xref: /linux/drivers/acpi/cppc_acpi.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33 
34 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
35 
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42 #include <linux/dmi.h>
43 #include <linux/units.h>
44 #include <linux/unaligned.h>
45 
46 #include <acpi/cppc_acpi.h>
47 
48 struct cppc_pcc_data {
49 	struct pcc_mbox_chan *pcc_channel;
50 	void __iomem *pcc_comm_addr;
51 	bool pcc_channel_acquired;
52 	unsigned int deadline_us;
53 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54 
55 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58 
59 	/*
60 	 * Lock to provide controlled access to the PCC channel.
61 	 *
62 	 * For performance critical usecases(currently cppc_set_perf)
63 	 *	We need to take read_lock and check if channel belongs to OSPM
64 	 * before reading or writing to PCC subspace
65 	 *	We need to take write_lock before transferring the channel
66 	 * ownership to the platform via a Doorbell
67 	 *	This allows us to batch a number of CPPC requests if they happen
68 	 * to originate in about the same time
69 	 *
70 	 * For non-performance critical usecases(init)
71 	 *	Take write_lock for all purposes which gives exclusive access
72 	 */
73 	struct rw_semaphore pcc_lock;
74 
75 	/* Wait queue for CPUs whose requests were batched */
76 	wait_queue_head_t pcc_write_wait_q;
77 	ktime_t last_cmd_cmpl_time;
78 	ktime_t last_mpar_reset;
79 	int mpar_count;
80 	int refcount;
81 };
82 
83 /* Array to represent the PCC channel per subspace ID */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 
88 /*
89  * The cpc_desc structure contains the ACPI register details
90  * as described in the per CPU _CPC tables. The details
91  * include the type of register (e.g. PCC, System IO, FFH etc.)
92  * and destination addresses which lets us READ/WRITE CPU performance
93  * information using the appropriate I/O methods.
94  */
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96 
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 						0x8 + (offs))
100 
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
103 				(cpc)->cpc_entry.reg.space_id ==	\
104 				ACPI_ADR_SPACE_PLATFORM_COMM)
105 
106 /* Check if a CPC register is in FFH */
107 #define CPC_IN_FFH(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
108 				(cpc)->cpc_entry.reg.space_id ==	\
109 				ACPI_ADR_SPACE_FIXED_HARDWARE)
110 
111 /* Check if a CPC register is in SystemMemory */
112 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
113 				(cpc)->cpc_entry.reg.space_id ==	\
114 				ACPI_ADR_SPACE_SYSTEM_MEMORY)
115 
116 /* Check if a CPC register is in SystemIo */
117 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
118 				(cpc)->cpc_entry.reg.space_id ==	\
119 				ACPI_ADR_SPACE_SYSTEM_IO)
120 
121 /* Evaluates to True if reg is a NULL register descriptor */
122 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
123 				(reg)->address == 0 &&			\
124 				(reg)->bit_width == 0 &&		\
125 				(reg)->bit_offset == 0 &&		\
126 				(reg)->access_width == 0)
127 
128 /* Evaluates to True if an optional cpc field is supported */
129 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
130 				!!(cpc)->cpc_entry.int_value :		\
131 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
132 /*
133  * Arbitrary Retries in case the remote processor is slow to respond
134  * to PCC commands. Keeping it high enough to cover emulators where
135  * the processors run painfully slow.
136  */
137 #define NUM_RETRIES 500ULL
138 
139 #define OVER_16BTS_MASK ~0xFFFFULL
140 
141 #define define_one_cppc_ro(_name)		\
142 static struct kobj_attribute _name =		\
143 __ATTR(_name, 0444, show_##_name, NULL)
144 
145 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
146 
147 #define show_cppc_data(access_fn, struct_name, member_name)		\
148 	static ssize_t show_##member_name(struct kobject *kobj,		\
149 				struct kobj_attribute *attr, char *buf)	\
150 	{								\
151 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
152 		struct struct_name st_name = {0};			\
153 		int ret;						\
154 									\
155 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
156 		if (ret)						\
157 			return ret;					\
158 									\
159 		return sysfs_emit(buf, "%llu\n",		\
160 				(u64)st_name.member_name);		\
161 	}								\
162 	define_one_cppc_ro(member_name)
163 
164 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
165 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
166 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
167 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
168 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, guaranteed_perf);
169 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
170 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
171 
172 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
173 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
174 
175 /* Check for valid access_width, otherwise, fallback to using bit_width */
176 #define GET_BIT_WIDTH(reg) ((reg)->access_width ? (8 << ((reg)->access_width - 1)) : (reg)->bit_width)
177 
178 /* Shift and apply the mask for CPC reads/writes */
179 #define MASK_VAL_READ(reg, val) (((val) >> (reg)->bit_offset) &				\
180 					GENMASK(((reg)->bit_width) - 1, 0))
181 #define MASK_VAL_WRITE(reg, prev_val, val)						\
182 	((((val) & GENMASK(((reg)->bit_width) - 1, 0)) << (reg)->bit_offset) |		\
183 	((prev_val) & ~(GENMASK(((reg)->bit_width) - 1, 0) << (reg)->bit_offset)))	\
184 
185 static ssize_t show_feedback_ctrs(struct kobject *kobj,
186 		struct kobj_attribute *attr, char *buf)
187 {
188 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
189 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
190 	int ret;
191 
192 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
193 	if (ret)
194 		return ret;
195 
196 	return sysfs_emit(buf, "ref:%llu del:%llu\n",
197 			fb_ctrs.reference, fb_ctrs.delivered);
198 }
199 define_one_cppc_ro(feedback_ctrs);
200 
201 static struct attribute *cppc_attrs[] = {
202 	&feedback_ctrs.attr,
203 	&reference_perf.attr,
204 	&wraparound_time.attr,
205 	&highest_perf.attr,
206 	&lowest_perf.attr,
207 	&lowest_nonlinear_perf.attr,
208 	&guaranteed_perf.attr,
209 	&nominal_perf.attr,
210 	&nominal_freq.attr,
211 	&lowest_freq.attr,
212 	NULL
213 };
214 ATTRIBUTE_GROUPS(cppc);
215 
216 static const struct kobj_type cppc_ktype = {
217 	.sysfs_ops = &kobj_sysfs_ops,
218 	.default_groups = cppc_groups,
219 };
220 
221 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
222 {
223 	int ret, status;
224 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
225 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
226 		pcc_ss_data->pcc_comm_addr;
227 
228 	if (!pcc_ss_data->platform_owns_pcc)
229 		return 0;
230 
231 	/*
232 	 * Poll PCC status register every 3us(delay_us) for maximum of
233 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
234 	 */
235 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
236 					status & PCC_CMD_COMPLETE_MASK, 3,
237 					pcc_ss_data->deadline_us);
238 
239 	if (likely(!ret)) {
240 		pcc_ss_data->platform_owns_pcc = false;
241 		if (chk_err_bit && (status & PCC_ERROR_MASK))
242 			ret = -EIO;
243 	}
244 
245 	if (unlikely(ret))
246 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
247 		       pcc_ss_id, ret);
248 
249 	return ret;
250 }
251 
252 /*
253  * This function transfers the ownership of the PCC to the platform
254  * So it must be called while holding write_lock(pcc_lock)
255  */
256 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
257 {
258 	int ret = -EIO, i;
259 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
260 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
261 		pcc_ss_data->pcc_comm_addr;
262 	unsigned int time_delta;
263 
264 	/*
265 	 * For CMD_WRITE we know for a fact the caller should have checked
266 	 * the channel before writing to PCC space
267 	 */
268 	if (cmd == CMD_READ) {
269 		/*
270 		 * If there are pending cpc_writes, then we stole the channel
271 		 * before write completion, so first send a WRITE command to
272 		 * platform
273 		 */
274 		if (pcc_ss_data->pending_pcc_write_cmd)
275 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
276 
277 		ret = check_pcc_chan(pcc_ss_id, false);
278 		if (ret)
279 			goto end;
280 	} else /* CMD_WRITE */
281 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
282 
283 	/*
284 	 * Handle the Minimum Request Turnaround Time(MRTT)
285 	 * "The minimum amount of time that OSPM must wait after the completion
286 	 * of a command before issuing the next command, in microseconds"
287 	 */
288 	if (pcc_ss_data->pcc_mrtt) {
289 		time_delta = ktime_us_delta(ktime_get(),
290 					    pcc_ss_data->last_cmd_cmpl_time);
291 		if (pcc_ss_data->pcc_mrtt > time_delta)
292 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
293 	}
294 
295 	/*
296 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
297 	 * "The maximum number of periodic requests that the subspace channel can
298 	 * support, reported in commands per minute. 0 indicates no limitation."
299 	 *
300 	 * This parameter should be ideally zero or large enough so that it can
301 	 * handle maximum number of requests that all the cores in the system can
302 	 * collectively generate. If it is not, we will follow the spec and just
303 	 * not send the request to the platform after hitting the MPAR limit in
304 	 * any 60s window
305 	 */
306 	if (pcc_ss_data->pcc_mpar) {
307 		if (pcc_ss_data->mpar_count == 0) {
308 			time_delta = ktime_ms_delta(ktime_get(),
309 						    pcc_ss_data->last_mpar_reset);
310 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
311 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
312 					 pcc_ss_id);
313 				ret = -EIO;
314 				goto end;
315 			}
316 			pcc_ss_data->last_mpar_reset = ktime_get();
317 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
318 		}
319 		pcc_ss_data->mpar_count--;
320 	}
321 
322 	/* Write to the shared comm region. */
323 	writew_relaxed(cmd, &generic_comm_base->command);
324 
325 	/* Flip CMD COMPLETE bit */
326 	writew_relaxed(0, &generic_comm_base->status);
327 
328 	pcc_ss_data->platform_owns_pcc = true;
329 
330 	/* Ring doorbell */
331 	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
332 	if (ret < 0) {
333 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
334 		       pcc_ss_id, cmd, ret);
335 		goto end;
336 	}
337 
338 	/* wait for completion and check for PCC error bit */
339 	ret = check_pcc_chan(pcc_ss_id, true);
340 
341 	if (pcc_ss_data->pcc_mrtt)
342 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
343 
344 	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
345 		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
346 	else
347 		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
348 
349 end:
350 	if (cmd == CMD_WRITE) {
351 		if (unlikely(ret)) {
352 			for_each_possible_cpu(i) {
353 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
354 
355 				if (!desc)
356 					continue;
357 
358 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
359 					desc->write_cmd_status = ret;
360 			}
361 		}
362 		pcc_ss_data->pcc_write_cnt++;
363 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
364 	}
365 
366 	return ret;
367 }
368 
369 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
370 {
371 	if (ret < 0)
372 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
373 				*(u16 *)msg, ret);
374 	else
375 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
376 				*(u16 *)msg, ret);
377 }
378 
379 static struct mbox_client cppc_mbox_cl = {
380 	.tx_done = cppc_chan_tx_done,
381 	.knows_txdone = true,
382 };
383 
384 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
385 {
386 	int result = -EFAULT;
387 	acpi_status status = AE_OK;
388 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
389 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
390 	struct acpi_buffer state = {0, NULL};
391 	union acpi_object  *psd = NULL;
392 	struct acpi_psd_package *pdomain;
393 
394 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
395 					    &buffer, ACPI_TYPE_PACKAGE);
396 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
397 		return 0;
398 	if (ACPI_FAILURE(status))
399 		return -ENODEV;
400 
401 	psd = buffer.pointer;
402 	if (!psd || psd->package.count != 1) {
403 		pr_debug("Invalid _PSD data\n");
404 		goto end;
405 	}
406 
407 	pdomain = &(cpc_ptr->domain_info);
408 
409 	state.length = sizeof(struct acpi_psd_package);
410 	state.pointer = pdomain;
411 
412 	status = acpi_extract_package(&(psd->package.elements[0]),
413 		&format, &state);
414 	if (ACPI_FAILURE(status)) {
415 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
416 		goto end;
417 	}
418 
419 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
420 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
421 		goto end;
422 	}
423 
424 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
425 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
426 		goto end;
427 	}
428 
429 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
430 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
431 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
432 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
433 		goto end;
434 	}
435 
436 	result = 0;
437 end:
438 	kfree(buffer.pointer);
439 	return result;
440 }
441 
442 bool acpi_cpc_valid(void)
443 {
444 	struct cpc_desc *cpc_ptr;
445 	int cpu;
446 
447 	if (acpi_disabled)
448 		return false;
449 
450 	for_each_present_cpu(cpu) {
451 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
452 		if (!cpc_ptr)
453 			return false;
454 	}
455 
456 	return true;
457 }
458 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
459 
460 bool cppc_allow_fast_switch(void)
461 {
462 	struct cpc_register_resource *desired_reg;
463 	struct cpc_desc *cpc_ptr;
464 	int cpu;
465 
466 	for_each_possible_cpu(cpu) {
467 		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
468 		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
469 		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
470 				!CPC_IN_SYSTEM_IO(desired_reg))
471 			return false;
472 	}
473 
474 	return true;
475 }
476 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
477 
478 /**
479  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
480  * @cpu: Find all CPUs that share a domain with cpu.
481  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
482  *
483  *	Return: 0 for success or negative value for err.
484  */
485 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
486 {
487 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
488 	struct acpi_psd_package *match_pdomain;
489 	struct acpi_psd_package *pdomain;
490 	int count_target, i;
491 
492 	/*
493 	 * Now that we have _PSD data from all CPUs, let's setup P-state
494 	 * domain info.
495 	 */
496 	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
497 	if (!cpc_ptr)
498 		return -EFAULT;
499 
500 	pdomain = &(cpc_ptr->domain_info);
501 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
502 	if (pdomain->num_processors <= 1)
503 		return 0;
504 
505 	/* Validate the Domain info */
506 	count_target = pdomain->num_processors;
507 	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
508 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
509 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
510 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
511 	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
512 		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
513 
514 	for_each_possible_cpu(i) {
515 		if (i == cpu)
516 			continue;
517 
518 		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
519 		if (!match_cpc_ptr)
520 			goto err_fault;
521 
522 		match_pdomain = &(match_cpc_ptr->domain_info);
523 		if (match_pdomain->domain != pdomain->domain)
524 			continue;
525 
526 		/* Here i and cpu are in the same domain */
527 		if (match_pdomain->num_processors != count_target)
528 			goto err_fault;
529 
530 		if (pdomain->coord_type != match_pdomain->coord_type)
531 			goto err_fault;
532 
533 		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
534 	}
535 
536 	return 0;
537 
538 err_fault:
539 	/* Assume no coordination on any error parsing domain info */
540 	cpumask_clear(cpu_data->shared_cpu_map);
541 	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
542 	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
543 
544 	return -EFAULT;
545 }
546 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
547 
548 static int register_pcc_channel(int pcc_ss_idx)
549 {
550 	struct pcc_mbox_chan *pcc_chan;
551 	u64 usecs_lat;
552 
553 	if (pcc_ss_idx >= 0) {
554 		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
555 
556 		if (IS_ERR(pcc_chan)) {
557 			pr_err("Failed to find PCC channel for subspace %d\n",
558 			       pcc_ss_idx);
559 			return -ENODEV;
560 		}
561 
562 		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
563 		/*
564 		 * cppc_ss->latency is just a Nominal value. In reality
565 		 * the remote processor could be much slower to reply.
566 		 * So add an arbitrary amount of wait on top of Nominal.
567 		 */
568 		usecs_lat = NUM_RETRIES * pcc_chan->latency;
569 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
570 		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
571 		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
572 		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
573 
574 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
575 			acpi_os_ioremap(pcc_chan->shmem_base_addr,
576 					pcc_chan->shmem_size);
577 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
578 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
579 			       pcc_ss_idx);
580 			return -ENOMEM;
581 		}
582 
583 		/* Set flag so that we don't come here for each CPU. */
584 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
585 	}
586 
587 	return 0;
588 }
589 
590 /**
591  * cpc_ffh_supported() - check if FFH reading supported
592  *
593  * Check if the architecture has support for functional fixed hardware
594  * read/write capability.
595  *
596  * Return: true for supported, false for not supported
597  */
598 bool __weak cpc_ffh_supported(void)
599 {
600 	return false;
601 }
602 
603 /**
604  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
605  *
606  * Check if the architectural support for CPPC is present even
607  * if the _OSC hasn't prescribed it
608  *
609  * Return: true for supported, false for not supported
610  */
611 bool __weak cpc_supported_by_cpu(void)
612 {
613 	return false;
614 }
615 
616 /**
617  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
618  * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
619  *
620  * Check and allocate the cppc_pcc_data memory.
621  * In some processor configurations it is possible that same subspace
622  * is shared between multiple CPUs. This is seen especially in CPUs
623  * with hardware multi-threading support.
624  *
625  * Return: 0 for success, errno for failure
626  */
627 static int pcc_data_alloc(int pcc_ss_id)
628 {
629 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
630 		return -EINVAL;
631 
632 	if (pcc_data[pcc_ss_id]) {
633 		pcc_data[pcc_ss_id]->refcount++;
634 	} else {
635 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
636 					      GFP_KERNEL);
637 		if (!pcc_data[pcc_ss_id])
638 			return -ENOMEM;
639 		pcc_data[pcc_ss_id]->refcount++;
640 	}
641 
642 	return 0;
643 }
644 
645 /*
646  * An example CPC table looks like the following.
647  *
648  *  Name (_CPC, Package() {
649  *      17,							// NumEntries
650  *      1,							// Revision
651  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
652  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
653  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
654  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
655  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
656  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
657  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
658  *      ...
659  *      ...
660  *      ...
661  *  }
662  * Each Register() encodes how to access that specific register.
663  * e.g. a sample PCC entry has the following encoding:
664  *
665  *  Register (
666  *      PCC,	// AddressSpaceKeyword
667  *      8,	// RegisterBitWidth
668  *      8,	// RegisterBitOffset
669  *      0x30,	// RegisterAddress
670  *      9,	// AccessSize (subspace ID)
671  *  )
672  */
673 
674 #ifndef arch_init_invariance_cppc
675 static inline void arch_init_invariance_cppc(void) { }
676 #endif
677 
678 /**
679  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
680  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
681  *
682  *	Return: 0 for success or negative value for err.
683  */
684 int acpi_cppc_processor_probe(struct acpi_processor *pr)
685 {
686 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
687 	union acpi_object *out_obj, *cpc_obj;
688 	struct cpc_desc *cpc_ptr;
689 	struct cpc_reg *gas_t;
690 	struct device *cpu_dev;
691 	acpi_handle handle = pr->handle;
692 	unsigned int num_ent, i, cpc_rev;
693 	int pcc_subspace_id = -1;
694 	acpi_status status;
695 	int ret = -ENODATA;
696 
697 	if (!osc_sb_cppc2_support_acked) {
698 		pr_debug("CPPC v2 _OSC not acked\n");
699 		if (!cpc_supported_by_cpu()) {
700 			pr_debug("CPPC is not supported by the CPU\n");
701 			return -ENODEV;
702 		}
703 	}
704 
705 	/* Parse the ACPI _CPC table for this CPU. */
706 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
707 			ACPI_TYPE_PACKAGE);
708 	if (ACPI_FAILURE(status)) {
709 		ret = -ENODEV;
710 		goto out_buf_free;
711 	}
712 
713 	out_obj = (union acpi_object *) output.pointer;
714 
715 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
716 	if (!cpc_ptr) {
717 		ret = -ENOMEM;
718 		goto out_buf_free;
719 	}
720 
721 	/* First entry is NumEntries. */
722 	cpc_obj = &out_obj->package.elements[0];
723 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
724 		num_ent = cpc_obj->integer.value;
725 		if (num_ent <= 1) {
726 			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
727 				 num_ent, pr->id);
728 			goto out_free;
729 		}
730 	} else {
731 		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
732 			 cpc_obj->type, pr->id);
733 		goto out_free;
734 	}
735 
736 	/* Second entry should be revision. */
737 	cpc_obj = &out_obj->package.elements[1];
738 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
739 		cpc_rev = cpc_obj->integer.value;
740 	} else {
741 		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
742 			 cpc_obj->type, pr->id);
743 		goto out_free;
744 	}
745 
746 	if (cpc_rev < CPPC_V2_REV) {
747 		pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
748 			 pr->id);
749 		goto out_free;
750 	}
751 
752 	/*
753 	 * Disregard _CPC if the number of entries in the return pachage is not
754 	 * as expected, but support future revisions being proper supersets of
755 	 * the v3 and only causing more entries to be returned by _CPC.
756 	 */
757 	if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
758 	    (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
759 	    (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
760 		pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
761 			 num_ent, pr->id);
762 		goto out_free;
763 	}
764 	if (cpc_rev > CPPC_V3_REV) {
765 		num_ent = CPPC_V3_NUM_ENT;
766 		cpc_rev = CPPC_V3_REV;
767 	}
768 
769 	cpc_ptr->num_entries = num_ent;
770 	cpc_ptr->version = cpc_rev;
771 
772 	/* Iterate through remaining entries in _CPC */
773 	for (i = 2; i < num_ent; i++) {
774 		cpc_obj = &out_obj->package.elements[i];
775 
776 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
777 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
778 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
779 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
780 			gas_t = (struct cpc_reg *)
781 				cpc_obj->buffer.pointer;
782 
783 			/*
784 			 * The PCC Subspace index is encoded inside
785 			 * the CPC table entries. The same PCC index
786 			 * will be used for all the PCC entries,
787 			 * so extract it only once.
788 			 */
789 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
790 				if (pcc_subspace_id < 0) {
791 					pcc_subspace_id = gas_t->access_width;
792 					if (pcc_data_alloc(pcc_subspace_id))
793 						goto out_free;
794 				} else if (pcc_subspace_id != gas_t->access_width) {
795 					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
796 						 pr->id);
797 					goto out_free;
798 				}
799 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
800 				if (gas_t->address) {
801 					void __iomem *addr;
802 					size_t access_width;
803 
804 					if (!osc_cpc_flexible_adr_space_confirmed) {
805 						pr_debug("Flexible address space capability not supported\n");
806 						if (!cpc_supported_by_cpu())
807 							goto out_free;
808 					}
809 
810 					access_width = GET_BIT_WIDTH(gas_t) / 8;
811 					addr = ioremap(gas_t->address, access_width);
812 					if (!addr)
813 						goto out_free;
814 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
815 				}
816 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
817 				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
818 					/*
819 					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
820 					 * SystemIO doesn't implement 64-bit
821 					 * registers.
822 					 */
823 					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
824 						 gas_t->access_width);
825 					goto out_free;
826 				}
827 				if (gas_t->address & OVER_16BTS_MASK) {
828 					/* SystemIO registers use 16-bit integer addresses */
829 					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
830 						 gas_t->address);
831 					goto out_free;
832 				}
833 				if (!osc_cpc_flexible_adr_space_confirmed) {
834 					pr_debug("Flexible address space capability not supported\n");
835 					if (!cpc_supported_by_cpu())
836 						goto out_free;
837 				}
838 			} else {
839 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
840 					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
841 					pr_debug("Unsupported register type (%d) in _CPC\n",
842 						 gas_t->space_id);
843 					goto out_free;
844 				}
845 			}
846 
847 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
848 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
849 		} else {
850 			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
851 				 i, pr->id);
852 			goto out_free;
853 		}
854 	}
855 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
856 
857 	/*
858 	 * Initialize the remaining cpc_regs as unsupported.
859 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
860 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
861 	 */
862 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
863 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
864 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
865 	}
866 
867 
868 	/* Store CPU Logical ID */
869 	cpc_ptr->cpu_id = pr->id;
870 	raw_spin_lock_init(&cpc_ptr->rmw_lock);
871 
872 	/* Parse PSD data for this CPU */
873 	ret = acpi_get_psd(cpc_ptr, handle);
874 	if (ret)
875 		goto out_free;
876 
877 	/* Register PCC channel once for all PCC subspace ID. */
878 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
879 		ret = register_pcc_channel(pcc_subspace_id);
880 		if (ret)
881 			goto out_free;
882 
883 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
884 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
885 	}
886 
887 	/* Everything looks okay */
888 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
889 
890 	/* Add per logical CPU nodes for reading its feedback counters. */
891 	cpu_dev = get_cpu_device(pr->id);
892 	if (!cpu_dev) {
893 		ret = -EINVAL;
894 		goto out_free;
895 	}
896 
897 	/* Plug PSD data into this CPU's CPC descriptor. */
898 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
899 
900 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
901 			"acpi_cppc");
902 	if (ret) {
903 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
904 		kobject_put(&cpc_ptr->kobj);
905 		goto out_free;
906 	}
907 
908 	arch_init_invariance_cppc();
909 
910 	kfree(output.pointer);
911 	return 0;
912 
913 out_free:
914 	/* Free all the mapped sys mem areas for this CPU */
915 	for (i = 2; i < cpc_ptr->num_entries; i++) {
916 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
917 
918 		if (addr)
919 			iounmap(addr);
920 	}
921 	kfree(cpc_ptr);
922 
923 out_buf_free:
924 	kfree(output.pointer);
925 	return ret;
926 }
927 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
928 
929 /**
930  * acpi_cppc_processor_exit - Cleanup CPC structs.
931  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
932  *
933  * Return: Void
934  */
935 void acpi_cppc_processor_exit(struct acpi_processor *pr)
936 {
937 	struct cpc_desc *cpc_ptr;
938 	unsigned int i;
939 	void __iomem *addr;
940 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
941 
942 	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
943 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
944 			pcc_data[pcc_ss_id]->refcount--;
945 			if (!pcc_data[pcc_ss_id]->refcount) {
946 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
947 				kfree(pcc_data[pcc_ss_id]);
948 				pcc_data[pcc_ss_id] = NULL;
949 			}
950 		}
951 	}
952 
953 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
954 	if (!cpc_ptr)
955 		return;
956 
957 	/* Free all the mapped sys mem areas for this CPU */
958 	for (i = 2; i < cpc_ptr->num_entries; i++) {
959 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
960 		if (addr)
961 			iounmap(addr);
962 	}
963 
964 	kobject_put(&cpc_ptr->kobj);
965 	kfree(cpc_ptr);
966 }
967 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
968 
969 /**
970  * cpc_read_ffh() - Read FFH register
971  * @cpunum:	CPU number to read
972  * @reg:	cppc register information
973  * @val:	place holder for return value
974  *
975  * Read bit_width bits from a specified address and bit_offset
976  *
977  * Return: 0 for success and error code
978  */
979 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
980 {
981 	return -ENOTSUPP;
982 }
983 
984 /**
985  * cpc_write_ffh() - Write FFH register
986  * @cpunum:	CPU number to write
987  * @reg:	cppc register information
988  * @val:	value to write
989  *
990  * Write value of bit_width bits to a specified address and bit_offset
991  *
992  * Return: 0 for success and error code
993  */
994 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
995 {
996 	return -ENOTSUPP;
997 }
998 
999 /*
1000  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
1001  * as fast as possible. We have already mapped the PCC subspace during init, so
1002  * we can directly write to it.
1003  */
1004 
1005 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
1006 {
1007 	void __iomem *vaddr = NULL;
1008 	int size;
1009 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1010 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1011 
1012 	if (reg_res->type == ACPI_TYPE_INTEGER) {
1013 		*val = reg_res->cpc_entry.int_value;
1014 		return 0;
1015 	}
1016 
1017 	*val = 0;
1018 	size = GET_BIT_WIDTH(reg);
1019 
1020 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1021 		u32 val_u32;
1022 		acpi_status status;
1023 
1024 		status = acpi_os_read_port((acpi_io_address)reg->address,
1025 					   &val_u32, size);
1026 		if (ACPI_FAILURE(status)) {
1027 			pr_debug("Error: Failed to read SystemIO port %llx\n",
1028 				 reg->address);
1029 			return -EFAULT;
1030 		}
1031 
1032 		*val = val_u32;
1033 		return 0;
1034 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1035 		/*
1036 		 * For registers in PCC space, the register size is determined
1037 		 * by the bit width field; the access size is used to indicate
1038 		 * the PCC subspace id.
1039 		 */
1040 		size = reg->bit_width;
1041 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1042 	}
1043 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1044 		vaddr = reg_res->sys_mem_vaddr;
1045 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1046 		return cpc_read_ffh(cpu, reg, val);
1047 	else
1048 		return acpi_os_read_memory((acpi_physical_address)reg->address,
1049 				val, size);
1050 
1051 	switch (size) {
1052 	case 8:
1053 		*val = readb_relaxed(vaddr);
1054 		break;
1055 	case 16:
1056 		*val = readw_relaxed(vaddr);
1057 		break;
1058 	case 32:
1059 		*val = readl_relaxed(vaddr);
1060 		break;
1061 	case 64:
1062 		*val = readq_relaxed(vaddr);
1063 		break;
1064 	default:
1065 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1066 			pr_debug("Error: Cannot read %u bit width from system memory: 0x%llx\n",
1067 				size, reg->address);
1068 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1069 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1070 				size, pcc_ss_id);
1071 		}
1072 		return -EFAULT;
1073 	}
1074 
1075 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1076 		*val = MASK_VAL_READ(reg, *val);
1077 
1078 	return 0;
1079 }
1080 
1081 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1082 {
1083 	int ret_val = 0;
1084 	int size;
1085 	u64 prev_val;
1086 	void __iomem *vaddr = NULL;
1087 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1088 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1089 	struct cpc_desc *cpc_desc;
1090 	unsigned long flags;
1091 
1092 	size = GET_BIT_WIDTH(reg);
1093 
1094 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1095 		acpi_status status;
1096 
1097 		status = acpi_os_write_port((acpi_io_address)reg->address,
1098 					    (u32)val, size);
1099 		if (ACPI_FAILURE(status)) {
1100 			pr_debug("Error: Failed to write SystemIO port %llx\n",
1101 				 reg->address);
1102 			return -EFAULT;
1103 		}
1104 
1105 		return 0;
1106 	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) {
1107 		/*
1108 		 * For registers in PCC space, the register size is determined
1109 		 * by the bit width field; the access size is used to indicate
1110 		 * the PCC subspace id.
1111 		 */
1112 		size = reg->bit_width;
1113 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1114 	}
1115 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1116 		vaddr = reg_res->sys_mem_vaddr;
1117 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1118 		return cpc_write_ffh(cpu, reg, val);
1119 	else
1120 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1121 				val, size);
1122 
1123 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1124 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1125 		if (!cpc_desc) {
1126 			pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1127 			return -ENODEV;
1128 		}
1129 
1130 		raw_spin_lock_irqsave(&cpc_desc->rmw_lock, flags);
1131 		switch (size) {
1132 		case 8:
1133 			prev_val = readb_relaxed(vaddr);
1134 			break;
1135 		case 16:
1136 			prev_val = readw_relaxed(vaddr);
1137 			break;
1138 		case 32:
1139 			prev_val = readl_relaxed(vaddr);
1140 			break;
1141 		case 64:
1142 			prev_val = readq_relaxed(vaddr);
1143 			break;
1144 		default:
1145 			raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1146 			return -EFAULT;
1147 		}
1148 		val = MASK_VAL_WRITE(reg, prev_val, val);
1149 		val |= prev_val;
1150 	}
1151 
1152 	switch (size) {
1153 	case 8:
1154 		writeb_relaxed(val, vaddr);
1155 		break;
1156 	case 16:
1157 		writew_relaxed(val, vaddr);
1158 		break;
1159 	case 32:
1160 		writel_relaxed(val, vaddr);
1161 		break;
1162 	case 64:
1163 		writeq_relaxed(val, vaddr);
1164 		break;
1165 	default:
1166 		if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1167 			pr_debug("Error: Cannot write %u bit width to system memory: 0x%llx\n",
1168 				size, reg->address);
1169 		} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
1170 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1171 				size, pcc_ss_id);
1172 		}
1173 		ret_val = -EFAULT;
1174 		break;
1175 	}
1176 
1177 	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1178 		raw_spin_unlock_irqrestore(&cpc_desc->rmw_lock, flags);
1179 
1180 	return ret_val;
1181 }
1182 
1183 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1184 {
1185 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1186 	struct cpc_register_resource *reg;
1187 
1188 	if (!cpc_desc) {
1189 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1190 		return -ENODEV;
1191 	}
1192 
1193 	reg = &cpc_desc->cpc_regs[reg_idx];
1194 
1195 	if (CPC_IN_PCC(reg)) {
1196 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1197 		struct cppc_pcc_data *pcc_ss_data = NULL;
1198 		int ret = 0;
1199 
1200 		if (pcc_ss_id < 0)
1201 			return -EIO;
1202 
1203 		pcc_ss_data = pcc_data[pcc_ss_id];
1204 
1205 		down_write(&pcc_ss_data->pcc_lock);
1206 
1207 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1208 			cpc_read(cpunum, reg, perf);
1209 		else
1210 			ret = -EIO;
1211 
1212 		up_write(&pcc_ss_data->pcc_lock);
1213 
1214 		return ret;
1215 	}
1216 
1217 	cpc_read(cpunum, reg, perf);
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * cppc_get_desired_perf - Get the desired performance register value.
1224  * @cpunum: CPU from which to get desired performance.
1225  * @desired_perf: Return address.
1226  *
1227  * Return: 0 for success, -EIO otherwise.
1228  */
1229 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1230 {
1231 	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1232 }
1233 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1234 
1235 /**
1236  * cppc_get_nominal_perf - Get the nominal performance register value.
1237  * @cpunum: CPU from which to get nominal performance.
1238  * @nominal_perf: Return address.
1239  *
1240  * Return: 0 for success, -EIO otherwise.
1241  */
1242 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1243 {
1244 	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1245 }
1246 
1247 /**
1248  * cppc_get_highest_perf - Get the highest performance register value.
1249  * @cpunum: CPU from which to get highest performance.
1250  * @highest_perf: Return address.
1251  *
1252  * Return: 0 for success, -EIO otherwise.
1253  */
1254 int cppc_get_highest_perf(int cpunum, u64 *highest_perf)
1255 {
1256 	return cppc_get_perf(cpunum, HIGHEST_PERF, highest_perf);
1257 }
1258 EXPORT_SYMBOL_GPL(cppc_get_highest_perf);
1259 
1260 /**
1261  * cppc_get_epp_perf - Get the epp register value.
1262  * @cpunum: CPU from which to get epp preference value.
1263  * @epp_perf: Return address.
1264  *
1265  * Return: 0 for success, -EIO otherwise.
1266  */
1267 int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1268 {
1269 	return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1270 }
1271 EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1272 
1273 /**
1274  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1275  * @cpunum: CPU from which to get capabilities info.
1276  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1277  *
1278  * Return: 0 for success with perf_caps populated else -ERRNO.
1279  */
1280 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1281 {
1282 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1283 	struct cpc_register_resource *highest_reg, *lowest_reg,
1284 		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1285 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1286 	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1287 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1288 	struct cppc_pcc_data *pcc_ss_data = NULL;
1289 	int ret = 0, regs_in_pcc = 0;
1290 
1291 	if (!cpc_desc) {
1292 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1293 		return -ENODEV;
1294 	}
1295 
1296 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1297 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1298 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1299 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1300 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1301 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1302 	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1303 
1304 	/* Are any of the regs PCC ?*/
1305 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1306 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1307 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1308 		if (pcc_ss_id < 0) {
1309 			pr_debug("Invalid pcc_ss_id\n");
1310 			return -ENODEV;
1311 		}
1312 		pcc_ss_data = pcc_data[pcc_ss_id];
1313 		regs_in_pcc = 1;
1314 		down_write(&pcc_ss_data->pcc_lock);
1315 		/* Ring doorbell once to update PCC subspace */
1316 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1317 			ret = -EIO;
1318 			goto out_err;
1319 		}
1320 	}
1321 
1322 	cpc_read(cpunum, highest_reg, &high);
1323 	perf_caps->highest_perf = high;
1324 
1325 	cpc_read(cpunum, lowest_reg, &low);
1326 	perf_caps->lowest_perf = low;
1327 
1328 	cpc_read(cpunum, nominal_reg, &nom);
1329 	perf_caps->nominal_perf = nom;
1330 
1331 	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1332 	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1333 		perf_caps->guaranteed_perf = 0;
1334 	} else {
1335 		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1336 		perf_caps->guaranteed_perf = guaranteed;
1337 	}
1338 
1339 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1340 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1341 
1342 	if (!high || !low || !nom || !min_nonlinear)
1343 		ret = -EFAULT;
1344 
1345 	/* Read optional lowest and nominal frequencies if present */
1346 	if (CPC_SUPPORTED(low_freq_reg))
1347 		cpc_read(cpunum, low_freq_reg, &low_f);
1348 
1349 	if (CPC_SUPPORTED(nom_freq_reg))
1350 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1351 
1352 	perf_caps->lowest_freq = low_f;
1353 	perf_caps->nominal_freq = nom_f;
1354 
1355 
1356 out_err:
1357 	if (regs_in_pcc)
1358 		up_write(&pcc_ss_data->pcc_lock);
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1362 
1363 /**
1364  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1365  *
1366  * CPPC has flexibility about how CPU performance counters are accessed.
1367  * One of the choices is PCC regions, which can have a high access latency. This
1368  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1369  *
1370  * Return: true if any of the counters are in PCC regions, false otherwise
1371  */
1372 bool cppc_perf_ctrs_in_pcc(void)
1373 {
1374 	int cpu;
1375 
1376 	for_each_present_cpu(cpu) {
1377 		struct cpc_register_resource *ref_perf_reg;
1378 		struct cpc_desc *cpc_desc;
1379 
1380 		cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1381 
1382 		if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1383 		    CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1384 		    CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1385 			return true;
1386 
1387 
1388 		ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1389 
1390 		/*
1391 		 * If reference perf register is not supported then we should
1392 		 * use the nominal perf value
1393 		 */
1394 		if (!CPC_SUPPORTED(ref_perf_reg))
1395 			ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1396 
1397 		if (CPC_IN_PCC(ref_perf_reg))
1398 			return true;
1399 	}
1400 
1401 	return false;
1402 }
1403 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1404 
1405 /**
1406  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1407  * @cpunum: CPU from which to read counters.
1408  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1409  *
1410  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1411  */
1412 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1413 {
1414 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1415 	struct cpc_register_resource *delivered_reg, *reference_reg,
1416 		*ref_perf_reg, *ctr_wrap_reg;
1417 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1418 	struct cppc_pcc_data *pcc_ss_data = NULL;
1419 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1420 	int ret = 0, regs_in_pcc = 0;
1421 
1422 	if (!cpc_desc) {
1423 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1424 		return -ENODEV;
1425 	}
1426 
1427 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1428 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1429 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1430 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1431 
1432 	/*
1433 	 * If reference perf register is not supported then we should
1434 	 * use the nominal perf value
1435 	 */
1436 	if (!CPC_SUPPORTED(ref_perf_reg))
1437 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1438 
1439 	/* Are any of the regs PCC ?*/
1440 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1441 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1442 		if (pcc_ss_id < 0) {
1443 			pr_debug("Invalid pcc_ss_id\n");
1444 			return -ENODEV;
1445 		}
1446 		pcc_ss_data = pcc_data[pcc_ss_id];
1447 		down_write(&pcc_ss_data->pcc_lock);
1448 		regs_in_pcc = 1;
1449 		/* Ring doorbell once to update PCC subspace */
1450 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1451 			ret = -EIO;
1452 			goto out_err;
1453 		}
1454 	}
1455 
1456 	cpc_read(cpunum, delivered_reg, &delivered);
1457 	cpc_read(cpunum, reference_reg, &reference);
1458 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1459 
1460 	/*
1461 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1462 	 * performance counters are assumed to never wrap during the lifetime of
1463 	 * platform
1464 	 */
1465 	ctr_wrap_time = (u64)(~((u64)0));
1466 	if (CPC_SUPPORTED(ctr_wrap_reg))
1467 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1468 
1469 	if (!delivered || !reference ||	!ref_perf) {
1470 		ret = -EFAULT;
1471 		goto out_err;
1472 	}
1473 
1474 	perf_fb_ctrs->delivered = delivered;
1475 	perf_fb_ctrs->reference = reference;
1476 	perf_fb_ctrs->reference_perf = ref_perf;
1477 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1478 out_err:
1479 	if (regs_in_pcc)
1480 		up_write(&pcc_ss_data->pcc_lock);
1481 	return ret;
1482 }
1483 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1484 
1485 /*
1486  * Set Energy Performance Preference Register value through
1487  * Performance Controls Interface
1488  */
1489 int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1490 {
1491 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1492 	struct cpc_register_resource *epp_set_reg;
1493 	struct cpc_register_resource *auto_sel_reg;
1494 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1495 	struct cppc_pcc_data *pcc_ss_data = NULL;
1496 	int ret;
1497 
1498 	if (!cpc_desc) {
1499 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1500 		return -ENODEV;
1501 	}
1502 
1503 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1504 	epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1505 
1506 	if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1507 		if (pcc_ss_id < 0) {
1508 			pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1509 			return -ENODEV;
1510 		}
1511 
1512 		if (CPC_SUPPORTED(auto_sel_reg)) {
1513 			ret = cpc_write(cpu, auto_sel_reg, enable);
1514 			if (ret)
1515 				return ret;
1516 		}
1517 
1518 		if (CPC_SUPPORTED(epp_set_reg)) {
1519 			ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1520 			if (ret)
1521 				return ret;
1522 		}
1523 
1524 		pcc_ss_data = pcc_data[pcc_ss_id];
1525 
1526 		down_write(&pcc_ss_data->pcc_lock);
1527 		/* after writing CPC, transfer the ownership of PCC to platform */
1528 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1529 		up_write(&pcc_ss_data->pcc_lock);
1530 	} else if (osc_cpc_flexible_adr_space_confirmed &&
1531 		   CPC_SUPPORTED(epp_set_reg) && CPC_IN_FFH(epp_set_reg)) {
1532 		ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1533 	} else {
1534 		ret = -ENOTSUPP;
1535 		pr_debug("_CPC in PCC and _CPC in FFH are not supported\n");
1536 	}
1537 
1538 	return ret;
1539 }
1540 EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1541 
1542 /**
1543  * cppc_get_auto_sel_caps - Read autonomous selection register.
1544  * @cpunum : CPU from which to read register.
1545  * @perf_caps : struct where autonomous selection register value is updated.
1546  */
1547 int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1548 {
1549 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1550 	struct cpc_register_resource *auto_sel_reg;
1551 	u64  auto_sel;
1552 
1553 	if (!cpc_desc) {
1554 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1555 		return -ENODEV;
1556 	}
1557 
1558 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1559 
1560 	if (!CPC_SUPPORTED(auto_sel_reg))
1561 		pr_warn_once("Autonomous mode is not unsupported!\n");
1562 
1563 	if (CPC_IN_PCC(auto_sel_reg)) {
1564 		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1565 		struct cppc_pcc_data *pcc_ss_data = NULL;
1566 		int ret = 0;
1567 
1568 		if (pcc_ss_id < 0)
1569 			return -ENODEV;
1570 
1571 		pcc_ss_data = pcc_data[pcc_ss_id];
1572 
1573 		down_write(&pcc_ss_data->pcc_lock);
1574 
1575 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1576 			cpc_read(cpunum, auto_sel_reg, &auto_sel);
1577 			perf_caps->auto_sel = (bool)auto_sel;
1578 		} else {
1579 			ret = -EIO;
1580 		}
1581 
1582 		up_write(&pcc_ss_data->pcc_lock);
1583 
1584 		return ret;
1585 	}
1586 
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1590 
1591 /**
1592  * cppc_set_auto_sel - Write autonomous selection register.
1593  * @cpu    : CPU to which to write register.
1594  * @enable : the desired value of autonomous selection resiter to be updated.
1595  */
1596 int cppc_set_auto_sel(int cpu, bool enable)
1597 {
1598 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1599 	struct cpc_register_resource *auto_sel_reg;
1600 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1601 	struct cppc_pcc_data *pcc_ss_data = NULL;
1602 	int ret = -EINVAL;
1603 
1604 	if (!cpc_desc) {
1605 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1606 		return -ENODEV;
1607 	}
1608 
1609 	auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1610 
1611 	if (CPC_IN_PCC(auto_sel_reg)) {
1612 		if (pcc_ss_id < 0) {
1613 			pr_debug("Invalid pcc_ss_id\n");
1614 			return -ENODEV;
1615 		}
1616 
1617 		if (CPC_SUPPORTED(auto_sel_reg)) {
1618 			ret = cpc_write(cpu, auto_sel_reg, enable);
1619 			if (ret)
1620 				return ret;
1621 		}
1622 
1623 		pcc_ss_data = pcc_data[pcc_ss_id];
1624 
1625 		down_write(&pcc_ss_data->pcc_lock);
1626 		/* after writing CPC, transfer the ownership of PCC to platform */
1627 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1628 		up_write(&pcc_ss_data->pcc_lock);
1629 	} else {
1630 		ret = -ENOTSUPP;
1631 		pr_debug("_CPC in PCC is not supported\n");
1632 	}
1633 
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1637 
1638 /**
1639  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1640  * Continuous Performance Control package EnableRegister field.
1641  * @cpu: CPU for which to enable CPPC register.
1642  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1643  *
1644  * Return: 0 for success, -ERRNO or -EIO otherwise.
1645  */
1646 int cppc_set_enable(int cpu, bool enable)
1647 {
1648 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1649 	struct cpc_register_resource *enable_reg;
1650 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1651 	struct cppc_pcc_data *pcc_ss_data = NULL;
1652 	int ret = -EINVAL;
1653 
1654 	if (!cpc_desc) {
1655 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1656 		return -EINVAL;
1657 	}
1658 
1659 	enable_reg = &cpc_desc->cpc_regs[ENABLE];
1660 
1661 	if (CPC_IN_PCC(enable_reg)) {
1662 
1663 		if (pcc_ss_id < 0)
1664 			return -EIO;
1665 
1666 		ret = cpc_write(cpu, enable_reg, enable);
1667 		if (ret)
1668 			return ret;
1669 
1670 		pcc_ss_data = pcc_data[pcc_ss_id];
1671 
1672 		down_write(&pcc_ss_data->pcc_lock);
1673 		/* after writing CPC, transfer the ownership of PCC to platfrom */
1674 		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1675 		up_write(&pcc_ss_data->pcc_lock);
1676 		return ret;
1677 	}
1678 
1679 	return cpc_write(cpu, enable_reg, enable);
1680 }
1681 EXPORT_SYMBOL_GPL(cppc_set_enable);
1682 
1683 /**
1684  * cppc_set_perf - Set a CPU's performance controls.
1685  * @cpu: CPU for which to set performance controls.
1686  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1687  *
1688  * Return: 0 for success, -ERRNO otherwise.
1689  */
1690 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1691 {
1692 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1693 	struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1694 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1695 	struct cppc_pcc_data *pcc_ss_data = NULL;
1696 	int ret = 0;
1697 
1698 	if (!cpc_desc) {
1699 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1700 		return -ENODEV;
1701 	}
1702 
1703 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1704 	min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1705 	max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1706 
1707 	/*
1708 	 * This is Phase-I where we want to write to CPC registers
1709 	 * -> We want all CPUs to be able to execute this phase in parallel
1710 	 *
1711 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1712 	 * achieve that goal here
1713 	 */
1714 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1715 		if (pcc_ss_id < 0) {
1716 			pr_debug("Invalid pcc_ss_id\n");
1717 			return -ENODEV;
1718 		}
1719 		pcc_ss_data = pcc_data[pcc_ss_id];
1720 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1721 		if (pcc_ss_data->platform_owns_pcc) {
1722 			ret = check_pcc_chan(pcc_ss_id, false);
1723 			if (ret) {
1724 				up_read(&pcc_ss_data->pcc_lock);
1725 				return ret;
1726 			}
1727 		}
1728 		/*
1729 		 * Update the pending_write to make sure a PCC CMD_READ will not
1730 		 * arrive and steal the channel during the switch to write lock
1731 		 */
1732 		pcc_ss_data->pending_pcc_write_cmd = true;
1733 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1734 		cpc_desc->write_cmd_status = 0;
1735 	}
1736 
1737 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1738 
1739 	/*
1740 	 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1741 	 * value to min and max perf, but they don't mean to set the zero value,
1742 	 * they just don't want to write to those registers.
1743 	 */
1744 	if (perf_ctrls->min_perf)
1745 		cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1746 	if (perf_ctrls->max_perf)
1747 		cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1748 
1749 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1750 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1751 	/*
1752 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1753 	 *
1754 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1755 	 * requests that happened in short overlapping interval. The last CPU to
1756 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1757 	 *
1758 	 * We have the following requirements for Phase-II:
1759 	 *     1. We want to execute Phase-II only when there are no CPUs
1760 	 * currently executing in Phase-I
1761 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1762 	 * entering Phase-I.
1763 	 *     3. We want only one CPU among all those who went through Phase-I
1764 	 * to run phase-II
1765 	 *
1766 	 * If write_trylock fails to get the lock and doesn't transfer the
1767 	 * PCC ownership to the platform, then one of the following will be TRUE
1768 	 *     1. There is at-least one CPU in Phase-I which will later execute
1769 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1770 	 * executing the Phase-II.
1771 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1772 	 * write_trylock and has already acquired the write_lock. We know for a
1773 	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1774 	 * before this CPU's Phase-I as we held the read_lock.
1775 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1776 	 * down_write, in which case, send_pcc_cmd will check for pending
1777 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1778 	 * So this CPU can be certain that its request will be delivered
1779 	 *    So in all cases, this CPU knows that its request will be delivered
1780 	 * by another CPU and can return
1781 	 *
1782 	 * After getting the down_write we still need to check for
1783 	 * pending_pcc_write_cmd to take care of the following scenario
1784 	 *    The thread running this code could be scheduled out between
1785 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1786 	 * could have delivered the request to Platform by triggering the
1787 	 * doorbell and transferred the ownership of PCC to platform. So this
1788 	 * avoids triggering an unnecessary doorbell and more importantly before
1789 	 * triggering the doorbell it makes sure that the PCC channel ownership
1790 	 * is still with OSPM.
1791 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1792 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1793 	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1794 	 * case during a CMD_READ and if there are pending writes it delivers
1795 	 * the write command before servicing the read command
1796 	 */
1797 	if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1798 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1799 			/* Update only if there are pending write commands */
1800 			if (pcc_ss_data->pending_pcc_write_cmd)
1801 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1802 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1803 		} else
1804 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1805 			wait_event(pcc_ss_data->pcc_write_wait_q,
1806 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1807 
1808 		/* send_pcc_cmd updates the status in case of failure */
1809 		ret = cpc_desc->write_cmd_status;
1810 	}
1811 	return ret;
1812 }
1813 EXPORT_SYMBOL_GPL(cppc_set_perf);
1814 
1815 /**
1816  * cppc_get_transition_latency - returns frequency transition latency in ns
1817  * @cpu_num: CPU number for per_cpu().
1818  *
1819  * ACPI CPPC does not explicitly specify how a platform can specify the
1820  * transition latency for performance change requests. The closest we have
1821  * is the timing information from the PCCT tables which provides the info
1822  * on the number and frequency of PCC commands the platform can handle.
1823  *
1824  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1825  * then assume there is no latency.
1826  */
1827 unsigned int cppc_get_transition_latency(int cpu_num)
1828 {
1829 	/*
1830 	 * Expected transition latency is based on the PCCT timing values
1831 	 * Below are definition from ACPI spec:
1832 	 * pcc_nominal- Expected latency to process a command, in microseconds
1833 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1834 	 *              channel can support, reported in commands per minute. 0
1835 	 *              indicates no limitation.
1836 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1837 	 *              completion of a command before issuing the next command,
1838 	 *              in microseconds.
1839 	 */
1840 	unsigned int latency_ns = 0;
1841 	struct cpc_desc *cpc_desc;
1842 	struct cpc_register_resource *desired_reg;
1843 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1844 	struct cppc_pcc_data *pcc_ss_data;
1845 
1846 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1847 	if (!cpc_desc)
1848 		return CPUFREQ_ETERNAL;
1849 
1850 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1851 	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1852 		return 0;
1853 	else if (!CPC_IN_PCC(desired_reg))
1854 		return CPUFREQ_ETERNAL;
1855 
1856 	if (pcc_ss_id < 0)
1857 		return CPUFREQ_ETERNAL;
1858 
1859 	pcc_ss_data = pcc_data[pcc_ss_id];
1860 	if (pcc_ss_data->pcc_mpar)
1861 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1862 
1863 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1864 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1865 
1866 	return latency_ns;
1867 }
1868 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1869 
1870 /* Minimum struct length needed for the DMI processor entry we want */
1871 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
1872 
1873 /* Offset in the DMI processor structure for the max frequency */
1874 #define DMI_PROCESSOR_MAX_SPEED		0x14
1875 
1876 /* Callback function used to retrieve the max frequency from DMI */
1877 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1878 {
1879 	const u8 *dmi_data = (const u8 *)dm;
1880 	u16 *mhz = (u16 *)private;
1881 
1882 	if (dm->type == DMI_ENTRY_PROCESSOR &&
1883 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1884 		u16 val = (u16)get_unaligned((const u16 *)
1885 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
1886 		*mhz = umax(val, *mhz);
1887 	}
1888 }
1889 
1890 /* Look up the max frequency in DMI */
1891 static u64 cppc_get_dmi_max_khz(void)
1892 {
1893 	u16 mhz = 0;
1894 
1895 	dmi_walk(cppc_find_dmi_mhz, &mhz);
1896 
1897 	/*
1898 	 * Real stupid fallback value, just in case there is no
1899 	 * actual value set.
1900 	 */
1901 	mhz = mhz ? mhz : 1;
1902 
1903 	return KHZ_PER_MHZ * mhz;
1904 }
1905 
1906 /*
1907  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1908  * use them to convert perf to freq and vice versa. The conversion is
1909  * extrapolated as an affine function passing by the 2 points:
1910  *  - (Low perf, Low freq)
1911  *  - (Nominal perf, Nominal freq)
1912  */
1913 unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1914 {
1915 	s64 retval, offset = 0;
1916 	static u64 max_khz;
1917 	u64 mul, div;
1918 
1919 	if (caps->lowest_freq && caps->nominal_freq) {
1920 		/* Avoid special case when nominal_freq is equal to lowest_freq */
1921 		if (caps->lowest_freq == caps->nominal_freq) {
1922 			mul = caps->nominal_freq;
1923 			div = caps->nominal_perf;
1924 		} else {
1925 			mul = caps->nominal_freq - caps->lowest_freq;
1926 			div = caps->nominal_perf - caps->lowest_perf;
1927 		}
1928 		mul *= KHZ_PER_MHZ;
1929 		offset = caps->nominal_freq * KHZ_PER_MHZ -
1930 			 div64_u64(caps->nominal_perf * mul, div);
1931 	} else {
1932 		if (!max_khz)
1933 			max_khz = cppc_get_dmi_max_khz();
1934 		mul = max_khz;
1935 		div = caps->highest_perf;
1936 	}
1937 
1938 	retval = offset + div64_u64(perf * mul, div);
1939 	if (retval >= 0)
1940 		return retval;
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1944 
1945 unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1946 {
1947 	s64 retval, offset = 0;
1948 	static u64 max_khz;
1949 	u64 mul, div;
1950 
1951 	if (caps->lowest_freq && caps->nominal_freq) {
1952 		/* Avoid special case when nominal_freq is equal to lowest_freq */
1953 		if (caps->lowest_freq == caps->nominal_freq) {
1954 			mul = caps->nominal_perf;
1955 			div = caps->nominal_freq;
1956 		} else {
1957 			mul = caps->nominal_perf - caps->lowest_perf;
1958 			div = caps->nominal_freq - caps->lowest_freq;
1959 		}
1960 		/*
1961 		 * We don't need to convert to kHz for computing offset and can
1962 		 * directly use nominal_freq and lowest_freq as the div64_u64
1963 		 * will remove the frequency unit.
1964 		 */
1965 		offset = caps->nominal_perf -
1966 			 div64_u64(caps->nominal_freq * mul, div);
1967 		/* But we need it for computing the perf level. */
1968 		div *= KHZ_PER_MHZ;
1969 	} else {
1970 		if (!max_khz)
1971 			max_khz = cppc_get_dmi_max_khz();
1972 		mul = caps->highest_perf;
1973 		div = max_khz;
1974 	}
1975 
1976 	retval = offset + div64_u64(freq * mul, div);
1977 	if (retval >= 0)
1978 		return retval;
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1982