xref: /linux/drivers/acpi/cppc_acpi.c (revision ea518afc992032f7570c0a89ac9240b387dc0faf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <asm/unaligned.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct pcc_mbox_chan *pcc_channel;
50 	void __iomem *pcc_comm_addr;
51 	bool pcc_channel_acquired;
52 	unsigned int deadline_us;
53 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54 
55 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58 
59 	/*
60 	 * Lock to provide controlled access to the PCC channel.
61 	 *
62 	 * For performance critical usecases(currently cppc_set_perf)
63 	 *	We need to take read_lock and check if channel belongs to OSPM
64 	 * before reading or writing to PCC subspace
65 	 *	We need to take write_lock before transferring the channel
66 	 * ownership to the platform via a Doorbell
67 	 *	This allows us to batch a number of CPPC requests if they happen
68 	 * to originate in about the same time
69 	 *
70 	 * For non-performance critical usecases(init)
71 	 *	Take write_lock for all purposes which gives exclusive access
72 	 */
73 	struct rw_semaphore pcc_lock;
74 
75 	/* Wait queue for CPUs whose requests were batched */
76 	wait_queue_head_t pcc_write_wait_q;
77 	ktime_t last_cmd_cmpl_time;
78 	ktime_t last_mpar_reset;
79 	int mpar_count;
80 	int refcount;
81 };
82 
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96 
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 						0x8 + (offs))
100 
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
103 				(cpc)->cpc_entry.reg.space_id ==	\
104 				ACPI_ADR_SPACE_PLATFORM_COMM)
105 
106 /* Check if a CPC register is in SystemMemory */
107 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
108 				(cpc)->cpc_entry.reg.space_id ==	\
109 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 
111 /* Check if a CPC register is in SystemIo */
112 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
113 				(cpc)->cpc_entry.reg.space_id ==	\
114 				ACPI_ADR_SPACE_SYSTEM_IO)
115 
116 /* Evaluates to True if reg is a NULL register descriptor */
117 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118 				(reg)->address == 0 &&			\
119 				(reg)->bit_width == 0 &&		\
120 				(reg)->bit_offset == 0 &&		\
121 				(reg)->access_width == 0)
122 
123 /* Evaluates to True if an optional cpc field is supported */
124 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
125 				!!(cpc)->cpc_entry.int_value :		\
126 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
127 /*
128  * Arbitrary Retries in case the remote processor is slow to respond
129  * to PCC commands. Keeping it high enough to cover emulators where
130  * the processors run painfully slow.
131  */
132 #define NUM_RETRIES 500ULL
133 
134 #define OVER_16BTS_MASK ~0xFFFFULL
135 
136 #define define_one_cppc_ro(_name)		\
137 static struct kobj_attribute _name =		\
138 __ATTR(_name, 0444, show_##_name, NULL)
139 
140 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141 
142 #define show_cppc_data(access_fn, struct_name, member_name)		\
143 	static ssize_t show_##member_name(struct kobject *kobj,		\
144 				struct kobj_attribute *attr, char *buf)	\
145 	{								\
146 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
147 		struct struct_name st_name = {0};			\
148 		int ret;						\
149 									\
150 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
151 		if (ret)						\
152 			return ret;					\
153 									\
154 		return sysfs_emit(buf, "%llu\n",		\
155 				(u64)st_name.member_name);		\
156 	}								\
157 	define_one_cppc_ro(member_name)
158 
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
164 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
165 
166 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
167 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
168 
169 static ssize_t show_feedback_ctrs(struct kobject *kobj,
170 		struct kobj_attribute *attr, char *buf)
171 {
172 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
173 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
174 	int ret;
175 
176 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
177 	if (ret)
178 		return ret;
179 
180 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
181 			fb_ctrs.reference, fb_ctrs.delivered);
182 }
183 define_one_cppc_ro(feedback_ctrs);
184 
185 static struct attribute *cppc_attrs[] = {
186 	&feedback_ctrs.attr,
187 	&reference_perf.attr,
188 	&wraparound_time.attr,
189 	&highest_perf.attr,
190 	&lowest_perf.attr,
191 	&lowest_nonlinear_perf.attr,
192 	&nominal_perf.attr,
193 	&nominal_freq.attr,
194 	&lowest_freq.attr,
195 	NULL
196 };
197 ATTRIBUTE_GROUPS(cppc);
198 
199 static const struct kobj_type cppc_ktype = {
200 	.sysfs_ops = &kobj_sysfs_ops,
201 	.default_groups = cppc_groups,
202 };
203 
204 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
205 {
206 	int ret, status;
207 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
208 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
209 		pcc_ss_data->pcc_comm_addr;
210 
211 	if (!pcc_ss_data->platform_owns_pcc)
212 		return 0;
213 
214 	/*
215 	 * Poll PCC status register every 3us(delay_us) for maximum of
216 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
217 	 */
218 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
219 					status & PCC_CMD_COMPLETE_MASK, 3,
220 					pcc_ss_data->deadline_us);
221 
222 	if (likely(!ret)) {
223 		pcc_ss_data->platform_owns_pcc = false;
224 		if (chk_err_bit && (status & PCC_ERROR_MASK))
225 			ret = -EIO;
226 	}
227 
228 	if (unlikely(ret))
229 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
230 		       pcc_ss_id, ret);
231 
232 	return ret;
233 }
234 
235 /*
236  * This function transfers the ownership of the PCC to the platform
237  * So it must be called while holding write_lock(pcc_lock)
238  */
239 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
240 {
241 	int ret = -EIO, i;
242 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
243 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
244 		pcc_ss_data->pcc_comm_addr;
245 	unsigned int time_delta;
246 
247 	/*
248 	 * For CMD_WRITE we know for a fact the caller should have checked
249 	 * the channel before writing to PCC space
250 	 */
251 	if (cmd == CMD_READ) {
252 		/*
253 		 * If there are pending cpc_writes, then we stole the channel
254 		 * before write completion, so first send a WRITE command to
255 		 * platform
256 		 */
257 		if (pcc_ss_data->pending_pcc_write_cmd)
258 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
259 
260 		ret = check_pcc_chan(pcc_ss_id, false);
261 		if (ret)
262 			goto end;
263 	} else /* CMD_WRITE */
264 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
265 
266 	/*
267 	 * Handle the Minimum Request Turnaround Time(MRTT)
268 	 * "The minimum amount of time that OSPM must wait after the completion
269 	 * of a command before issuing the next command, in microseconds"
270 	 */
271 	if (pcc_ss_data->pcc_mrtt) {
272 		time_delta = ktime_us_delta(ktime_get(),
273 					    pcc_ss_data->last_cmd_cmpl_time);
274 		if (pcc_ss_data->pcc_mrtt > time_delta)
275 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
276 	}
277 
278 	/*
279 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
280 	 * "The maximum number of periodic requests that the subspace channel can
281 	 * support, reported in commands per minute. 0 indicates no limitation."
282 	 *
283 	 * This parameter should be ideally zero or large enough so that it can
284 	 * handle maximum number of requests that all the cores in the system can
285 	 * collectively generate. If it is not, we will follow the spec and just
286 	 * not send the request to the platform after hitting the MPAR limit in
287 	 * any 60s window
288 	 */
289 	if (pcc_ss_data->pcc_mpar) {
290 		if (pcc_ss_data->mpar_count == 0) {
291 			time_delta = ktime_ms_delta(ktime_get(),
292 						    pcc_ss_data->last_mpar_reset);
293 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
294 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
295 					 pcc_ss_id);
296 				ret = -EIO;
297 				goto end;
298 			}
299 			pcc_ss_data->last_mpar_reset = ktime_get();
300 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
301 		}
302 		pcc_ss_data->mpar_count--;
303 	}
304 
305 	/* Write to the shared comm region. */
306 	writew_relaxed(cmd, &generic_comm_base->command);
307 
308 	/* Flip CMD COMPLETE bit */
309 	writew_relaxed(0, &generic_comm_base->status);
310 
311 	pcc_ss_data->platform_owns_pcc = true;
312 
313 	/* Ring doorbell */
314 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
315 	if (ret < 0) {
316 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
317 		       pcc_ss_id, cmd, ret);
318 		goto end;
319 	}
320 
321 	/* wait for completion and check for PCC error bit */
322 	ret = check_pcc_chan(pcc_ss_id, true);
323 
324 	if (pcc_ss_data->pcc_mrtt)
325 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
326 
327 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
328 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
329 	else
330 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
331 
332 end:
333 	if (cmd == CMD_WRITE) {
334 		if (unlikely(ret)) {
335 			for_each_possible_cpu(i) {
336 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
337 
338 				if (!desc)
339 					continue;
340 
341 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
342 					desc->write_cmd_status = ret;
343 			}
344 		}
345 		pcc_ss_data->pcc_write_cnt++;
346 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
347 	}
348 
349 	return ret;
350 }
351 
352 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
353 {
354 	if (ret < 0)
355 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
356 				*(u16 *)msg, ret);
357 	else
358 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
359 				*(u16 *)msg, ret);
360 }
361 
362 static struct mbox_client cppc_mbox_cl = {
363 	.tx_done = cppc_chan_tx_done,
364 	.knows_txdone = true,
365 };
366 
367 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
368 {
369 	int result = -EFAULT;
370 	acpi_status status = AE_OK;
371 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
372 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
373 	struct acpi_buffer state = {0, NULL};
374 	union acpi_object  *psd = NULL;
375 	struct acpi_psd_package *pdomain;
376 
377 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
378 					    &buffer, ACPI_TYPE_PACKAGE);
379 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
380 		return 0;
381 	if (ACPI_FAILURE(status))
382 		return -ENODEV;
383 
384 	psd = buffer.pointer;
385 	if (!psd || psd->package.count != 1) {
386 		pr_debug("Invalid _PSD data\n");
387 		goto end;
388 	}
389 
390 	pdomain = &(cpc_ptr->domain_info);
391 
392 	state.length = sizeof(struct acpi_psd_package);
393 	state.pointer = pdomain;
394 
395 	status = acpi_extract_package(&(psd->package.elements[0]),
396 		&format, &state);
397 	if (ACPI_FAILURE(status)) {
398 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
399 		goto end;
400 	}
401 
402 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
403 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
404 		goto end;
405 	}
406 
407 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
408 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
409 		goto end;
410 	}
411 
412 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
413 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
414 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
415 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
416 		goto end;
417 	}
418 
419 	result = 0;
420 end:
421 	kfree(buffer.pointer);
422 	return result;
423 }
424 
425 bool acpi_cpc_valid(void)
426 {
427 	struct cpc_desc *cpc_ptr;
428 	int cpu;
429 
430 	if (acpi_disabled)
431 		return false;
432 
433 	for_each_present_cpu(cpu) {
434 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
435 		if (!cpc_ptr)
436 			return false;
437 	}
438 
439 	return true;
440 }
441 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
442 
443 bool cppc_allow_fast_switch(void)
444 {
445 	struct cpc_register_resource *desired_reg;
446 	struct cpc_desc *cpc_ptr;
447 	int cpu;
448 
449 	for_each_possible_cpu(cpu) {
450 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
451 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
452 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
453 				!CPC_IN_SYSTEM_IO(desired_reg))
454 			return false;
455 	}
456 
457 	return true;
458 }
459 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
460 
461 /**
462  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
463  * @cpu: Find all CPUs that share a domain with cpu.
464  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
465  *
466  *	Return: 0 for success or negative value for err.
467  */
468 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
469 {
470 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
471 	struct acpi_psd_package *match_pdomain;
472 	struct acpi_psd_package *pdomain;
473 	int count_target, i;
474 
475 	/*
476 	 * Now that we have _PSD data from all CPUs, let's setup P-state
477 	 * domain info.
478 	 */
479 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
480 	if (!cpc_ptr)
481 		return -EFAULT;
482 
483 	pdomain = &(cpc_ptr->domain_info);
484 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
485 	if (pdomain->num_processors <= 1)
486 		return 0;
487 
488 	/* Validate the Domain info */
489 	count_target = pdomain->num_processors;
490 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
491 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
492 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
493 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
494 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
495 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
496 
497 	for_each_possible_cpu(i) {
498 		if (i == cpu)
499 			continue;
500 
501 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
502 		if (!match_cpc_ptr)
503 			goto err_fault;
504 
505 		match_pdomain = &(match_cpc_ptr->domain_info);
506 		if (match_pdomain->domain != pdomain->domain)
507 			continue;
508 
509 		/* Here i and cpu are in the same domain */
510 		if (match_pdomain->num_processors != count_target)
511 			goto err_fault;
512 
513 		if (pdomain->coord_type != match_pdomain->coord_type)
514 			goto err_fault;
515 
516 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
517 	}
518 
519 	return 0;
520 
521 err_fault:
522 	/* Assume no coordination on any error parsing domain info */
523 	cpumask_clear(cpu_data->shared_cpu_map);
524 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
525 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
526 
527 	return -EFAULT;
528 }
529 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
530 
531 static int register_pcc_channel(int pcc_ss_idx)
532 {
533 	struct pcc_mbox_chan *pcc_chan;
534 	u64 usecs_lat;
535 
536 	if (pcc_ss_idx >= 0) {
537 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
538 
539 		if (IS_ERR(pcc_chan)) {
540 			pr_err("Failed to find PCC channel for subspace %d\n",
541 			       pcc_ss_idx);
542 			return -ENODEV;
543 		}
544 
545 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
546 		/*
547 		 * cppc_ss->latency is just a Nominal value. In reality
548 		 * the remote processor could be much slower to reply.
549 		 * So add an arbitrary amount of wait on top of Nominal.
550 		 */
551 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
552 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
553 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
554 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
555 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
556 
557 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
558 			acpi_os_ioremap(pcc_chan->shmem_base_addr,
559 					pcc_chan->shmem_size);
560 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
561 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
562 			       pcc_ss_idx);
563 			return -ENOMEM;
564 		}
565 
566 		/* Set flag so that we don't come here for each CPU. */
567 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
568 	}
569 
570 	return 0;
571 }
572 
573 /**
574  * cpc_ffh_supported() - check if FFH reading supported
575  *
576  * Check if the architecture has support for functional fixed hardware
577  * read/write capability.
578  *
579  * Return: true for supported, false for not supported
580  */
581 bool __weak cpc_ffh_supported(void)
582 {
583 	return false;
584 }
585 
586 /**
587  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
588  *
589  * Check if the architectural support for CPPC is present even
590  * if the _OSC hasn't prescribed it
591  *
592  * Return: true for supported, false for not supported
593  */
594 bool __weak cpc_supported_by_cpu(void)
595 {
596 	return false;
597 }
598 
599 /**
600  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
601  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
602  *
603  * Check and allocate the cppc_pcc_data memory.
604  * In some processor configurations it is possible that same subspace
605  * is shared between multiple CPUs. This is seen especially in CPUs
606  * with hardware multi-threading support.
607  *
608  * Return: 0 for success, errno for failure
609  */
610 static int pcc_data_alloc(int pcc_ss_id)
611 {
612 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
613 		return -EINVAL;
614 
615 	if (pcc_data[pcc_ss_id]) {
616 		pcc_data[pcc_ss_id]->refcount++;
617 	} else {
618 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
619 					      GFP_KERNEL);
620 		if (!pcc_data[pcc_ss_id])
621 			return -ENOMEM;
622 		pcc_data[pcc_ss_id]->refcount++;
623 	}
624 
625 	return 0;
626 }
627 
628 /*
629  * An example CPC table looks like the following.
630  *
631  *  Name (_CPC, Package() {
632  *      17,							// NumEntries
633  *      1,							// Revision
634  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
635  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
636  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
637  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
638  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
639  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
640  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
641  *      ...
642  *      ...
643  *      ...
644  *  }
645  * Each Register() encodes how to access that specific register.
646  * e.g. a sample PCC entry has the following encoding:
647  *
648  *  Register (
649  *      PCC,	// AddressSpaceKeyword
650  *      8,	// RegisterBitWidth
651  *      8,	// RegisterBitOffset
652  *      0x30,	// RegisterAddress
653  *      9,	// AccessSize (subspace ID)
654  *  )
655  */
656 
657 #ifndef arch_init_invariance_cppc
658 static inline void arch_init_invariance_cppc(void) { }
659 #endif
660 
661 /**
662  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
663  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
664  *
665  *	Return: 0 for success or negative value for err.
666  */
667 int acpi_cppc_processor_probe(struct acpi_processor *pr)
668 {
669 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
670 	union acpi_object *out_obj, *cpc_obj;
671 	struct cpc_desc *cpc_ptr;
672 	struct cpc_reg *gas_t;
673 	struct device *cpu_dev;
674 	acpi_handle handle = pr->handle;
675 	unsigned int num_ent, i, cpc_rev;
676 	int pcc_subspace_id = -1;
677 	acpi_status status;
678 	int ret = -ENODATA;
679 
680 	if (!osc_sb_cppc2_support_acked) {
681 		pr_debug("CPPC v2 _OSC not acked\n");
682 		if (!cpc_supported_by_cpu())
683 			return -ENODEV;
684 	}
685 
686 	/* Parse the ACPI _CPC table for this CPU. */
687 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
688 			ACPI_TYPE_PACKAGE);
689 	if (ACPI_FAILURE(status)) {
690 		ret = -ENODEV;
691 		goto out_buf_free;
692 	}
693 
694 	out_obj = (union acpi_object *) output.pointer;
695 
696 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
697 	if (!cpc_ptr) {
698 		ret = -ENOMEM;
699 		goto out_buf_free;
700 	}
701 
702 	/* First entry is NumEntries. */
703 	cpc_obj = &out_obj->package.elements[0];
704 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
705 		num_ent = cpc_obj->integer.value;
706 		if (num_ent <= 1) {
707 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
708 				 num_ent, pr->id);
709 			goto out_free;
710 		}
711 	} else {
712 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
713 			 cpc_obj->type, pr->id);
714 		goto out_free;
715 	}
716 
717 	/* Second entry should be revision. */
718 	cpc_obj = &out_obj->package.elements[1];
719 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
720 		cpc_rev = cpc_obj->integer.value;
721 	} else {
722 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
723 			 cpc_obj->type, pr->id);
724 		goto out_free;
725 	}
726 
727 	if (cpc_rev < CPPC_V2_REV) {
728 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
729 			 pr->id);
730 		goto out_free;
731 	}
732 
733 	/*
734 	 * Disregard _CPC if the number of entries in the return pachage is not
735 	 * as expected, but support future revisions being proper supersets of
736 	 * the v3 and only causing more entries to be returned by _CPC.
737 	 */
738 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
739 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
740 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
741 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
742 			 num_ent, pr->id);
743 		goto out_free;
744 	}
745 	if (cpc_rev > CPPC_V3_REV) {
746 		num_ent = CPPC_V3_NUM_ENT;
747 		cpc_rev = CPPC_V3_REV;
748 	}
749 
750 	cpc_ptr->num_entries = num_ent;
751 	cpc_ptr->version = cpc_rev;
752 
753 	/* Iterate through remaining entries in _CPC */
754 	for (i = 2; i < num_ent; i++) {
755 		cpc_obj = &out_obj->package.elements[i];
756 
757 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
758 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
759 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
760 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
761 			gas_t = (struct cpc_reg *)
762 				cpc_obj->buffer.pointer;
763 
764 			/*
765 			 * The PCC Subspace index is encoded inside
766 			 * the CPC table entries. The same PCC index
767 			 * will be used for all the PCC entries,
768 			 * so extract it only once.
769 			 */
770 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
771 				if (pcc_subspace_id < 0) {
772 					pcc_subspace_id = gas_t->access_width;
773 					if (pcc_data_alloc(pcc_subspace_id))
774 						goto out_free;
775 				} else if (pcc_subspace_id != gas_t->access_width) {
776 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
777 						 pr->id);
778 					goto out_free;
779 				}
780 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
781 				if (gas_t->address) {
782 					void __iomem *addr;
783 
784 					if (!osc_cpc_flexible_adr_space_confirmed) {
785 						pr_debug("Flexible address space capability not supported\n");
786 						if (!cpc_supported_by_cpu())
787 							goto out_free;
788 					}
789 
790 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
791 					if (!addr)
792 						goto out_free;
793 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
794 				}
795 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
796 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
797 					/*
798 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
799 					 * SystemIO doesn't implement 64-bit
800 					 * registers.
801 					 */
802 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
803 						 gas_t->access_width);
804 					goto out_free;
805 				}
806 				if (gas_t->address & OVER_16BTS_MASK) {
807 					/* SystemIO registers use 16-bit integer addresses */
808 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
809 						 gas_t->address);
810 					goto out_free;
811 				}
812 				if (!osc_cpc_flexible_adr_space_confirmed) {
813 					pr_debug("Flexible address space capability not supported\n");
814 					if (!cpc_supported_by_cpu())
815 						goto out_free;
816 				}
817 			} else {
818 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
819 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
820 					pr_debug("Unsupported register type (%d) in _CPC\n",
821 						 gas_t->space_id);
822 					goto out_free;
823 				}
824 			}
825 
826 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
827 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
828 		} else {
829 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
830 				 i, pr->id);
831 			goto out_free;
832 		}
833 	}
834 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
835 
836 	/*
837 	 * Initialize the remaining cpc_regs as unsupported.
838 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
839 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
840 	 */
841 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
842 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
843 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
844 	}
845 
846 
847 	/* Store CPU Logical ID */
848 	cpc_ptr->cpu_id = pr->id;
849 
850 	/* Parse PSD data for this CPU */
851 	ret = acpi_get_psd(cpc_ptr, handle);
852 	if (ret)
853 		goto out_free;
854 
855 	/* Register PCC channel once for all PCC subspace ID. */
856 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
857 		ret = register_pcc_channel(pcc_subspace_id);
858 		if (ret)
859 			goto out_free;
860 
861 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
862 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
863 	}
864 
865 	/* Everything looks okay */
866 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
867 
868 	/* Add per logical CPU nodes for reading its feedback counters. */
869 	cpu_dev = get_cpu_device(pr->id);
870 	if (!cpu_dev) {
871 		ret = -EINVAL;
872 		goto out_free;
873 	}
874 
875 	/* Plug PSD data into this CPU's CPC descriptor. */
876 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
877 
878 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
879 			"acpi_cppc");
880 	if (ret) {
881 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
882 		kobject_put(&cpc_ptr->kobj);
883 		goto out_free;
884 	}
885 
886 	arch_init_invariance_cppc();
887 
888 	kfree(output.pointer);
889 	return 0;
890 
891 out_free:
892 	/* Free all the mapped sys mem areas for this CPU */
893 	for (i = 2; i < cpc_ptr->num_entries; i++) {
894 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
895 
896 		if (addr)
897 			iounmap(addr);
898 	}
899 	kfree(cpc_ptr);
900 
901 out_buf_free:
902 	kfree(output.pointer);
903 	return ret;
904 }
905 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
906 
907 /**
908  * acpi_cppc_processor_exit - Cleanup CPC structs.
909  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
910  *
911  * Return: Void
912  */
913 void acpi_cppc_processor_exit(struct acpi_processor *pr)
914 {
915 	struct cpc_desc *cpc_ptr;
916 	unsigned int i;
917 	void __iomem *addr;
918 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
919 
920 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
921 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
922 			pcc_data[pcc_ss_id]->refcount--;
923 			if (!pcc_data[pcc_ss_id]->refcount) {
924 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
925 				kfree(pcc_data[pcc_ss_id]);
926 				pcc_data[pcc_ss_id] = NULL;
927 			}
928 		}
929 	}
930 
931 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
932 	if (!cpc_ptr)
933 		return;
934 
935 	/* Free all the mapped sys mem areas for this CPU */
936 	for (i = 2; i < cpc_ptr->num_entries; i++) {
937 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
938 		if (addr)
939 			iounmap(addr);
940 	}
941 
942 	kobject_put(&cpc_ptr->kobj);
943 	kfree(cpc_ptr);
944 }
945 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
946 
947 /**
948  * cpc_read_ffh() - Read FFH register
949  * @cpunum:	CPU number to read
950  * @reg:	cppc register information
951  * @val:	place holder for return value
952  *
953  * Read bit_width bits from a specified address and bit_offset
954  *
955  * Return: 0 for success and error code
956  */
957 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
958 {
959 	return -ENOTSUPP;
960 }
961 
962 /**
963  * cpc_write_ffh() - Write FFH register
964  * @cpunum:	CPU number to write
965  * @reg:	cppc register information
966  * @val:	value to write
967  *
968  * Write value of bit_width bits to a specified address and bit_offset
969  *
970  * Return: 0 for success and error code
971  */
972 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
973 {
974 	return -ENOTSUPP;
975 }
976 
977 /*
978  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
979  * as fast as possible. We have already mapped the PCC subspace during init, so
980  * we can directly write to it.
981  */
982 
983 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
984 {
985 	void __iomem *vaddr = NULL;
986 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
987 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
988 
989 	if (reg_res->type == ACPI_TYPE_INTEGER) {
990 		*val = reg_res->cpc_entry.int_value;
991 		return 0;
992 	}
993 
994 	*val = 0;
995 
996 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
997 		u32 width = 8 << (reg->access_width - 1);
998 		u32 val_u32;
999 		acpi_status status;
1000 
1001 		status = acpi_os_read_port((acpi_io_address)reg->address,
1002 					   &val_u32, width);
1003 		if (ACPI_FAILURE(status)) {
1004 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1005 				 reg->address);
1006 			return -EFAULT;
1007 		}
1008 
1009 		*val = val_u32;
1010 		return 0;
1011 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1012 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1013 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1014 		vaddr = reg_res->sys_mem_vaddr;
1015 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1016 		return cpc_read_ffh(cpu, reg, val);
1017 	else
1018 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1019 				val, reg->bit_width);
1020 
1021 	switch (reg->bit_width) {
1022 	case 8:
1023 		*val = readb_relaxed(vaddr);
1024 		break;
1025 	case 16:
1026 		*val = readw_relaxed(vaddr);
1027 		break;
1028 	case 32:
1029 		*val = readl_relaxed(vaddr);
1030 		break;
1031 	case 64:
1032 		*val = readq_relaxed(vaddr);
1033 		break;
1034 	default:
1035 		pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1036 			 reg->bit_width, pcc_ss_id);
1037 		return -EFAULT;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1044 {
1045 	int ret_val = 0;
1046 	void __iomem *vaddr = NULL;
1047 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1048 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1049 
1050 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1051 		u32 width = 8 << (reg->access_width - 1);
1052 		acpi_status status;
1053 
1054 		status = acpi_os_write_port((acpi_io_address)reg->address,
1055 					    (u32)val, width);
1056 		if (ACPI_FAILURE(status)) {
1057 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1058 				 reg->address);
1059 			return -EFAULT;
1060 		}
1061 
1062 		return 0;
1063 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1064 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1065 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1066 		vaddr = reg_res->sys_mem_vaddr;
1067 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1068 		return cpc_write_ffh(cpu, reg, val);
1069 	else
1070 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1071 				val, reg->bit_width);
1072 
1073 	switch (reg->bit_width) {
1074 	case 8:
1075 		writeb_relaxed(val, vaddr);
1076 		break;
1077 	case 16:
1078 		writew_relaxed(val, vaddr);
1079 		break;
1080 	case 32:
1081 		writel_relaxed(val, vaddr);
1082 		break;
1083 	case 64:
1084 		writeq_relaxed(val, vaddr);
1085 		break;
1086 	default:
1087 		pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1088 			 reg->bit_width, pcc_ss_id);
1089 		ret_val = -EFAULT;
1090 		break;
1091 	}
1092 
1093 	return ret_val;
1094 }
1095 
1096 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1097 {
1098 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1099 	struct cpc_register_resource *reg;
1100 
1101 	if (!cpc_desc) {
1102 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1103 		return -ENODEV;
1104 	}
1105 
1106 	reg = &cpc_desc->cpc_regs[reg_idx];
1107 
1108 	if (CPC_IN_PCC(reg)) {
1109 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1110 		struct cppc_pcc_data *pcc_ss_data = NULL;
1111 		int ret = 0;
1112 
1113 		if (pcc_ss_id < 0)
1114 			return -EIO;
1115 
1116 		pcc_ss_data = pcc_data[pcc_ss_id];
1117 
1118 		down_write(&pcc_ss_data->pcc_lock);
1119 
1120 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1121 			cpc_read(cpunum, reg, perf);
1122 		else
1123 			ret = -EIO;
1124 
1125 		up_write(&pcc_ss_data->pcc_lock);
1126 
1127 		return ret;
1128 	}
1129 
1130 	cpc_read(cpunum, reg, perf);
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * cppc_get_desired_perf - Get the desired performance register value.
1137  * @cpunum: CPU from which to get desired performance.
1138  * @desired_perf: Return address.
1139  *
1140  * Return: 0 for success, -EIO otherwise.
1141  */
1142 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1143 {
1144 	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1145 }
1146 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1147 
1148 /**
1149  * cppc_get_nominal_perf - Get the nominal performance register value.
1150  * @cpunum: CPU from which to get nominal performance.
1151  * @nominal_perf: Return address.
1152  *
1153  * Return: 0 for success, -EIO otherwise.
1154  */
1155 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1156 {
1157 	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1158 }
1159 
1160 /**
1161  * cppc_get_epp_perf - Get the epp register value.
1162  * @cpunum: CPU from which to get epp preference value.
1163  * @epp_perf: Return address.
1164  *
1165  * Return: 0 for success, -EIO otherwise.
1166  */
1167 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1168 {
1169 	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1170 }
1171 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1172 
1173 /**
1174  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1175  * @cpunum: CPU from which to get capabilities info.
1176  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1177  *
1178  * Return: 0 for success with perf_caps populated else -ERRNO.
1179  */
1180 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1181 {
1182 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1183 	struct cpc_register_resource *highest_reg, *lowest_reg,
1184 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1185 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1186 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1187 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1188 	struct cppc_pcc_data *pcc_ss_data = NULL;
1189 	int ret = 0, regs_in_pcc = 0;
1190 
1191 	if (!cpc_desc) {
1192 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193 		return -ENODEV;
1194 	}
1195 
1196 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1197 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1198 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1199 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1200 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1201 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1202 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1203 
1204 	/* Are any of the regs PCC ?*/
1205 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1206 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1207 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1208 		if (pcc_ss_id < 0) {
1209 			pr_debug("Invalid pcc_ss_id\n");
1210 			return -ENODEV;
1211 		}
1212 		pcc_ss_data = pcc_data[pcc_ss_id];
1213 		regs_in_pcc = 1;
1214 		down_write(&pcc_ss_data->pcc_lock);
1215 		/* Ring doorbell once to update PCC subspace */
1216 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1217 			ret = -EIO;
1218 			goto out_err;
1219 		}
1220 	}
1221 
1222 	cpc_read(cpunum, highest_reg, &high);
1223 	perf_caps->highest_perf = high;
1224 
1225 	cpc_read(cpunum, lowest_reg, &low);
1226 	perf_caps->lowest_perf = low;
1227 
1228 	cpc_read(cpunum, nominal_reg, &nom);
1229 	perf_caps->nominal_perf = nom;
1230 
1231 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1232 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1233 		perf_caps->guaranteed_perf = 0;
1234 	} else {
1235 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1236 		perf_caps->guaranteed_perf = guaranteed;
1237 	}
1238 
1239 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1240 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1241 
1242 	if (!high || !low || !nom || !min_nonlinear)
1243 		ret = -EFAULT;
1244 
1245 	/* Read optional lowest and nominal frequencies if present */
1246 	if (CPC_SUPPORTED(low_freq_reg))
1247 		cpc_read(cpunum, low_freq_reg, &low_f);
1248 
1249 	if (CPC_SUPPORTED(nom_freq_reg))
1250 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1251 
1252 	perf_caps->lowest_freq = low_f;
1253 	perf_caps->nominal_freq = nom_f;
1254 
1255 
1256 out_err:
1257 	if (regs_in_pcc)
1258 		up_write(&pcc_ss_data->pcc_lock);
1259 	return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1262 
1263 /**
1264  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1265  *
1266  * CPPC has flexibility about how CPU performance counters are accessed.
1267  * One of the choices is PCC regions, which can have a high access latency. This
1268  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1269  *
1270  * Return: true if any of the counters are in PCC regions, false otherwise
1271  */
1272 bool cppc_perf_ctrs_in_pcc(void)
1273 {
1274 	int cpu;
1275 
1276 	for_each_present_cpu(cpu) {
1277 		struct cpc_register_resource *ref_perf_reg;
1278 		struct cpc_desc *cpc_desc;
1279 
1280 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1281 
1282 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1283 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1284 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1285 			return true;
1286 
1287 
1288 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1289 
1290 		/*
1291 		 * If reference perf register is not supported then we should
1292 		 * use the nominal perf value
1293 		 */
1294 		if (!CPC_SUPPORTED(ref_perf_reg))
1295 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1296 
1297 		if (CPC_IN_PCC(ref_perf_reg))
1298 			return true;
1299 	}
1300 
1301 	return false;
1302 }
1303 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1304 
1305 /**
1306  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1307  * @cpunum: CPU from which to read counters.
1308  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1309  *
1310  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1311  */
1312 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1313 {
1314 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1315 	struct cpc_register_resource *delivered_reg, *reference_reg,
1316 		*ref_perf_reg, *ctr_wrap_reg;
1317 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1318 	struct cppc_pcc_data *pcc_ss_data = NULL;
1319 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1320 	int ret = 0, regs_in_pcc = 0;
1321 
1322 	if (!cpc_desc) {
1323 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1324 		return -ENODEV;
1325 	}
1326 
1327 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1328 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1329 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1330 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1331 
1332 	/*
1333 	 * If reference perf register is not supported then we should
1334 	 * use the nominal perf value
1335 	 */
1336 	if (!CPC_SUPPORTED(ref_perf_reg))
1337 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1338 
1339 	/* Are any of the regs PCC ?*/
1340 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1341 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1342 		if (pcc_ss_id < 0) {
1343 			pr_debug("Invalid pcc_ss_id\n");
1344 			return -ENODEV;
1345 		}
1346 		pcc_ss_data = pcc_data[pcc_ss_id];
1347 		down_write(&pcc_ss_data->pcc_lock);
1348 		regs_in_pcc = 1;
1349 		/* Ring doorbell once to update PCC subspace */
1350 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1351 			ret = -EIO;
1352 			goto out_err;
1353 		}
1354 	}
1355 
1356 	cpc_read(cpunum, delivered_reg, &delivered);
1357 	cpc_read(cpunum, reference_reg, &reference);
1358 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1359 
1360 	/*
1361 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1362 	 * performance counters are assumed to never wrap during the lifetime of
1363 	 * platform
1364 	 */
1365 	ctr_wrap_time = (u64)(~((u64)0));
1366 	if (CPC_SUPPORTED(ctr_wrap_reg))
1367 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1368 
1369 	if (!delivered || !reference ||	!ref_perf) {
1370 		ret = -EFAULT;
1371 		goto out_err;
1372 	}
1373 
1374 	perf_fb_ctrs->delivered = delivered;
1375 	perf_fb_ctrs->reference = reference;
1376 	perf_fb_ctrs->reference_perf = ref_perf;
1377 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1378 out_err:
1379 	if (regs_in_pcc)
1380 		up_write(&pcc_ss_data->pcc_lock);
1381 	return ret;
1382 }
1383 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1384 
1385 /*
1386  * Set Energy Performance Preference Register value through
1387  * Performance Controls Interface
1388  */
1389 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1390 {
1391 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1392 	struct cpc_register_resource *epp_set_reg;
1393 	struct cpc_register_resource *auto_sel_reg;
1394 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1395 	struct cppc_pcc_data *pcc_ss_data = NULL;
1396 	int ret;
1397 
1398 	if (!cpc_desc) {
1399 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1400 		return -ENODEV;
1401 	}
1402 
1403 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1404 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1405 
1406 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1407 		if (pcc_ss_id < 0) {
1408 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1409 			return -ENODEV;
1410 		}
1411 
1412 		if (CPC_SUPPORTED(auto_sel_reg)) {
1413 			ret = cpc_write(cpu, auto_sel_reg, enable);
1414 			if (ret)
1415 				return ret;
1416 		}
1417 
1418 		if (CPC_SUPPORTED(epp_set_reg)) {
1419 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1420 			if (ret)
1421 				return ret;
1422 		}
1423 
1424 		pcc_ss_data = pcc_data[pcc_ss_id];
1425 
1426 		down_write(&pcc_ss_data->pcc_lock);
1427 		/* after writing CPC, transfer the ownership of PCC to platform */
1428 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1429 		up_write(&pcc_ss_data->pcc_lock);
1430 	} else {
1431 		ret = -ENOTSUPP;
1432 		pr_debug("_CPC in PCC is not supported\n");
1433 	}
1434 
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1438 
1439 /**
1440  * cppc_get_auto_sel_caps - Read autonomous selection register.
1441  * @cpunum : CPU from which to read register.
1442  * @perf_caps : struct where autonomous selection register value is updated.
1443  */
1444 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1445 {
1446 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1447 	struct cpc_register_resource *auto_sel_reg;
1448 	u64  auto_sel;
1449 
1450 	if (!cpc_desc) {
1451 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1452 		return -ENODEV;
1453 	}
1454 
1455 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1456 
1457 	if (!CPC_SUPPORTED(auto_sel_reg))
1458 		pr_warn_once("Autonomous mode is not unsupported!\n");
1459 
1460 	if (CPC_IN_PCC(auto_sel_reg)) {
1461 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1462 		struct cppc_pcc_data *pcc_ss_data = NULL;
1463 		int ret = 0;
1464 
1465 		if (pcc_ss_id < 0)
1466 			return -ENODEV;
1467 
1468 		pcc_ss_data = pcc_data[pcc_ss_id];
1469 
1470 		down_write(&pcc_ss_data->pcc_lock);
1471 
1472 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1473 			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1474 			perf_caps->auto_sel = (bool)auto_sel;
1475 		} else {
1476 			ret = -EIO;
1477 		}
1478 
1479 		up_write(&pcc_ss_data->pcc_lock);
1480 
1481 		return ret;
1482 	}
1483 
1484 	return 0;
1485 }
1486 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1487 
1488 /**
1489  * cppc_set_auto_sel - Write autonomous selection register.
1490  * @cpu    : CPU to which to write register.
1491  * @enable : the desired value of autonomous selection resiter to be updated.
1492  */
1493 int cppc_set_auto_sel(int cpu, bool enable)
1494 {
1495 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1496 	struct cpc_register_resource *auto_sel_reg;
1497 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1498 	struct cppc_pcc_data *pcc_ss_data = NULL;
1499 	int ret = -EINVAL;
1500 
1501 	if (!cpc_desc) {
1502 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1503 		return -ENODEV;
1504 	}
1505 
1506 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1507 
1508 	if (CPC_IN_PCC(auto_sel_reg)) {
1509 		if (pcc_ss_id < 0) {
1510 			pr_debug("Invalid pcc_ss_id\n");
1511 			return -ENODEV;
1512 		}
1513 
1514 		if (CPC_SUPPORTED(auto_sel_reg)) {
1515 			ret = cpc_write(cpu, auto_sel_reg, enable);
1516 			if (ret)
1517 				return ret;
1518 		}
1519 
1520 		pcc_ss_data = pcc_data[pcc_ss_id];
1521 
1522 		down_write(&pcc_ss_data->pcc_lock);
1523 		/* after writing CPC, transfer the ownership of PCC to platform */
1524 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1525 		up_write(&pcc_ss_data->pcc_lock);
1526 	} else {
1527 		ret = -ENOTSUPP;
1528 		pr_debug("_CPC in PCC is not supported\n");
1529 	}
1530 
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1534 
1535 /**
1536  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1537  * Continuous Performance Control package EnableRegister field.
1538  * @cpu: CPU for which to enable CPPC register.
1539  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1540  *
1541  * Return: 0 for success, -ERRNO or -EIO otherwise.
1542  */
1543 int cppc_set_enable(int cpu, bool enable)
1544 {
1545 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1546 	struct cpc_register_resource *enable_reg;
1547 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1548 	struct cppc_pcc_data *pcc_ss_data = NULL;
1549 	int ret = -EINVAL;
1550 
1551 	if (!cpc_desc) {
1552 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1553 		return -EINVAL;
1554 	}
1555 
1556 	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1557 
1558 	if (CPC_IN_PCC(enable_reg)) {
1559 
1560 		if (pcc_ss_id < 0)
1561 			return -EIO;
1562 
1563 		ret = cpc_write(cpu, enable_reg, enable);
1564 		if (ret)
1565 			return ret;
1566 
1567 		pcc_ss_data = pcc_data[pcc_ss_id];
1568 
1569 		down_write(&pcc_ss_data->pcc_lock);
1570 		/* after writing CPC, transfer the ownership of PCC to platfrom */
1571 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1572 		up_write(&pcc_ss_data->pcc_lock);
1573 		return ret;
1574 	}
1575 
1576 	return cpc_write(cpu, enable_reg, enable);
1577 }
1578 EXPORT_SYMBOL_GPL(cppc_set_enable);
1579 
1580 /**
1581  * cppc_set_perf - Set a CPU's performance controls.
1582  * @cpu: CPU for which to set performance controls.
1583  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1584  *
1585  * Return: 0 for success, -ERRNO otherwise.
1586  */
1587 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1588 {
1589 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1590 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1591 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1592 	struct cppc_pcc_data *pcc_ss_data = NULL;
1593 	int ret = 0;
1594 
1595 	if (!cpc_desc) {
1596 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1597 		return -ENODEV;
1598 	}
1599 
1600 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1601 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1602 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1603 
1604 	/*
1605 	 * This is Phase-I where we want to write to CPC registers
1606 	 * -> We want all CPUs to be able to execute this phase in parallel
1607 	 *
1608 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1609 	 * achieve that goal here
1610 	 */
1611 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1612 		if (pcc_ss_id < 0) {
1613 			pr_debug("Invalid pcc_ss_id\n");
1614 			return -ENODEV;
1615 		}
1616 		pcc_ss_data = pcc_data[pcc_ss_id];
1617 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1618 		if (pcc_ss_data->platform_owns_pcc) {
1619 			ret = check_pcc_chan(pcc_ss_id, false);
1620 			if (ret) {
1621 				up_read(&pcc_ss_data->pcc_lock);
1622 				return ret;
1623 			}
1624 		}
1625 		/*
1626 		 * Update the pending_write to make sure a PCC CMD_READ will not
1627 		 * arrive and steal the channel during the switch to write lock
1628 		 */
1629 		pcc_ss_data->pending_pcc_write_cmd = true;
1630 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1631 		cpc_desc->write_cmd_status = 0;
1632 	}
1633 
1634 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1635 
1636 	/*
1637 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1638 	 * value to min and max perf, but they don't mean to set the zero value,
1639 	 * they just don't want to write to those registers.
1640 	 */
1641 	if (perf_ctrls->min_perf)
1642 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1643 	if (perf_ctrls->max_perf)
1644 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1645 
1646 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1647 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1648 	/*
1649 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1650 	 *
1651 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1652 	 * requests that happened in short overlapping interval. The last CPU to
1653 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1654 	 *
1655 	 * We have the following requirements for Phase-II:
1656 	 *     1. We want to execute Phase-II only when there are no CPUs
1657 	 * currently executing in Phase-I
1658 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1659 	 * entering Phase-I.
1660 	 *     3. We want only one CPU among all those who went through Phase-I
1661 	 * to run phase-II
1662 	 *
1663 	 * If write_trylock fails to get the lock and doesn't transfer the
1664 	 * PCC ownership to the platform, then one of the following will be TRUE
1665 	 *     1. There is at-least one CPU in Phase-I which will later execute
1666 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1667 	 * executing the Phase-II.
1668 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1669 	 * write_trylock and has already acquired the write_lock. We know for a
1670 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1671 	 * before this CPU's Phase-I as we held the read_lock.
1672 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1673 	 * down_write, in which case, send_pcc_cmd will check for pending
1674 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1675 	 * So this CPU can be certain that its request will be delivered
1676 	 *    So in all cases, this CPU knows that its request will be delivered
1677 	 * by another CPU and can return
1678 	 *
1679 	 * After getting the down_write we still need to check for
1680 	 * pending_pcc_write_cmd to take care of the following scenario
1681 	 *    The thread running this code could be scheduled out between
1682 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1683 	 * could have delivered the request to Platform by triggering the
1684 	 * doorbell and transferred the ownership of PCC to platform. So this
1685 	 * avoids triggering an unnecessary doorbell and more importantly before
1686 	 * triggering the doorbell it makes sure that the PCC channel ownership
1687 	 * is still with OSPM.
1688 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1689 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1690 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1691 	 * case during a CMD_READ and if there are pending writes it delivers
1692 	 * the write command before servicing the read command
1693 	 */
1694 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1695 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1696 			/* Update only if there are pending write commands */
1697 			if (pcc_ss_data->pending_pcc_write_cmd)
1698 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1699 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1700 		} else
1701 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1702 			wait_event(pcc_ss_data->pcc_write_wait_q,
1703 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1704 
1705 		/* send_pcc_cmd updates the status in case of failure */
1706 		ret = cpc_desc->write_cmd_status;
1707 	}
1708 	return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(cppc_set_perf);
1711 
1712 /**
1713  * cppc_get_transition_latency - returns frequency transition latency in ns
1714  * @cpu_num: CPU number for per_cpu().
1715  *
1716  * ACPI CPPC does not explicitly specify how a platform can specify the
1717  * transition latency for performance change requests. The closest we have
1718  * is the timing information from the PCCT tables which provides the info
1719  * on the number and frequency of PCC commands the platform can handle.
1720  *
1721  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1722  * then assume there is no latency.
1723  */
1724 unsigned int cppc_get_transition_latency(int cpu_num)
1725 {
1726 	/*
1727 	 * Expected transition latency is based on the PCCT timing values
1728 	 * Below are definition from ACPI spec:
1729 	 * pcc_nominal- Expected latency to process a command, in microseconds
1730 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1731 	 *              channel can support, reported in commands per minute. 0
1732 	 *              indicates no limitation.
1733 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1734 	 *              completion of a command before issuing the next command,
1735 	 *              in microseconds.
1736 	 */
1737 	unsigned int latency_ns = 0;
1738 	struct cpc_desc *cpc_desc;
1739 	struct cpc_register_resource *desired_reg;
1740 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1741 	struct cppc_pcc_data *pcc_ss_data;
1742 
1743 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1744 	if (!cpc_desc)
1745 		return CPUFREQ_ETERNAL;
1746 
1747 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1748 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1749 		return 0;
1750 	else if (!CPC_IN_PCC(desired_reg))
1751 		return CPUFREQ_ETERNAL;
1752 
1753 	if (pcc_ss_id < 0)
1754 		return CPUFREQ_ETERNAL;
1755 
1756 	pcc_ss_data = pcc_data[pcc_ss_id];
1757 	if (pcc_ss_data->pcc_mpar)
1758 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1759 
1760 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1761 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1762 
1763 	return latency_ns;
1764 }
1765 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1766 
1767 /* Minimum struct length needed for the DMI processor entry we want */
1768 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1769 
1770 /* Offset in the DMI processor structure for the max frequency */
1771 #define DMI_PROCESSOR_MAX_SPEED		0x14
1772 
1773 /* Callback function used to retrieve the max frequency from DMI */
1774 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1775 {
1776 	const u8 *dmi_data = (const u8 *)dm;
1777 	u16 *mhz = (u16 *)private;
1778 
1779 	if (dm->type == DMI_ENTRY_PROCESSOR &&
1780 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1781 		u16 val = (u16)get_unaligned((const u16 *)
1782 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1783 		*mhz = val > *mhz ? val : *mhz;
1784 	}
1785 }
1786 
1787 /* Look up the max frequency in DMI */
1788 static u64 cppc_get_dmi_max_khz(void)
1789 {
1790 	u16 mhz = 0;
1791 
1792 	dmi_walk(cppc_find_dmi_mhz, &mhz);
1793 
1794 	/*
1795 	 * Real stupid fallback value, just in case there is no
1796 	 * actual value set.
1797 	 */
1798 	mhz = mhz ? mhz : 1;
1799 
1800 	return KHZ_PER_MHZ * mhz;
1801 }
1802 
1803 /*
1804  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1805  * use them to convert perf to freq and vice versa. The conversion is
1806  * extrapolated as an affine function passing by the 2 points:
1807  *  - (Low perf, Low freq)
1808  *  - (Nominal perf, Nominal freq)
1809  */
1810 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1811 {
1812 	s64 retval, offset = 0;
1813 	static u64 max_khz;
1814 	u64 mul, div;
1815 
1816 	if (caps->lowest_freq && caps->nominal_freq) {
1817 		mul = caps->nominal_freq - caps->lowest_freq;
1818 		mul *= KHZ_PER_MHZ;
1819 		div = caps->nominal_perf - caps->lowest_perf;
1820 		offset = caps->nominal_freq * KHZ_PER_MHZ -
1821 			 div64_u64(caps->nominal_perf * mul, div);
1822 	} else {
1823 		if (!max_khz)
1824 			max_khz = cppc_get_dmi_max_khz();
1825 		mul = max_khz;
1826 		div = caps->highest_perf;
1827 	}
1828 
1829 	retval = offset + div64_u64(perf * mul, div);
1830 	if (retval >= 0)
1831 		return retval;
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1835 
1836 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1837 {
1838 	s64 retval, offset = 0;
1839 	static u64 max_khz;
1840 	u64  mul, div;
1841 
1842 	if (caps->lowest_freq && caps->nominal_freq) {
1843 		mul = caps->nominal_perf - caps->lowest_perf;
1844 		div = caps->nominal_freq - caps->lowest_freq;
1845 		/*
1846 		 * We don't need to convert to kHz for computing offset and can
1847 		 * directly use nominal_freq and lowest_freq as the div64_u64
1848 		 * will remove the frequency unit.
1849 		 */
1850 		offset = caps->nominal_perf -
1851 			 div64_u64(caps->nominal_freq * mul, div);
1852 		/* But we need it for computing the perf level. */
1853 		div *= KHZ_PER_MHZ;
1854 	} else {
1855 		if (!max_khz)
1856 			max_khz = cppc_get_dmi_max_khz();
1857 		mul = caps->highest_perf;
1858 		div = max_khz;
1859 	}
1860 
1861 	retval = offset + div64_u64(freq * mul, div);
1862 	if (retval >= 0)
1863 		return retval;
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1867