xref: /linux/drivers/acpi/cppc_acpi.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <linux/unaligned.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct pcc_mbox_chan *pcc_channel;
50 	void __iomem *pcc_comm_addr;
51 	bool pcc_channel_acquired;
52 	unsigned int deadline_us;
53 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54 
55 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58 
59 	/*
60 	 * Lock to provide controlled access to the PCC channel.
61 	 *
62 	 * For performance critical usecases(currently cppc_set_perf)
63 	 *	We need to take read_lock and check if channel belongs to OSPM
64 	 * before reading or writing to PCC subspace
65 	 *	We need to take write_lock before transferring the channel
66 	 * ownership to the platform via a Doorbell
67 	 *	This allows us to batch a number of CPPC requests if they happen
68 	 * to originate in about the same time
69 	 *
70 	 * For non-performance critical usecases(init)
71 	 *	Take write_lock for all purposes which gives exclusive access
72 	 */
73 	struct rw_semaphore pcc_lock;
74 
75 	/* Wait queue for CPUs whose requests were batched */
76 	wait_queue_head_t pcc_write_wait_q;
77 	ktime_t last_cmd_cmpl_time;
78 	ktime_t last_mpar_reset;
79 	int mpar_count;
80 	int refcount;
81 };
82 
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96 
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 						0x8 + (offs))
100 
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
103 				(cpc)->cpc_entry.reg.space_id ==	\
104 				ACPI_ADR_SPACE_PLATFORM_COMM)
105 
106 /* Check if a CPC register is in FFH */
107 #define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
108 				(cpc)->cpc_entry.reg.space_id ==	\
109 				ACPI_ADR_SPACE_FIXED_HARDWARE)
110 
111 /* Check if a CPC register is in SystemMemory */
112 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
113 				(cpc)->cpc_entry.reg.space_id ==	\
114 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
115 
116 /* Check if a CPC register is in SystemIo */
117 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
118 				(cpc)->cpc_entry.reg.space_id ==	\
119 				ACPI_ADR_SPACE_SYSTEM_IO)
120 
121 /* Evaluates to True if reg is a NULL register descriptor */
122 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
123 				(reg)->address == 0 &&			\
124 				(reg)->bit_width == 0 &&		\
125 				(reg)->bit_offset == 0 &&		\
126 				(reg)->access_width == 0)
127 
128 /* Evaluates to True if an optional cpc field is supported */
129 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
130 				!!(cpc)->cpc_entry.int_value :		\
131 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
132 /*
133  * Arbitrary Retries in case the remote processor is slow to respond
134  * to PCC commands. Keeping it high enough to cover emulators where
135  * the processors run painfully slow.
136  */
137 #define NUM_RETRIES 500ULL
138 
139 #define OVER_16BTS_MASK ~0xFFFFULL
140 
141 #define define_one_cppc_ro(_name)		\
142 static struct kobj_attribute _name =		\
143 __ATTR(_name, 0444, show_##_name, NULL)
144 
145 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
146 
147 #define show_cppc_data(access_fn, struct_name, member_name)		\
148 	static ssize_t show_##member_name(struct kobject *kobj,		\
149 				struct kobj_attribute *attr, char *buf)	\
150 	{								\
151 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
152 		struct struct_name st_name = {0};			\
153 		int ret;						\
154 									\
155 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
156 		if (ret)						\
157 			return ret;					\
158 									\
159 		return sysfs_emit(buf, "%llu\n",		\
160 				(u64)st_name.member_name);		\
161 	}								\
162 	define_one_cppc_ro(member_name)
163 
164 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
165 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
166 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
167 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
168 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
169 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
170 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
171 
172 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
173 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
174 
175 /* Check for valid access_width, otherwise, fallback to using bit_width */
176 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
177 
178 /* Shift and apply the mask for CPC reads/writes */
179 #define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) &				\
180 					GENMASK(((reg)->bit_width) - 1, 0))
181 #define MASK_VAL_WRITE(reg, prev_val, val)						\
182 	((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) |		\
183 	((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset)))	\
184 
185 static ssize_t show_feedback_ctrs(struct kobject *kobj,
186 		struct kobj_attribute *attr, char *buf)
187 {
188 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
189 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
190 	int ret;
191 
192 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
193 	if (ret)
194 		return ret;
195 
196 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
197 			fb_ctrs.reference, fb_ctrs.delivered);
198 }
199 define_one_cppc_ro(feedback_ctrs);
200 
201 static struct attribute *cppc_attrs[] = {
202 	&feedback_ctrs.attr,
203 	&reference_perf.attr,
204 	&wraparound_time.attr,
205 	&highest_perf.attr,
206 	&lowest_perf.attr,
207 	&lowest_nonlinear_perf.attr,
208 	&guaranteed_perf.attr,
209 	&nominal_perf.attr,
210 	&nominal_freq.attr,
211 	&lowest_freq.attr,
212 	NULL
213 };
214 ATTRIBUTE_GROUPS(cppc);
215 
216 static const struct kobj_type cppc_ktype = {
217 	.sysfs_ops = &kobj_sysfs_ops,
218 	.default_groups = cppc_groups,
219 };
220 
221 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
222 {
223 	int ret, status;
224 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
225 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
226 		pcc_ss_data->pcc_comm_addr;
227 
228 	if (!pcc_ss_data->platform_owns_pcc)
229 		return 0;
230 
231 	/*
232 	 * Poll PCC status register every 3us(delay_us) for maximum of
233 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
234 	 */
235 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
236 					status & PCC_CMD_COMPLETE_MASK, 3,
237 					pcc_ss_data->deadline_us);
238 
239 	if (likely(!ret)) {
240 		pcc_ss_data->platform_owns_pcc = false;
241 		if (chk_err_bit && (status & PCC_ERROR_MASK))
242 			ret = -EIO;
243 	}
244 
245 	if (unlikely(ret))
246 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
247 		       pcc_ss_id, ret);
248 
249 	return ret;
250 }
251 
252 /*
253  * This function transfers the ownership of the PCC to the platform
254  * So it must be called while holding write_lock(pcc_lock)
255  */
256 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
257 {
258 	int ret = -EIO, i;
259 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
260 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
261 		pcc_ss_data->pcc_comm_addr;
262 	unsigned int time_delta;
263 
264 	/*
265 	 * For CMD_WRITE we know for a fact the caller should have checked
266 	 * the channel before writing to PCC space
267 	 */
268 	if (cmd == CMD_READ) {
269 		/*
270 		 * If there are pending cpc_writes, then we stole the channel
271 		 * before write completion, so first send a WRITE command to
272 		 * platform
273 		 */
274 		if (pcc_ss_data->pending_pcc_write_cmd)
275 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
276 
277 		ret = check_pcc_chan(pcc_ss_id, false);
278 		if (ret)
279 			goto end;
280 	} else /* CMD_WRITE */
281 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
282 
283 	/*
284 	 * Handle the Minimum Request Turnaround Time(MRTT)
285 	 * "The minimum amount of time that OSPM must wait after the completion
286 	 * of a command before issuing the next command, in microseconds"
287 	 */
288 	if (pcc_ss_data->pcc_mrtt) {
289 		time_delta = ktime_us_delta(ktime_get(),
290 					    pcc_ss_data->last_cmd_cmpl_time);
291 		if (pcc_ss_data->pcc_mrtt > time_delta)
292 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
293 	}
294 
295 	/*
296 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
297 	 * "The maximum number of periodic requests that the subspace channel can
298 	 * support, reported in commands per minute. 0 indicates no limitation."
299 	 *
300 	 * This parameter should be ideally zero or large enough so that it can
301 	 * handle maximum number of requests that all the cores in the system can
302 	 * collectively generate. If it is not, we will follow the spec and just
303 	 * not send the request to the platform after hitting the MPAR limit in
304 	 * any 60s window
305 	 */
306 	if (pcc_ss_data->pcc_mpar) {
307 		if (pcc_ss_data->mpar_count == 0) {
308 			time_delta = ktime_ms_delta(ktime_get(),
309 						    pcc_ss_data->last_mpar_reset);
310 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
311 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
312 					 pcc_ss_id);
313 				ret = -EIO;
314 				goto end;
315 			}
316 			pcc_ss_data->last_mpar_reset = ktime_get();
317 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
318 		}
319 		pcc_ss_data->mpar_count--;
320 	}
321 
322 	/* Write to the shared comm region. */
323 	writew_relaxed(cmd, &generic_comm_base->command);
324 
325 	/* Flip CMD COMPLETE bit */
326 	writew_relaxed(0, &generic_comm_base->status);
327 
328 	pcc_ss_data->platform_owns_pcc = true;
329 
330 	/* Ring doorbell */
331 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
332 	if (ret < 0) {
333 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
334 		       pcc_ss_id, cmd, ret);
335 		goto end;
336 	}
337 
338 	/* wait for completion and check for PCC error bit */
339 	ret = check_pcc_chan(pcc_ss_id, true);
340 
341 	if (pcc_ss_data->pcc_mrtt)
342 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
343 
344 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
345 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
346 	else
347 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
348 
349 end:
350 	if (cmd == CMD_WRITE) {
351 		if (unlikely(ret)) {
352 			for_each_possible_cpu(i) {
353 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
354 
355 				if (!desc)
356 					continue;
357 
358 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
359 					desc->write_cmd_status = ret;
360 			}
361 		}
362 		pcc_ss_data->pcc_write_cnt++;
363 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
364 	}
365 
366 	return ret;
367 }
368 
369 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
370 {
371 	if (ret < 0)
372 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
373 				*(u16 *)msg, ret);
374 	else
375 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
376 				*(u16 *)msg, ret);
377 }
378 
379 static struct mbox_client cppc_mbox_cl = {
380 	.tx_done = cppc_chan_tx_done,
381 	.knows_txdone = true,
382 };
383 
384 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
385 {
386 	int result = -EFAULT;
387 	acpi_status status = AE_OK;
388 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
389 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
390 	struct acpi_buffer state = {0, NULL};
391 	union acpi_object  *psd = NULL;
392 	struct acpi_psd_package *pdomain;
393 
394 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
395 					    &buffer, ACPI_TYPE_PACKAGE);
396 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
397 		return 0;
398 	if (ACPI_FAILURE(status))
399 		return -ENODEV;
400 
401 	psd = buffer.pointer;
402 	if (!psd || psd->package.count != 1) {
403 		pr_debug("Invalid _PSD data\n");
404 		goto end;
405 	}
406 
407 	pdomain = &(cpc_ptr->domain_info);
408 
409 	state.length = sizeof(struct acpi_psd_package);
410 	state.pointer = pdomain;
411 
412 	status = acpi_extract_package(&(psd->package.elements[0]),
413 		&format, &state);
414 	if (ACPI_FAILURE(status)) {
415 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
416 		goto end;
417 	}
418 
419 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
420 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
421 		goto end;
422 	}
423 
424 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
425 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
426 		goto end;
427 	}
428 
429 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
430 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
431 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
432 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
433 		goto end;
434 	}
435 
436 	result = 0;
437 end:
438 	kfree(buffer.pointer);
439 	return result;
440 }
441 
442 bool acpi_cpc_valid(void)
443 {
444 	struct cpc_desc *cpc_ptr;
445 	int cpu;
446 
447 	if (acpi_disabled)
448 		return false;
449 
450 	for_each_present_cpu(cpu) {
451 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
452 		if (!cpc_ptr)
453 			return false;
454 	}
455 
456 	return true;
457 }
458 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
459 
460 bool cppc_allow_fast_switch(void)
461 {
462 	struct cpc_register_resource *desired_reg;
463 	struct cpc_desc *cpc_ptr;
464 	int cpu;
465 
466 	for_each_possible_cpu(cpu) {
467 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
468 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
469 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
470 				!CPC_IN_SYSTEM_IO(desired_reg))
471 			return false;
472 	}
473 
474 	return true;
475 }
476 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
477 
478 /**
479  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
480  * @cpu: Find all CPUs that share a domain with cpu.
481  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
482  *
483  *	Return: 0 for success or negative value for err.
484  */
485 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
486 {
487 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
488 	struct acpi_psd_package *match_pdomain;
489 	struct acpi_psd_package *pdomain;
490 	int count_target, i;
491 
492 	/*
493 	 * Now that we have _PSD data from all CPUs, let's setup P-state
494 	 * domain info.
495 	 */
496 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
497 	if (!cpc_ptr)
498 		return -EFAULT;
499 
500 	pdomain = &(cpc_ptr->domain_info);
501 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
502 	if (pdomain->num_processors <= 1)
503 		return 0;
504 
505 	/* Validate the Domain info */
506 	count_target = pdomain->num_processors;
507 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
508 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
509 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
510 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
511 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
512 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
513 
514 	for_each_possible_cpu(i) {
515 		if (i == cpu)
516 			continue;
517 
518 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
519 		if (!match_cpc_ptr)
520 			goto err_fault;
521 
522 		match_pdomain = &(match_cpc_ptr->domain_info);
523 		if (match_pdomain->domain != pdomain->domain)
524 			continue;
525 
526 		/* Here i and cpu are in the same domain */
527 		if (match_pdomain->num_processors != count_target)
528 			goto err_fault;
529 
530 		if (pdomain->coord_type != match_pdomain->coord_type)
531 			goto err_fault;
532 
533 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
534 	}
535 
536 	return 0;
537 
538 err_fault:
539 	/* Assume no coordination on any error parsing domain info */
540 	cpumask_clear(cpu_data->shared_cpu_map);
541 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
542 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
543 
544 	return -EFAULT;
545 }
546 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
547 
548 static int register_pcc_channel(int pcc_ss_idx)
549 {
550 	struct pcc_mbox_chan *pcc_chan;
551 	u64 usecs_lat;
552 
553 	if (pcc_ss_idx >= 0) {
554 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
555 
556 		if (IS_ERR(pcc_chan)) {
557 			pr_err("Failed to find PCC channel for subspace %d\n",
558 			       pcc_ss_idx);
559 			return -ENODEV;
560 		}
561 
562 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
563 		/*
564 		 * cppc_ss->latency is just a Nominal value. In reality
565 		 * the remote processor could be much slower to reply.
566 		 * So add an arbitrary amount of wait on top of Nominal.
567 		 */
568 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
569 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
570 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
571 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
572 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
573 
574 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
575 			acpi_os_ioremap(pcc_chan->shmem_base_addr,
576 					pcc_chan->shmem_size);
577 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
578 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
579 			       pcc_ss_idx);
580 			return -ENOMEM;
581 		}
582 
583 		/* Set flag so that we don't come here for each CPU. */
584 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
585 	}
586 
587 	return 0;
588 }
589 
590 /**
591  * cpc_ffh_supported() - check if FFH reading supported
592  *
593  * Check if the architecture has support for functional fixed hardware
594  * read/write capability.
595  *
596  * Return: true for supported, false for not supported
597  */
598 bool __weak cpc_ffh_supported(void)
599 {
600 	return false;
601 }
602 
603 /**
604  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
605  *
606  * Check if the architectural support for CPPC is present even
607  * if the _OSC hasn't prescribed it
608  *
609  * Return: true for supported, false for not supported
610  */
611 bool __weak cpc_supported_by_cpu(void)
612 {
613 	return false;
614 }
615 
616 /**
617  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
618  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
619  *
620  * Check and allocate the cppc_pcc_data memory.
621  * In some processor configurations it is possible that same subspace
622  * is shared between multiple CPUs. This is seen especially in CPUs
623  * with hardware multi-threading support.
624  *
625  * Return: 0 for success, errno for failure
626  */
627 static int pcc_data_alloc(int pcc_ss_id)
628 {
629 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
630 		return -EINVAL;
631 
632 	if (pcc_data[pcc_ss_id]) {
633 		pcc_data[pcc_ss_id]->refcount++;
634 	} else {
635 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
636 					      GFP_KERNEL);
637 		if (!pcc_data[pcc_ss_id])
638 			return -ENOMEM;
639 		pcc_data[pcc_ss_id]->refcount++;
640 	}
641 
642 	return 0;
643 }
644 
645 /*
646  * An example CPC table looks like the following.
647  *
648  *  Name (_CPC, Package() {
649  *      17,							// NumEntries
650  *      1,							// Revision
651  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
652  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
653  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
654  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
655  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
656  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
657  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
658  *      ...
659  *      ...
660  *      ...
661  *  }
662  * Each Register() encodes how to access that specific register.
663  * e.g. a sample PCC entry has the following encoding:
664  *
665  *  Register (
666  *      PCC,	// AddressSpaceKeyword
667  *      8,	// RegisterBitWidth
668  *      8,	// RegisterBitOffset
669  *      0x30,	// RegisterAddress
670  *      9,	// AccessSize (subspace ID)
671  *  )
672  */
673 
674 /**
675  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
676  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
677  *
678  *	Return: 0 for success or negative value for err.
679  */
680 int acpi_cppc_processor_probe(struct acpi_processor *pr)
681 {
682 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
683 	union acpi_object *out_obj, *cpc_obj;
684 	struct cpc_desc *cpc_ptr;
685 	struct cpc_reg *gas_t;
686 	struct device *cpu_dev;
687 	acpi_handle handle = pr->handle;
688 	unsigned int num_ent, i, cpc_rev;
689 	int pcc_subspace_id = -1;
690 	acpi_status status;
691 	int ret = -ENODATA;
692 
693 	if (!osc_sb_cppc2_support_acked) {
694 		pr_debug("CPPC v2 _OSC not acked\n");
695 		if (!cpc_supported_by_cpu()) {
696 			pr_debug("CPPC is not supported by the CPU\n");
697 			return -ENODEV;
698 		}
699 	}
700 
701 	/* Parse the ACPI _CPC table for this CPU. */
702 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
703 			ACPI_TYPE_PACKAGE);
704 	if (ACPI_FAILURE(status)) {
705 		ret = -ENODEV;
706 		goto out_buf_free;
707 	}
708 
709 	out_obj = (union acpi_object *) output.pointer;
710 
711 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
712 	if (!cpc_ptr) {
713 		ret = -ENOMEM;
714 		goto out_buf_free;
715 	}
716 
717 	/* First entry is NumEntries. */
718 	cpc_obj = &out_obj->package.elements[0];
719 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
720 		num_ent = cpc_obj->integer.value;
721 		if (num_ent <= 1) {
722 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
723 				 num_ent, pr->id);
724 			goto out_free;
725 		}
726 	} else {
727 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
728 			 cpc_obj->type, pr->id);
729 		goto out_free;
730 	}
731 
732 	/* Second entry should be revision. */
733 	cpc_obj = &out_obj->package.elements[1];
734 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
735 		cpc_rev = cpc_obj->integer.value;
736 	} else {
737 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
738 			 cpc_obj->type, pr->id);
739 		goto out_free;
740 	}
741 
742 	if (cpc_rev < CPPC_V2_REV) {
743 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
744 			 pr->id);
745 		goto out_free;
746 	}
747 
748 	/*
749 	 * Disregard _CPC if the number of entries in the return pachage is not
750 	 * as expected, but support future revisions being proper supersets of
751 	 * the v3 and only causing more entries to be returned by _CPC.
752 	 */
753 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
754 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
755 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
756 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
757 			 num_ent, pr->id);
758 		goto out_free;
759 	}
760 	if (cpc_rev > CPPC_V3_REV) {
761 		num_ent = CPPC_V3_NUM_ENT;
762 		cpc_rev = CPPC_V3_REV;
763 	}
764 
765 	cpc_ptr->num_entries = num_ent;
766 	cpc_ptr->version = cpc_rev;
767 
768 	/* Iterate through remaining entries in _CPC */
769 	for (i = 2; i < num_ent; i++) {
770 		cpc_obj = &out_obj->package.elements[i];
771 
772 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
773 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
774 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
775 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
776 			gas_t = (struct cpc_reg *)
777 				cpc_obj->buffer.pointer;
778 
779 			/*
780 			 * The PCC Subspace index is encoded inside
781 			 * the CPC table entries. The same PCC index
782 			 * will be used for all the PCC entries,
783 			 * so extract it only once.
784 			 */
785 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
786 				if (pcc_subspace_id < 0) {
787 					pcc_subspace_id = gas_t->access_width;
788 					if (pcc_data_alloc(pcc_subspace_id))
789 						goto out_free;
790 				} else if (pcc_subspace_id != gas_t->access_width) {
791 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
792 						 pr->id);
793 					goto out_free;
794 				}
795 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
796 				if (gas_t->address) {
797 					void __iomem *addr;
798 					size_t access_width;
799 
800 					if (!osc_cpc_flexible_adr_space_confirmed) {
801 						pr_debug("Flexible address space capability not supported\n");
802 						if (!cpc_supported_by_cpu())
803 							goto out_free;
804 					}
805 
806 					access_width = GET_BIT_WIDTH(gas_t) / 8;
807 					addr = ioremap(gas_t->address, access_width);
808 					if (!addr)
809 						goto out_free;
810 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
811 				}
812 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
813 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
814 					/*
815 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
816 					 * SystemIO doesn't implement 64-bit
817 					 * registers.
818 					 */
819 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
820 						 gas_t->access_width);
821 					goto out_free;
822 				}
823 				if (gas_t->address & OVER_16BTS_MASK) {
824 					/* SystemIO registers use 16-bit integer addresses */
825 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
826 						 gas_t->address);
827 					goto out_free;
828 				}
829 				if (!osc_cpc_flexible_adr_space_confirmed) {
830 					pr_debug("Flexible address space capability not supported\n");
831 					if (!cpc_supported_by_cpu())
832 						goto out_free;
833 				}
834 			} else {
835 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
836 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
837 					pr_debug("Unsupported register type (%d) in _CPC\n",
838 						 gas_t->space_id);
839 					goto out_free;
840 				}
841 			}
842 
843 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
844 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
845 		} else {
846 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
847 				 i, pr->id);
848 			goto out_free;
849 		}
850 	}
851 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
852 
853 	/*
854 	 * Initialize the remaining cpc_regs as unsupported.
855 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
856 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
857 	 */
858 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
859 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
860 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
861 	}
862 
863 
864 	/* Store CPU Logical ID */
865 	cpc_ptr->cpu_id = pr->id;
866 	raw_spin_lock_init(&cpc_ptr->rmw_lock);
867 
868 	/* Parse PSD data for this CPU */
869 	ret = acpi_get_psd(cpc_ptr, handle);
870 	if (ret)
871 		goto out_free;
872 
873 	/* Register PCC channel once for all PCC subspace ID. */
874 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
875 		ret = register_pcc_channel(pcc_subspace_id);
876 		if (ret)
877 			goto out_free;
878 
879 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
880 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
881 	}
882 
883 	/* Everything looks okay */
884 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
885 
886 	/* Add per logical CPU nodes for reading its feedback counters. */
887 	cpu_dev = get_cpu_device(pr->id);
888 	if (!cpu_dev) {
889 		ret = -EINVAL;
890 		goto out_free;
891 	}
892 
893 	/* Plug PSD data into this CPU's CPC descriptor. */
894 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
895 
896 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
897 			"acpi_cppc");
898 	if (ret) {
899 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
900 		kobject_put(&cpc_ptr->kobj);
901 		goto out_free;
902 	}
903 
904 	kfree(output.pointer);
905 	return 0;
906 
907 out_free:
908 	/* Free all the mapped sys mem areas for this CPU */
909 	for (i = 2; i < cpc_ptr->num_entries; i++) {
910 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
911 
912 		if (addr)
913 			iounmap(addr);
914 	}
915 	kfree(cpc_ptr);
916 
917 out_buf_free:
918 	kfree(output.pointer);
919 	return ret;
920 }
921 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
922 
923 /**
924  * acpi_cppc_processor_exit - Cleanup CPC structs.
925  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
926  *
927  * Return: Void
928  */
929 void acpi_cppc_processor_exit(struct acpi_processor *pr)
930 {
931 	struct cpc_desc *cpc_ptr;
932 	unsigned int i;
933 	void __iomem *addr;
934 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
935 
936 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
937 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
938 			pcc_data[pcc_ss_id]->refcount--;
939 			if (!pcc_data[pcc_ss_id]->refcount) {
940 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
941 				kfree(pcc_data[pcc_ss_id]);
942 				pcc_data[pcc_ss_id] = NULL;
943 			}
944 		}
945 	}
946 
947 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
948 	if (!cpc_ptr)
949 		return;
950 
951 	/* Free all the mapped sys mem areas for this CPU */
952 	for (i = 2; i < cpc_ptr->num_entries; i++) {
953 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
954 		if (addr)
955 			iounmap(addr);
956 	}
957 
958 	kobject_put(&cpc_ptr->kobj);
959 	kfree(cpc_ptr);
960 }
961 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
962 
963 /**
964  * cpc_read_ffh() - Read FFH register
965  * @cpunum:	CPU number to read
966  * @reg:	cppc register information
967  * @val:	place holder for return value
968  *
969  * Read bit_width bits from a specified address and bit_offset
970  *
971  * Return: 0 for success and error code
972  */
973 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
974 {
975 	return -ENOTSUPP;
976 }
977 
978 /**
979  * cpc_write_ffh() - Write FFH register
980  * @cpunum:	CPU number to write
981  * @reg:	cppc register information
982  * @val:	value to write
983  *
984  * Write value of bit_width bits to a specified address and bit_offset
985  *
986  * Return: 0 for success and error code
987  */
988 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
989 {
990 	return -ENOTSUPP;
991 }
992 
993 /*
994  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
995  * as fast as possible. We have already mapped the PCC subspace during init, so
996  * we can directly write to it.
997  */
998 
999 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
1000 {
1001 	void __iomem *vaddr = NULL;
1002 	int size;
1003 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1004 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1005 
1006 	if (reg_res->type == ACPI_TYPE_INTEGER) {
1007 		*val = reg_res->cpc_entry.int_value;
1008 		return 0;
1009 	}
1010 
1011 	*val = 0;
1012 	size = GET_BIT_WIDTH(reg);
1013 
1014 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1015 		u32 val_u32;
1016 		acpi_status status;
1017 
1018 		status = acpi_os_read_port((acpi_io_address)reg->address,
1019 					   &val_u32, size);
1020 		if (ACPI_FAILURE(status)) {
1021 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1022 				 reg->address);
1023 			return -EFAULT;
1024 		}
1025 
1026 		*val = val_u32;
1027 		return 0;
1028 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1029 		/*
1030 		 * For registers in PCC space, the register size is determined
1031 		 * by the bit width field; the access size is used to indicate
1032 		 * the PCC subspace id.
1033 		 */
1034 		size = reg->bit_width;
1035 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1036 	}
1037 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1038 		vaddr = reg_res->sys_mem_vaddr;
1039 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1040 		return cpc_read_ffh(cpu, reg, val);
1041 	else
1042 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1043 				val, size);
1044 
1045 	switch (size) {
1046 	case 8:
1047 		*val = readb_relaxed(vaddr);
1048 		break;
1049 	case 16:
1050 		*val = readw_relaxed(vaddr);
1051 		break;
1052 	case 32:
1053 		*val = readl_relaxed(vaddr);
1054 		break;
1055 	case 64:
1056 		*val = readq_relaxed(vaddr);
1057 		break;
1058 	default:
1059 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1060 			pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1061 				size, reg->address);
1062 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1063 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1064 				size, pcc_ss_id);
1065 		}
1066 		return -EFAULT;
1067 	}
1068 
1069 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1070 		*val = MASK_VAL_READ(reg, *val);
1071 
1072 	return 0;
1073 }
1074 
1075 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1076 {
1077 	int ret_val = 0;
1078 	int size;
1079 	u64 prev_val;
1080 	void __iomem *vaddr = NULL;
1081 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1082 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1083 	struct cpc_desc *cpc_desc;
1084 	unsigned long flags;
1085 
1086 	size = GET_BIT_WIDTH(reg);
1087 
1088 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1089 		acpi_status status;
1090 
1091 		status = acpi_os_write_port((acpi_io_address)reg->address,
1092 					    (u32)val, size);
1093 		if (ACPI_FAILURE(status)) {
1094 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1095 				 reg->address);
1096 			return -EFAULT;
1097 		}
1098 
1099 		return 0;
1100 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1101 		/*
1102 		 * For registers in PCC space, the register size is determined
1103 		 * by the bit width field; the access size is used to indicate
1104 		 * the PCC subspace id.
1105 		 */
1106 		size = reg->bit_width;
1107 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1108 	}
1109 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1110 		vaddr = reg_res->sys_mem_vaddr;
1111 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1112 		return cpc_write_ffh(cpu, reg, val);
1113 	else
1114 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1115 				val, size);
1116 
1117 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1118 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1119 		if (!cpc_desc) {
1120 			pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1121 			return -ENODEV;
1122 		}
1123 
1124 		raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags);
1125 		switch (size) {
1126 		case 8:
1127 			prev_val = readb_relaxed(vaddr);
1128 			break;
1129 		case 16:
1130 			prev_val = readw_relaxed(vaddr);
1131 			break;
1132 		case 32:
1133 			prev_val = readl_relaxed(vaddr);
1134 			break;
1135 		case 64:
1136 			prev_val = readq_relaxed(vaddr);
1137 			break;
1138 		default:
1139 			raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1140 			return -EFAULT;
1141 		}
1142 		val = MASK_VAL_WRITE(reg, prev_val, val);
1143 		val |= prev_val;
1144 	}
1145 
1146 	switch (size) {
1147 	case 8:
1148 		writeb_relaxed(val, vaddr);
1149 		break;
1150 	case 16:
1151 		writew_relaxed(val, vaddr);
1152 		break;
1153 	case 32:
1154 		writel_relaxed(val, vaddr);
1155 		break;
1156 	case 64:
1157 		writeq_relaxed(val, vaddr);
1158 		break;
1159 	default:
1160 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1161 			pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1162 				size, reg->address);
1163 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1164 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1165 				size, pcc_ss_id);
1166 		}
1167 		ret_val = -EFAULT;
1168 		break;
1169 	}
1170 
1171 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1172 		raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1173 
1174 	return ret_val;
1175 }
1176 
1177 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1178 {
1179 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1180 	struct cpc_register_resource *reg;
1181 
1182 	if (!cpc_desc) {
1183 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1184 		return -ENODEV;
1185 	}
1186 
1187 	reg = &cpc_desc->cpc_regs[reg_idx];
1188 
1189 	if (CPC_IN_PCC(reg)) {
1190 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1191 		struct cppc_pcc_data *pcc_ss_data = NULL;
1192 		int ret = 0;
1193 
1194 		if (pcc_ss_id < 0)
1195 			return -EIO;
1196 
1197 		pcc_ss_data = pcc_data[pcc_ss_id];
1198 
1199 		down_write(&pcc_ss_data->pcc_lock);
1200 
1201 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1202 			cpc_read(cpunum, reg, perf);
1203 		else
1204 			ret = -EIO;
1205 
1206 		up_write(&pcc_ss_data->pcc_lock);
1207 
1208 		return ret;
1209 	}
1210 
1211 	cpc_read(cpunum, reg, perf);
1212 
1213 	return 0;
1214 }
1215 
1216 /**
1217  * cppc_get_desired_perf - Get the desired performance register value.
1218  * @cpunum: CPU from which to get desired performance.
1219  * @desired_perf: Return address.
1220  *
1221  * Return: 0 for success, -EIO otherwise.
1222  */
1223 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1224 {
1225 	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1226 }
1227 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1228 
1229 /**
1230  * cppc_get_nominal_perf - Get the nominal performance register value.
1231  * @cpunum: CPU from which to get nominal performance.
1232  * @nominal_perf: Return address.
1233  *
1234  * Return: 0 for success, -EIO otherwise.
1235  */
1236 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1237 {
1238 	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1239 }
1240 
1241 /**
1242  * cppc_get_highest_perf - Get the highest performance register value.
1243  * @cpunum: CPU from which to get highest performance.
1244  * @highest_perf: Return address.
1245  *
1246  * Return: 0 for success, -EIO otherwise.
1247  */
1248 int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1249 {
1250 	return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1251 }
1252 EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1253 
1254 /**
1255  * cppc_get_epp_perf - Get the epp register value.
1256  * @cpunum: CPU from which to get epp preference value.
1257  * @epp_perf: Return address.
1258  *
1259  * Return: 0 for success, -EIO otherwise.
1260  */
1261 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1262 {
1263 	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1264 }
1265 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1266 
1267 /**
1268  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1269  * @cpunum: CPU from which to get capabilities info.
1270  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1271  *
1272  * Return: 0 for success with perf_caps populated else -ERRNO.
1273  */
1274 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1275 {
1276 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1277 	struct cpc_register_resource *highest_reg, *lowest_reg,
1278 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1279 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1280 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1281 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1282 	struct cppc_pcc_data *pcc_ss_data = NULL;
1283 	int ret = 0, regs_in_pcc = 0;
1284 
1285 	if (!cpc_desc) {
1286 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1287 		return -ENODEV;
1288 	}
1289 
1290 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1291 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1292 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1293 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1294 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1295 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1296 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1297 
1298 	/* Are any of the regs PCC ?*/
1299 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1300 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1301 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1302 		if (pcc_ss_id < 0) {
1303 			pr_debug("Invalid pcc_ss_id\n");
1304 			return -ENODEV;
1305 		}
1306 		pcc_ss_data = pcc_data[pcc_ss_id];
1307 		regs_in_pcc = 1;
1308 		down_write(&pcc_ss_data->pcc_lock);
1309 		/* Ring doorbell once to update PCC subspace */
1310 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1311 			ret = -EIO;
1312 			goto out_err;
1313 		}
1314 	}
1315 
1316 	cpc_read(cpunum, highest_reg, &high);
1317 	perf_caps->highest_perf = high;
1318 
1319 	cpc_read(cpunum, lowest_reg, &low);
1320 	perf_caps->lowest_perf = low;
1321 
1322 	cpc_read(cpunum, nominal_reg, &nom);
1323 	perf_caps->nominal_perf = nom;
1324 
1325 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1326 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1327 		perf_caps->guaranteed_perf = 0;
1328 	} else {
1329 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1330 		perf_caps->guaranteed_perf = guaranteed;
1331 	}
1332 
1333 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1334 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1335 
1336 	if (!high || !low || !nom || !min_nonlinear)
1337 		ret = -EFAULT;
1338 
1339 	/* Read optional lowest and nominal frequencies if present */
1340 	if (CPC_SUPPORTED(low_freq_reg))
1341 		cpc_read(cpunum, low_freq_reg, &low_f);
1342 
1343 	if (CPC_SUPPORTED(nom_freq_reg))
1344 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1345 
1346 	perf_caps->lowest_freq = low_f;
1347 	perf_caps->nominal_freq = nom_f;
1348 
1349 
1350 out_err:
1351 	if (regs_in_pcc)
1352 		up_write(&pcc_ss_data->pcc_lock);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1356 
1357 /**
1358  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1359  *
1360  * CPPC has flexibility about how CPU performance counters are accessed.
1361  * One of the choices is PCC regions, which can have a high access latency. This
1362  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1363  *
1364  * Return: true if any of the counters are in PCC regions, false otherwise
1365  */
1366 bool cppc_perf_ctrs_in_pcc(void)
1367 {
1368 	int cpu;
1369 
1370 	for_each_present_cpu(cpu) {
1371 		struct cpc_register_resource *ref_perf_reg;
1372 		struct cpc_desc *cpc_desc;
1373 
1374 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1375 
1376 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1377 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1378 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1379 			return true;
1380 
1381 
1382 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1383 
1384 		/*
1385 		 * If reference perf register is not supported then we should
1386 		 * use the nominal perf value
1387 		 */
1388 		if (!CPC_SUPPORTED(ref_perf_reg))
1389 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1390 
1391 		if (CPC_IN_PCC(ref_perf_reg))
1392 			return true;
1393 	}
1394 
1395 	return false;
1396 }
1397 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1398 
1399 /**
1400  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1401  * @cpunum: CPU from which to read counters.
1402  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1403  *
1404  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1405  */
1406 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1407 {
1408 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1409 	struct cpc_register_resource *delivered_reg, *reference_reg,
1410 		*ref_perf_reg, *ctr_wrap_reg;
1411 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1412 	struct cppc_pcc_data *pcc_ss_data = NULL;
1413 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1414 	int ret = 0, regs_in_pcc = 0;
1415 
1416 	if (!cpc_desc) {
1417 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1418 		return -ENODEV;
1419 	}
1420 
1421 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1422 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1423 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1424 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1425 
1426 	/*
1427 	 * If reference perf register is not supported then we should
1428 	 * use the nominal perf value
1429 	 */
1430 	if (!CPC_SUPPORTED(ref_perf_reg))
1431 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1432 
1433 	/* Are any of the regs PCC ?*/
1434 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1435 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1436 		if (pcc_ss_id < 0) {
1437 			pr_debug("Invalid pcc_ss_id\n");
1438 			return -ENODEV;
1439 		}
1440 		pcc_ss_data = pcc_data[pcc_ss_id];
1441 		down_write(&pcc_ss_data->pcc_lock);
1442 		regs_in_pcc = 1;
1443 		/* Ring doorbell once to update PCC subspace */
1444 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1445 			ret = -EIO;
1446 			goto out_err;
1447 		}
1448 	}
1449 
1450 	cpc_read(cpunum, delivered_reg, &delivered);
1451 	cpc_read(cpunum, reference_reg, &reference);
1452 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1453 
1454 	/*
1455 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1456 	 * performance counters are assumed to never wrap during the lifetime of
1457 	 * platform
1458 	 */
1459 	ctr_wrap_time = (u64)(~((u64)0));
1460 	if (CPC_SUPPORTED(ctr_wrap_reg))
1461 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1462 
1463 	if (!delivered || !reference ||	!ref_perf) {
1464 		ret = -EFAULT;
1465 		goto out_err;
1466 	}
1467 
1468 	perf_fb_ctrs->delivered = delivered;
1469 	perf_fb_ctrs->reference = reference;
1470 	perf_fb_ctrs->reference_perf = ref_perf;
1471 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1472 out_err:
1473 	if (regs_in_pcc)
1474 		up_write(&pcc_ss_data->pcc_lock);
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1478 
1479 /*
1480  * Set Energy Performance Preference Register value through
1481  * Performance Controls Interface
1482  */
1483 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1484 {
1485 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1486 	struct cpc_register_resource *epp_set_reg;
1487 	struct cpc_register_resource *auto_sel_reg;
1488 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1489 	struct cppc_pcc_data *pcc_ss_data = NULL;
1490 	int ret;
1491 
1492 	if (!cpc_desc) {
1493 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1494 		return -ENODEV;
1495 	}
1496 
1497 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1498 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1499 
1500 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1501 		if (pcc_ss_id < 0) {
1502 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1503 			return -ENODEV;
1504 		}
1505 
1506 		if (CPC_SUPPORTED(auto_sel_reg)) {
1507 			ret = cpc_write(cpu, auto_sel_reg, enable);
1508 			if (ret)
1509 				return ret;
1510 		}
1511 
1512 		if (CPC_SUPPORTED(epp_set_reg)) {
1513 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1514 			if (ret)
1515 				return ret;
1516 		}
1517 
1518 		pcc_ss_data = pcc_data[pcc_ss_id];
1519 
1520 		down_write(&pcc_ss_data->pcc_lock);
1521 		/* after writing CPC, transfer the ownership of PCC to platform */
1522 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1523 		up_write(&pcc_ss_data->pcc_lock);
1524 	} else if (osc_cpc_flexible_adr_space_confirmed &&
1525 		   CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) {
1526 		ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1527 	} else {
1528 		ret = -ENOTSUPP;
1529 		pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
1530 	}
1531 
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1535 
1536 /**
1537  * cppc_get_auto_sel_caps - Read autonomous selection register.
1538  * @cpunum : CPU from which to read register.
1539  * @perf_caps : struct where autonomous selection register value is updated.
1540  */
1541 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1542 {
1543 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1544 	struct cpc_register_resource *auto_sel_reg;
1545 	u64  auto_sel;
1546 
1547 	if (!cpc_desc) {
1548 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1549 		return -ENODEV;
1550 	}
1551 
1552 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1553 
1554 	if (!CPC_SUPPORTED(auto_sel_reg))
1555 		pr_warn_once("Autonomous mode is not unsupported!\n");
1556 
1557 	if (CPC_IN_PCC(auto_sel_reg)) {
1558 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1559 		struct cppc_pcc_data *pcc_ss_data = NULL;
1560 		int ret = 0;
1561 
1562 		if (pcc_ss_id < 0)
1563 			return -ENODEV;
1564 
1565 		pcc_ss_data = pcc_data[pcc_ss_id];
1566 
1567 		down_write(&pcc_ss_data->pcc_lock);
1568 
1569 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1570 			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1571 			perf_caps->auto_sel = (bool)auto_sel;
1572 		} else {
1573 			ret = -EIO;
1574 		}
1575 
1576 		up_write(&pcc_ss_data->pcc_lock);
1577 
1578 		return ret;
1579 	}
1580 
1581 	return 0;
1582 }
1583 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1584 
1585 /**
1586  * cppc_set_auto_sel - Write autonomous selection register.
1587  * @cpu    : CPU to which to write register.
1588  * @enable : the desired value of autonomous selection resiter to be updated.
1589  */
1590 int cppc_set_auto_sel(int cpu, bool enable)
1591 {
1592 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1593 	struct cpc_register_resource *auto_sel_reg;
1594 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1595 	struct cppc_pcc_data *pcc_ss_data = NULL;
1596 	int ret = -EINVAL;
1597 
1598 	if (!cpc_desc) {
1599 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1600 		return -ENODEV;
1601 	}
1602 
1603 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1604 
1605 	if (CPC_IN_PCC(auto_sel_reg)) {
1606 		if (pcc_ss_id < 0) {
1607 			pr_debug("Invalid pcc_ss_id\n");
1608 			return -ENODEV;
1609 		}
1610 
1611 		if (CPC_SUPPORTED(auto_sel_reg)) {
1612 			ret = cpc_write(cpu, auto_sel_reg, enable);
1613 			if (ret)
1614 				return ret;
1615 		}
1616 
1617 		pcc_ss_data = pcc_data[pcc_ss_id];
1618 
1619 		down_write(&pcc_ss_data->pcc_lock);
1620 		/* after writing CPC, transfer the ownership of PCC to platform */
1621 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1622 		up_write(&pcc_ss_data->pcc_lock);
1623 	} else {
1624 		ret = -ENOTSUPP;
1625 		pr_debug("_CPC in PCC is not supported\n");
1626 	}
1627 
1628 	return ret;
1629 }
1630 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1631 
1632 /**
1633  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1634  * Continuous Performance Control package EnableRegister field.
1635  * @cpu: CPU for which to enable CPPC register.
1636  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1637  *
1638  * Return: 0 for success, -ERRNO or -EIO otherwise.
1639  */
1640 int cppc_set_enable(int cpu, bool enable)
1641 {
1642 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1643 	struct cpc_register_resource *enable_reg;
1644 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1645 	struct cppc_pcc_data *pcc_ss_data = NULL;
1646 	int ret = -EINVAL;
1647 
1648 	if (!cpc_desc) {
1649 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1650 		return -EINVAL;
1651 	}
1652 
1653 	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1654 
1655 	if (CPC_IN_PCC(enable_reg)) {
1656 
1657 		if (pcc_ss_id < 0)
1658 			return -EIO;
1659 
1660 		ret = cpc_write(cpu, enable_reg, enable);
1661 		if (ret)
1662 			return ret;
1663 
1664 		pcc_ss_data = pcc_data[pcc_ss_id];
1665 
1666 		down_write(&pcc_ss_data->pcc_lock);
1667 		/* after writing CPC, transfer the ownership of PCC to platfrom */
1668 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1669 		up_write(&pcc_ss_data->pcc_lock);
1670 		return ret;
1671 	}
1672 
1673 	return cpc_write(cpu, enable_reg, enable);
1674 }
1675 EXPORT_SYMBOL_GPL(cppc_set_enable);
1676 
1677 /**
1678  * cppc_set_perf - Set a CPU's performance controls.
1679  * @cpu: CPU for which to set performance controls.
1680  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1681  *
1682  * Return: 0 for success, -ERRNO otherwise.
1683  */
1684 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1685 {
1686 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1687 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1688 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1689 	struct cppc_pcc_data *pcc_ss_data = NULL;
1690 	int ret = 0;
1691 
1692 	if (!cpc_desc) {
1693 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1694 		return -ENODEV;
1695 	}
1696 
1697 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1698 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1699 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1700 
1701 	/*
1702 	 * This is Phase-I where we want to write to CPC registers
1703 	 * -> We want all CPUs to be able to execute this phase in parallel
1704 	 *
1705 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1706 	 * achieve that goal here
1707 	 */
1708 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1709 		if (pcc_ss_id < 0) {
1710 			pr_debug("Invalid pcc_ss_id\n");
1711 			return -ENODEV;
1712 		}
1713 		pcc_ss_data = pcc_data[pcc_ss_id];
1714 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1715 		if (pcc_ss_data->platform_owns_pcc) {
1716 			ret = check_pcc_chan(pcc_ss_id, false);
1717 			if (ret) {
1718 				up_read(&pcc_ss_data->pcc_lock);
1719 				return ret;
1720 			}
1721 		}
1722 		/*
1723 		 * Update the pending_write to make sure a PCC CMD_READ will not
1724 		 * arrive and steal the channel during the switch to write lock
1725 		 */
1726 		pcc_ss_data->pending_pcc_write_cmd = true;
1727 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1728 		cpc_desc->write_cmd_status = 0;
1729 	}
1730 
1731 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1732 
1733 	/*
1734 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1735 	 * value to min and max perf, but they don't mean to set the zero value,
1736 	 * they just don't want to write to those registers.
1737 	 */
1738 	if (perf_ctrls->min_perf)
1739 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1740 	if (perf_ctrls->max_perf)
1741 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1742 
1743 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1744 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1745 	/*
1746 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1747 	 *
1748 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1749 	 * requests that happened in short overlapping interval. The last CPU to
1750 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1751 	 *
1752 	 * We have the following requirements for Phase-II:
1753 	 *     1. We want to execute Phase-II only when there are no CPUs
1754 	 * currently executing in Phase-I
1755 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1756 	 * entering Phase-I.
1757 	 *     3. We want only one CPU among all those who went through Phase-I
1758 	 * to run phase-II
1759 	 *
1760 	 * If write_trylock fails to get the lock and doesn't transfer the
1761 	 * PCC ownership to the platform, then one of the following will be TRUE
1762 	 *     1. There is at-least one CPU in Phase-I which will later execute
1763 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1764 	 * executing the Phase-II.
1765 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1766 	 * write_trylock and has already acquired the write_lock. We know for a
1767 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1768 	 * before this CPU's Phase-I as we held the read_lock.
1769 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1770 	 * down_write, in which case, send_pcc_cmd will check for pending
1771 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1772 	 * So this CPU can be certain that its request will be delivered
1773 	 *    So in all cases, this CPU knows that its request will be delivered
1774 	 * by another CPU and can return
1775 	 *
1776 	 * After getting the down_write we still need to check for
1777 	 * pending_pcc_write_cmd to take care of the following scenario
1778 	 *    The thread running this code could be scheduled out between
1779 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1780 	 * could have delivered the request to Platform by triggering the
1781 	 * doorbell and transferred the ownership of PCC to platform. So this
1782 	 * avoids triggering an unnecessary doorbell and more importantly before
1783 	 * triggering the doorbell it makes sure that the PCC channel ownership
1784 	 * is still with OSPM.
1785 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1786 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1787 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1788 	 * case during a CMD_READ and if there are pending writes it delivers
1789 	 * the write command before servicing the read command
1790 	 */
1791 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1792 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1793 			/* Update only if there are pending write commands */
1794 			if (pcc_ss_data->pending_pcc_write_cmd)
1795 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1796 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1797 		} else
1798 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1799 			wait_event(pcc_ss_data->pcc_write_wait_q,
1800 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1801 
1802 		/* send_pcc_cmd updates the status in case of failure */
1803 		ret = cpc_desc->write_cmd_status;
1804 	}
1805 	return ret;
1806 }
1807 EXPORT_SYMBOL_GPL(cppc_set_perf);
1808 
1809 /**
1810  * cppc_get_transition_latency - returns frequency transition latency in ns
1811  * @cpu_num: CPU number for per_cpu().
1812  *
1813  * ACPI CPPC does not explicitly specify how a platform can specify the
1814  * transition latency for performance change requests. The closest we have
1815  * is the timing information from the PCCT tables which provides the info
1816  * on the number and frequency of PCC commands the platform can handle.
1817  *
1818  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1819  * then assume there is no latency.
1820  */
1821 unsigned int cppc_get_transition_latency(int cpu_num)
1822 {
1823 	/*
1824 	 * Expected transition latency is based on the PCCT timing values
1825 	 * Below are definition from ACPI spec:
1826 	 * pcc_nominal- Expected latency to process a command, in microseconds
1827 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1828 	 *              channel can support, reported in commands per minute. 0
1829 	 *              indicates no limitation.
1830 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1831 	 *              completion of a command before issuing the next command,
1832 	 *              in microseconds.
1833 	 */
1834 	unsigned int latency_ns = 0;
1835 	struct cpc_desc *cpc_desc;
1836 	struct cpc_register_resource *desired_reg;
1837 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1838 	struct cppc_pcc_data *pcc_ss_data;
1839 
1840 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1841 	if (!cpc_desc)
1842 		return CPUFREQ_ETERNAL;
1843 
1844 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1845 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1846 		return 0;
1847 	else if (!CPC_IN_PCC(desired_reg))
1848 		return CPUFREQ_ETERNAL;
1849 
1850 	if (pcc_ss_id < 0)
1851 		return CPUFREQ_ETERNAL;
1852 
1853 	pcc_ss_data = pcc_data[pcc_ss_id];
1854 	if (pcc_ss_data->pcc_mpar)
1855 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1856 
1857 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1858 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1859 
1860 	return latency_ns;
1861 }
1862 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1863 
1864 /* Minimum struct length needed for the DMI processor entry we want */
1865 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1866 
1867 /* Offset in the DMI processor structure for the max frequency */
1868 #define DMI_PROCESSOR_MAX_SPEED		0x14
1869 
1870 /* Callback function used to retrieve the max frequency from DMI */
1871 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1872 {
1873 	const u8 *dmi_data = (const u8 *)dm;
1874 	u16 *mhz = (u16 *)private;
1875 
1876 	if (dm->type == DMI_ENTRY_PROCESSOR &&
1877 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1878 		u16 val = (u16)get_unaligned((const u16 *)
1879 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1880 		*mhz = umax(val, *mhz);
1881 	}
1882 }
1883 
1884 /* Look up the max frequency in DMI */
1885 static u64 cppc_get_dmi_max_khz(void)
1886 {
1887 	u16 mhz = 0;
1888 
1889 	dmi_walk(cppc_find_dmi_mhz, &mhz);
1890 
1891 	/*
1892 	 * Real stupid fallback value, just in case there is no
1893 	 * actual value set.
1894 	 */
1895 	mhz = mhz ? mhz : 1;
1896 
1897 	return KHZ_PER_MHZ * mhz;
1898 }
1899 
1900 /*
1901  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1902  * use them to convert perf to freq and vice versa. The conversion is
1903  * extrapolated as an affine function passing by the 2 points:
1904  *  - (Low perf, Low freq)
1905  *  - (Nominal perf, Nominal freq)
1906  */
1907 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1908 {
1909 	s64 retval, offset = 0;
1910 	static u64 max_khz;
1911 	u64 mul, div;
1912 
1913 	if (caps->lowest_freq && caps->nominal_freq) {
1914 		/* Avoid special case when nominal_freq is equal to lowest_freq */
1915 		if (caps->lowest_freq == caps->nominal_freq) {
1916 			mul = caps->nominal_freq;
1917 			div = caps->nominal_perf;
1918 		} else {
1919 			mul = caps->nominal_freq - caps->lowest_freq;
1920 			div = caps->nominal_perf - caps->lowest_perf;
1921 		}
1922 		mul *= KHZ_PER_MHZ;
1923 		offset = caps->nominal_freq * KHZ_PER_MHZ -
1924 			 div64_u64(caps->nominal_perf * mul, div);
1925 	} else {
1926 		if (!max_khz)
1927 			max_khz = cppc_get_dmi_max_khz();
1928 		mul = max_khz;
1929 		div = caps->highest_perf;
1930 	}
1931 
1932 	retval = offset + div64_u64(perf * mul, div);
1933 	if (retval >= 0)
1934 		return retval;
1935 	return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1938 
1939 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1940 {
1941 	s64 retval, offset = 0;
1942 	static u64 max_khz;
1943 	u64 mul, div;
1944 
1945 	if (caps->lowest_freq && caps->nominal_freq) {
1946 		/* Avoid special case when nominal_freq is equal to lowest_freq */
1947 		if (caps->lowest_freq == caps->nominal_freq) {
1948 			mul = caps->nominal_perf;
1949 			div = caps->nominal_freq;
1950 		} else {
1951 			mul = caps->nominal_perf - caps->lowest_perf;
1952 			div = caps->nominal_freq - caps->lowest_freq;
1953 		}
1954 		/*
1955 		 * We don't need to convert to kHz for computing offset and can
1956 		 * directly use nominal_freq and lowest_freq as the div64_u64
1957 		 * will remove the frequency unit.
1958 		 */
1959 		offset = caps->nominal_perf -
1960 			 div64_u64(caps->nominal_freq * mul, div);
1961 		/* But we need it for computing the perf level. */
1962 		div *= KHZ_PER_MHZ;
1963 	} else {
1964 		if (!max_khz)
1965 			max_khz = cppc_get_dmi_max_khz();
1966 		mul = caps->highest_perf;
1967 		div = max_khz;
1968 	}
1969 
1970 	retval = offset + div64_u64(freq * mul, div);
1971 	if (retval >= 0)
1972 		return retval;
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1976