xref: /linux/drivers/acpi/cppc_acpi.c (revision ee8287e068a3995b0f8001dd6931e221dfb7c530)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <asm/unaligned.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct pcc_mbox_chan *pcc_channel;
50 	void __iomem *pcc_comm_addr;
51 	bool pcc_channel_acquired;
52 	unsigned int deadline_us;
53 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54 
55 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58 
59 	/*
60 	 * Lock to provide controlled access to the PCC channel.
61 	 *
62 	 * For performance critical usecases(currently cppc_set_perf)
63 	 *	We need to take read_lock and check if channel belongs to OSPM
64 	 * before reading or writing to PCC subspace
65 	 *	We need to take write_lock before transferring the channel
66 	 * ownership to the platform via a Doorbell
67 	 *	This allows us to batch a number of CPPC requests if they happen
68 	 * to originate in about the same time
69 	 *
70 	 * For non-performance critical usecases(init)
71 	 *	Take write_lock for all purposes which gives exclusive access
72 	 */
73 	struct rw_semaphore pcc_lock;
74 
75 	/* Wait queue for CPUs whose requests were batched */
76 	wait_queue_head_t pcc_write_wait_q;
77 	ktime_t last_cmd_cmpl_time;
78 	ktime_t last_mpar_reset;
79 	int mpar_count;
80 	int refcount;
81 };
82 
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96 
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 						0x8 + (offs))
100 
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
103 				(cpc)->cpc_entry.reg.space_id ==	\
104 				ACPI_ADR_SPACE_PLATFORM_COMM)
105 
106 /* Check if a CPC register is in SystemMemory */
107 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
108 				(cpc)->cpc_entry.reg.space_id ==	\
109 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 
111 /* Check if a CPC register is in SystemIo */
112 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
113 				(cpc)->cpc_entry.reg.space_id ==	\
114 				ACPI_ADR_SPACE_SYSTEM_IO)
115 
116 /* Evaluates to True if reg is a NULL register descriptor */
117 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118 				(reg)->address == 0 &&			\
119 				(reg)->bit_width == 0 &&		\
120 				(reg)->bit_offset == 0 &&		\
121 				(reg)->access_width == 0)
122 
123 /* Evaluates to True if an optional cpc field is supported */
124 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
125 				!!(cpc)->cpc_entry.int_value :		\
126 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
127 /*
128  * Arbitrary Retries in case the remote processor is slow to respond
129  * to PCC commands. Keeping it high enough to cover emulators where
130  * the processors run painfully slow.
131  */
132 #define NUM_RETRIES 500ULL
133 
134 #define OVER_16BTS_MASK ~0xFFFFULL
135 
136 #define define_one_cppc_ro(_name)		\
137 static struct kobj_attribute _name =		\
138 __ATTR(_name, 0444, show_##_name, NULL)
139 
140 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141 
142 #define show_cppc_data(access_fn, struct_name, member_name)		\
143 	static ssize_t show_##member_name(struct kobject *kobj,		\
144 				struct kobj_attribute *attr, char *buf)	\
145 	{								\
146 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
147 		struct struct_name st_name = {0};			\
148 		int ret;						\
149 									\
150 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
151 		if (ret)						\
152 			return ret;					\
153 									\
154 		return sysfs_emit(buf, "%llu\n",		\
155 				(u64)st_name.member_name);		\
156 	}								\
157 	define_one_cppc_ro(member_name)
158 
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
164 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
165 
166 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
167 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
168 
169 /* Check for valid access_width, otherwise, fallback to using bit_width */
170 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
171 
172 /* Shift and apply the mask for CPC reads/writes */
173 #define MASK_VAL(reg, val) (((val) >> (reg)->bit_offset) & 			\
174 					GENMASK(((reg)->bit_width) - 1, 0))
175 
176 static ssize_t show_feedback_ctrs(struct kobject *kobj,
177 		struct kobj_attribute *attr, char *buf)
178 {
179 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
180 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
181 	int ret;
182 
183 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
184 	if (ret)
185 		return ret;
186 
187 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
188 			fb_ctrs.reference, fb_ctrs.delivered);
189 }
190 define_one_cppc_ro(feedback_ctrs);
191 
192 static struct attribute *cppc_attrs[] = {
193 	&feedback_ctrs.attr,
194 	&reference_perf.attr,
195 	&wraparound_time.attr,
196 	&highest_perf.attr,
197 	&lowest_perf.attr,
198 	&lowest_nonlinear_perf.attr,
199 	&nominal_perf.attr,
200 	&nominal_freq.attr,
201 	&lowest_freq.attr,
202 	NULL
203 };
204 ATTRIBUTE_GROUPS(cppc);
205 
206 static const struct kobj_type cppc_ktype = {
207 	.sysfs_ops = &kobj_sysfs_ops,
208 	.default_groups = cppc_groups,
209 };
210 
211 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
212 {
213 	int ret, status;
214 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
215 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
216 		pcc_ss_data->pcc_comm_addr;
217 
218 	if (!pcc_ss_data->platform_owns_pcc)
219 		return 0;
220 
221 	/*
222 	 * Poll PCC status register every 3us(delay_us) for maximum of
223 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
224 	 */
225 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
226 					status & PCC_CMD_COMPLETE_MASK, 3,
227 					pcc_ss_data->deadline_us);
228 
229 	if (likely(!ret)) {
230 		pcc_ss_data->platform_owns_pcc = false;
231 		if (chk_err_bit && (status & PCC_ERROR_MASK))
232 			ret = -EIO;
233 	}
234 
235 	if (unlikely(ret))
236 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
237 		       pcc_ss_id, ret);
238 
239 	return ret;
240 }
241 
242 /*
243  * This function transfers the ownership of the PCC to the platform
244  * So it must be called while holding write_lock(pcc_lock)
245  */
246 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
247 {
248 	int ret = -EIO, i;
249 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
250 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
251 		pcc_ss_data->pcc_comm_addr;
252 	unsigned int time_delta;
253 
254 	/*
255 	 * For CMD_WRITE we know for a fact the caller should have checked
256 	 * the channel before writing to PCC space
257 	 */
258 	if (cmd == CMD_READ) {
259 		/*
260 		 * If there are pending cpc_writes, then we stole the channel
261 		 * before write completion, so first send a WRITE command to
262 		 * platform
263 		 */
264 		if (pcc_ss_data->pending_pcc_write_cmd)
265 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
266 
267 		ret = check_pcc_chan(pcc_ss_id, false);
268 		if (ret)
269 			goto end;
270 	} else /* CMD_WRITE */
271 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
272 
273 	/*
274 	 * Handle the Minimum Request Turnaround Time(MRTT)
275 	 * "The minimum amount of time that OSPM must wait after the completion
276 	 * of a command before issuing the next command, in microseconds"
277 	 */
278 	if (pcc_ss_data->pcc_mrtt) {
279 		time_delta = ktime_us_delta(ktime_get(),
280 					    pcc_ss_data->last_cmd_cmpl_time);
281 		if (pcc_ss_data->pcc_mrtt > time_delta)
282 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
283 	}
284 
285 	/*
286 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
287 	 * "The maximum number of periodic requests that the subspace channel can
288 	 * support, reported in commands per minute. 0 indicates no limitation."
289 	 *
290 	 * This parameter should be ideally zero or large enough so that it can
291 	 * handle maximum number of requests that all the cores in the system can
292 	 * collectively generate. If it is not, we will follow the spec and just
293 	 * not send the request to the platform after hitting the MPAR limit in
294 	 * any 60s window
295 	 */
296 	if (pcc_ss_data->pcc_mpar) {
297 		if (pcc_ss_data->mpar_count == 0) {
298 			time_delta = ktime_ms_delta(ktime_get(),
299 						    pcc_ss_data->last_mpar_reset);
300 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
301 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
302 					 pcc_ss_id);
303 				ret = -EIO;
304 				goto end;
305 			}
306 			pcc_ss_data->last_mpar_reset = ktime_get();
307 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
308 		}
309 		pcc_ss_data->mpar_count--;
310 	}
311 
312 	/* Write to the shared comm region. */
313 	writew_relaxed(cmd, &generic_comm_base->command);
314 
315 	/* Flip CMD COMPLETE bit */
316 	writew_relaxed(0, &generic_comm_base->status);
317 
318 	pcc_ss_data->platform_owns_pcc = true;
319 
320 	/* Ring doorbell */
321 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
322 	if (ret < 0) {
323 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
324 		       pcc_ss_id, cmd, ret);
325 		goto end;
326 	}
327 
328 	/* wait for completion and check for PCC error bit */
329 	ret = check_pcc_chan(pcc_ss_id, true);
330 
331 	if (pcc_ss_data->pcc_mrtt)
332 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
333 
334 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
335 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
336 	else
337 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
338 
339 end:
340 	if (cmd == CMD_WRITE) {
341 		if (unlikely(ret)) {
342 			for_each_possible_cpu(i) {
343 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
344 
345 				if (!desc)
346 					continue;
347 
348 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
349 					desc->write_cmd_status = ret;
350 			}
351 		}
352 		pcc_ss_data->pcc_write_cnt++;
353 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
354 	}
355 
356 	return ret;
357 }
358 
359 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
360 {
361 	if (ret < 0)
362 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
363 				*(u16 *)msg, ret);
364 	else
365 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
366 				*(u16 *)msg, ret);
367 }
368 
369 static struct mbox_client cppc_mbox_cl = {
370 	.tx_done = cppc_chan_tx_done,
371 	.knows_txdone = true,
372 };
373 
374 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
375 {
376 	int result = -EFAULT;
377 	acpi_status status = AE_OK;
378 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
379 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
380 	struct acpi_buffer state = {0, NULL};
381 	union acpi_object  *psd = NULL;
382 	struct acpi_psd_package *pdomain;
383 
384 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
385 					    &buffer, ACPI_TYPE_PACKAGE);
386 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
387 		return 0;
388 	if (ACPI_FAILURE(status))
389 		return -ENODEV;
390 
391 	psd = buffer.pointer;
392 	if (!psd || psd->package.count != 1) {
393 		pr_debug("Invalid _PSD data\n");
394 		goto end;
395 	}
396 
397 	pdomain = &(cpc_ptr->domain_info);
398 
399 	state.length = sizeof(struct acpi_psd_package);
400 	state.pointer = pdomain;
401 
402 	status = acpi_extract_package(&(psd->package.elements[0]),
403 		&format, &state);
404 	if (ACPI_FAILURE(status)) {
405 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
406 		goto end;
407 	}
408 
409 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
410 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
411 		goto end;
412 	}
413 
414 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
415 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
416 		goto end;
417 	}
418 
419 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
420 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
421 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
422 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
423 		goto end;
424 	}
425 
426 	result = 0;
427 end:
428 	kfree(buffer.pointer);
429 	return result;
430 }
431 
432 bool acpi_cpc_valid(void)
433 {
434 	struct cpc_desc *cpc_ptr;
435 	int cpu;
436 
437 	if (acpi_disabled)
438 		return false;
439 
440 	for_each_present_cpu(cpu) {
441 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
442 		if (!cpc_ptr)
443 			return false;
444 	}
445 
446 	return true;
447 }
448 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
449 
450 bool cppc_allow_fast_switch(void)
451 {
452 	struct cpc_register_resource *desired_reg;
453 	struct cpc_desc *cpc_ptr;
454 	int cpu;
455 
456 	for_each_possible_cpu(cpu) {
457 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
458 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
459 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
460 				!CPC_IN_SYSTEM_IO(desired_reg))
461 			return false;
462 	}
463 
464 	return true;
465 }
466 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
467 
468 /**
469  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
470  * @cpu: Find all CPUs that share a domain with cpu.
471  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
472  *
473  *	Return: 0 for success or negative value for err.
474  */
475 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
476 {
477 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
478 	struct acpi_psd_package *match_pdomain;
479 	struct acpi_psd_package *pdomain;
480 	int count_target, i;
481 
482 	/*
483 	 * Now that we have _PSD data from all CPUs, let's setup P-state
484 	 * domain info.
485 	 */
486 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
487 	if (!cpc_ptr)
488 		return -EFAULT;
489 
490 	pdomain = &(cpc_ptr->domain_info);
491 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
492 	if (pdomain->num_processors <= 1)
493 		return 0;
494 
495 	/* Validate the Domain info */
496 	count_target = pdomain->num_processors;
497 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
498 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
499 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
500 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
501 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
502 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
503 
504 	for_each_possible_cpu(i) {
505 		if (i == cpu)
506 			continue;
507 
508 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
509 		if (!match_cpc_ptr)
510 			goto err_fault;
511 
512 		match_pdomain = &(match_cpc_ptr->domain_info);
513 		if (match_pdomain->domain != pdomain->domain)
514 			continue;
515 
516 		/* Here i and cpu are in the same domain */
517 		if (match_pdomain->num_processors != count_target)
518 			goto err_fault;
519 
520 		if (pdomain->coord_type != match_pdomain->coord_type)
521 			goto err_fault;
522 
523 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
524 	}
525 
526 	return 0;
527 
528 err_fault:
529 	/* Assume no coordination on any error parsing domain info */
530 	cpumask_clear(cpu_data->shared_cpu_map);
531 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
532 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
533 
534 	return -EFAULT;
535 }
536 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
537 
538 static int register_pcc_channel(int pcc_ss_idx)
539 {
540 	struct pcc_mbox_chan *pcc_chan;
541 	u64 usecs_lat;
542 
543 	if (pcc_ss_idx >= 0) {
544 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
545 
546 		if (IS_ERR(pcc_chan)) {
547 			pr_err("Failed to find PCC channel for subspace %d\n",
548 			       pcc_ss_idx);
549 			return -ENODEV;
550 		}
551 
552 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
553 		/*
554 		 * cppc_ss->latency is just a Nominal value. In reality
555 		 * the remote processor could be much slower to reply.
556 		 * So add an arbitrary amount of wait on top of Nominal.
557 		 */
558 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
559 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
560 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
561 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
562 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
563 
564 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
565 			acpi_os_ioremap(pcc_chan->shmem_base_addr,
566 					pcc_chan->shmem_size);
567 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
568 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
569 			       pcc_ss_idx);
570 			return -ENOMEM;
571 		}
572 
573 		/* Set flag so that we don't come here for each CPU. */
574 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
575 	}
576 
577 	return 0;
578 }
579 
580 /**
581  * cpc_ffh_supported() - check if FFH reading supported
582  *
583  * Check if the architecture has support for functional fixed hardware
584  * read/write capability.
585  *
586  * Return: true for supported, false for not supported
587  */
588 bool __weak cpc_ffh_supported(void)
589 {
590 	return false;
591 }
592 
593 /**
594  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
595  *
596  * Check if the architectural support for CPPC is present even
597  * if the _OSC hasn't prescribed it
598  *
599  * Return: true for supported, false for not supported
600  */
601 bool __weak cpc_supported_by_cpu(void)
602 {
603 	return false;
604 }
605 
606 /**
607  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
608  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
609  *
610  * Check and allocate the cppc_pcc_data memory.
611  * In some processor configurations it is possible that same subspace
612  * is shared between multiple CPUs. This is seen especially in CPUs
613  * with hardware multi-threading support.
614  *
615  * Return: 0 for success, errno for failure
616  */
617 static int pcc_data_alloc(int pcc_ss_id)
618 {
619 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
620 		return -EINVAL;
621 
622 	if (pcc_data[pcc_ss_id]) {
623 		pcc_data[pcc_ss_id]->refcount++;
624 	} else {
625 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
626 					      GFP_KERNEL);
627 		if (!pcc_data[pcc_ss_id])
628 			return -ENOMEM;
629 		pcc_data[pcc_ss_id]->refcount++;
630 	}
631 
632 	return 0;
633 }
634 
635 /*
636  * An example CPC table looks like the following.
637  *
638  *  Name (_CPC, Package() {
639  *      17,							// NumEntries
640  *      1,							// Revision
641  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
642  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
643  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
644  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
645  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
646  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
647  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
648  *      ...
649  *      ...
650  *      ...
651  *  }
652  * Each Register() encodes how to access that specific register.
653  * e.g. a sample PCC entry has the following encoding:
654  *
655  *  Register (
656  *      PCC,	// AddressSpaceKeyword
657  *      8,	// RegisterBitWidth
658  *      8,	// RegisterBitOffset
659  *      0x30,	// RegisterAddress
660  *      9,	// AccessSize (subspace ID)
661  *  )
662  */
663 
664 #ifndef arch_init_invariance_cppc
665 static inline void arch_init_invariance_cppc(void) { }
666 #endif
667 
668 /**
669  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
670  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
671  *
672  *	Return: 0 for success or negative value for err.
673  */
674 int acpi_cppc_processor_probe(struct acpi_processor *pr)
675 {
676 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
677 	union acpi_object *out_obj, *cpc_obj;
678 	struct cpc_desc *cpc_ptr;
679 	struct cpc_reg *gas_t;
680 	struct device *cpu_dev;
681 	acpi_handle handle = pr->handle;
682 	unsigned int num_ent, i, cpc_rev;
683 	int pcc_subspace_id = -1;
684 	acpi_status status;
685 	int ret = -ENODATA;
686 
687 	if (!osc_sb_cppc2_support_acked) {
688 		pr_debug("CPPC v2 _OSC not acked\n");
689 		if (!cpc_supported_by_cpu()) {
690 			pr_debug("CPPC is not supported by the CPU\n");
691 			return -ENODEV;
692 		}
693 	}
694 
695 	/* Parse the ACPI _CPC table for this CPU. */
696 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
697 			ACPI_TYPE_PACKAGE);
698 	if (ACPI_FAILURE(status)) {
699 		ret = -ENODEV;
700 		goto out_buf_free;
701 	}
702 
703 	out_obj = (union acpi_object *) output.pointer;
704 
705 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
706 	if (!cpc_ptr) {
707 		ret = -ENOMEM;
708 		goto out_buf_free;
709 	}
710 
711 	/* First entry is NumEntries. */
712 	cpc_obj = &out_obj->package.elements[0];
713 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
714 		num_ent = cpc_obj->integer.value;
715 		if (num_ent <= 1) {
716 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
717 				 num_ent, pr->id);
718 			goto out_free;
719 		}
720 	} else {
721 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
722 			 cpc_obj->type, pr->id);
723 		goto out_free;
724 	}
725 
726 	/* Second entry should be revision. */
727 	cpc_obj = &out_obj->package.elements[1];
728 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
729 		cpc_rev = cpc_obj->integer.value;
730 	} else {
731 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
732 			 cpc_obj->type, pr->id);
733 		goto out_free;
734 	}
735 
736 	if (cpc_rev < CPPC_V2_REV) {
737 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
738 			 pr->id);
739 		goto out_free;
740 	}
741 
742 	/*
743 	 * Disregard _CPC if the number of entries in the return pachage is not
744 	 * as expected, but support future revisions being proper supersets of
745 	 * the v3 and only causing more entries to be returned by _CPC.
746 	 */
747 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
748 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
749 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
750 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
751 			 num_ent, pr->id);
752 		goto out_free;
753 	}
754 	if (cpc_rev > CPPC_V3_REV) {
755 		num_ent = CPPC_V3_NUM_ENT;
756 		cpc_rev = CPPC_V3_REV;
757 	}
758 
759 	cpc_ptr->num_entries = num_ent;
760 	cpc_ptr->version = cpc_rev;
761 
762 	/* Iterate through remaining entries in _CPC */
763 	for (i = 2; i < num_ent; i++) {
764 		cpc_obj = &out_obj->package.elements[i];
765 
766 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
767 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
768 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
769 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
770 			gas_t = (struct cpc_reg *)
771 				cpc_obj->buffer.pointer;
772 
773 			/*
774 			 * The PCC Subspace index is encoded inside
775 			 * the CPC table entries. The same PCC index
776 			 * will be used for all the PCC entries,
777 			 * so extract it only once.
778 			 */
779 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
780 				if (pcc_subspace_id < 0) {
781 					pcc_subspace_id = gas_t->access_width;
782 					if (pcc_data_alloc(pcc_subspace_id))
783 						goto out_free;
784 				} else if (pcc_subspace_id != gas_t->access_width) {
785 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
786 						 pr->id);
787 					goto out_free;
788 				}
789 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
790 				if (gas_t->address) {
791 					void __iomem *addr;
792 					size_t access_width;
793 
794 					if (!osc_cpc_flexible_adr_space_confirmed) {
795 						pr_debug("Flexible address space capability not supported\n");
796 						if (!cpc_supported_by_cpu())
797 							goto out_free;
798 					}
799 
800 					access_width = GET_BIT_WIDTH(gas_t) / 8;
801 					addr = ioremap(gas_t->address, access_width);
802 					if (!addr)
803 						goto out_free;
804 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
805 				}
806 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
807 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
808 					/*
809 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
810 					 * SystemIO doesn't implement 64-bit
811 					 * registers.
812 					 */
813 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
814 						 gas_t->access_width);
815 					goto out_free;
816 				}
817 				if (gas_t->address & OVER_16BTS_MASK) {
818 					/* SystemIO registers use 16-bit integer addresses */
819 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
820 						 gas_t->address);
821 					goto out_free;
822 				}
823 				if (!osc_cpc_flexible_adr_space_confirmed) {
824 					pr_debug("Flexible address space capability not supported\n");
825 					if (!cpc_supported_by_cpu())
826 						goto out_free;
827 				}
828 			} else {
829 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
830 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
831 					pr_debug("Unsupported register type (%d) in _CPC\n",
832 						 gas_t->space_id);
833 					goto out_free;
834 				}
835 			}
836 
837 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
838 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
839 		} else {
840 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
841 				 i, pr->id);
842 			goto out_free;
843 		}
844 	}
845 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
846 
847 	/*
848 	 * Initialize the remaining cpc_regs as unsupported.
849 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
850 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
851 	 */
852 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
853 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
854 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
855 	}
856 
857 
858 	/* Store CPU Logical ID */
859 	cpc_ptr->cpu_id = pr->id;
860 
861 	/* Parse PSD data for this CPU */
862 	ret = acpi_get_psd(cpc_ptr, handle);
863 	if (ret)
864 		goto out_free;
865 
866 	/* Register PCC channel once for all PCC subspace ID. */
867 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
868 		ret = register_pcc_channel(pcc_subspace_id);
869 		if (ret)
870 			goto out_free;
871 
872 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
873 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
874 	}
875 
876 	/* Everything looks okay */
877 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
878 
879 	/* Add per logical CPU nodes for reading its feedback counters. */
880 	cpu_dev = get_cpu_device(pr->id);
881 	if (!cpu_dev) {
882 		ret = -EINVAL;
883 		goto out_free;
884 	}
885 
886 	/* Plug PSD data into this CPU's CPC descriptor. */
887 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
888 
889 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
890 			"acpi_cppc");
891 	if (ret) {
892 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
893 		kobject_put(&cpc_ptr->kobj);
894 		goto out_free;
895 	}
896 
897 	arch_init_invariance_cppc();
898 
899 	kfree(output.pointer);
900 	return 0;
901 
902 out_free:
903 	/* Free all the mapped sys mem areas for this CPU */
904 	for (i = 2; i < cpc_ptr->num_entries; i++) {
905 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
906 
907 		if (addr)
908 			iounmap(addr);
909 	}
910 	kfree(cpc_ptr);
911 
912 out_buf_free:
913 	kfree(output.pointer);
914 	return ret;
915 }
916 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
917 
918 /**
919  * acpi_cppc_processor_exit - Cleanup CPC structs.
920  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
921  *
922  * Return: Void
923  */
924 void acpi_cppc_processor_exit(struct acpi_processor *pr)
925 {
926 	struct cpc_desc *cpc_ptr;
927 	unsigned int i;
928 	void __iomem *addr;
929 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
930 
931 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
932 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
933 			pcc_data[pcc_ss_id]->refcount--;
934 			if (!pcc_data[pcc_ss_id]->refcount) {
935 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
936 				kfree(pcc_data[pcc_ss_id]);
937 				pcc_data[pcc_ss_id] = NULL;
938 			}
939 		}
940 	}
941 
942 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
943 	if (!cpc_ptr)
944 		return;
945 
946 	/* Free all the mapped sys mem areas for this CPU */
947 	for (i = 2; i < cpc_ptr->num_entries; i++) {
948 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
949 		if (addr)
950 			iounmap(addr);
951 	}
952 
953 	kobject_put(&cpc_ptr->kobj);
954 	kfree(cpc_ptr);
955 }
956 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
957 
958 /**
959  * cpc_read_ffh() - Read FFH register
960  * @cpunum:	CPU number to read
961  * @reg:	cppc register information
962  * @val:	place holder for return value
963  *
964  * Read bit_width bits from a specified address and bit_offset
965  *
966  * Return: 0 for success and error code
967  */
968 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
969 {
970 	return -ENOTSUPP;
971 }
972 
973 /**
974  * cpc_write_ffh() - Write FFH register
975  * @cpunum:	CPU number to write
976  * @reg:	cppc register information
977  * @val:	value to write
978  *
979  * Write value of bit_width bits to a specified address and bit_offset
980  *
981  * Return: 0 for success and error code
982  */
983 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
984 {
985 	return -ENOTSUPP;
986 }
987 
988 /*
989  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
990  * as fast as possible. We have already mapped the PCC subspace during init, so
991  * we can directly write to it.
992  */
993 
994 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
995 {
996 	void __iomem *vaddr = NULL;
997 	int size;
998 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
999 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1000 
1001 	if (reg_res->type == ACPI_TYPE_INTEGER) {
1002 		*val = reg_res->cpc_entry.int_value;
1003 		return 0;
1004 	}
1005 
1006 	*val = 0;
1007 	size = GET_BIT_WIDTH(reg);
1008 
1009 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1010 		u32 val_u32;
1011 		acpi_status status;
1012 
1013 		status = acpi_os_read_port((acpi_io_address)reg->address,
1014 					   &val_u32, size);
1015 		if (ACPI_FAILURE(status)) {
1016 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1017 				 reg->address);
1018 			return -EFAULT;
1019 		}
1020 
1021 		*val = val_u32;
1022 		return 0;
1023 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1024 		/*
1025 		 * For registers in PCC space, the register size is determined
1026 		 * by the bit width field; the access size is used to indicate
1027 		 * the PCC subspace id.
1028 		 */
1029 		size = reg->bit_width;
1030 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1031 	}
1032 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1033 		vaddr = reg_res->sys_mem_vaddr;
1034 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1035 		return cpc_read_ffh(cpu, reg, val);
1036 	else
1037 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1038 				val, size);
1039 
1040 	switch (size) {
1041 	case 8:
1042 		*val = readb_relaxed(vaddr);
1043 		break;
1044 	case 16:
1045 		*val = readw_relaxed(vaddr);
1046 		break;
1047 	case 32:
1048 		*val = readl_relaxed(vaddr);
1049 		break;
1050 	case 64:
1051 		*val = readq_relaxed(vaddr);
1052 		break;
1053 	default:
1054 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1055 			pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1056 				size, reg->address);
1057 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1058 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1059 				size, pcc_ss_id);
1060 		}
1061 		return -EFAULT;
1062 	}
1063 
1064 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1065 		*val = MASK_VAL(reg, *val);
1066 
1067 	return 0;
1068 }
1069 
1070 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1071 {
1072 	int ret_val = 0;
1073 	int size;
1074 	void __iomem *vaddr = NULL;
1075 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1076 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1077 
1078 	size = GET_BIT_WIDTH(reg);
1079 
1080 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1081 		acpi_status status;
1082 
1083 		status = acpi_os_write_port((acpi_io_address)reg->address,
1084 					    (u32)val, size);
1085 		if (ACPI_FAILURE(status)) {
1086 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1087 				 reg->address);
1088 			return -EFAULT;
1089 		}
1090 
1091 		return 0;
1092 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1093 		/*
1094 		 * For registers in PCC space, the register size is determined
1095 		 * by the bit width field; the access size is used to indicate
1096 		 * the PCC subspace id.
1097 		 */
1098 		size = reg->bit_width;
1099 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1100 	}
1101 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1102 		vaddr = reg_res->sys_mem_vaddr;
1103 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1104 		return cpc_write_ffh(cpu, reg, val);
1105 	else
1106 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1107 				val, size);
1108 
1109 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1110 		val = MASK_VAL(reg, val);
1111 
1112 	switch (size) {
1113 	case 8:
1114 		writeb_relaxed(val, vaddr);
1115 		break;
1116 	case 16:
1117 		writew_relaxed(val, vaddr);
1118 		break;
1119 	case 32:
1120 		writel_relaxed(val, vaddr);
1121 		break;
1122 	case 64:
1123 		writeq_relaxed(val, vaddr);
1124 		break;
1125 	default:
1126 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1127 			pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1128 				size, reg->address);
1129 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1130 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1131 				size, pcc_ss_id);
1132 		}
1133 		ret_val = -EFAULT;
1134 		break;
1135 	}
1136 
1137 	return ret_val;
1138 }
1139 
1140 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1141 {
1142 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1143 	struct cpc_register_resource *reg;
1144 
1145 	if (!cpc_desc) {
1146 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1147 		return -ENODEV;
1148 	}
1149 
1150 	reg = &cpc_desc->cpc_regs[reg_idx];
1151 
1152 	if (CPC_IN_PCC(reg)) {
1153 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1154 		struct cppc_pcc_data *pcc_ss_data = NULL;
1155 		int ret = 0;
1156 
1157 		if (pcc_ss_id < 0)
1158 			return -EIO;
1159 
1160 		pcc_ss_data = pcc_data[pcc_ss_id];
1161 
1162 		down_write(&pcc_ss_data->pcc_lock);
1163 
1164 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1165 			cpc_read(cpunum, reg, perf);
1166 		else
1167 			ret = -EIO;
1168 
1169 		up_write(&pcc_ss_data->pcc_lock);
1170 
1171 		return ret;
1172 	}
1173 
1174 	cpc_read(cpunum, reg, perf);
1175 
1176 	return 0;
1177 }
1178 
1179 /**
1180  * cppc_get_desired_perf - Get the desired performance register value.
1181  * @cpunum: CPU from which to get desired performance.
1182  * @desired_perf: Return address.
1183  *
1184  * Return: 0 for success, -EIO otherwise.
1185  */
1186 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1187 {
1188 	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1189 }
1190 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1191 
1192 /**
1193  * cppc_get_nominal_perf - Get the nominal performance register value.
1194  * @cpunum: CPU from which to get nominal performance.
1195  * @nominal_perf: Return address.
1196  *
1197  * Return: 0 for success, -EIO otherwise.
1198  */
1199 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1200 {
1201 	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1202 }
1203 
1204 /**
1205  * cppc_get_highest_perf - Get the highest performance register value.
1206  * @cpunum: CPU from which to get highest performance.
1207  * @highest_perf: Return address.
1208  *
1209  * Return: 0 for success, -EIO otherwise.
1210  */
1211 int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1212 {
1213 	return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1214 }
1215 EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1216 
1217 /**
1218  * cppc_get_epp_perf - Get the epp register value.
1219  * @cpunum: CPU from which to get epp preference value.
1220  * @epp_perf: Return address.
1221  *
1222  * Return: 0 for success, -EIO otherwise.
1223  */
1224 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1225 {
1226 	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1227 }
1228 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1229 
1230 /**
1231  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1232  * @cpunum: CPU from which to get capabilities info.
1233  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1234  *
1235  * Return: 0 for success with perf_caps populated else -ERRNO.
1236  */
1237 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1238 {
1239 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1240 	struct cpc_register_resource *highest_reg, *lowest_reg,
1241 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1242 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1243 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1244 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1245 	struct cppc_pcc_data *pcc_ss_data = NULL;
1246 	int ret = 0, regs_in_pcc = 0;
1247 
1248 	if (!cpc_desc) {
1249 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1250 		return -ENODEV;
1251 	}
1252 
1253 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1254 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1255 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1256 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1257 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1258 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1259 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1260 
1261 	/* Are any of the regs PCC ?*/
1262 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1263 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1264 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1265 		if (pcc_ss_id < 0) {
1266 			pr_debug("Invalid pcc_ss_id\n");
1267 			return -ENODEV;
1268 		}
1269 		pcc_ss_data = pcc_data[pcc_ss_id];
1270 		regs_in_pcc = 1;
1271 		down_write(&pcc_ss_data->pcc_lock);
1272 		/* Ring doorbell once to update PCC subspace */
1273 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1274 			ret = -EIO;
1275 			goto out_err;
1276 		}
1277 	}
1278 
1279 	cpc_read(cpunum, highest_reg, &high);
1280 	perf_caps->highest_perf = high;
1281 
1282 	cpc_read(cpunum, lowest_reg, &low);
1283 	perf_caps->lowest_perf = low;
1284 
1285 	cpc_read(cpunum, nominal_reg, &nom);
1286 	perf_caps->nominal_perf = nom;
1287 
1288 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1289 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1290 		perf_caps->guaranteed_perf = 0;
1291 	} else {
1292 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1293 		perf_caps->guaranteed_perf = guaranteed;
1294 	}
1295 
1296 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1297 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1298 
1299 	if (!high || !low || !nom || !min_nonlinear)
1300 		ret = -EFAULT;
1301 
1302 	/* Read optional lowest and nominal frequencies if present */
1303 	if (CPC_SUPPORTED(low_freq_reg))
1304 		cpc_read(cpunum, low_freq_reg, &low_f);
1305 
1306 	if (CPC_SUPPORTED(nom_freq_reg))
1307 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1308 
1309 	perf_caps->lowest_freq = low_f;
1310 	perf_caps->nominal_freq = nom_f;
1311 
1312 
1313 out_err:
1314 	if (regs_in_pcc)
1315 		up_write(&pcc_ss_data->pcc_lock);
1316 	return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1319 
1320 /**
1321  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1322  *
1323  * CPPC has flexibility about how CPU performance counters are accessed.
1324  * One of the choices is PCC regions, which can have a high access latency. This
1325  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1326  *
1327  * Return: true if any of the counters are in PCC regions, false otherwise
1328  */
1329 bool cppc_perf_ctrs_in_pcc(void)
1330 {
1331 	int cpu;
1332 
1333 	for_each_present_cpu(cpu) {
1334 		struct cpc_register_resource *ref_perf_reg;
1335 		struct cpc_desc *cpc_desc;
1336 
1337 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1338 
1339 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1340 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1341 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1342 			return true;
1343 
1344 
1345 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1346 
1347 		/*
1348 		 * If reference perf register is not supported then we should
1349 		 * use the nominal perf value
1350 		 */
1351 		if (!CPC_SUPPORTED(ref_perf_reg))
1352 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1353 
1354 		if (CPC_IN_PCC(ref_perf_reg))
1355 			return true;
1356 	}
1357 
1358 	return false;
1359 }
1360 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1361 
1362 /**
1363  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1364  * @cpunum: CPU from which to read counters.
1365  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1366  *
1367  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1368  */
1369 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1370 {
1371 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1372 	struct cpc_register_resource *delivered_reg, *reference_reg,
1373 		*ref_perf_reg, *ctr_wrap_reg;
1374 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1375 	struct cppc_pcc_data *pcc_ss_data = NULL;
1376 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1377 	int ret = 0, regs_in_pcc = 0;
1378 
1379 	if (!cpc_desc) {
1380 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1381 		return -ENODEV;
1382 	}
1383 
1384 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1385 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1386 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1387 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1388 
1389 	/*
1390 	 * If reference perf register is not supported then we should
1391 	 * use the nominal perf value
1392 	 */
1393 	if (!CPC_SUPPORTED(ref_perf_reg))
1394 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1395 
1396 	/* Are any of the regs PCC ?*/
1397 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1398 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1399 		if (pcc_ss_id < 0) {
1400 			pr_debug("Invalid pcc_ss_id\n");
1401 			return -ENODEV;
1402 		}
1403 		pcc_ss_data = pcc_data[pcc_ss_id];
1404 		down_write(&pcc_ss_data->pcc_lock);
1405 		regs_in_pcc = 1;
1406 		/* Ring doorbell once to update PCC subspace */
1407 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1408 			ret = -EIO;
1409 			goto out_err;
1410 		}
1411 	}
1412 
1413 	cpc_read(cpunum, delivered_reg, &delivered);
1414 	cpc_read(cpunum, reference_reg, &reference);
1415 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1416 
1417 	/*
1418 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1419 	 * performance counters are assumed to never wrap during the lifetime of
1420 	 * platform
1421 	 */
1422 	ctr_wrap_time = (u64)(~((u64)0));
1423 	if (CPC_SUPPORTED(ctr_wrap_reg))
1424 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1425 
1426 	if (!delivered || !reference ||	!ref_perf) {
1427 		ret = -EFAULT;
1428 		goto out_err;
1429 	}
1430 
1431 	perf_fb_ctrs->delivered = delivered;
1432 	perf_fb_ctrs->reference = reference;
1433 	perf_fb_ctrs->reference_perf = ref_perf;
1434 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1435 out_err:
1436 	if (regs_in_pcc)
1437 		up_write(&pcc_ss_data->pcc_lock);
1438 	return ret;
1439 }
1440 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1441 
1442 /*
1443  * Set Energy Performance Preference Register value through
1444  * Performance Controls Interface
1445  */
1446 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1447 {
1448 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1449 	struct cpc_register_resource *epp_set_reg;
1450 	struct cpc_register_resource *auto_sel_reg;
1451 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1452 	struct cppc_pcc_data *pcc_ss_data = NULL;
1453 	int ret;
1454 
1455 	if (!cpc_desc) {
1456 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1457 		return -ENODEV;
1458 	}
1459 
1460 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1461 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1462 
1463 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1464 		if (pcc_ss_id < 0) {
1465 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1466 			return -ENODEV;
1467 		}
1468 
1469 		if (CPC_SUPPORTED(auto_sel_reg)) {
1470 			ret = cpc_write(cpu, auto_sel_reg, enable);
1471 			if (ret)
1472 				return ret;
1473 		}
1474 
1475 		if (CPC_SUPPORTED(epp_set_reg)) {
1476 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1477 			if (ret)
1478 				return ret;
1479 		}
1480 
1481 		pcc_ss_data = pcc_data[pcc_ss_id];
1482 
1483 		down_write(&pcc_ss_data->pcc_lock);
1484 		/* after writing CPC, transfer the ownership of PCC to platform */
1485 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1486 		up_write(&pcc_ss_data->pcc_lock);
1487 	} else {
1488 		ret = -ENOTSUPP;
1489 		pr_debug("_CPC in PCC is not supported\n");
1490 	}
1491 
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1495 
1496 /**
1497  * cppc_get_auto_sel_caps - Read autonomous selection register.
1498  * @cpunum : CPU from which to read register.
1499  * @perf_caps : struct where autonomous selection register value is updated.
1500  */
1501 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1502 {
1503 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1504 	struct cpc_register_resource *auto_sel_reg;
1505 	u64  auto_sel;
1506 
1507 	if (!cpc_desc) {
1508 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1509 		return -ENODEV;
1510 	}
1511 
1512 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1513 
1514 	if (!CPC_SUPPORTED(auto_sel_reg))
1515 		pr_warn_once("Autonomous mode is not unsupported!\n");
1516 
1517 	if (CPC_IN_PCC(auto_sel_reg)) {
1518 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1519 		struct cppc_pcc_data *pcc_ss_data = NULL;
1520 		int ret = 0;
1521 
1522 		if (pcc_ss_id < 0)
1523 			return -ENODEV;
1524 
1525 		pcc_ss_data = pcc_data[pcc_ss_id];
1526 
1527 		down_write(&pcc_ss_data->pcc_lock);
1528 
1529 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1530 			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1531 			perf_caps->auto_sel = (bool)auto_sel;
1532 		} else {
1533 			ret = -EIO;
1534 		}
1535 
1536 		up_write(&pcc_ss_data->pcc_lock);
1537 
1538 		return ret;
1539 	}
1540 
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1544 
1545 /**
1546  * cppc_set_auto_sel - Write autonomous selection register.
1547  * @cpu    : CPU to which to write register.
1548  * @enable : the desired value of autonomous selection resiter to be updated.
1549  */
1550 int cppc_set_auto_sel(int cpu, bool enable)
1551 {
1552 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1553 	struct cpc_register_resource *auto_sel_reg;
1554 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1555 	struct cppc_pcc_data *pcc_ss_data = NULL;
1556 	int ret = -EINVAL;
1557 
1558 	if (!cpc_desc) {
1559 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1560 		return -ENODEV;
1561 	}
1562 
1563 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1564 
1565 	if (CPC_IN_PCC(auto_sel_reg)) {
1566 		if (pcc_ss_id < 0) {
1567 			pr_debug("Invalid pcc_ss_id\n");
1568 			return -ENODEV;
1569 		}
1570 
1571 		if (CPC_SUPPORTED(auto_sel_reg)) {
1572 			ret = cpc_write(cpu, auto_sel_reg, enable);
1573 			if (ret)
1574 				return ret;
1575 		}
1576 
1577 		pcc_ss_data = pcc_data[pcc_ss_id];
1578 
1579 		down_write(&pcc_ss_data->pcc_lock);
1580 		/* after writing CPC, transfer the ownership of PCC to platform */
1581 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1582 		up_write(&pcc_ss_data->pcc_lock);
1583 	} else {
1584 		ret = -ENOTSUPP;
1585 		pr_debug("_CPC in PCC is not supported\n");
1586 	}
1587 
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1591 
1592 /**
1593  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1594  * Continuous Performance Control package EnableRegister field.
1595  * @cpu: CPU for which to enable CPPC register.
1596  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1597  *
1598  * Return: 0 for success, -ERRNO or -EIO otherwise.
1599  */
1600 int cppc_set_enable(int cpu, bool enable)
1601 {
1602 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1603 	struct cpc_register_resource *enable_reg;
1604 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1605 	struct cppc_pcc_data *pcc_ss_data = NULL;
1606 	int ret = -EINVAL;
1607 
1608 	if (!cpc_desc) {
1609 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1610 		return -EINVAL;
1611 	}
1612 
1613 	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1614 
1615 	if (CPC_IN_PCC(enable_reg)) {
1616 
1617 		if (pcc_ss_id < 0)
1618 			return -EIO;
1619 
1620 		ret = cpc_write(cpu, enable_reg, enable);
1621 		if (ret)
1622 			return ret;
1623 
1624 		pcc_ss_data = pcc_data[pcc_ss_id];
1625 
1626 		down_write(&pcc_ss_data->pcc_lock);
1627 		/* after writing CPC, transfer the ownership of PCC to platfrom */
1628 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1629 		up_write(&pcc_ss_data->pcc_lock);
1630 		return ret;
1631 	}
1632 
1633 	return cpc_write(cpu, enable_reg, enable);
1634 }
1635 EXPORT_SYMBOL_GPL(cppc_set_enable);
1636 
1637 /**
1638  * cppc_set_perf - Set a CPU's performance controls.
1639  * @cpu: CPU for which to set performance controls.
1640  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1641  *
1642  * Return: 0 for success, -ERRNO otherwise.
1643  */
1644 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1645 {
1646 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1647 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1648 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1649 	struct cppc_pcc_data *pcc_ss_data = NULL;
1650 	int ret = 0;
1651 
1652 	if (!cpc_desc) {
1653 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1654 		return -ENODEV;
1655 	}
1656 
1657 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1658 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1659 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1660 
1661 	/*
1662 	 * This is Phase-I where we want to write to CPC registers
1663 	 * -> We want all CPUs to be able to execute this phase in parallel
1664 	 *
1665 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1666 	 * achieve that goal here
1667 	 */
1668 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1669 		if (pcc_ss_id < 0) {
1670 			pr_debug("Invalid pcc_ss_id\n");
1671 			return -ENODEV;
1672 		}
1673 		pcc_ss_data = pcc_data[pcc_ss_id];
1674 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1675 		if (pcc_ss_data->platform_owns_pcc) {
1676 			ret = check_pcc_chan(pcc_ss_id, false);
1677 			if (ret) {
1678 				up_read(&pcc_ss_data->pcc_lock);
1679 				return ret;
1680 			}
1681 		}
1682 		/*
1683 		 * Update the pending_write to make sure a PCC CMD_READ will not
1684 		 * arrive and steal the channel during the switch to write lock
1685 		 */
1686 		pcc_ss_data->pending_pcc_write_cmd = true;
1687 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1688 		cpc_desc->write_cmd_status = 0;
1689 	}
1690 
1691 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1692 
1693 	/*
1694 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1695 	 * value to min and max perf, but they don't mean to set the zero value,
1696 	 * they just don't want to write to those registers.
1697 	 */
1698 	if (perf_ctrls->min_perf)
1699 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1700 	if (perf_ctrls->max_perf)
1701 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1702 
1703 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1704 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1705 	/*
1706 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1707 	 *
1708 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1709 	 * requests that happened in short overlapping interval. The last CPU to
1710 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1711 	 *
1712 	 * We have the following requirements for Phase-II:
1713 	 *     1. We want to execute Phase-II only when there are no CPUs
1714 	 * currently executing in Phase-I
1715 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1716 	 * entering Phase-I.
1717 	 *     3. We want only one CPU among all those who went through Phase-I
1718 	 * to run phase-II
1719 	 *
1720 	 * If write_trylock fails to get the lock and doesn't transfer the
1721 	 * PCC ownership to the platform, then one of the following will be TRUE
1722 	 *     1. There is at-least one CPU in Phase-I which will later execute
1723 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1724 	 * executing the Phase-II.
1725 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1726 	 * write_trylock and has already acquired the write_lock. We know for a
1727 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1728 	 * before this CPU's Phase-I as we held the read_lock.
1729 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1730 	 * down_write, in which case, send_pcc_cmd will check for pending
1731 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1732 	 * So this CPU can be certain that its request will be delivered
1733 	 *    So in all cases, this CPU knows that its request will be delivered
1734 	 * by another CPU and can return
1735 	 *
1736 	 * After getting the down_write we still need to check for
1737 	 * pending_pcc_write_cmd to take care of the following scenario
1738 	 *    The thread running this code could be scheduled out between
1739 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1740 	 * could have delivered the request to Platform by triggering the
1741 	 * doorbell and transferred the ownership of PCC to platform. So this
1742 	 * avoids triggering an unnecessary doorbell and more importantly before
1743 	 * triggering the doorbell it makes sure that the PCC channel ownership
1744 	 * is still with OSPM.
1745 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1746 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1747 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1748 	 * case during a CMD_READ and if there are pending writes it delivers
1749 	 * the write command before servicing the read command
1750 	 */
1751 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1752 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1753 			/* Update only if there are pending write commands */
1754 			if (pcc_ss_data->pending_pcc_write_cmd)
1755 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1756 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1757 		} else
1758 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1759 			wait_event(pcc_ss_data->pcc_write_wait_q,
1760 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1761 
1762 		/* send_pcc_cmd updates the status in case of failure */
1763 		ret = cpc_desc->write_cmd_status;
1764 	}
1765 	return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(cppc_set_perf);
1768 
1769 /**
1770  * cppc_get_transition_latency - returns frequency transition latency in ns
1771  * @cpu_num: CPU number for per_cpu().
1772  *
1773  * ACPI CPPC does not explicitly specify how a platform can specify the
1774  * transition latency for performance change requests. The closest we have
1775  * is the timing information from the PCCT tables which provides the info
1776  * on the number and frequency of PCC commands the platform can handle.
1777  *
1778  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1779  * then assume there is no latency.
1780  */
1781 unsigned int cppc_get_transition_latency(int cpu_num)
1782 {
1783 	/*
1784 	 * Expected transition latency is based on the PCCT timing values
1785 	 * Below are definition from ACPI spec:
1786 	 * pcc_nominal- Expected latency to process a command, in microseconds
1787 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1788 	 *              channel can support, reported in commands per minute. 0
1789 	 *              indicates no limitation.
1790 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1791 	 *              completion of a command before issuing the next command,
1792 	 *              in microseconds.
1793 	 */
1794 	unsigned int latency_ns = 0;
1795 	struct cpc_desc *cpc_desc;
1796 	struct cpc_register_resource *desired_reg;
1797 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1798 	struct cppc_pcc_data *pcc_ss_data;
1799 
1800 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1801 	if (!cpc_desc)
1802 		return CPUFREQ_ETERNAL;
1803 
1804 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1805 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1806 		return 0;
1807 	else if (!CPC_IN_PCC(desired_reg))
1808 		return CPUFREQ_ETERNAL;
1809 
1810 	if (pcc_ss_id < 0)
1811 		return CPUFREQ_ETERNAL;
1812 
1813 	pcc_ss_data = pcc_data[pcc_ss_id];
1814 	if (pcc_ss_data->pcc_mpar)
1815 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1816 
1817 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1818 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1819 
1820 	return latency_ns;
1821 }
1822 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1823 
1824 /* Minimum struct length needed for the DMI processor entry we want */
1825 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1826 
1827 /* Offset in the DMI processor structure for the max frequency */
1828 #define DMI_PROCESSOR_MAX_SPEED		0x14
1829 
1830 /* Callback function used to retrieve the max frequency from DMI */
1831 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1832 {
1833 	const u8 *dmi_data = (const u8 *)dm;
1834 	u16 *mhz = (u16 *)private;
1835 
1836 	if (dm->type == DMI_ENTRY_PROCESSOR &&
1837 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1838 		u16 val = (u16)get_unaligned((const u16 *)
1839 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1840 		*mhz = val > *mhz ? val : *mhz;
1841 	}
1842 }
1843 
1844 /* Look up the max frequency in DMI */
1845 static u64 cppc_get_dmi_max_khz(void)
1846 {
1847 	u16 mhz = 0;
1848 
1849 	dmi_walk(cppc_find_dmi_mhz, &mhz);
1850 
1851 	/*
1852 	 * Real stupid fallback value, just in case there is no
1853 	 * actual value set.
1854 	 */
1855 	mhz = mhz ? mhz : 1;
1856 
1857 	return KHZ_PER_MHZ * mhz;
1858 }
1859 
1860 /*
1861  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1862  * use them to convert perf to freq and vice versa. The conversion is
1863  * extrapolated as an affine function passing by the 2 points:
1864  *  - (Low perf, Low freq)
1865  *  - (Nominal perf, Nominal freq)
1866  */
1867 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1868 {
1869 	s64 retval, offset = 0;
1870 	static u64 max_khz;
1871 	u64 mul, div;
1872 
1873 	if (caps->lowest_freq && caps->nominal_freq) {
1874 		mul = caps->nominal_freq - caps->lowest_freq;
1875 		mul *= KHZ_PER_MHZ;
1876 		div = caps->nominal_perf - caps->lowest_perf;
1877 		offset = caps->nominal_freq * KHZ_PER_MHZ -
1878 			 div64_u64(caps->nominal_perf * mul, div);
1879 	} else {
1880 		if (!max_khz)
1881 			max_khz = cppc_get_dmi_max_khz();
1882 		mul = max_khz;
1883 		div = caps->highest_perf;
1884 	}
1885 
1886 	retval = offset + div64_u64(perf * mul, div);
1887 	if (retval >= 0)
1888 		return retval;
1889 	return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1892 
1893 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1894 {
1895 	s64 retval, offset = 0;
1896 	static u64 max_khz;
1897 	u64  mul, div;
1898 
1899 	if (caps->lowest_freq && caps->nominal_freq) {
1900 		mul = caps->nominal_perf - caps->lowest_perf;
1901 		div = caps->nominal_freq - caps->lowest_freq;
1902 		/*
1903 		 * We don't need to convert to kHz for computing offset and can
1904 		 * directly use nominal_freq and lowest_freq as the div64_u64
1905 		 * will remove the frequency unit.
1906 		 */
1907 		offset = caps->nominal_perf -
1908 			 div64_u64(caps->nominal_freq * mul, div);
1909 		/* But we need it for computing the perf level. */
1910 		div *= KHZ_PER_MHZ;
1911 	} else {
1912 		if (!max_khz)
1913 			max_khz = cppc_get_dmi_max_khz();
1914 		mul = caps->highest_perf;
1915 		div = max_khz;
1916 	}
1917 
1918 	retval = offset + div64_u64(freq * mul, div);
1919 	if (retval >= 0)
1920 		return retval;
1921 	return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1924