xref: /linux/drivers/acpi/cppc_acpi.c (revision 76d9b92e68f2bb55890f935c5143f4fef97a935d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <asm/unaligned.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct pcc_mbox_chan *pcc_channel;
50 	void __iomem *pcc_comm_addr;
51 	bool pcc_channel_acquired;
52 	unsigned int deadline_us;
53 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54 
55 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58 
59 	/*
60 	 * Lock to provide controlled access to the PCC channel.
61 	 *
62 	 * For performance critical usecases(currently cppc_set_perf)
63 	 *	We need to take read_lock and check if channel belongs to OSPM
64 	 * before reading or writing to PCC subspace
65 	 *	We need to take write_lock before transferring the channel
66 	 * ownership to the platform via a Doorbell
67 	 *	This allows us to batch a number of CPPC requests if they happen
68 	 * to originate in about the same time
69 	 *
70 	 * For non-performance critical usecases(init)
71 	 *	Take write_lock for all purposes which gives exclusive access
72 	 */
73 	struct rw_semaphore pcc_lock;
74 
75 	/* Wait queue for CPUs whose requests were batched */
76 	wait_queue_head_t pcc_write_wait_q;
77 	ktime_t last_cmd_cmpl_time;
78 	ktime_t last_mpar_reset;
79 	int mpar_count;
80 	int refcount;
81 };
82 
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96 
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 						0x8 + (offs))
100 
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
103 				(cpc)->cpc_entry.reg.space_id ==	\
104 				ACPI_ADR_SPACE_PLATFORM_COMM)
105 
106 /* Check if a CPC register is in SystemMemory */
107 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
108 				(cpc)->cpc_entry.reg.space_id ==	\
109 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 
111 /* Check if a CPC register is in SystemIo */
112 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
113 				(cpc)->cpc_entry.reg.space_id ==	\
114 				ACPI_ADR_SPACE_SYSTEM_IO)
115 
116 /* Evaluates to True if reg is a NULL register descriptor */
117 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118 				(reg)->address == 0 &&			\
119 				(reg)->bit_width == 0 &&		\
120 				(reg)->bit_offset == 0 &&		\
121 				(reg)->access_width == 0)
122 
123 /* Evaluates to True if an optional cpc field is supported */
124 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
125 				!!(cpc)->cpc_entry.int_value :		\
126 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
127 /*
128  * Arbitrary Retries in case the remote processor is slow to respond
129  * to PCC commands. Keeping it high enough to cover emulators where
130  * the processors run painfully slow.
131  */
132 #define NUM_RETRIES 500ULL
133 
134 #define OVER_16BTS_MASK ~0xFFFFULL
135 
136 #define define_one_cppc_ro(_name)		\
137 static struct kobj_attribute _name =		\
138 __ATTR(_name, 0444, show_##_name, NULL)
139 
140 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141 
142 #define show_cppc_data(access_fn, struct_name, member_name)		\
143 	static ssize_t show_##member_name(struct kobject *kobj,		\
144 				struct kobj_attribute *attr, char *buf)	\
145 	{								\
146 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
147 		struct struct_name st_name = {0};			\
148 		int ret;						\
149 									\
150 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
151 		if (ret)						\
152 			return ret;					\
153 									\
154 		return sysfs_emit(buf, "%llu\n",		\
155 				(u64)st_name.member_name);		\
156 	}								\
157 	define_one_cppc_ro(member_name)
158 
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
164 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
165 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
166 
167 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
168 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
169 
170 /* Check for valid access_width, otherwise, fallback to using bit_width */
171 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
172 
173 /* Shift and apply the mask for CPC reads/writes */
174 #define MASK_VAL(reg, val) (((val) >> (reg)->bit_offset) & 			\
175 					GENMASK(((reg)->bit_width) - 1, 0))
176 
177 static ssize_t show_feedback_ctrs(struct kobject *kobj,
178 		struct kobj_attribute *attr, char *buf)
179 {
180 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
181 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
182 	int ret;
183 
184 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
185 	if (ret)
186 		return ret;
187 
188 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
189 			fb_ctrs.reference, fb_ctrs.delivered);
190 }
191 define_one_cppc_ro(feedback_ctrs);
192 
193 static struct attribute *cppc_attrs[] = {
194 	&feedback_ctrs.attr,
195 	&reference_perf.attr,
196 	&wraparound_time.attr,
197 	&highest_perf.attr,
198 	&lowest_perf.attr,
199 	&lowest_nonlinear_perf.attr,
200 	&guaranteed_perf.attr,
201 	&nominal_perf.attr,
202 	&nominal_freq.attr,
203 	&lowest_freq.attr,
204 	NULL
205 };
206 ATTRIBUTE_GROUPS(cppc);
207 
208 static const struct kobj_type cppc_ktype = {
209 	.sysfs_ops = &kobj_sysfs_ops,
210 	.default_groups = cppc_groups,
211 };
212 
213 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
214 {
215 	int ret, status;
216 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
217 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
218 		pcc_ss_data->pcc_comm_addr;
219 
220 	if (!pcc_ss_data->platform_owns_pcc)
221 		return 0;
222 
223 	/*
224 	 * Poll PCC status register every 3us(delay_us) for maximum of
225 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
226 	 */
227 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
228 					status & PCC_CMD_COMPLETE_MASK, 3,
229 					pcc_ss_data->deadline_us);
230 
231 	if (likely(!ret)) {
232 		pcc_ss_data->platform_owns_pcc = false;
233 		if (chk_err_bit && (status & PCC_ERROR_MASK))
234 			ret = -EIO;
235 	}
236 
237 	if (unlikely(ret))
238 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
239 		       pcc_ss_id, ret);
240 
241 	return ret;
242 }
243 
244 /*
245  * This function transfers the ownership of the PCC to the platform
246  * So it must be called while holding write_lock(pcc_lock)
247  */
248 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
249 {
250 	int ret = -EIO, i;
251 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
252 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
253 		pcc_ss_data->pcc_comm_addr;
254 	unsigned int time_delta;
255 
256 	/*
257 	 * For CMD_WRITE we know for a fact the caller should have checked
258 	 * the channel before writing to PCC space
259 	 */
260 	if (cmd == CMD_READ) {
261 		/*
262 		 * If there are pending cpc_writes, then we stole the channel
263 		 * before write completion, so first send a WRITE command to
264 		 * platform
265 		 */
266 		if (pcc_ss_data->pending_pcc_write_cmd)
267 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
268 
269 		ret = check_pcc_chan(pcc_ss_id, false);
270 		if (ret)
271 			goto end;
272 	} else /* CMD_WRITE */
273 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
274 
275 	/*
276 	 * Handle the Minimum Request Turnaround Time(MRTT)
277 	 * "The minimum amount of time that OSPM must wait after the completion
278 	 * of a command before issuing the next command, in microseconds"
279 	 */
280 	if (pcc_ss_data->pcc_mrtt) {
281 		time_delta = ktime_us_delta(ktime_get(),
282 					    pcc_ss_data->last_cmd_cmpl_time);
283 		if (pcc_ss_data->pcc_mrtt > time_delta)
284 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
285 	}
286 
287 	/*
288 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
289 	 * "The maximum number of periodic requests that the subspace channel can
290 	 * support, reported in commands per minute. 0 indicates no limitation."
291 	 *
292 	 * This parameter should be ideally zero or large enough so that it can
293 	 * handle maximum number of requests that all the cores in the system can
294 	 * collectively generate. If it is not, we will follow the spec and just
295 	 * not send the request to the platform after hitting the MPAR limit in
296 	 * any 60s window
297 	 */
298 	if (pcc_ss_data->pcc_mpar) {
299 		if (pcc_ss_data->mpar_count == 0) {
300 			time_delta = ktime_ms_delta(ktime_get(),
301 						    pcc_ss_data->last_mpar_reset);
302 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
303 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
304 					 pcc_ss_id);
305 				ret = -EIO;
306 				goto end;
307 			}
308 			pcc_ss_data->last_mpar_reset = ktime_get();
309 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
310 		}
311 		pcc_ss_data->mpar_count--;
312 	}
313 
314 	/* Write to the shared comm region. */
315 	writew_relaxed(cmd, &generic_comm_base->command);
316 
317 	/* Flip CMD COMPLETE bit */
318 	writew_relaxed(0, &generic_comm_base->status);
319 
320 	pcc_ss_data->platform_owns_pcc = true;
321 
322 	/* Ring doorbell */
323 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
324 	if (ret < 0) {
325 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
326 		       pcc_ss_id, cmd, ret);
327 		goto end;
328 	}
329 
330 	/* wait for completion and check for PCC error bit */
331 	ret = check_pcc_chan(pcc_ss_id, true);
332 
333 	if (pcc_ss_data->pcc_mrtt)
334 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
335 
336 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
337 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
338 	else
339 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
340 
341 end:
342 	if (cmd == CMD_WRITE) {
343 		if (unlikely(ret)) {
344 			for_each_possible_cpu(i) {
345 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
346 
347 				if (!desc)
348 					continue;
349 
350 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
351 					desc->write_cmd_status = ret;
352 			}
353 		}
354 		pcc_ss_data->pcc_write_cnt++;
355 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
356 	}
357 
358 	return ret;
359 }
360 
361 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
362 {
363 	if (ret < 0)
364 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
365 				*(u16 *)msg, ret);
366 	else
367 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
368 				*(u16 *)msg, ret);
369 }
370 
371 static struct mbox_client cppc_mbox_cl = {
372 	.tx_done = cppc_chan_tx_done,
373 	.knows_txdone = true,
374 };
375 
376 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
377 {
378 	int result = -EFAULT;
379 	acpi_status status = AE_OK;
380 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
381 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
382 	struct acpi_buffer state = {0, NULL};
383 	union acpi_object  *psd = NULL;
384 	struct acpi_psd_package *pdomain;
385 
386 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
387 					    &buffer, ACPI_TYPE_PACKAGE);
388 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
389 		return 0;
390 	if (ACPI_FAILURE(status))
391 		return -ENODEV;
392 
393 	psd = buffer.pointer;
394 	if (!psd || psd->package.count != 1) {
395 		pr_debug("Invalid _PSD data\n");
396 		goto end;
397 	}
398 
399 	pdomain = &(cpc_ptr->domain_info);
400 
401 	state.length = sizeof(struct acpi_psd_package);
402 	state.pointer = pdomain;
403 
404 	status = acpi_extract_package(&(psd->package.elements[0]),
405 		&format, &state);
406 	if (ACPI_FAILURE(status)) {
407 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
408 		goto end;
409 	}
410 
411 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
412 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
413 		goto end;
414 	}
415 
416 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
417 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
418 		goto end;
419 	}
420 
421 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
422 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
423 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
424 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
425 		goto end;
426 	}
427 
428 	result = 0;
429 end:
430 	kfree(buffer.pointer);
431 	return result;
432 }
433 
434 bool acpi_cpc_valid(void)
435 {
436 	struct cpc_desc *cpc_ptr;
437 	int cpu;
438 
439 	if (acpi_disabled)
440 		return false;
441 
442 	for_each_present_cpu(cpu) {
443 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
444 		if (!cpc_ptr)
445 			return false;
446 	}
447 
448 	return true;
449 }
450 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
451 
452 bool cppc_allow_fast_switch(void)
453 {
454 	struct cpc_register_resource *desired_reg;
455 	struct cpc_desc *cpc_ptr;
456 	int cpu;
457 
458 	for_each_possible_cpu(cpu) {
459 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
460 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
461 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
462 				!CPC_IN_SYSTEM_IO(desired_reg))
463 			return false;
464 	}
465 
466 	return true;
467 }
468 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
469 
470 /**
471  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
472  * @cpu: Find all CPUs that share a domain with cpu.
473  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
474  *
475  *	Return: 0 for success or negative value for err.
476  */
477 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
478 {
479 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
480 	struct acpi_psd_package *match_pdomain;
481 	struct acpi_psd_package *pdomain;
482 	int count_target, i;
483 
484 	/*
485 	 * Now that we have _PSD data from all CPUs, let's setup P-state
486 	 * domain info.
487 	 */
488 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
489 	if (!cpc_ptr)
490 		return -EFAULT;
491 
492 	pdomain = &(cpc_ptr->domain_info);
493 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
494 	if (pdomain->num_processors <= 1)
495 		return 0;
496 
497 	/* Validate the Domain info */
498 	count_target = pdomain->num_processors;
499 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
500 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
501 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
502 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
503 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
504 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
505 
506 	for_each_possible_cpu(i) {
507 		if (i == cpu)
508 			continue;
509 
510 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
511 		if (!match_cpc_ptr)
512 			goto err_fault;
513 
514 		match_pdomain = &(match_cpc_ptr->domain_info);
515 		if (match_pdomain->domain != pdomain->domain)
516 			continue;
517 
518 		/* Here i and cpu are in the same domain */
519 		if (match_pdomain->num_processors != count_target)
520 			goto err_fault;
521 
522 		if (pdomain->coord_type != match_pdomain->coord_type)
523 			goto err_fault;
524 
525 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
526 	}
527 
528 	return 0;
529 
530 err_fault:
531 	/* Assume no coordination on any error parsing domain info */
532 	cpumask_clear(cpu_data->shared_cpu_map);
533 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
534 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
535 
536 	return -EFAULT;
537 }
538 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
539 
540 static int register_pcc_channel(int pcc_ss_idx)
541 {
542 	struct pcc_mbox_chan *pcc_chan;
543 	u64 usecs_lat;
544 
545 	if (pcc_ss_idx >= 0) {
546 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
547 
548 		if (IS_ERR(pcc_chan)) {
549 			pr_err("Failed to find PCC channel for subspace %d\n",
550 			       pcc_ss_idx);
551 			return -ENODEV;
552 		}
553 
554 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
555 		/*
556 		 * cppc_ss->latency is just a Nominal value. In reality
557 		 * the remote processor could be much slower to reply.
558 		 * So add an arbitrary amount of wait on top of Nominal.
559 		 */
560 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
561 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
562 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
563 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
564 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
565 
566 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
567 			acpi_os_ioremap(pcc_chan->shmem_base_addr,
568 					pcc_chan->shmem_size);
569 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
570 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
571 			       pcc_ss_idx);
572 			return -ENOMEM;
573 		}
574 
575 		/* Set flag so that we don't come here for each CPU. */
576 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
577 	}
578 
579 	return 0;
580 }
581 
582 /**
583  * cpc_ffh_supported() - check if FFH reading supported
584  *
585  * Check if the architecture has support for functional fixed hardware
586  * read/write capability.
587  *
588  * Return: true for supported, false for not supported
589  */
590 bool __weak cpc_ffh_supported(void)
591 {
592 	return false;
593 }
594 
595 /**
596  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
597  *
598  * Check if the architectural support for CPPC is present even
599  * if the _OSC hasn't prescribed it
600  *
601  * Return: true for supported, false for not supported
602  */
603 bool __weak cpc_supported_by_cpu(void)
604 {
605 	return false;
606 }
607 
608 /**
609  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
610  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
611  *
612  * Check and allocate the cppc_pcc_data memory.
613  * In some processor configurations it is possible that same subspace
614  * is shared between multiple CPUs. This is seen especially in CPUs
615  * with hardware multi-threading support.
616  *
617  * Return: 0 for success, errno for failure
618  */
619 static int pcc_data_alloc(int pcc_ss_id)
620 {
621 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
622 		return -EINVAL;
623 
624 	if (pcc_data[pcc_ss_id]) {
625 		pcc_data[pcc_ss_id]->refcount++;
626 	} else {
627 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
628 					      GFP_KERNEL);
629 		if (!pcc_data[pcc_ss_id])
630 			return -ENOMEM;
631 		pcc_data[pcc_ss_id]->refcount++;
632 	}
633 
634 	return 0;
635 }
636 
637 /*
638  * An example CPC table looks like the following.
639  *
640  *  Name (_CPC, Package() {
641  *      17,							// NumEntries
642  *      1,							// Revision
643  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
644  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
645  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
646  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
647  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
648  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
649  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
650  *      ...
651  *      ...
652  *      ...
653  *  }
654  * Each Register() encodes how to access that specific register.
655  * e.g. a sample PCC entry has the following encoding:
656  *
657  *  Register (
658  *      PCC,	// AddressSpaceKeyword
659  *      8,	// RegisterBitWidth
660  *      8,	// RegisterBitOffset
661  *      0x30,	// RegisterAddress
662  *      9,	// AccessSize (subspace ID)
663  *  )
664  */
665 
666 #ifndef arch_init_invariance_cppc
667 static inline void arch_init_invariance_cppc(void) { }
668 #endif
669 
670 /**
671  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
672  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
673  *
674  *	Return: 0 for success or negative value for err.
675  */
676 int acpi_cppc_processor_probe(struct acpi_processor *pr)
677 {
678 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
679 	union acpi_object *out_obj, *cpc_obj;
680 	struct cpc_desc *cpc_ptr;
681 	struct cpc_reg *gas_t;
682 	struct device *cpu_dev;
683 	acpi_handle handle = pr->handle;
684 	unsigned int num_ent, i, cpc_rev;
685 	int pcc_subspace_id = -1;
686 	acpi_status status;
687 	int ret = -ENODATA;
688 
689 	if (!osc_sb_cppc2_support_acked) {
690 		pr_debug("CPPC v2 _OSC not acked\n");
691 		if (!cpc_supported_by_cpu()) {
692 			pr_debug("CPPC is not supported by the CPU\n");
693 			return -ENODEV;
694 		}
695 	}
696 
697 	/* Parse the ACPI _CPC table for this CPU. */
698 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
699 			ACPI_TYPE_PACKAGE);
700 	if (ACPI_FAILURE(status)) {
701 		ret = -ENODEV;
702 		goto out_buf_free;
703 	}
704 
705 	out_obj = (union acpi_object *) output.pointer;
706 
707 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
708 	if (!cpc_ptr) {
709 		ret = -ENOMEM;
710 		goto out_buf_free;
711 	}
712 
713 	/* First entry is NumEntries. */
714 	cpc_obj = &out_obj->package.elements[0];
715 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
716 		num_ent = cpc_obj->integer.value;
717 		if (num_ent <= 1) {
718 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
719 				 num_ent, pr->id);
720 			goto out_free;
721 		}
722 	} else {
723 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
724 			 cpc_obj->type, pr->id);
725 		goto out_free;
726 	}
727 
728 	/* Second entry should be revision. */
729 	cpc_obj = &out_obj->package.elements[1];
730 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
731 		cpc_rev = cpc_obj->integer.value;
732 	} else {
733 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
734 			 cpc_obj->type, pr->id);
735 		goto out_free;
736 	}
737 
738 	if (cpc_rev < CPPC_V2_REV) {
739 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
740 			 pr->id);
741 		goto out_free;
742 	}
743 
744 	/*
745 	 * Disregard _CPC if the number of entries in the return pachage is not
746 	 * as expected, but support future revisions being proper supersets of
747 	 * the v3 and only causing more entries to be returned by _CPC.
748 	 */
749 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
750 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
751 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
752 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
753 			 num_ent, pr->id);
754 		goto out_free;
755 	}
756 	if (cpc_rev > CPPC_V3_REV) {
757 		num_ent = CPPC_V3_NUM_ENT;
758 		cpc_rev = CPPC_V3_REV;
759 	}
760 
761 	cpc_ptr->num_entries = num_ent;
762 	cpc_ptr->version = cpc_rev;
763 
764 	/* Iterate through remaining entries in _CPC */
765 	for (i = 2; i < num_ent; i++) {
766 		cpc_obj = &out_obj->package.elements[i];
767 
768 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
769 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
770 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
771 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
772 			gas_t = (struct cpc_reg *)
773 				cpc_obj->buffer.pointer;
774 
775 			/*
776 			 * The PCC Subspace index is encoded inside
777 			 * the CPC table entries. The same PCC index
778 			 * will be used for all the PCC entries,
779 			 * so extract it only once.
780 			 */
781 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
782 				if (pcc_subspace_id < 0) {
783 					pcc_subspace_id = gas_t->access_width;
784 					if (pcc_data_alloc(pcc_subspace_id))
785 						goto out_free;
786 				} else if (pcc_subspace_id != gas_t->access_width) {
787 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
788 						 pr->id);
789 					goto out_free;
790 				}
791 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
792 				if (gas_t->address) {
793 					void __iomem *addr;
794 					size_t access_width;
795 
796 					if (!osc_cpc_flexible_adr_space_confirmed) {
797 						pr_debug("Flexible address space capability not supported\n");
798 						if (!cpc_supported_by_cpu())
799 							goto out_free;
800 					}
801 
802 					access_width = GET_BIT_WIDTH(gas_t) / 8;
803 					addr = ioremap(gas_t->address, access_width);
804 					if (!addr)
805 						goto out_free;
806 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
807 				}
808 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
809 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
810 					/*
811 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
812 					 * SystemIO doesn't implement 64-bit
813 					 * registers.
814 					 */
815 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
816 						 gas_t->access_width);
817 					goto out_free;
818 				}
819 				if (gas_t->address & OVER_16BTS_MASK) {
820 					/* SystemIO registers use 16-bit integer addresses */
821 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
822 						 gas_t->address);
823 					goto out_free;
824 				}
825 				if (!osc_cpc_flexible_adr_space_confirmed) {
826 					pr_debug("Flexible address space capability not supported\n");
827 					if (!cpc_supported_by_cpu())
828 						goto out_free;
829 				}
830 			} else {
831 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
832 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
833 					pr_debug("Unsupported register type (%d) in _CPC\n",
834 						 gas_t->space_id);
835 					goto out_free;
836 				}
837 			}
838 
839 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
840 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
841 		} else {
842 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
843 				 i, pr->id);
844 			goto out_free;
845 		}
846 	}
847 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
848 
849 	/*
850 	 * Initialize the remaining cpc_regs as unsupported.
851 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
852 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
853 	 */
854 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
855 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
856 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
857 	}
858 
859 
860 	/* Store CPU Logical ID */
861 	cpc_ptr->cpu_id = pr->id;
862 
863 	/* Parse PSD data for this CPU */
864 	ret = acpi_get_psd(cpc_ptr, handle);
865 	if (ret)
866 		goto out_free;
867 
868 	/* Register PCC channel once for all PCC subspace ID. */
869 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
870 		ret = register_pcc_channel(pcc_subspace_id);
871 		if (ret)
872 			goto out_free;
873 
874 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
875 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
876 	}
877 
878 	/* Everything looks okay */
879 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
880 
881 	/* Add per logical CPU nodes for reading its feedback counters. */
882 	cpu_dev = get_cpu_device(pr->id);
883 	if (!cpu_dev) {
884 		ret = -EINVAL;
885 		goto out_free;
886 	}
887 
888 	/* Plug PSD data into this CPU's CPC descriptor. */
889 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
890 
891 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
892 			"acpi_cppc");
893 	if (ret) {
894 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
895 		kobject_put(&cpc_ptr->kobj);
896 		goto out_free;
897 	}
898 
899 	arch_init_invariance_cppc();
900 
901 	kfree(output.pointer);
902 	return 0;
903 
904 out_free:
905 	/* Free all the mapped sys mem areas for this CPU */
906 	for (i = 2; i < cpc_ptr->num_entries; i++) {
907 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
908 
909 		if (addr)
910 			iounmap(addr);
911 	}
912 	kfree(cpc_ptr);
913 
914 out_buf_free:
915 	kfree(output.pointer);
916 	return ret;
917 }
918 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
919 
920 /**
921  * acpi_cppc_processor_exit - Cleanup CPC structs.
922  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
923  *
924  * Return: Void
925  */
926 void acpi_cppc_processor_exit(struct acpi_processor *pr)
927 {
928 	struct cpc_desc *cpc_ptr;
929 	unsigned int i;
930 	void __iomem *addr;
931 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
932 
933 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
934 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
935 			pcc_data[pcc_ss_id]->refcount--;
936 			if (!pcc_data[pcc_ss_id]->refcount) {
937 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
938 				kfree(pcc_data[pcc_ss_id]);
939 				pcc_data[pcc_ss_id] = NULL;
940 			}
941 		}
942 	}
943 
944 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
945 	if (!cpc_ptr)
946 		return;
947 
948 	/* Free all the mapped sys mem areas for this CPU */
949 	for (i = 2; i < cpc_ptr->num_entries; i++) {
950 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
951 		if (addr)
952 			iounmap(addr);
953 	}
954 
955 	kobject_put(&cpc_ptr->kobj);
956 	kfree(cpc_ptr);
957 }
958 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
959 
960 /**
961  * cpc_read_ffh() - Read FFH register
962  * @cpunum:	CPU number to read
963  * @reg:	cppc register information
964  * @val:	place holder for return value
965  *
966  * Read bit_width bits from a specified address and bit_offset
967  *
968  * Return: 0 for success and error code
969  */
970 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
971 {
972 	return -ENOTSUPP;
973 }
974 
975 /**
976  * cpc_write_ffh() - Write FFH register
977  * @cpunum:	CPU number to write
978  * @reg:	cppc register information
979  * @val:	value to write
980  *
981  * Write value of bit_width bits to a specified address and bit_offset
982  *
983  * Return: 0 for success and error code
984  */
985 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
986 {
987 	return -ENOTSUPP;
988 }
989 
990 /*
991  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
992  * as fast as possible. We have already mapped the PCC subspace during init, so
993  * we can directly write to it.
994  */
995 
996 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
997 {
998 	void __iomem *vaddr = NULL;
999 	int size;
1000 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1001 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1002 
1003 	if (reg_res->type == ACPI_TYPE_INTEGER) {
1004 		*val = reg_res->cpc_entry.int_value;
1005 		return 0;
1006 	}
1007 
1008 	*val = 0;
1009 	size = GET_BIT_WIDTH(reg);
1010 
1011 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1012 		u32 val_u32;
1013 		acpi_status status;
1014 
1015 		status = acpi_os_read_port((acpi_io_address)reg->address,
1016 					   &val_u32, size);
1017 		if (ACPI_FAILURE(status)) {
1018 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1019 				 reg->address);
1020 			return -EFAULT;
1021 		}
1022 
1023 		*val = val_u32;
1024 		return 0;
1025 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1026 		/*
1027 		 * For registers in PCC space, the register size is determined
1028 		 * by the bit width field; the access size is used to indicate
1029 		 * the PCC subspace id.
1030 		 */
1031 		size = reg->bit_width;
1032 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1033 	}
1034 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1035 		vaddr = reg_res->sys_mem_vaddr;
1036 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1037 		return cpc_read_ffh(cpu, reg, val);
1038 	else
1039 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1040 				val, size);
1041 
1042 	switch (size) {
1043 	case 8:
1044 		*val = readb_relaxed(vaddr);
1045 		break;
1046 	case 16:
1047 		*val = readw_relaxed(vaddr);
1048 		break;
1049 	case 32:
1050 		*val = readl_relaxed(vaddr);
1051 		break;
1052 	case 64:
1053 		*val = readq_relaxed(vaddr);
1054 		break;
1055 	default:
1056 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1057 			pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1058 				size, reg->address);
1059 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1060 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1061 				size, pcc_ss_id);
1062 		}
1063 		return -EFAULT;
1064 	}
1065 
1066 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1067 		*val = MASK_VAL(reg, *val);
1068 
1069 	return 0;
1070 }
1071 
1072 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1073 {
1074 	int ret_val = 0;
1075 	int size;
1076 	void __iomem *vaddr = NULL;
1077 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1078 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1079 
1080 	size = GET_BIT_WIDTH(reg);
1081 
1082 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1083 		acpi_status status;
1084 
1085 		status = acpi_os_write_port((acpi_io_address)reg->address,
1086 					    (u32)val, size);
1087 		if (ACPI_FAILURE(status)) {
1088 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1089 				 reg->address);
1090 			return -EFAULT;
1091 		}
1092 
1093 		return 0;
1094 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1095 		/*
1096 		 * For registers in PCC space, the register size is determined
1097 		 * by the bit width field; the access size is used to indicate
1098 		 * the PCC subspace id.
1099 		 */
1100 		size = reg->bit_width;
1101 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1102 	}
1103 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1104 		vaddr = reg_res->sys_mem_vaddr;
1105 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1106 		return cpc_write_ffh(cpu, reg, val);
1107 	else
1108 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1109 				val, size);
1110 
1111 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1112 		val = MASK_VAL(reg, val);
1113 
1114 	switch (size) {
1115 	case 8:
1116 		writeb_relaxed(val, vaddr);
1117 		break;
1118 	case 16:
1119 		writew_relaxed(val, vaddr);
1120 		break;
1121 	case 32:
1122 		writel_relaxed(val, vaddr);
1123 		break;
1124 	case 64:
1125 		writeq_relaxed(val, vaddr);
1126 		break;
1127 	default:
1128 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1129 			pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1130 				size, reg->address);
1131 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1132 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1133 				size, pcc_ss_id);
1134 		}
1135 		ret_val = -EFAULT;
1136 		break;
1137 	}
1138 
1139 	return ret_val;
1140 }
1141 
1142 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1143 {
1144 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1145 	struct cpc_register_resource *reg;
1146 
1147 	if (!cpc_desc) {
1148 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1149 		return -ENODEV;
1150 	}
1151 
1152 	reg = &cpc_desc->cpc_regs[reg_idx];
1153 
1154 	if (CPC_IN_PCC(reg)) {
1155 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1156 		struct cppc_pcc_data *pcc_ss_data = NULL;
1157 		int ret = 0;
1158 
1159 		if (pcc_ss_id < 0)
1160 			return -EIO;
1161 
1162 		pcc_ss_data = pcc_data[pcc_ss_id];
1163 
1164 		down_write(&pcc_ss_data->pcc_lock);
1165 
1166 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1167 			cpc_read(cpunum, reg, perf);
1168 		else
1169 			ret = -EIO;
1170 
1171 		up_write(&pcc_ss_data->pcc_lock);
1172 
1173 		return ret;
1174 	}
1175 
1176 	cpc_read(cpunum, reg, perf);
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  * cppc_get_desired_perf - Get the desired performance register value.
1183  * @cpunum: CPU from which to get desired performance.
1184  * @desired_perf: Return address.
1185  *
1186  * Return: 0 for success, -EIO otherwise.
1187  */
1188 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1189 {
1190 	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1191 }
1192 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1193 
1194 /**
1195  * cppc_get_nominal_perf - Get the nominal performance register value.
1196  * @cpunum: CPU from which to get nominal performance.
1197  * @nominal_perf: Return address.
1198  *
1199  * Return: 0 for success, -EIO otherwise.
1200  */
1201 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1202 {
1203 	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1204 }
1205 
1206 /**
1207  * cppc_get_highest_perf - Get the highest performance register value.
1208  * @cpunum: CPU from which to get highest performance.
1209  * @highest_perf: Return address.
1210  *
1211  * Return: 0 for success, -EIO otherwise.
1212  */
1213 int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1214 {
1215 	return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1216 }
1217 EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1218 
1219 /**
1220  * cppc_get_epp_perf - Get the epp register value.
1221  * @cpunum: CPU from which to get epp preference value.
1222  * @epp_perf: Return address.
1223  *
1224  * Return: 0 for success, -EIO otherwise.
1225  */
1226 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1227 {
1228 	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1229 }
1230 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1231 
1232 /**
1233  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1234  * @cpunum: CPU from which to get capabilities info.
1235  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1236  *
1237  * Return: 0 for success with perf_caps populated else -ERRNO.
1238  */
1239 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1240 {
1241 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1242 	struct cpc_register_resource *highest_reg, *lowest_reg,
1243 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1244 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1245 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1246 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1247 	struct cppc_pcc_data *pcc_ss_data = NULL;
1248 	int ret = 0, regs_in_pcc = 0;
1249 
1250 	if (!cpc_desc) {
1251 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1252 		return -ENODEV;
1253 	}
1254 
1255 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1256 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1257 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1258 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1259 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1260 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1261 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1262 
1263 	/* Are any of the regs PCC ?*/
1264 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1265 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1266 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1267 		if (pcc_ss_id < 0) {
1268 			pr_debug("Invalid pcc_ss_id\n");
1269 			return -ENODEV;
1270 		}
1271 		pcc_ss_data = pcc_data[pcc_ss_id];
1272 		regs_in_pcc = 1;
1273 		down_write(&pcc_ss_data->pcc_lock);
1274 		/* Ring doorbell once to update PCC subspace */
1275 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1276 			ret = -EIO;
1277 			goto out_err;
1278 		}
1279 	}
1280 
1281 	cpc_read(cpunum, highest_reg, &high);
1282 	perf_caps->highest_perf = high;
1283 
1284 	cpc_read(cpunum, lowest_reg, &low);
1285 	perf_caps->lowest_perf = low;
1286 
1287 	cpc_read(cpunum, nominal_reg, &nom);
1288 	perf_caps->nominal_perf = nom;
1289 
1290 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1291 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1292 		perf_caps->guaranteed_perf = 0;
1293 	} else {
1294 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1295 		perf_caps->guaranteed_perf = guaranteed;
1296 	}
1297 
1298 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1299 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1300 
1301 	if (!high || !low || !nom || !min_nonlinear)
1302 		ret = -EFAULT;
1303 
1304 	/* Read optional lowest and nominal frequencies if present */
1305 	if (CPC_SUPPORTED(low_freq_reg))
1306 		cpc_read(cpunum, low_freq_reg, &low_f);
1307 
1308 	if (CPC_SUPPORTED(nom_freq_reg))
1309 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1310 
1311 	perf_caps->lowest_freq = low_f;
1312 	perf_caps->nominal_freq = nom_f;
1313 
1314 
1315 out_err:
1316 	if (regs_in_pcc)
1317 		up_write(&pcc_ss_data->pcc_lock);
1318 	return ret;
1319 }
1320 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1321 
1322 /**
1323  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1324  *
1325  * CPPC has flexibility about how CPU performance counters are accessed.
1326  * One of the choices is PCC regions, which can have a high access latency. This
1327  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1328  *
1329  * Return: true if any of the counters are in PCC regions, false otherwise
1330  */
1331 bool cppc_perf_ctrs_in_pcc(void)
1332 {
1333 	int cpu;
1334 
1335 	for_each_present_cpu(cpu) {
1336 		struct cpc_register_resource *ref_perf_reg;
1337 		struct cpc_desc *cpc_desc;
1338 
1339 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1340 
1341 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1342 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1343 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1344 			return true;
1345 
1346 
1347 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1348 
1349 		/*
1350 		 * If reference perf register is not supported then we should
1351 		 * use the nominal perf value
1352 		 */
1353 		if (!CPC_SUPPORTED(ref_perf_reg))
1354 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1355 
1356 		if (CPC_IN_PCC(ref_perf_reg))
1357 			return true;
1358 	}
1359 
1360 	return false;
1361 }
1362 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1363 
1364 /**
1365  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1366  * @cpunum: CPU from which to read counters.
1367  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1368  *
1369  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1370  */
1371 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1372 {
1373 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1374 	struct cpc_register_resource *delivered_reg, *reference_reg,
1375 		*ref_perf_reg, *ctr_wrap_reg;
1376 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1377 	struct cppc_pcc_data *pcc_ss_data = NULL;
1378 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1379 	int ret = 0, regs_in_pcc = 0;
1380 
1381 	if (!cpc_desc) {
1382 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1383 		return -ENODEV;
1384 	}
1385 
1386 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1387 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1388 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1389 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1390 
1391 	/*
1392 	 * If reference perf register is not supported then we should
1393 	 * use the nominal perf value
1394 	 */
1395 	if (!CPC_SUPPORTED(ref_perf_reg))
1396 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1397 
1398 	/* Are any of the regs PCC ?*/
1399 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1400 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1401 		if (pcc_ss_id < 0) {
1402 			pr_debug("Invalid pcc_ss_id\n");
1403 			return -ENODEV;
1404 		}
1405 		pcc_ss_data = pcc_data[pcc_ss_id];
1406 		down_write(&pcc_ss_data->pcc_lock);
1407 		regs_in_pcc = 1;
1408 		/* Ring doorbell once to update PCC subspace */
1409 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1410 			ret = -EIO;
1411 			goto out_err;
1412 		}
1413 	}
1414 
1415 	cpc_read(cpunum, delivered_reg, &delivered);
1416 	cpc_read(cpunum, reference_reg, &reference);
1417 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1418 
1419 	/*
1420 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1421 	 * performance counters are assumed to never wrap during the lifetime of
1422 	 * platform
1423 	 */
1424 	ctr_wrap_time = (u64)(~((u64)0));
1425 	if (CPC_SUPPORTED(ctr_wrap_reg))
1426 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1427 
1428 	if (!delivered || !reference ||	!ref_perf) {
1429 		ret = -EFAULT;
1430 		goto out_err;
1431 	}
1432 
1433 	perf_fb_ctrs->delivered = delivered;
1434 	perf_fb_ctrs->reference = reference;
1435 	perf_fb_ctrs->reference_perf = ref_perf;
1436 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1437 out_err:
1438 	if (regs_in_pcc)
1439 		up_write(&pcc_ss_data->pcc_lock);
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1443 
1444 /*
1445  * Set Energy Performance Preference Register value through
1446  * Performance Controls Interface
1447  */
1448 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1449 {
1450 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1451 	struct cpc_register_resource *epp_set_reg;
1452 	struct cpc_register_resource *auto_sel_reg;
1453 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1454 	struct cppc_pcc_data *pcc_ss_data = NULL;
1455 	int ret;
1456 
1457 	if (!cpc_desc) {
1458 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1459 		return -ENODEV;
1460 	}
1461 
1462 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1463 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1464 
1465 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1466 		if (pcc_ss_id < 0) {
1467 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1468 			return -ENODEV;
1469 		}
1470 
1471 		if (CPC_SUPPORTED(auto_sel_reg)) {
1472 			ret = cpc_write(cpu, auto_sel_reg, enable);
1473 			if (ret)
1474 				return ret;
1475 		}
1476 
1477 		if (CPC_SUPPORTED(epp_set_reg)) {
1478 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1479 			if (ret)
1480 				return ret;
1481 		}
1482 
1483 		pcc_ss_data = pcc_data[pcc_ss_id];
1484 
1485 		down_write(&pcc_ss_data->pcc_lock);
1486 		/* after writing CPC, transfer the ownership of PCC to platform */
1487 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1488 		up_write(&pcc_ss_data->pcc_lock);
1489 	} else {
1490 		ret = -ENOTSUPP;
1491 		pr_debug("_CPC in PCC is not supported\n");
1492 	}
1493 
1494 	return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1497 
1498 /**
1499  * cppc_get_auto_sel_caps - Read autonomous selection register.
1500  * @cpunum : CPU from which to read register.
1501  * @perf_caps : struct where autonomous selection register value is updated.
1502  */
1503 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1504 {
1505 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1506 	struct cpc_register_resource *auto_sel_reg;
1507 	u64  auto_sel;
1508 
1509 	if (!cpc_desc) {
1510 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1511 		return -ENODEV;
1512 	}
1513 
1514 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1515 
1516 	if (!CPC_SUPPORTED(auto_sel_reg))
1517 		pr_warn_once("Autonomous mode is not unsupported!\n");
1518 
1519 	if (CPC_IN_PCC(auto_sel_reg)) {
1520 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1521 		struct cppc_pcc_data *pcc_ss_data = NULL;
1522 		int ret = 0;
1523 
1524 		if (pcc_ss_id < 0)
1525 			return -ENODEV;
1526 
1527 		pcc_ss_data = pcc_data[pcc_ss_id];
1528 
1529 		down_write(&pcc_ss_data->pcc_lock);
1530 
1531 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1532 			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1533 			perf_caps->auto_sel = (bool)auto_sel;
1534 		} else {
1535 			ret = -EIO;
1536 		}
1537 
1538 		up_write(&pcc_ss_data->pcc_lock);
1539 
1540 		return ret;
1541 	}
1542 
1543 	return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1546 
1547 /**
1548  * cppc_set_auto_sel - Write autonomous selection register.
1549  * @cpu    : CPU to which to write register.
1550  * @enable : the desired value of autonomous selection resiter to be updated.
1551  */
1552 int cppc_set_auto_sel(int cpu, bool enable)
1553 {
1554 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1555 	struct cpc_register_resource *auto_sel_reg;
1556 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1557 	struct cppc_pcc_data *pcc_ss_data = NULL;
1558 	int ret = -EINVAL;
1559 
1560 	if (!cpc_desc) {
1561 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1562 		return -ENODEV;
1563 	}
1564 
1565 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1566 
1567 	if (CPC_IN_PCC(auto_sel_reg)) {
1568 		if (pcc_ss_id < 0) {
1569 			pr_debug("Invalid pcc_ss_id\n");
1570 			return -ENODEV;
1571 		}
1572 
1573 		if (CPC_SUPPORTED(auto_sel_reg)) {
1574 			ret = cpc_write(cpu, auto_sel_reg, enable);
1575 			if (ret)
1576 				return ret;
1577 		}
1578 
1579 		pcc_ss_data = pcc_data[pcc_ss_id];
1580 
1581 		down_write(&pcc_ss_data->pcc_lock);
1582 		/* after writing CPC, transfer the ownership of PCC to platform */
1583 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1584 		up_write(&pcc_ss_data->pcc_lock);
1585 	} else {
1586 		ret = -ENOTSUPP;
1587 		pr_debug("_CPC in PCC is not supported\n");
1588 	}
1589 
1590 	return ret;
1591 }
1592 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1593 
1594 /**
1595  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1596  * Continuous Performance Control package EnableRegister field.
1597  * @cpu: CPU for which to enable CPPC register.
1598  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1599  *
1600  * Return: 0 for success, -ERRNO or -EIO otherwise.
1601  */
1602 int cppc_set_enable(int cpu, bool enable)
1603 {
1604 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1605 	struct cpc_register_resource *enable_reg;
1606 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1607 	struct cppc_pcc_data *pcc_ss_data = NULL;
1608 	int ret = -EINVAL;
1609 
1610 	if (!cpc_desc) {
1611 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1612 		return -EINVAL;
1613 	}
1614 
1615 	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1616 
1617 	if (CPC_IN_PCC(enable_reg)) {
1618 
1619 		if (pcc_ss_id < 0)
1620 			return -EIO;
1621 
1622 		ret = cpc_write(cpu, enable_reg, enable);
1623 		if (ret)
1624 			return ret;
1625 
1626 		pcc_ss_data = pcc_data[pcc_ss_id];
1627 
1628 		down_write(&pcc_ss_data->pcc_lock);
1629 		/* after writing CPC, transfer the ownership of PCC to platfrom */
1630 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1631 		up_write(&pcc_ss_data->pcc_lock);
1632 		return ret;
1633 	}
1634 
1635 	return cpc_write(cpu, enable_reg, enable);
1636 }
1637 EXPORT_SYMBOL_GPL(cppc_set_enable);
1638 
1639 /**
1640  * cppc_set_perf - Set a CPU's performance controls.
1641  * @cpu: CPU for which to set performance controls.
1642  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1643  *
1644  * Return: 0 for success, -ERRNO otherwise.
1645  */
1646 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1647 {
1648 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1649 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1650 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1651 	struct cppc_pcc_data *pcc_ss_data = NULL;
1652 	int ret = 0;
1653 
1654 	if (!cpc_desc) {
1655 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1656 		return -ENODEV;
1657 	}
1658 
1659 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1660 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1661 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1662 
1663 	/*
1664 	 * This is Phase-I where we want to write to CPC registers
1665 	 * -> We want all CPUs to be able to execute this phase in parallel
1666 	 *
1667 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1668 	 * achieve that goal here
1669 	 */
1670 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1671 		if (pcc_ss_id < 0) {
1672 			pr_debug("Invalid pcc_ss_id\n");
1673 			return -ENODEV;
1674 		}
1675 		pcc_ss_data = pcc_data[pcc_ss_id];
1676 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1677 		if (pcc_ss_data->platform_owns_pcc) {
1678 			ret = check_pcc_chan(pcc_ss_id, false);
1679 			if (ret) {
1680 				up_read(&pcc_ss_data->pcc_lock);
1681 				return ret;
1682 			}
1683 		}
1684 		/*
1685 		 * Update the pending_write to make sure a PCC CMD_READ will not
1686 		 * arrive and steal the channel during the switch to write lock
1687 		 */
1688 		pcc_ss_data->pending_pcc_write_cmd = true;
1689 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1690 		cpc_desc->write_cmd_status = 0;
1691 	}
1692 
1693 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1694 
1695 	/*
1696 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1697 	 * value to min and max perf, but they don't mean to set the zero value,
1698 	 * they just don't want to write to those registers.
1699 	 */
1700 	if (perf_ctrls->min_perf)
1701 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1702 	if (perf_ctrls->max_perf)
1703 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1704 
1705 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1706 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1707 	/*
1708 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1709 	 *
1710 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1711 	 * requests that happened in short overlapping interval. The last CPU to
1712 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1713 	 *
1714 	 * We have the following requirements for Phase-II:
1715 	 *     1. We want to execute Phase-II only when there are no CPUs
1716 	 * currently executing in Phase-I
1717 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1718 	 * entering Phase-I.
1719 	 *     3. We want only one CPU among all those who went through Phase-I
1720 	 * to run phase-II
1721 	 *
1722 	 * If write_trylock fails to get the lock and doesn't transfer the
1723 	 * PCC ownership to the platform, then one of the following will be TRUE
1724 	 *     1. There is at-least one CPU in Phase-I which will later execute
1725 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1726 	 * executing the Phase-II.
1727 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1728 	 * write_trylock and has already acquired the write_lock. We know for a
1729 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1730 	 * before this CPU's Phase-I as we held the read_lock.
1731 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1732 	 * down_write, in which case, send_pcc_cmd will check for pending
1733 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1734 	 * So this CPU can be certain that its request will be delivered
1735 	 *    So in all cases, this CPU knows that its request will be delivered
1736 	 * by another CPU and can return
1737 	 *
1738 	 * After getting the down_write we still need to check for
1739 	 * pending_pcc_write_cmd to take care of the following scenario
1740 	 *    The thread running this code could be scheduled out between
1741 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1742 	 * could have delivered the request to Platform by triggering the
1743 	 * doorbell and transferred the ownership of PCC to platform. So this
1744 	 * avoids triggering an unnecessary doorbell and more importantly before
1745 	 * triggering the doorbell it makes sure that the PCC channel ownership
1746 	 * is still with OSPM.
1747 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1748 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1749 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1750 	 * case during a CMD_READ and if there are pending writes it delivers
1751 	 * the write command before servicing the read command
1752 	 */
1753 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1754 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1755 			/* Update only if there are pending write commands */
1756 			if (pcc_ss_data->pending_pcc_write_cmd)
1757 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1758 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1759 		} else
1760 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1761 			wait_event(pcc_ss_data->pcc_write_wait_q,
1762 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1763 
1764 		/* send_pcc_cmd updates the status in case of failure */
1765 		ret = cpc_desc->write_cmd_status;
1766 	}
1767 	return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(cppc_set_perf);
1770 
1771 /**
1772  * cppc_get_transition_latency - returns frequency transition latency in ns
1773  * @cpu_num: CPU number for per_cpu().
1774  *
1775  * ACPI CPPC does not explicitly specify how a platform can specify the
1776  * transition latency for performance change requests. The closest we have
1777  * is the timing information from the PCCT tables which provides the info
1778  * on the number and frequency of PCC commands the platform can handle.
1779  *
1780  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1781  * then assume there is no latency.
1782  */
1783 unsigned int cppc_get_transition_latency(int cpu_num)
1784 {
1785 	/*
1786 	 * Expected transition latency is based on the PCCT timing values
1787 	 * Below are definition from ACPI spec:
1788 	 * pcc_nominal- Expected latency to process a command, in microseconds
1789 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1790 	 *              channel can support, reported in commands per minute. 0
1791 	 *              indicates no limitation.
1792 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1793 	 *              completion of a command before issuing the next command,
1794 	 *              in microseconds.
1795 	 */
1796 	unsigned int latency_ns = 0;
1797 	struct cpc_desc *cpc_desc;
1798 	struct cpc_register_resource *desired_reg;
1799 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1800 	struct cppc_pcc_data *pcc_ss_data;
1801 
1802 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1803 	if (!cpc_desc)
1804 		return CPUFREQ_ETERNAL;
1805 
1806 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1807 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1808 		return 0;
1809 	else if (!CPC_IN_PCC(desired_reg))
1810 		return CPUFREQ_ETERNAL;
1811 
1812 	if (pcc_ss_id < 0)
1813 		return CPUFREQ_ETERNAL;
1814 
1815 	pcc_ss_data = pcc_data[pcc_ss_id];
1816 	if (pcc_ss_data->pcc_mpar)
1817 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1818 
1819 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1820 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1821 
1822 	return latency_ns;
1823 }
1824 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1825 
1826 /* Minimum struct length needed for the DMI processor entry we want */
1827 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1828 
1829 /* Offset in the DMI processor structure for the max frequency */
1830 #define DMI_PROCESSOR_MAX_SPEED		0x14
1831 
1832 /* Callback function used to retrieve the max frequency from DMI */
1833 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1834 {
1835 	const u8 *dmi_data = (const u8 *)dm;
1836 	u16 *mhz = (u16 *)private;
1837 
1838 	if (dm->type == DMI_ENTRY_PROCESSOR &&
1839 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1840 		u16 val = (u16)get_unaligned((const u16 *)
1841 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1842 		*mhz = umax(val, *mhz);
1843 	}
1844 }
1845 
1846 /* Look up the max frequency in DMI */
1847 static u64 cppc_get_dmi_max_khz(void)
1848 {
1849 	u16 mhz = 0;
1850 
1851 	dmi_walk(cppc_find_dmi_mhz, &mhz);
1852 
1853 	/*
1854 	 * Real stupid fallback value, just in case there is no
1855 	 * actual value set.
1856 	 */
1857 	mhz = mhz ? mhz : 1;
1858 
1859 	return KHZ_PER_MHZ * mhz;
1860 }
1861 
1862 /*
1863  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1864  * use them to convert perf to freq and vice versa. The conversion is
1865  * extrapolated as an affine function passing by the 2 points:
1866  *  - (Low perf, Low freq)
1867  *  - (Nominal perf, Nominal freq)
1868  */
1869 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1870 {
1871 	s64 retval, offset = 0;
1872 	static u64 max_khz;
1873 	u64 mul, div;
1874 
1875 	if (caps->lowest_freq && caps->nominal_freq) {
1876 		mul = caps->nominal_freq - caps->lowest_freq;
1877 		mul *= KHZ_PER_MHZ;
1878 		div = caps->nominal_perf - caps->lowest_perf;
1879 		offset = caps->nominal_freq * KHZ_PER_MHZ -
1880 			 div64_u64(caps->nominal_perf * mul, div);
1881 	} else {
1882 		if (!max_khz)
1883 			max_khz = cppc_get_dmi_max_khz();
1884 		mul = max_khz;
1885 		div = caps->highest_perf;
1886 	}
1887 
1888 	retval = offset + div64_u64(perf * mul, div);
1889 	if (retval >= 0)
1890 		return retval;
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1894 
1895 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1896 {
1897 	s64 retval, offset = 0;
1898 	static u64 max_khz;
1899 	u64  mul, div;
1900 
1901 	if (caps->lowest_freq && caps->nominal_freq) {
1902 		mul = caps->nominal_perf - caps->lowest_perf;
1903 		div = caps->nominal_freq - caps->lowest_freq;
1904 		/*
1905 		 * We don't need to convert to kHz for computing offset and can
1906 		 * directly use nominal_freq and lowest_freq as the div64_u64
1907 		 * will remove the frequency unit.
1908 		 */
1909 		offset = caps->nominal_perf -
1910 			 div64_u64(caps->nominal_freq * mul, div);
1911 		/* But we need it for computing the perf level. */
1912 		div *= KHZ_PER_MHZ;
1913 	} else {
1914 		if (!max_khz)
1915 			max_khz = cppc_get_dmi_max_khz();
1916 		mul = caps->highest_perf;
1917 		div = max_khz;
1918 	}
1919 
1920 	retval = offset + div64_u64(freq * mul, div);
1921 	if (retval >= 0)
1922 		return retval;
1923 	return 0;
1924 }
1925 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1926