1 /* 2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. 3 * 4 * (C) Copyright 2014, 2015 Linaro Ltd. 5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 * 12 * CPPC describes a few methods for controlling CPU performance using 13 * information from a per CPU table called CPC. This table is described in 14 * the ACPI v5.0+ specification. The table consists of a list of 15 * registers which may be memory mapped or hardware registers and also may 16 * include some static integer values. 17 * 18 * CPU performance is on an abstract continuous scale as against a discretized 19 * P-state scale which is tied to CPU frequency only. In brief, the basic 20 * operation involves: 21 * 22 * - OS makes a CPU performance request. (Can provide min and max bounds) 23 * 24 * - Platform (such as BMC) is free to optimize request within requested bounds 25 * depending on power/thermal budgets etc. 26 * 27 * - Platform conveys its decision back to OS 28 * 29 * The communication between OS and platform occurs through another medium 30 * called (PCC) Platform Communication Channel. This is a generic mailbox like 31 * mechanism which includes doorbell semantics to indicate register updates. 32 * See drivers/mailbox/pcc.c for details on PCC. 33 * 34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and 35 * above specifications. 36 */ 37 38 #define pr_fmt(fmt) "ACPI CPPC: " fmt 39 40 #include <linux/cpufreq.h> 41 #include <linux/delay.h> 42 #include <linux/ktime.h> 43 #include <linux/rwsem.h> 44 #include <linux/wait.h> 45 46 #include <acpi/cppc_acpi.h> 47 48 struct cppc_pcc_data { 49 struct mbox_chan *pcc_channel; 50 void __iomem *pcc_comm_addr; 51 bool pcc_channel_acquired; 52 ktime_t deadline; 53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; 54 55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */ 56 bool platform_owns_pcc; /* Ownership of PCC subspace */ 57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */ 58 59 /* 60 * Lock to provide controlled access to the PCC channel. 61 * 62 * For performance critical usecases(currently cppc_set_perf) 63 * We need to take read_lock and check if channel belongs to OSPM 64 * before reading or writing to PCC subspace 65 * We need to take write_lock before transferring the channel 66 * ownership to the platform via a Doorbell 67 * This allows us to batch a number of CPPC requests if they happen 68 * to originate in about the same time 69 * 70 * For non-performance critical usecases(init) 71 * Take write_lock for all purposes which gives exclusive access 72 */ 73 struct rw_semaphore pcc_lock; 74 75 /* Wait queue for CPUs whose requests were batched */ 76 wait_queue_head_t pcc_write_wait_q; 77 ktime_t last_cmd_cmpl_time; 78 ktime_t last_mpar_reset; 79 int mpar_count; 80 int refcount; 81 }; 82 83 /* Array to represent the PCC channel per subspace id */ 84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES]; 85 /* The cpu_pcc_subspace_idx containsper CPU subspace id */ 86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx); 87 88 /* 89 * The cpc_desc structure contains the ACPI register details 90 * as described in the per CPU _CPC tables. The details 91 * include the type of register (e.g. PCC, System IO, FFH etc.) 92 * and destination addresses which lets us READ/WRITE CPU performance 93 * information using the appropriate I/O methods. 94 */ 95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); 96 97 /* pcc mapped address + header size + offset within PCC subspace */ 98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \ 99 0x8 + (offs)) 100 101 /* Check if a CPC register is in PCC */ 102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ 103 (cpc)->cpc_entry.reg.space_id == \ 104 ACPI_ADR_SPACE_PLATFORM_COMM) 105 106 /* Evalutes to True if reg is a NULL register descriptor */ 107 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \ 108 (reg)->address == 0 && \ 109 (reg)->bit_width == 0 && \ 110 (reg)->bit_offset == 0 && \ 111 (reg)->access_width == 0) 112 113 /* Evalutes to True if an optional cpc field is supported */ 114 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \ 115 !!(cpc)->cpc_entry.int_value : \ 116 !IS_NULL_REG(&(cpc)->cpc_entry.reg)) 117 /* 118 * Arbitrary Retries in case the remote processor is slow to respond 119 * to PCC commands. Keeping it high enough to cover emulators where 120 * the processors run painfully slow. 121 */ 122 #define NUM_RETRIES 500ULL 123 124 struct cppc_attr { 125 struct attribute attr; 126 ssize_t (*show)(struct kobject *kobj, 127 struct attribute *attr, char *buf); 128 ssize_t (*store)(struct kobject *kobj, 129 struct attribute *attr, const char *c, ssize_t count); 130 }; 131 132 #define define_one_cppc_ro(_name) \ 133 static struct cppc_attr _name = \ 134 __ATTR(_name, 0444, show_##_name, NULL) 135 136 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj) 137 138 #define show_cppc_data(access_fn, struct_name, member_name) \ 139 static ssize_t show_##member_name(struct kobject *kobj, \ 140 struct attribute *attr, char *buf) \ 141 { \ 142 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \ 143 struct struct_name st_name = {0}; \ 144 int ret; \ 145 \ 146 ret = access_fn(cpc_ptr->cpu_id, &st_name); \ 147 if (ret) \ 148 return ret; \ 149 \ 150 return scnprintf(buf, PAGE_SIZE, "%llu\n", \ 151 (u64)st_name.member_name); \ 152 } \ 153 define_one_cppc_ro(member_name) 154 155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); 156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); 157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); 158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); 159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); 160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); 161 162 static ssize_t show_feedback_ctrs(struct kobject *kobj, 163 struct attribute *attr, char *buf) 164 { 165 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); 166 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 167 int ret; 168 169 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs); 170 if (ret) 171 return ret; 172 173 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n", 174 fb_ctrs.reference, fb_ctrs.delivered); 175 } 176 define_one_cppc_ro(feedback_ctrs); 177 178 static struct attribute *cppc_attrs[] = { 179 &feedback_ctrs.attr, 180 &reference_perf.attr, 181 &wraparound_time.attr, 182 &highest_perf.attr, 183 &lowest_perf.attr, 184 &lowest_nonlinear_perf.attr, 185 &nominal_perf.attr, 186 NULL 187 }; 188 189 static struct kobj_type cppc_ktype = { 190 .sysfs_ops = &kobj_sysfs_ops, 191 .default_attrs = cppc_attrs, 192 }; 193 194 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) 195 { 196 int ret = -EIO, status = 0; 197 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 198 struct acpi_pcct_shared_memory __iomem *generic_comm_base = 199 pcc_ss_data->pcc_comm_addr; 200 ktime_t next_deadline = ktime_add(ktime_get(), 201 pcc_ss_data->deadline); 202 203 if (!pcc_ss_data->platform_owns_pcc) 204 return 0; 205 206 /* Retry in case the remote processor was too slow to catch up. */ 207 while (!ktime_after(ktime_get(), next_deadline)) { 208 /* 209 * Per spec, prior to boot the PCC space wil be initialized by 210 * platform and should have set the command completion bit when 211 * PCC can be used by OSPM 212 */ 213 status = readw_relaxed(&generic_comm_base->status); 214 if (status & PCC_CMD_COMPLETE_MASK) { 215 ret = 0; 216 if (chk_err_bit && (status & PCC_ERROR_MASK)) 217 ret = -EIO; 218 break; 219 } 220 /* 221 * Reducing the bus traffic in case this loop takes longer than 222 * a few retries. 223 */ 224 udelay(3); 225 } 226 227 if (likely(!ret)) 228 pcc_ss_data->platform_owns_pcc = false; 229 else 230 pr_err("PCC check channel failed for ss: %d. Status=%x\n", 231 pcc_ss_id, status); 232 233 return ret; 234 } 235 236 /* 237 * This function transfers the ownership of the PCC to the platform 238 * So it must be called while holding write_lock(pcc_lock) 239 */ 240 static int send_pcc_cmd(int pcc_ss_id, u16 cmd) 241 { 242 int ret = -EIO, i; 243 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; 244 struct acpi_pcct_shared_memory *generic_comm_base = 245 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr; 246 unsigned int time_delta; 247 248 /* 249 * For CMD_WRITE we know for a fact the caller should have checked 250 * the channel before writing to PCC space 251 */ 252 if (cmd == CMD_READ) { 253 /* 254 * If there are pending cpc_writes, then we stole the channel 255 * before write completion, so first send a WRITE command to 256 * platform 257 */ 258 if (pcc_ss_data->pending_pcc_write_cmd) 259 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 260 261 ret = check_pcc_chan(pcc_ss_id, false); 262 if (ret) 263 goto end; 264 } else /* CMD_WRITE */ 265 pcc_ss_data->pending_pcc_write_cmd = FALSE; 266 267 /* 268 * Handle the Minimum Request Turnaround Time(MRTT) 269 * "The minimum amount of time that OSPM must wait after the completion 270 * of a command before issuing the next command, in microseconds" 271 */ 272 if (pcc_ss_data->pcc_mrtt) { 273 time_delta = ktime_us_delta(ktime_get(), 274 pcc_ss_data->last_cmd_cmpl_time); 275 if (pcc_ss_data->pcc_mrtt > time_delta) 276 udelay(pcc_ss_data->pcc_mrtt - time_delta); 277 } 278 279 /* 280 * Handle the non-zero Maximum Periodic Access Rate(MPAR) 281 * "The maximum number of periodic requests that the subspace channel can 282 * support, reported in commands per minute. 0 indicates no limitation." 283 * 284 * This parameter should be ideally zero or large enough so that it can 285 * handle maximum number of requests that all the cores in the system can 286 * collectively generate. If it is not, we will follow the spec and just 287 * not send the request to the platform after hitting the MPAR limit in 288 * any 60s window 289 */ 290 if (pcc_ss_data->pcc_mpar) { 291 if (pcc_ss_data->mpar_count == 0) { 292 time_delta = ktime_ms_delta(ktime_get(), 293 pcc_ss_data->last_mpar_reset); 294 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) { 295 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit", 296 pcc_ss_id); 297 ret = -EIO; 298 goto end; 299 } 300 pcc_ss_data->last_mpar_reset = ktime_get(); 301 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar; 302 } 303 pcc_ss_data->mpar_count--; 304 } 305 306 /* Write to the shared comm region. */ 307 writew_relaxed(cmd, &generic_comm_base->command); 308 309 /* Flip CMD COMPLETE bit */ 310 writew_relaxed(0, &generic_comm_base->status); 311 312 pcc_ss_data->platform_owns_pcc = true; 313 314 /* Ring doorbell */ 315 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd); 316 if (ret < 0) { 317 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n", 318 pcc_ss_id, cmd, ret); 319 goto end; 320 } 321 322 /* wait for completion and check for PCC errro bit */ 323 ret = check_pcc_chan(pcc_ss_id, true); 324 325 if (pcc_ss_data->pcc_mrtt) 326 pcc_ss_data->last_cmd_cmpl_time = ktime_get(); 327 328 if (pcc_ss_data->pcc_channel->mbox->txdone_irq) 329 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret); 330 else 331 mbox_client_txdone(pcc_ss_data->pcc_channel, ret); 332 333 end: 334 if (cmd == CMD_WRITE) { 335 if (unlikely(ret)) { 336 for_each_possible_cpu(i) { 337 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i); 338 if (!desc) 339 continue; 340 341 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt) 342 desc->write_cmd_status = ret; 343 } 344 } 345 pcc_ss_data->pcc_write_cnt++; 346 wake_up_all(&pcc_ss_data->pcc_write_wait_q); 347 } 348 349 return ret; 350 } 351 352 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) 353 { 354 if (ret < 0) 355 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", 356 *(u16 *)msg, ret); 357 else 358 pr_debug("TX completed. CMD sent:%x, ret:%d\n", 359 *(u16 *)msg, ret); 360 } 361 362 struct mbox_client cppc_mbox_cl = { 363 .tx_done = cppc_chan_tx_done, 364 .knows_txdone = true, 365 }; 366 367 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) 368 { 369 int result = -EFAULT; 370 acpi_status status = AE_OK; 371 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 372 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; 373 struct acpi_buffer state = {0, NULL}; 374 union acpi_object *psd = NULL; 375 struct acpi_psd_package *pdomain; 376 377 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer, 378 ACPI_TYPE_PACKAGE); 379 if (ACPI_FAILURE(status)) 380 return -ENODEV; 381 382 psd = buffer.pointer; 383 if (!psd || psd->package.count != 1) { 384 pr_debug("Invalid _PSD data\n"); 385 goto end; 386 } 387 388 pdomain = &(cpc_ptr->domain_info); 389 390 state.length = sizeof(struct acpi_psd_package); 391 state.pointer = pdomain; 392 393 status = acpi_extract_package(&(psd->package.elements[0]), 394 &format, &state); 395 if (ACPI_FAILURE(status)) { 396 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); 397 goto end; 398 } 399 400 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { 401 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); 402 goto end; 403 } 404 405 if (pdomain->revision != ACPI_PSD_REV0_REVISION) { 406 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); 407 goto end; 408 } 409 410 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && 411 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && 412 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { 413 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); 414 goto end; 415 } 416 417 result = 0; 418 end: 419 kfree(buffer.pointer); 420 return result; 421 } 422 423 /** 424 * acpi_get_psd_map - Map the CPUs in a common freq domain. 425 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info. 426 * 427 * Return: 0 for success or negative value for err. 428 */ 429 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data) 430 { 431 int count_target; 432 int retval = 0; 433 unsigned int i, j; 434 cpumask_var_t covered_cpus; 435 struct cppc_cpudata *pr, *match_pr; 436 struct acpi_psd_package *pdomain; 437 struct acpi_psd_package *match_pdomain; 438 struct cpc_desc *cpc_ptr, *match_cpc_ptr; 439 440 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL)) 441 return -ENOMEM; 442 443 /* 444 * Now that we have _PSD data from all CPUs, lets setup P-state 445 * domain info. 446 */ 447 for_each_possible_cpu(i) { 448 pr = all_cpu_data[i]; 449 if (!pr) 450 continue; 451 452 if (cpumask_test_cpu(i, covered_cpus)) 453 continue; 454 455 cpc_ptr = per_cpu(cpc_desc_ptr, i); 456 if (!cpc_ptr) { 457 retval = -EFAULT; 458 goto err_ret; 459 } 460 461 pdomain = &(cpc_ptr->domain_info); 462 cpumask_set_cpu(i, pr->shared_cpu_map); 463 cpumask_set_cpu(i, covered_cpus); 464 if (pdomain->num_processors <= 1) 465 continue; 466 467 /* Validate the Domain info */ 468 count_target = pdomain->num_processors; 469 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) 470 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; 471 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) 472 pr->shared_type = CPUFREQ_SHARED_TYPE_HW; 473 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) 474 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY; 475 476 for_each_possible_cpu(j) { 477 if (i == j) 478 continue; 479 480 match_cpc_ptr = per_cpu(cpc_desc_ptr, j); 481 if (!match_cpc_ptr) { 482 retval = -EFAULT; 483 goto err_ret; 484 } 485 486 match_pdomain = &(match_cpc_ptr->domain_info); 487 if (match_pdomain->domain != pdomain->domain) 488 continue; 489 490 /* Here i and j are in the same domain */ 491 if (match_pdomain->num_processors != count_target) { 492 retval = -EFAULT; 493 goto err_ret; 494 } 495 496 if (pdomain->coord_type != match_pdomain->coord_type) { 497 retval = -EFAULT; 498 goto err_ret; 499 } 500 501 cpumask_set_cpu(j, covered_cpus); 502 cpumask_set_cpu(j, pr->shared_cpu_map); 503 } 504 505 for_each_possible_cpu(j) { 506 if (i == j) 507 continue; 508 509 match_pr = all_cpu_data[j]; 510 if (!match_pr) 511 continue; 512 513 match_cpc_ptr = per_cpu(cpc_desc_ptr, j); 514 if (!match_cpc_ptr) { 515 retval = -EFAULT; 516 goto err_ret; 517 } 518 519 match_pdomain = &(match_cpc_ptr->domain_info); 520 if (match_pdomain->domain != pdomain->domain) 521 continue; 522 523 match_pr->shared_type = pr->shared_type; 524 cpumask_copy(match_pr->shared_cpu_map, 525 pr->shared_cpu_map); 526 } 527 } 528 529 err_ret: 530 for_each_possible_cpu(i) { 531 pr = all_cpu_data[i]; 532 if (!pr) 533 continue; 534 535 /* Assume no coordination on any error parsing domain info */ 536 if (retval) { 537 cpumask_clear(pr->shared_cpu_map); 538 cpumask_set_cpu(i, pr->shared_cpu_map); 539 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; 540 } 541 } 542 543 free_cpumask_var(covered_cpus); 544 return retval; 545 } 546 EXPORT_SYMBOL_GPL(acpi_get_psd_map); 547 548 static int register_pcc_channel(int pcc_ss_idx) 549 { 550 struct acpi_pcct_hw_reduced *cppc_ss; 551 u64 usecs_lat; 552 553 if (pcc_ss_idx >= 0) { 554 pcc_data[pcc_ss_idx]->pcc_channel = 555 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx); 556 557 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) { 558 pr_err("Failed to find PCC channel for subspace %d\n", 559 pcc_ss_idx); 560 return -ENODEV; 561 } 562 563 /* 564 * The PCC mailbox controller driver should 565 * have parsed the PCCT (global table of all 566 * PCC channels) and stored pointers to the 567 * subspace communication region in con_priv. 568 */ 569 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv; 570 571 if (!cppc_ss) { 572 pr_err("No PCC subspace found for %d CPPC\n", 573 pcc_ss_idx); 574 return -ENODEV; 575 } 576 577 /* 578 * cppc_ss->latency is just a Nominal value. In reality 579 * the remote processor could be much slower to reply. 580 * So add an arbitrary amount of wait on top of Nominal. 581 */ 582 usecs_lat = NUM_RETRIES * cppc_ss->latency; 583 pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC); 584 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time; 585 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate; 586 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency; 587 588 pcc_data[pcc_ss_idx]->pcc_comm_addr = 589 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length); 590 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) { 591 pr_err("Failed to ioremap PCC comm region mem for %d\n", 592 pcc_ss_idx); 593 return -ENOMEM; 594 } 595 596 /* Set flag so that we dont come here for each CPU. */ 597 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true; 598 } 599 600 return 0; 601 } 602 603 /** 604 * cpc_ffh_supported() - check if FFH reading supported 605 * 606 * Check if the architecture has support for functional fixed hardware 607 * read/write capability. 608 * 609 * Return: true for supported, false for not supported 610 */ 611 bool __weak cpc_ffh_supported(void) 612 { 613 return false; 614 } 615 616 617 /** 618 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace 619 * 620 * Check and allocate the cppc_pcc_data memory. 621 * In some processor configurations it is possible that same subspace 622 * is shared between multiple CPU's. This is seen especially in CPU's 623 * with hardware multi-threading support. 624 * 625 * Return: 0 for success, errno for failure 626 */ 627 int pcc_data_alloc(int pcc_ss_id) 628 { 629 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES) 630 return -EINVAL; 631 632 if (pcc_data[pcc_ss_id]) { 633 pcc_data[pcc_ss_id]->refcount++; 634 } else { 635 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data), 636 GFP_KERNEL); 637 if (!pcc_data[pcc_ss_id]) 638 return -ENOMEM; 639 pcc_data[pcc_ss_id]->refcount++; 640 } 641 642 return 0; 643 } 644 /* 645 * An example CPC table looks like the following. 646 * 647 * Name(_CPC, Package() 648 * { 649 * 17, 650 * NumEntries 651 * 1, 652 * // Revision 653 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)}, 654 * // Highest Performance 655 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)}, 656 * // Nominal Performance 657 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)}, 658 * // Lowest Nonlinear Performance 659 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)}, 660 * // Lowest Performance 661 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)}, 662 * // Guaranteed Performance Register 663 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)}, 664 * // Desired Performance Register 665 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, 666 * .. 667 * .. 668 * .. 669 * 670 * } 671 * Each Register() encodes how to access that specific register. 672 * e.g. a sample PCC entry has the following encoding: 673 * 674 * Register ( 675 * PCC, 676 * AddressSpaceKeyword 677 * 8, 678 * //RegisterBitWidth 679 * 8, 680 * //RegisterBitOffset 681 * 0x30, 682 * //RegisterAddress 683 * 9 684 * //AccessSize (subspace ID) 685 * 0 686 * ) 687 * } 688 */ 689 690 /** 691 * acpi_cppc_processor_probe - Search for per CPU _CPC objects. 692 * @pr: Ptr to acpi_processor containing this CPUs logical Id. 693 * 694 * Return: 0 for success or negative value for err. 695 */ 696 int acpi_cppc_processor_probe(struct acpi_processor *pr) 697 { 698 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 699 union acpi_object *out_obj, *cpc_obj; 700 struct cpc_desc *cpc_ptr; 701 struct cpc_reg *gas_t; 702 struct device *cpu_dev; 703 acpi_handle handle = pr->handle; 704 unsigned int num_ent, i, cpc_rev; 705 int pcc_subspace_id = -1; 706 acpi_status status; 707 int ret = -EFAULT; 708 709 /* Parse the ACPI _CPC table for this cpu. */ 710 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, 711 ACPI_TYPE_PACKAGE); 712 if (ACPI_FAILURE(status)) { 713 ret = -ENODEV; 714 goto out_buf_free; 715 } 716 717 out_obj = (union acpi_object *) output.pointer; 718 719 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); 720 if (!cpc_ptr) { 721 ret = -ENOMEM; 722 goto out_buf_free; 723 } 724 725 /* First entry is NumEntries. */ 726 cpc_obj = &out_obj->package.elements[0]; 727 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 728 num_ent = cpc_obj->integer.value; 729 } else { 730 pr_debug("Unexpected entry type(%d) for NumEntries\n", 731 cpc_obj->type); 732 goto out_free; 733 } 734 735 /* Only support CPPCv2. Bail otherwise. */ 736 if (num_ent != CPPC_NUM_ENT) { 737 pr_debug("Firmware exports %d entries. Expected: %d\n", 738 num_ent, CPPC_NUM_ENT); 739 goto out_free; 740 } 741 742 cpc_ptr->num_entries = num_ent; 743 744 /* Second entry should be revision. */ 745 cpc_obj = &out_obj->package.elements[1]; 746 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 747 cpc_rev = cpc_obj->integer.value; 748 } else { 749 pr_debug("Unexpected entry type(%d) for Revision\n", 750 cpc_obj->type); 751 goto out_free; 752 } 753 754 if (cpc_rev != CPPC_REV) { 755 pr_debug("Firmware exports revision:%d. Expected:%d\n", 756 cpc_rev, CPPC_REV); 757 goto out_free; 758 } 759 760 /* Iterate through remaining entries in _CPC */ 761 for (i = 2; i < num_ent; i++) { 762 cpc_obj = &out_obj->package.elements[i]; 763 764 if (cpc_obj->type == ACPI_TYPE_INTEGER) { 765 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; 766 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; 767 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { 768 gas_t = (struct cpc_reg *) 769 cpc_obj->buffer.pointer; 770 771 /* 772 * The PCC Subspace index is encoded inside 773 * the CPC table entries. The same PCC index 774 * will be used for all the PCC entries, 775 * so extract it only once. 776 */ 777 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { 778 if (pcc_subspace_id < 0) { 779 pcc_subspace_id = gas_t->access_width; 780 if (pcc_data_alloc(pcc_subspace_id)) 781 goto out_free; 782 } else if (pcc_subspace_id != gas_t->access_width) { 783 pr_debug("Mismatched PCC ids.\n"); 784 goto out_free; 785 } 786 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 787 if (gas_t->address) { 788 void __iomem *addr; 789 790 addr = ioremap(gas_t->address, gas_t->bit_width/8); 791 if (!addr) 792 goto out_free; 793 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr; 794 } 795 } else { 796 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) { 797 /* Support only PCC ,SYS MEM and FFH type regs */ 798 pr_debug("Unsupported register type: %d\n", gas_t->space_id); 799 goto out_free; 800 } 801 } 802 803 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; 804 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); 805 } else { 806 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id); 807 goto out_free; 808 } 809 } 810 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; 811 /* Store CPU Logical ID */ 812 cpc_ptr->cpu_id = pr->id; 813 814 /* Parse PSD data for this CPU */ 815 ret = acpi_get_psd(cpc_ptr, handle); 816 if (ret) 817 goto out_free; 818 819 /* Register PCC channel once for all PCC subspace id. */ 820 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) { 821 ret = register_pcc_channel(pcc_subspace_id); 822 if (ret) 823 goto out_free; 824 825 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock); 826 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q); 827 } 828 829 /* Everything looks okay */ 830 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); 831 832 /* Add per logical CPU nodes for reading its feedback counters. */ 833 cpu_dev = get_cpu_device(pr->id); 834 if (!cpu_dev) { 835 ret = -EINVAL; 836 goto out_free; 837 } 838 839 /* Plug PSD data into this CPUs CPC descriptor. */ 840 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; 841 842 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj, 843 "acpi_cppc"); 844 if (ret) { 845 per_cpu(cpc_desc_ptr, pr->id) = NULL; 846 goto out_free; 847 } 848 849 kfree(output.pointer); 850 return 0; 851 852 out_free: 853 /* Free all the mapped sys mem areas for this CPU */ 854 for (i = 2; i < cpc_ptr->num_entries; i++) { 855 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 856 857 if (addr) 858 iounmap(addr); 859 } 860 kfree(cpc_ptr); 861 862 out_buf_free: 863 kfree(output.pointer); 864 return ret; 865 } 866 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); 867 868 /** 869 * acpi_cppc_processor_exit - Cleanup CPC structs. 870 * @pr: Ptr to acpi_processor containing this CPUs logical Id. 871 * 872 * Return: Void 873 */ 874 void acpi_cppc_processor_exit(struct acpi_processor *pr) 875 { 876 struct cpc_desc *cpc_ptr; 877 unsigned int i; 878 void __iomem *addr; 879 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id); 880 881 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) { 882 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) { 883 pcc_data[pcc_ss_id]->refcount--; 884 if (!pcc_data[pcc_ss_id]->refcount) { 885 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel); 886 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0; 887 kfree(pcc_data[pcc_ss_id]); 888 } 889 } 890 } 891 892 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); 893 if (!cpc_ptr) 894 return; 895 896 /* Free all the mapped sys mem areas for this CPU */ 897 for (i = 2; i < cpc_ptr->num_entries; i++) { 898 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; 899 if (addr) 900 iounmap(addr); 901 } 902 903 kobject_put(&cpc_ptr->kobj); 904 kfree(cpc_ptr); 905 } 906 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); 907 908 /** 909 * cpc_read_ffh() - Read FFH register 910 * @cpunum: cpu number to read 911 * @reg: cppc register information 912 * @val: place holder for return value 913 * 914 * Read bit_width bits from a specified address and bit_offset 915 * 916 * Return: 0 for success and error code 917 */ 918 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val) 919 { 920 return -ENOTSUPP; 921 } 922 923 /** 924 * cpc_write_ffh() - Write FFH register 925 * @cpunum: cpu number to write 926 * @reg: cppc register information 927 * @val: value to write 928 * 929 * Write value of bit_width bits to a specified address and bit_offset 930 * 931 * Return: 0 for success and error code 932 */ 933 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) 934 { 935 return -ENOTSUPP; 936 } 937 938 /* 939 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be 940 * as fast as possible. We have already mapped the PCC subspace during init, so 941 * we can directly write to it. 942 */ 943 944 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val) 945 { 946 int ret_val = 0; 947 void __iomem *vaddr = 0; 948 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 949 struct cpc_reg *reg = ®_res->cpc_entry.reg; 950 951 if (reg_res->type == ACPI_TYPE_INTEGER) { 952 *val = reg_res->cpc_entry.int_value; 953 return ret_val; 954 } 955 956 *val = 0; 957 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) 958 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 959 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 960 vaddr = reg_res->sys_mem_vaddr; 961 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 962 return cpc_read_ffh(cpu, reg, val); 963 else 964 return acpi_os_read_memory((acpi_physical_address)reg->address, 965 val, reg->bit_width); 966 967 switch (reg->bit_width) { 968 case 8: 969 *val = readb_relaxed(vaddr); 970 break; 971 case 16: 972 *val = readw_relaxed(vaddr); 973 break; 974 case 32: 975 *val = readl_relaxed(vaddr); 976 break; 977 case 64: 978 *val = readq_relaxed(vaddr); 979 break; 980 default: 981 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n", 982 reg->bit_width, pcc_ss_id); 983 ret_val = -EFAULT; 984 } 985 986 return ret_val; 987 } 988 989 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val) 990 { 991 int ret_val = 0; 992 void __iomem *vaddr = 0; 993 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 994 struct cpc_reg *reg = ®_res->cpc_entry.reg; 995 996 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) 997 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); 998 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 999 vaddr = reg_res->sys_mem_vaddr; 1000 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) 1001 return cpc_write_ffh(cpu, reg, val); 1002 else 1003 return acpi_os_write_memory((acpi_physical_address)reg->address, 1004 val, reg->bit_width); 1005 1006 switch (reg->bit_width) { 1007 case 8: 1008 writeb_relaxed(val, vaddr); 1009 break; 1010 case 16: 1011 writew_relaxed(val, vaddr); 1012 break; 1013 case 32: 1014 writel_relaxed(val, vaddr); 1015 break; 1016 case 64: 1017 writeq_relaxed(val, vaddr); 1018 break; 1019 default: 1020 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n", 1021 reg->bit_width, pcc_ss_id); 1022 ret_val = -EFAULT; 1023 break; 1024 } 1025 1026 return ret_val; 1027 } 1028 1029 /** 1030 * cppc_get_perf_caps - Get a CPUs performance capabilities. 1031 * @cpunum: CPU from which to get capabilities info. 1032 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h 1033 * 1034 * Return: 0 for success with perf_caps populated else -ERRNO. 1035 */ 1036 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) 1037 { 1038 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1039 struct cpc_register_resource *highest_reg, *lowest_reg, 1040 *lowest_non_linear_reg, *nominal_reg; 1041 u64 high, low, nom, min_nonlinear; 1042 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1043 struct cppc_pcc_data *pcc_ss_data; 1044 int ret = 0, regs_in_pcc = 0; 1045 1046 if (!cpc_desc || pcc_ss_id < 0) { 1047 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1048 return -ENODEV; 1049 } 1050 1051 pcc_ss_data = pcc_data[pcc_ss_id]; 1052 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; 1053 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; 1054 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; 1055 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1056 1057 /* Are any of the regs PCC ?*/ 1058 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || 1059 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) { 1060 regs_in_pcc = 1; 1061 down_write(&pcc_ss_data->pcc_lock); 1062 /* Ring doorbell once to update PCC subspace */ 1063 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1064 ret = -EIO; 1065 goto out_err; 1066 } 1067 } 1068 1069 cpc_read(cpunum, highest_reg, &high); 1070 perf_caps->highest_perf = high; 1071 1072 cpc_read(cpunum, lowest_reg, &low); 1073 perf_caps->lowest_perf = low; 1074 1075 cpc_read(cpunum, nominal_reg, &nom); 1076 perf_caps->nominal_perf = nom; 1077 1078 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear); 1079 perf_caps->lowest_nonlinear_perf = min_nonlinear; 1080 1081 if (!high || !low || !nom || !min_nonlinear) 1082 ret = -EFAULT; 1083 1084 out_err: 1085 if (regs_in_pcc) 1086 up_write(&pcc_ss_data->pcc_lock); 1087 return ret; 1088 } 1089 EXPORT_SYMBOL_GPL(cppc_get_perf_caps); 1090 1091 /** 1092 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters. 1093 * @cpunum: CPU from which to read counters. 1094 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h 1095 * 1096 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. 1097 */ 1098 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) 1099 { 1100 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); 1101 struct cpc_register_resource *delivered_reg, *reference_reg, 1102 *ref_perf_reg, *ctr_wrap_reg; 1103 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); 1104 struct cppc_pcc_data *pcc_ss_data; 1105 u64 delivered, reference, ref_perf, ctr_wrap_time; 1106 int ret = 0, regs_in_pcc = 0; 1107 1108 if (!cpc_desc || pcc_ss_id < 0) { 1109 pr_debug("No CPC descriptor for CPU:%d\n", cpunum); 1110 return -ENODEV; 1111 } 1112 1113 pcc_ss_data = pcc_data[pcc_ss_id]; 1114 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; 1115 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; 1116 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; 1117 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME]; 1118 1119 /* 1120 * If refernce perf register is not supported then we should 1121 * use the nominal perf value 1122 */ 1123 if (!CPC_SUPPORTED(ref_perf_reg)) 1124 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; 1125 1126 /* Are any of the regs PCC ?*/ 1127 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || 1128 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { 1129 down_write(&pcc_ss_data->pcc_lock); 1130 regs_in_pcc = 1; 1131 /* Ring doorbell once to update PCC subspace */ 1132 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { 1133 ret = -EIO; 1134 goto out_err; 1135 } 1136 } 1137 1138 cpc_read(cpunum, delivered_reg, &delivered); 1139 cpc_read(cpunum, reference_reg, &reference); 1140 cpc_read(cpunum, ref_perf_reg, &ref_perf); 1141 1142 /* 1143 * Per spec, if ctr_wrap_time optional register is unsupported, then the 1144 * performance counters are assumed to never wrap during the lifetime of 1145 * platform 1146 */ 1147 ctr_wrap_time = (u64)(~((u64)0)); 1148 if (CPC_SUPPORTED(ctr_wrap_reg)) 1149 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time); 1150 1151 if (!delivered || !reference || !ref_perf) { 1152 ret = -EFAULT; 1153 goto out_err; 1154 } 1155 1156 perf_fb_ctrs->delivered = delivered; 1157 perf_fb_ctrs->reference = reference; 1158 perf_fb_ctrs->reference_perf = ref_perf; 1159 perf_fb_ctrs->wraparound_time = ctr_wrap_time; 1160 out_err: 1161 if (regs_in_pcc) 1162 up_write(&pcc_ss_data->pcc_lock); 1163 return ret; 1164 } 1165 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); 1166 1167 /** 1168 * cppc_set_perf - Set a CPUs performance controls. 1169 * @cpu: CPU for which to set performance controls. 1170 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h 1171 * 1172 * Return: 0 for success, -ERRNO otherwise. 1173 */ 1174 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) 1175 { 1176 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); 1177 struct cpc_register_resource *desired_reg; 1178 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); 1179 struct cppc_pcc_data *pcc_ss_data; 1180 int ret = 0; 1181 1182 if (!cpc_desc || pcc_ss_id < 0) { 1183 pr_debug("No CPC descriptor for CPU:%d\n", cpu); 1184 return -ENODEV; 1185 } 1186 1187 pcc_ss_data = pcc_data[pcc_ss_id]; 1188 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1189 1190 /* 1191 * This is Phase-I where we want to write to CPC registers 1192 * -> We want all CPUs to be able to execute this phase in parallel 1193 * 1194 * Since read_lock can be acquired by multiple CPUs simultaneously we 1195 * achieve that goal here 1196 */ 1197 if (CPC_IN_PCC(desired_reg)) { 1198 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ 1199 if (pcc_ss_data->platform_owns_pcc) { 1200 ret = check_pcc_chan(pcc_ss_id, false); 1201 if (ret) { 1202 up_read(&pcc_ss_data->pcc_lock); 1203 return ret; 1204 } 1205 } 1206 /* 1207 * Update the pending_write to make sure a PCC CMD_READ will not 1208 * arrive and steal the channel during the switch to write lock 1209 */ 1210 pcc_ss_data->pending_pcc_write_cmd = true; 1211 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt; 1212 cpc_desc->write_cmd_status = 0; 1213 } 1214 1215 /* 1216 * Skip writing MIN/MAX until Linux knows how to come up with 1217 * useful values. 1218 */ 1219 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf); 1220 1221 if (CPC_IN_PCC(desired_reg)) 1222 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */ 1223 /* 1224 * This is Phase-II where we transfer the ownership of PCC to Platform 1225 * 1226 * Short Summary: Basically if we think of a group of cppc_set_perf 1227 * requests that happened in short overlapping interval. The last CPU to 1228 * come out of Phase-I will enter Phase-II and ring the doorbell. 1229 * 1230 * We have the following requirements for Phase-II: 1231 * 1. We want to execute Phase-II only when there are no CPUs 1232 * currently executing in Phase-I 1233 * 2. Once we start Phase-II we want to avoid all other CPUs from 1234 * entering Phase-I. 1235 * 3. We want only one CPU among all those who went through Phase-I 1236 * to run phase-II 1237 * 1238 * If write_trylock fails to get the lock and doesn't transfer the 1239 * PCC ownership to the platform, then one of the following will be TRUE 1240 * 1. There is at-least one CPU in Phase-I which will later execute 1241 * write_trylock, so the CPUs in Phase-I will be responsible for 1242 * executing the Phase-II. 1243 * 2. Some other CPU has beaten this CPU to successfully execute the 1244 * write_trylock and has already acquired the write_lock. We know for a 1245 * fact it(other CPU acquiring the write_lock) couldn't have happened 1246 * before this CPU's Phase-I as we held the read_lock. 1247 * 3. Some other CPU executing pcc CMD_READ has stolen the 1248 * down_write, in which case, send_pcc_cmd will check for pending 1249 * CMD_WRITE commands by checking the pending_pcc_write_cmd. 1250 * So this CPU can be certain that its request will be delivered 1251 * So in all cases, this CPU knows that its request will be delivered 1252 * by another CPU and can return 1253 * 1254 * After getting the down_write we still need to check for 1255 * pending_pcc_write_cmd to take care of the following scenario 1256 * The thread running this code could be scheduled out between 1257 * Phase-I and Phase-II. Before it is scheduled back on, another CPU 1258 * could have delivered the request to Platform by triggering the 1259 * doorbell and transferred the ownership of PCC to platform. So this 1260 * avoids triggering an unnecessary doorbell and more importantly before 1261 * triggering the doorbell it makes sure that the PCC channel ownership 1262 * is still with OSPM. 1263 * pending_pcc_write_cmd can also be cleared by a different CPU, if 1264 * there was a pcc CMD_READ waiting on down_write and it steals the lock 1265 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this 1266 * case during a CMD_READ and if there are pending writes it delivers 1267 * the write command before servicing the read command 1268 */ 1269 if (CPC_IN_PCC(desired_reg)) { 1270 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */ 1271 /* Update only if there are pending write commands */ 1272 if (pcc_ss_data->pending_pcc_write_cmd) 1273 send_pcc_cmd(pcc_ss_id, CMD_WRITE); 1274 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */ 1275 } else 1276 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */ 1277 wait_event(pcc_ss_data->pcc_write_wait_q, 1278 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt); 1279 1280 /* send_pcc_cmd updates the status in case of failure */ 1281 ret = cpc_desc->write_cmd_status; 1282 } 1283 return ret; 1284 } 1285 EXPORT_SYMBOL_GPL(cppc_set_perf); 1286 1287 /** 1288 * cppc_get_transition_latency - returns frequency transition latency in ns 1289 * 1290 * ACPI CPPC does not explicitly specifiy how a platform can specify the 1291 * transition latency for perfromance change requests. The closest we have 1292 * is the timing information from the PCCT tables which provides the info 1293 * on the number and frequency of PCC commands the platform can handle. 1294 */ 1295 unsigned int cppc_get_transition_latency(int cpu_num) 1296 { 1297 /* 1298 * Expected transition latency is based on the PCCT timing values 1299 * Below are definition from ACPI spec: 1300 * pcc_nominal- Expected latency to process a command, in microseconds 1301 * pcc_mpar - The maximum number of periodic requests that the subspace 1302 * channel can support, reported in commands per minute. 0 1303 * indicates no limitation. 1304 * pcc_mrtt - The minimum amount of time that OSPM must wait after the 1305 * completion of a command before issuing the next command, 1306 * in microseconds. 1307 */ 1308 unsigned int latency_ns = 0; 1309 struct cpc_desc *cpc_desc; 1310 struct cpc_register_resource *desired_reg; 1311 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num); 1312 struct cppc_pcc_data *pcc_ss_data; 1313 1314 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num); 1315 if (!cpc_desc) 1316 return CPUFREQ_ETERNAL; 1317 1318 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; 1319 if (!CPC_IN_PCC(desired_reg)) 1320 return CPUFREQ_ETERNAL; 1321 1322 if (pcc_ss_id < 0) 1323 return CPUFREQ_ETERNAL; 1324 1325 pcc_ss_data = pcc_data[pcc_ss_id]; 1326 if (pcc_ss_data->pcc_mpar) 1327 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar); 1328 1329 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000); 1330 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000); 1331 1332 return latency_ns; 1333 } 1334 EXPORT_SYMBOL_GPL(cppc_get_transition_latency); 1335