perf_caps->nominal_freq = nom_f; 1237 1238 1239 out_err: 1240 if (regs_in_pcc) 1241 up_write(&pcc_ss_data->pcc_lock); 1242 return ret; 1243 } 1244 EXPORT_SYMBOL_GPL(cppc_get_perf_caps); 1245 1246 /** 1247 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region. 1248 * 1249 * CPPC has flexibility about how CPU performance counters are accessed. 1250 * One of the choices is PCC regions, which can have a high access latency. This 1251 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time. 1252 * 1253 * Return: true if any of the counters are in PCC regions, false otherwise 1254 */ 1255 bool cppc_perf_ctrs_in_pcc(void) 1256 { 1257 int cpu; 1258 1259 for_each_present_cpu(cpu) { 1260 struct cpc_register_resource *ref_perf_reg; 1261 struct cpc_desc *cpc_desc; 1262 1263 cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1264 1265 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) || 1266 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) || 1267 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME])) 1268 return true; 1269 1270 1271 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1272 1273 /* 1274 * If reference perf register is not supported then we should 1275 * use the nominal perf value 1276 */ 1277 if (!CPC_SUPPORTED(ref_perf_reg)) 1278 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1279 1280 if (CPC_IN_PCC(ref_perf_reg)) 1281 return true; 1282 } 1283 1284 return false; 1285 } 1286 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc); 1287 1288 /** 1289 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters. 1290 * @cpunum: CPU from which to read counters. 1291 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h 1292 * 1293 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. 1294 */ 1295 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) 1296 { 1297 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1298 struct cpc_register_resource *delivered_reg, *reference_reg, 1299 *ref_perf_reg, *ctr_wrap_reg; 1300 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1301 struct cppc_pcc_data *pcc_ss_data = NULL; 1302 u64 delivered, reference, ref_perf, ctr_wrap_time; 1303 int ret = 0, regs_in_pcc = 0; 1304 1305 if (!cpc_desc) { 1306 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1307 return -ENODEV; 1308 } 1309 1310 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; 1311 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; 1312 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1313 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME]; 1314 1315 /* 1316 * If reference perf register is not supported then we should 1317 * use the nominal perf value 1318 */ 1319 if (!CPC_SUPPORTED(ref_perf_reg)) 1320 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1321 1322 /* Are any of the regs PCC ?*/ 1323 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || 1324 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { 1325 if (pcc_ss_id < 0) { 1326 pr_debug("Invalid pcc_ss_id\n"); 1327 return -ENODEV; 1328 } 1329 pcc_ss_data = pcc_data[pcc_ss_id]; 1330 down_write(&pcc_ss_data->pcc_lock); 1331 regs_in_pcc = 1; 1332 /* Ring doorbell once to update PCC subspace */ 1333 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1334 ret = -EIO; 1335 goto out_err; 1336 } 1337 } 1338 1339 cpc_read(cpunum, delivered_reg, &delivered); 1340 cpc_read(cpunum, reference_reg, &reference); 1341 cpc_read(cpunum, ref_perf_reg, &ref_perf); 1342 1343 /* 1344 * Per spec, if ctr_wrap_time optional register is unsupported, then the 1345 * performance counters are assumed to never wrap during the lifetime of 1346 * platform 1347 */ 1348 ctr_wrap_time = (u64)(~((u64)0)); 1349 if (CPC_SUPPORTED(ctr_wrap_reg)) 1350 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time); 1351 1352 if (!delivered || !reference || !ref_perf) { 1353 ret = -EFAULT; 1354 goto out_err; 1355 } 1356 1357 perf_fb_ctrs->delivered = delivered; 1358 perf_fb_ctrs->reference = reference; 1359 perf_fb_ctrs->reference_perf = ref_perf; 1360 perf_fb_ctrs->wraparound_time = ctr_wrap_time; 1361 out_err: 1362 if (regs_in_pcc) 1363 up_write(&pcc_ss_data->pcc_lock); 1364 return ret; 1365 } 1366 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); 1367 1368 /** 1369 * cppc_set_enable - Set to enable CPPC on the processor by writing the 1370 * Continuous Performance Control package EnableRegister field. 1371 * @cpu: CPU for which to enable CPPC register. 1372 * @enable: 0 - disable, 1 - enable CPPC feature on the processor. 1373 * 1374 * Return: 0 for success, -ERRNO or -EIO otherwise. 1375 */ 1376 int cppc_set_enable(int cpu, bool enable) 1377 { 1378 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1379 struct cpc_register_resource *enable_reg; 1380 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1381 struct cppc_pcc_data *pcc_ss_data = NULL; 1382 int ret = -EINVAL; 1383 1384 if (!cpc_desc) { 1385 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1386 return -EINVAL; 1387 } 1388 1389 enable_reg = &cpc_desc->cpc_regs[ENABLE]; 1390 1391 if (CPC_IN_PCC(enable_reg)) { 1392 1393 if (pcc_ss_id < 0) 1394 return -EIO; 1395 1396 ret = cpc_write(cpu, enable_reg, enable); 1397 if (ret) 1398 return ret; 1399 1400 pcc_ss_data = pcc_data[pcc_ss_id]; 1401 1402 down_write(&pcc_ss_data->pcc_lock); 1403 /* after writing CPC, transfer the ownership of PCC to platfrom */ 1404 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1405 up_write(&pcc_ss_data->pcc_lock); 1406 return ret; 1407 } 1408 1409 return cpc_write(cpu, enable_reg, enable); 1410 } 1411 EXPORT_SYMBOL_GPL(cppc_set_enable); 1412 1413 /** 1414 * cppc_set_perf - Set a CPU's performance controls. 1415 * @cpu: CPU for which to set performance controls. 1416 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h 1417 * 1418 * Return: 0 for success, -ERRNO otherwise. 1419 */ 1420 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) 1421 { 1422 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1423 struct cpc_register_resource *desired_reg; 1424 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1425 struct cppc_pcc_data *pcc_ss_data = NULL; 1426 int ret = 0; 1427 1428 if (!cpc_desc) { 1429 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1430 return -ENODEV; 1431 } 1432 1433 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1434 1435 /* 1436 * This is Phase-I where we want to write to CPC registers 1437 * -> We want all CPUs to be able to execute this phase in parallel 1438 * 1439 * Since read_lock can be acquired by multiple CPUs simultaneously we 1440 * achieve that goal here 1441 */ 1442 if (CPC_IN_PCC(desired_reg)) { 1443 if (pcc_ss_id < 0) { 1444 pr_debug("Invalid pcc_ss_id\n"); 1445 return -ENODEV; 1446 } 1447 pcc_ss_data = pcc_data[pcc_ss_id]; 1448 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ 1449 if (pcc_ss_data->platform_owns_pcc) { 1450 ret = check_pcc_chan(pcc_ss_id, false); 1451 if (ret) { 1452 up_read(&pcc_ss_data->pcc_lock); 1453 return ret; 1454 } 1455 } 1456 /* 1457 * Update the pending_write to make sure a PCC CMD_READ will not 1458 * arrive and steal the channel during the switch to write lock 1459 */ 1460 pcc_ss_data->pending_pcc_write_cmd = true; 1461 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt; 1462 cpc_desc->write_cmd_status = 0; 1463 } 1464 1465 /* 1466 * Skip writing MIN/MAX until Linux knows how to come up with 1467 * useful values. 1468 */ 1469 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf); 1470 1471 if (CPC_IN_PCC(desired_reg)) 1472 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */ 1473 /* 1474 * This is Phase-II where we transfer the ownership of PCC to Platform 1475 * 1476 * Short Summary: Basically if we think of a group of cppc_set_perf 1477 * requests that happened in short overlapping interval. The last CPU to 1478 * come out of Phase-I will enter Phase-II and ring the doorbell. 1479 * 1480 * We have the following requirements for Phase-II: 1481 * 1. We want to execute Phase-II only when there are no CPUs 1482 * currently executing in Phase-I 1483 * 2. Once we start Phase-II we want to avoid all other CPUs from 1484 * entering Phase-I. 1485 * 3. We want only one CPU among all those who went through Phase-I 1486 * to run phase-II 1487 * 1488 * If write_trylock fails to get the lock and doesn't transfer the 1489 * PCC ownership to the platform, then one of the following will be TRUE 1490 * 1. There is at-least one CPU in Phase-I which will later execute 1491 * write_trylock, so the CPUs in Phase-I will be responsible for 1492 * executing the Phase-II. 1493 * 2. Some other CPU has beaten this CPU to successfully execute the 1494 * write_trylock and has already acquired the write_lock. We know for a 1495 * fact it (other CPU acquiring the write_lock) couldn't have happened 1496 * before this CPU's Phase-I as we held the read_lock. 1497 * 3. Some other CPU executing pcc CMD_READ has stolen the 1498 * down_write, in which case, send_pcc_cmd will check for pending 1499 * CMD_WRITE commands by checking the pending_pcc_write_cmd. 1500 * So this CPU can be certain that its request will be delivered 1501 * So in all cases, this CPU knows that its request will be delivered 1502 * by another CPU and can return 1503 * 1504 * After getting the down_write we still need to check for 1505 * pending_pcc_write_cmd to take care of the following scenario 1506 * The thread running this code could be scheduled out between 1507 * Phase-I and Phase-II. Before it is scheduled back on, another CPU 1508 * could have delivered the request to Platform by triggering the 1509 * doorbell and transferred the ownership of PCC to platform. So this 1510 * avoids triggering an unnecessary doorbell and more importantly before 1511 * triggering the doorbell it makes sure that the PCC channel ownership 1512 * is still with OSPM. 1513 * pending_pcc_write_cmd can also be cleared by a different CPU, if 1514 * there was a pcc CMD_READ waiting on down_write and it steals the lock 1515 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this 1516 * case during a CMD_READ and if there are pending writes it delivers 1517 * the write command before servicing the read command 1518 */ 1519 if (CPC_IN_PCC(desired_reg)) { 1520 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */ 1521 /* Update only if there are pending write commands */ 1522 if (pcc_ss_data->pending_pcc_write_cmd) 1523 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1524 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */ 1525 } else 1526 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */ 1527 wait_event(pcc_ss_data->pcc_write_wait_q, 1528 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt); 1529 1530 /* send_pcc_cmd updates the status in case of failure */ 1531 ret = cpc_desc->write_cmd_status; 1532 } 1533 return ret; 1534 } 1535 EXPORT_SYMBOL_GPL(cppc_set_perf); 1536 1537 /** 1538 * cppc_get_transition_latency - returns frequency transition latency in ns 1539 * 1540 * ACPI CPPC does not explicitly specify how a platform can specify the 1541 * transition latency for performance change requests. The closest we have 1542 * is the timing information from the PCCT tables which provides the info 1543 * on the number and frequency of PCC commands the platform can handle. 1544 * 1545 * If desired_reg is in the SystemMemory or SystemIo ACPI address space, 1546 * then assume there is no latency. 1547 */ 1548 unsigned int cppc_get_transition_latency(int cpu_num) 1549 { 1550 /* 1551 * Expected transition latency is based on the PCCT timing values 1552 * Below are definition from ACPI spec: 1553 * pcc_nominal- Expected latency to process a command, in microseconds 1554 * pcc_mpar - The maximum number of periodic requests that the subspace 1555 * channel can support, reported in commands per minute. 0 1556 * indicates no limitation. 1557 * pcc_mrtt - The minimum amount of time that OSPM must wait after the 1558 * completion of a command before issuing the next command, 1559 * in microseconds. 1560 */ 1561 unsigned int latency_ns = 0; 1562 struct cpc_desc *cpc_desc; 1563 struct cpc_register_resource *desired_reg; 1564 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num); 1565 struct cppc_pcc_data *pcc_ss_data; 1566 1567 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num); 1568 if (!cpc_desc) 1569 return CPUFREQ_ETERNAL; 1570 1571 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1572 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg)) 1573 return 0; 1574 else if (!CPC_IN_PCC(desired_reg)) 1575 return CPUFREQ_ETERNAL; 1576 1577 if (pcc_ss_id < 0) 1578 return CPUFREQ_ETERNAL; 1579 1580 pcc_ss_data = pcc_data[pcc_ss_id]; 1581 if (pcc_ss_data->pcc_mpar) 1582 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar); 1583 1584 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000); 1585 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000); 1586 1587 return latency_ns; 1588 } 1589 EXPORT_SYMBOL_GPL(cppc_get_transition_latency); 1590